JP2010226940A - Linear-drive type ultrasonic motor - Google Patents

Linear-drive type ultrasonic motor Download PDF

Info

Publication number
JP2010226940A
JP2010226940A JP2009153324A JP2009153324A JP2010226940A JP 2010226940 A JP2010226940 A JP 2010226940A JP 2009153324 A JP2009153324 A JP 2009153324A JP 2009153324 A JP2009153324 A JP 2009153324A JP 2010226940 A JP2010226940 A JP 2010226940A
Authority
JP
Japan
Prior art keywords
driven
rolling
ultrasonic motor
driven member
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009153324A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Sakamoto
哲幸 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009153324A priority Critical patent/JP2010226940A/en
Publication of JP2010226940A publication Critical patent/JP2010226940A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear-drive type ultrasonic motor capable of attaining high drive efficiency, while realizing size reduction and high output. <P>SOLUTION: The linear-drive type ultrasonic motor includes at least: an ultrasonic oscillator having a piezoelectric element; a driven member relatively driven by a frictional force to the ultrasonic oscillator; a pressure member pressing the ultrasonic oscillator to generate a frictional force between the ultrasonic oscillator and the driven member; a plurality of spherical rolling members abutted on the driven member; and a support base member movably supporting the driven member through the rolling member, wherein the ultrasonic oscillator is provided with two drive pieces abutted against the driven member, and the plurality of rolling members are disposed at an interval such that the driven member does not enter between the two drive pieces in the driven direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リニア駆動型超音波モータに関するものである。   The present invention relates to a linear drive ultrasonic motor.

超音波モータ装置において、主要な構成要件をパッケージしたユニット構造にすることは汎用性、特性安定化の点で有効であり、小型かつ高出力にすることが求められている。
従来の超音波モータ装置としては、例えば特許文献1記載の駆動装置が挙げられる(図13)。ここで、図13は、従来の駆動装置の構成を示す分解斜視図である。
In an ultrasonic motor apparatus, it is effective in terms of versatility and characteristic stabilization to make a unit structure in which main constituent elements are packaged, and it is required to have a small size and high output.
As a conventional ultrasonic motor device, for example, a driving device described in Patent Document 1 can be cited (FIG. 13). Here, FIG. 13 is an exploded perspective view showing a configuration of a conventional drive device.

図13に示す駆動装置820は、駆動発生部821、摺動部材822、軸受部823、及び、付勢部824を備える。この駆動装置820では、駆動発生部821の振動アクチュエータ801が駆動を発生し、この駆動を受けた摺動部材822(シャフト805、コの字型ベース806)は駆動発生部821に対して相対的に駆動される。軸受部823は、摺動部材822を挟んで駆動発生部821と対向配置され、摺動部材822が駆動発生部821とは反対側へ変位することを規制する。また、付勢部824は、駆動発生部821と軸受部823とを互いに近づける方向に付勢する。   A drive device 820 shown in FIG. 13 includes a drive generation unit 821, a sliding member 822, a bearing unit 823, and an urging unit 824. In this drive device 820, the vibration actuator 801 of the drive generator 821 generates drive, and the sliding member 822 (shaft 805, U-shaped base 806) that receives this drive is relative to the drive generator 821. Driven by. The bearing portion 823 is disposed to face the drive generating portion 821 with the sliding member 822 interposed therebetween, and restricts the sliding member 822 from being displaced to the side opposite to the drive generating portion 821. Further, the urging unit 824 urges the drive generating unit 821 and the bearing unit 823 in a direction in which they are brought closer to each other.

図14は、従来の超音波モータ装置の駆動部分の概略構成を示す側面図であって、圧電素子を駆動する前の状態を示す図である。図14に示す超音波モータ装置900は、図13の駆動装置820のようなリニア駆動型の超音波モータであって、圧電素子940(振動子)と、シャフト960と、転動部材981、982と、を備える。圧電素子940の上面には弾性体941が設けられ、下面には駆動子942、943が設けられている。転動部材981、982は、超音波モータ装置900のケース内を移動可能な案内部材970に保持されている。シャフト960は、転動部材981、982上に移動可能に載置されるとともに、上側は駆動子942、943と接触している。圧電素子940には、弾性体941を介して押圧力が加えられている。また、転動部材981、982は、圧電素子940の駆動前の初期状態では、X方向(シャフト960の軸方向、図14の左右方向)において駆動子942、943にそれぞれ対応する位置に配されている。   FIG. 14 is a side view showing a schematic configuration of a driving portion of a conventional ultrasonic motor device, and shows a state before driving a piezoelectric element. An ultrasonic motor device 900 shown in FIG. 14 is a linear drive type ultrasonic motor like the drive device 820 of FIG. 13 and includes a piezoelectric element 940 (vibrator), a shaft 960, and rolling members 981, 982. And comprising. An elastic body 941 is provided on the upper surface of the piezoelectric element 940, and driver elements 942 and 943 are provided on the lower surface. The rolling members 981 and 982 are held by a guide member 970 that can move in the case of the ultrasonic motor device 900. The shaft 960 is movably mounted on the rolling members 981 and 982, and the upper side is in contact with the driver elements 942 and 943. A pressing force is applied to the piezoelectric element 940 via an elastic body 941. Further, the rolling members 981 and 982 are arranged at positions corresponding to the driver elements 942 and 943 in the X direction (the axial direction of the shaft 960, the left and right direction in FIG. 14) in the initial state before driving the piezoelectric element 940, respectively. ing.

この超音波モータ装置900では、圧電素子940を駆動すると、駆動子942、943を介して所定の振動がシャフト960に伝達される。これにより、シャフト960は、その軸方向に沿った方向へ、圧電素子940に対して相対移動するように駆動される。このとき、転動部材981、982、および、案内部材970も転がり移動し、圧電素子940に対して相対的に移動する。   In the ultrasonic motor apparatus 900, when the piezoelectric element 940 is driven, predetermined vibration is transmitted to the shaft 960 via the driver elements 942 and 943. Thereby, the shaft 960 is driven so as to move relative to the piezoelectric element 940 in a direction along the axial direction. At this time, the rolling members 981 and 982 and the guide member 970 also roll and move relative to the piezoelectric element 940.

特開2008−54459号公報JP 2008-54459 A

しかしながら、圧電素子940を駆動して転動部材981、982が相対移動すると、図15に示すように、転動部材981、982の一部のX方向の位置が、圧電素子940に設けられた二つの駆動子942、943の間の位置となる場合が生ずる。ここで、図15は、従来の超音波モータ装置の駆動部分の概略構成を示す側面図であって、X方向において転動部材の一部が駆動子の間の位置に入った状態を示す図である。   However, when the rolling elements 981 and 982 are moved relative to each other by driving the piezoelectric element 940, a part of the rolling members 981 and 982 in the X direction is provided in the piezoelectric element 940 as shown in FIG. There is a case where the position is between the two driver elements 942 and 943. Here, FIG. 15 is a side view showing a schematic configuration of a driving portion of a conventional ultrasonic motor device, and shows a state in which a part of the rolling member enters a position between the driving elements in the X direction. It is.

駆動子942、943と転動部材981、982とがこのような位置関係となると、駆動子942、943と転動部材981、982とがそれぞれ対応している状態(図14)と比べて、駆動特性が低下するという問題がある。すなわち、転動部材981、982の一方が二つの駆動子942、943の間に位置するため、転動部材981、982のそれぞれにかかる負荷が均等でなくなると同時に圧電素子940とシャフト960との間の抗力が左右対称でなくなることから駆動力が十分に伝えられずに駆動特性が劣化する恐れがある。   When the driving elements 942 and 943 and the rolling members 981 and 982 have such a positional relationship, compared to the state in which the driving elements 942 and 943 and the rolling members 981 and 982 correspond to each other (FIG. 14), There is a problem that drive characteristics are degraded. That is, since one of the rolling members 981 and 982 is located between the two driver elements 942 and 943, the load applied to each of the rolling members 981 and 982 is not uniform, and at the same time, the piezoelectric element 940 and the shaft 960 Since the drag between the two is not symmetrical, the driving force may not be sufficiently transmitted and the driving characteristics may be deteriorated.

また、このような場合、超音波モータ装置の動作時にも転動部材981、982が二つの駆動子942、943の間に位置することが考えられるため、初期の組み付けずれを抑える必要がある。このため、超音波モータ装置の組立時に治具などを用いて各部材の位置出しを行わなければならず、組立を困難にしていた。   In such a case, it is considered that the rolling members 981 and 982 are located between the two driver elements 942 and 943 even during the operation of the ultrasonic motor device, and therefore it is necessary to suppress the initial assembly displacement. For this reason, it has been necessary to position each member using a jig or the like when assembling the ultrasonic motor device, which makes assembly difficult.

本発明は、上記に鑑みてなされたものであって、小型かつ高出力を実現しつつ、駆動効率の高いリニア駆動型超音波モータを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a linear drive ultrasonic motor with high driving efficiency while realizing a small size and high output.

上述した課題を解決し、目的を達成するために、本発明に係るリニア駆動型超音波モータは、圧電素子を有する超音波振動子と、超音波振動子との間の摩擦力により相対的に駆動される被駆動部材と、超音波振動子と被駆動部材との間に摩擦力が生じるように超音波振動子を押圧する押圧部材と、被駆動部材に当接する球状の複数の転動部材と、転動部材を介して被駆動部材を移動可能に支持するベース部材と、を少なくとも具備するリニア駆動型超音波モータであって、超音波振動子には被駆動部材と当接する二つの駆動子が設けられており、複数の転動部材は、被駆動部材が駆動される方向において、二つの駆動子の間に入らないような間隔で配置されていることを特徴とする。   In order to solve the above-described problems and achieve the object, the linear drive ultrasonic motor according to the present invention is relatively driven by a frictional force between an ultrasonic vibrator having a piezoelectric element and the ultrasonic vibrator. A driven member to be driven, a pressing member that presses the ultrasonic transducer such that a frictional force is generated between the ultrasonic transducer and the driven member, and a plurality of spherical rolling members that contact the driven member A linear drive type ultrasonic motor comprising at least a base member that movably supports a driven member via a rolling member, wherein the ultrasonic vibrator has two drives that contact the driven member A child is provided, and a plurality of rolling members are arranged at intervals which do not enter between two drivers in the direction in which a driven member is driven.

本発明に係るリニア駆動型超音波モータでは、被駆動部材が円筒面を有し、転動部材が4つであることが好ましい。   In the linear drive ultrasonic motor according to the present invention, the driven member preferably has a cylindrical surface and the number of rolling members is four.

本発明に係るリニア駆動型超音波モータでは、被駆動部材に固定され、外部装置に被駆動部材の変位を伝達する連結部材が、ケース部材と当接することで被駆動部材の移動距離を所望の距離とするストッパ機能を有することが好ましい。   In the linear drive ultrasonic motor according to the present invention, the connecting member that is fixed to the driven member and transmits the displacement of the driven member to the external device makes contact with the case member so that the movement distance of the driven member can be set as desired. It is preferable to have a stopper function for the distance.

本発明に係るリニア駆動型超音波モータでは、転動部材は案内部材に案内され、これにより、被駆動部材が駆動される方向における転動部材の間隔が、二つの駆動子の間隔に、被駆動部材の所定移動距離に対応して転動部材が転がる距離を加えた間隔となることが好ましい。   In the linear drive ultrasonic motor according to the present invention, the rolling member is guided by the guide member, whereby the interval between the rolling members in the direction in which the driven member is driven is equal to the interval between the two driver elements. It is preferable that the distance is obtained by adding a distance that the rolling member rolls in correspondence with a predetermined movement distance of the driving member.

本発明に係るリニア駆動型超音波モータは、小型かつ高出力を実現しつつ、高い駆動効率を実現することができる、という効果を奏する。   The linear drive ultrasonic motor according to the present invention has an effect that high drive efficiency can be realized while realizing small size and high output.

本発明の実施形態に係るリニア駆動型超音波モータの構成を示す斜視図である。It is a perspective view which shows the structure of the linear drive type ultrasonic motor which concerns on embodiment of this invention. 本発明の実施形態に係るリニア駆動型超音波モータの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the linear drive type ultrasonic motor which concerns on embodiment of this invention. 本発明の実施形態に係るリニア駆動型超音波モータの幅方向中央で直交する断面図である。It is sectional drawing orthogonal to the width direction center of the linear drive type ultrasonic motor which concerns on embodiment of this invention. ケース部材、駆動子、シャフト、及び、転動部材の配置を示す概念図である。It is a conceptual diagram which shows arrangement | positioning of a case member, a drive element, a shaft, and a rolling member. 案内部材を用いて転動部材を収容した状態のベース部材の構成を示す、Z方向上側から見た斜視図である。It is the perspective view seen from the Z direction upper side which shows the structure of the base member of the state which accommodated the rolling member using the guide member. 図5のベース部材の平面図である。It is a top view of the base member of FIG. 図6のベース部材をX方向右側から見た側面図である。It is the side view which looked at the base member of FIG. 6 from the X direction right side. 比較例に係るリニア駆動型超音波モータの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the linear drive type ultrasonic motor which concerns on a comparative example. 転動部材が駆動子よりも内側にある場合と外側にある場合の被駆動部材の駆動特性を示すグラフである。It is a graph which shows the drive characteristic of the to-be-driven member when a rolling member exists inside a drive element, and when it exists outside. 変形例に係るリニア駆動型超音波モータのケース部材とベース部材の構成を示す側面図である。It is a side view showing composition of a case member and a base member of a linear drive type ultrasonic motor concerning a modification. 変形例に係るケース部材とベース部材との組み付けを開始したときの状態を示す断面図である。It is sectional drawing which shows a state when the assembly | attachment of the case member which concerns on a modification, and a base member is started. 変形例に係るケース部材とベース部材との組み付けを終了したときの状態を示す断面図である。It is sectional drawing which shows a state when the assembly | attachment of the case member and base member which concern on a modification is complete | finished. 従来の駆動装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the conventional drive device. 従来の超音波モータ装置の駆動部分の概略構成を示す側面図であって、圧電素子を駆動する前の状態を示す図である。It is a side view which shows schematic structure of the drive part of the conventional ultrasonic motor apparatus, Comprising: It is a figure which shows the state before driving a piezoelectric element. 従来の超音波モータ装置の駆動部分の概略構成を示す側面図であって、X方向において転動部材の一部が駆動子の間の位置に入った状態を示す図である。It is a side view which shows schematic structure of the drive part of the conventional ultrasonic motor apparatus, Comprising: It is a figure which shows the state in which a part of rolling member entered the position between drive elements in the X direction.

以下に、本発明に係るリニア駆動型超音波モータの実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
図1は、本実施形態に係るリニア駆動型超音波モータ100の構成を示す斜視図である。図2は、リニア駆動型超音波モータ100の構成を示す分解斜視図である。図3は、リニア駆動型超音波モータ100の幅方向(Y方向)中央で直交する断面図である。
Embodiments of a linear drive ultrasonic motor according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment.
FIG. 1 is a perspective view showing a configuration of a linear drive ultrasonic motor 100 according to the present embodiment. FIG. 2 is an exploded perspective view showing the configuration of the linear drive ultrasonic motor 100. FIG. 3 is a cross-sectional view orthogonal to the center of the linear drive ultrasonic motor 100 in the width direction (Y direction).

図1から図3に示すように、リニア駆動型超音波モータ100は、圧電素子140及び駆動子142、143を有する超音波振動子と、円筒面を有する被駆動部材としてのシャフト160と、押圧部材130と、4つの転動部材181、182、183、184と、ベース部材120と、を備える。また、ベース部材120と結合して超音波振動子及び押圧部材130を内部に収容するケース部材110を備える。   As shown in FIGS. 1 to 3, the linear drive ultrasonic motor 100 includes an ultrasonic vibrator having a piezoelectric element 140 and driver elements 142 and 143, a shaft 160 as a driven member having a cylindrical surface, A member 130, four rolling members 181, 182, 183, 184, and a base member 120 are provided. In addition, the case member 110 is provided which is coupled to the base member 120 and accommodates the ultrasonic transducer and the pressing member 130 therein.

略コの字型の断面形状を有するベース部材120の内部には、板状の案内部材170が配置されている。この案内部材170の側辺には、4つの切り欠き部171、172、173、174が形成されている。これらの切り欠き部は、案内部材170の対向する2つの側辺の対向する位置に2つずつ設けられている。   A plate-shaped guide member 170 is disposed inside the base member 120 having a substantially U-shaped cross-sectional shape. Four notches 171, 172, 173, and 174 are formed on the side of the guide member 170. Two of these notches are provided at opposing positions on the two opposing sides of the guide member 170.

4つの転動部材181、182、183、184は、4つの切り欠き部171、172、173、174にそれぞれ収容され、これにより案内部材170に案内されてベース部材120の長手方向(X方向)に移動可能となる。
なお、転動部材は、案内部材170に対応する切り欠き部を設けて長手方向に移動可能となれば、4つより多くても良い。
The four rolling members 181, 182, 183, 184 are accommodated in the four notches 171, 172, 173, 174, respectively, and are thereby guided by the guide member 170 to the longitudinal direction (X direction) of the base member 120. It becomes possible to move to.
Note that the number of rolling members may be more than four as long as a notch portion corresponding to the guide member 170 is provided so as to be movable in the longitudinal direction.

シャフト160は、円筒面と平面からなる側面を備え、長手方向直交断面が略D字形状をなしている。このシャフト160は、円筒面が転動部材181、182、183、184に当接するように載置される。
シャフト160の長手方向両端には、シャフト160の駆動変位を外部装置に伝達するための連結部材191、192がそれぞれ設けられている。
The shaft 160 has a side surface composed of a cylindrical surface and a flat surface, and has a substantially D-shaped longitudinal cross section. The shaft 160 is placed so that the cylindrical surface is in contact with the rolling members 181, 182, 183, and 184.
At both ends in the longitudinal direction of the shaft 160, connecting members 191 and 192 for transmitting the driving displacement of the shaft 160 to an external device are provided.

一方、ケース部材110は箱型の形状をしており、Y方向の一方の側面には2つの給電部材151、152がそれぞれ挿通される開口部111、112が設けられている。また、図3に示すように、X方向両端の側面には、シャフト160の両端がそれぞれ外部に延出する開口部113、114が設けられている。   On the other hand, the case member 110 has a box shape, and openings 111 and 112 through which the two power supply members 151 and 152 are inserted are provided on one side surface in the Y direction. Moreover, as shown in FIG. 3, the opening parts 113 and 114 which the both ends of the shaft 160 each extend outside are provided in the side surface of the both ends of a X direction.

ケース部材110の内部空間には、押圧部材130と、圧電素子140と、がZ方向上側から順に内包される。ケース部材110の下部の四隅に設けた突起部115、116を、ベース部材120の上部にX方向に沿って設けた係止部121、122にそれぞれ係止することによって、ベース部材120とケース部材110とが互いに係止固定される。   In the internal space of the case member 110, the pressing member 130 and the piezoelectric element 140 are included sequentially from the upper side in the Z direction. The protrusions 115 and 116 provided at the lower four corners of the case member 110 are engaged with the engagement portions 121 and 122 provided along the X direction on the upper portion of the base member 120, respectively. 110 are fixed to each other.

図3に示すように、ケース部材110をベース部材120に組みつけたとき、駆動子142、143はシャフト160の上側に位置する平面に当接するとともに、押圧部材130は所定の量だけ撓んだ状態で長手方向略中央部分が支持部材141に当接する。押圧部材130の撓み量は、押圧部材130の長手方向両端が当接するケース部材110の内壁凸部117、118の突出形状と支持部材141の位置によって任意に設定できる。押圧部材130の撓み量を所望の値にすることによって、シャフト160に対して圧電素子140から所望の押圧力を発生し、駆動子142、143をシャフト160に付勢する。これにより、駆動子142、143とシャフト160との間に摩擦力が生じ、圧電素子140を駆動することにより、シャフト160はベース部材120に対して長手方向(x方向、駆動方向)に移動可能となる。   As shown in FIG. 3, when the case member 110 is assembled to the base member 120, the driver elements 142 and 143 come into contact with a plane located above the shaft 160 and the pressing member 130 is bent by a predetermined amount. In this state, the substantially central portion in the longitudinal direction comes into contact with the support member 141. The amount of bending of the pressing member 130 can be arbitrarily set according to the protruding shape of the inner wall convex portions 117 and 118 of the case member 110 with which both ends in the longitudinal direction of the pressing member 130 abut and the position of the support member 141. By setting the amount of bending of the pressing member 130 to a desired value, a desired pressing force is generated from the piezoelectric element 140 to the shaft 160, and the driver elements 142 and 143 are urged to the shaft 160. As a result, a frictional force is generated between the driver elements 142 and 143 and the shaft 160, and the shaft 160 can move in the longitudinal direction (x direction, driving direction) with respect to the base member 120 by driving the piezoelectric element 140. It becomes.

以上の構成のリニア駆動型超音波モータ100においては、シャフト160がベース部材120側へ押圧された状態で長手方向(x方向)に駆動されると、転動部材181、182、183、184はシャフト160との当接点においてシャフト160の長手方向の駆動力を受けて転がり運動をする。   In the linear drive ultrasonic motor 100 configured as described above, when the shaft 160 is driven in the longitudinal direction (x direction) while being pressed toward the base member 120, the rolling members 181, 182, 183, 184 are Rolling motion is received by the driving force in the longitudinal direction of the shaft 160 at the contact point with the shaft 160.

また、連結部材191、192は、シャフト160の両端部に対して固定されている。固定は、例えば、ネジ止めや接着によって行う。これにより、シャフト160の変位は、連結部材191、192に結合された外部装置に伝達される。   Further, the connecting members 191 and 192 are fixed to both end portions of the shaft 160. Fixing is performed by screwing or bonding, for example. Thereby, the displacement of the shaft 160 is transmitted to an external device coupled to the connecting members 191 and 192.

連結部材191、192は、ケース部材110と当接することでシャフト160の長手方向の移動距離を所望の距離に規制するストッパ機能を有する。より具体的には、本実施形態のリニア駆動型超音波モータ100では、図4に示すように、圧電素子140のX方向の中心位置(図4の位置C)にシャフト160の長手方向の中心を合わせた初期位置において、連結部材191、192は、ケース部材110に対して間隔Lだけそれぞれ離間している。すなわち、シャフト160は、初期位置から、連結部材191、192がケース部材110にそれぞれ当接するまでの距離LだけX方向に移動可能である。ここで、図4は、ケース部材110、駆動子142、143、シャフト160、及び、転動部材181、182の配置を示す概念図である。なお、シャフト160が移動可能な距離Lは、連結部材191、192のそれぞれと、ベース部材120とが離間する距離で規定してもよい。   The connecting members 191 and 192 have a stopper function of restricting the moving distance in the longitudinal direction of the shaft 160 to a desired distance by contacting the case member 110. More specifically, in the linear drive ultrasonic motor 100 of the present embodiment, as shown in FIG. 4, the longitudinal center of the shaft 160 is positioned at the center position in the X direction of the piezoelectric element 140 (position C in FIG. 4). The connecting members 191 and 192 are spaced apart from the case member 110 by a distance L at the initial position. That is, the shaft 160 can move in the X direction from the initial position by a distance L until the connecting members 191 and 192 come into contact with the case member 110, respectively. Here, FIG. 4 is a conceptual diagram showing the arrangement of the case member 110, the driver elements 142 and 143, the shaft 160, and the rolling members 181 and 182. The distance L that the shaft 160 can move may be defined as the distance between each of the connecting members 191 and 192 and the base member 120.

なお、連結部材191、192の当接先は、シャフト160のストッパの機能を果たせば、ケース部材110に代えてベース部材120を用いることもできる。   Note that the base member 120 can be used instead of the case member 110 as the contact point of the connecting members 191 and 192 as long as it functions as a stopper of the shaft 160.

リニア駆動型超音波モータ100では、4つの転動部材181、182、183、184は、シャフト160が駆動されるX方向において、2つの駆動子142、143の間に入らないような間隔で配置されている。以下、図5から図7を参照して、転動部材181、182、183、184と、2つの駆動子142、143と、の位置関係について具体的に説明する。図5は、案内部材170を用いて転動部材181、182、183、184を収容した状態のベース部材120の構成を示す、Z方向上側から見た斜視図である。図6は、図5のベース部材120の平面図である。図7は、図6のベース部材120をX方向右側から見た側面図である。   In the linear drive ultrasonic motor 100, the four rolling members 181, 182, 183, 184 are arranged at intervals so as not to enter between the two drive elements 142, 143 in the X direction in which the shaft 160 is driven. Has been. Hereinafter, the positional relationship between the rolling members 181, 182, 183, 184 and the two driver elements 142, 143 will be described in detail with reference to FIGS. 5 to 7. FIG. 5 is a perspective view showing the configuration of the base member 120 in a state where the rolling members 181, 182, 183, 184 are accommodated using the guide member 170, as viewed from the upper side in the Z direction. FIG. 6 is a plan view of the base member 120 of FIG. FIG. 7 is a side view of the base member 120 of FIG. 6 viewed from the right side in the X direction.

まず、ベース部材120の内側の底面の中央には、X方向に沿って延びる突出部123が形成されている。また、ベース部材120の内側の底面のX方向両端には、Y方向において対向するように位置規制部124がそれぞれ形成されている。突出部123は、転動部材181、182、183、184が当接する、Y方向両端部よりも上方に、すなわち案内部材170側へ突出している。このように突出部123を設けることによって、案内部材170とベース部材120の底面との接触面積を限定して摺動抵抗を少なくすることができる。さらに、転動部材181、182、183、184が当接する底面より突出部123の高さ分だけ案内部材170が高い位置で移動するため、転動部材181、182、183、184が転がるときに案内部材170に乗り上げることを防ぐことができる。   First, a protrusion 123 extending along the X direction is formed at the center of the bottom surface inside the base member 120. In addition, position restricting portions 124 are formed at both ends in the X direction on the bottom surface inside the base member 120 so as to face each other in the Y direction. The protrusion 123 protrudes above the Y direction both ends where the rolling members 181, 182, 183, and 184 abut, that is, toward the guide member 170. By providing the protrusion 123 in this manner, the sliding resistance can be reduced by limiting the contact area between the guide member 170 and the bottom surface of the base member 120. Further, since the guide member 170 moves at a position higher than the bottom surface where the rolling members 181, 182, 183, and 184 abut by the height of the protruding portion 123, when the rolling members 181, 182, 183, and 184 roll. Riding on the guide member 170 can be prevented.

また、X方向において、案内部材170の一方の側辺に設けた切り欠き部171と切り欠き部172との間隔、及び、案内部材170の他方の側辺に設けた切り欠き部173と切り欠き部174との間隔をそれぞれL’としている。したがって、切り欠き部171、172、173、174内にそれぞれ収容される、転動部材181と転動部材182との間隔、及び、転動部材183と転動部材184との間隔もそれぞれL’となる。   Further, in the X direction, the interval between the notch 171 provided on one side of the guide member 170 and the notch 172 and the notch 173 provided on the other side of the guide member 170 are notched. The distance from the part 174 is L ′. Accordingly, the spacing between the rolling member 181 and the rolling member 182 and the spacing between the rolling member 183 and the rolling member 184 respectively accommodated in the notches 171, 172, 173 and 174 are also L ′. It becomes.

一方、X方向における駆動子142と駆動子143との間隔をAとしている。転動部材181と転動部材182との間隔L’、及び、転動部材183と転動部材184との間隔L’は、駆動子142と駆動子143との間隔Aよりも十分広くなるように設定している。   On the other hand, the interval between the driver 142 and the driver 143 in the X direction is A. The distance L ′ between the rolling member 181 and the rolling member 182 and the distance L ′ between the rolling member 183 and the rolling member 184 are sufficiently larger than the distance A between the driving element 142 and the driving element 143. Is set.

シャフト160がX方向に駆動されると、転動部材181、182、183、184は転がり移動し、案内部材170も同時に移動する。転動部材181、182、183、184は、ベース部材120の内側の底面に対して1点で接触するとともに、内側の側面に対して1点で接触しつつ転がる。このような形態において、シャフト160のX方向における移動距離は、X方向のうちの一方への移動で最大でL/21/2である。 When the shaft 160 is driven in the X direction, the rolling members 181, 182, 183, and 184 roll and move, and the guide member 170 also moves simultaneously. The rolling members 181, 182, 183, and 184 are in contact with the inner bottom surface of the base member 120 at one point and roll while in contact with the inner side surface at one point. In such a configuration, the movement distance of the shaft 160 in the X direction is L / 2 1/2 at the maximum in the movement in one of the X directions.

リニア駆動型超音波モータ100においては、シャフト160が駆動されるX方向における転動部材181と転動部材182の間隔(転動部材183と転動部材184との間隔)L’が、二つの駆動子142、143の間隔Aに、シャフト160の最大移動距離L/21/2(所定移動距離)に対応して転動部材が転がる距離の2倍よりも大きな間隔となる
ように、案内部材170に切り欠き部171、172、173、174をそれぞれ配置している。
In the linear drive ultrasonic motor 100, the distance L ′ between the rolling member 181 and the rolling member 182 in the X direction in which the shaft 160 is driven (interval between the rolling member 183 and the rolling member 184) L ′ is two. Guidance is made so that the distance A between the driver elements 142 and 143 is larger than twice the distance that the rolling member rolls corresponding to the maximum movement distance L / 2 1/2 (predetermined movement distance) of the shaft 160. Notches 171, 172, 173, and 174 are arranged on the member 170, respectively.

なお、ベース部材120への案内部材170の初期の組み付け位置がかならずX方向に関して中立位置とは限らない。別言すると、案内部材170の初期の組み立て位置によっては、転動部材181と転動部材182との中間位置、転動部材183と転動部材184との中間位置、及び、駆動子142と駆動子143との中間位置、が同一とならないことがある。このため、その位置ずれ分を考慮してL’は広く取ることが望ましい。   The initial assembly position of the guide member 170 to the base member 120 is not always the neutral position in the X direction. In other words, depending on the initial assembly position of the guide member 170, the intermediate position between the rolling member 181 and the rolling member 182, the intermediate position between the rolling member 183 and the rolling member 184, and the drive element 142 and the drive The intermediate position with the child 143 may not be the same. For this reason, it is desirable to take a large L 'in consideration of the positional deviation.

一方、間隔L’の距離を大幅に長くした場合には、ベース部材120のX方向の寸法を長くする必要があり、リニア駆動型超音波モータ100の大型化につながるため、一般的に許容可能な組立時の位置ずれ量だけ大きくとるとよい。   On the other hand, when the distance L ′ is significantly increased, it is necessary to increase the size of the base member 120 in the X direction, which leads to an increase in the size of the linear drive ultrasonic motor 100, which is generally acceptable. It is advisable to increase the amount of misalignment during assembling.

このように、X方向において、転動部材181、182、183、184の間隔L’を駆動子142、143の間隔Aよりも十分広く配置することにより、シャフト160が所定移動距離L/21/2だけ移動した場合にも、転動部材181、182、183、184が二つの駆動子142、143の間に移動することを防止でき、これにより駆動特性劣化を防止することが可能となる。 As described above, in the X direction, the shaft 160 is moved by the predetermined moving distance L / 2 1 by disposing the interval L ′ of the rolling members 181, 182, 183, 184 sufficiently wider than the interval A of the driver elements 142, 143. Even when it has moved by / 2, it is possible to prevent the rolling members 181, 182, 183, 184 from moving between the two drive elements 142, 143, thereby preventing deterioration of drive characteristics. .

ここで、図8、図9を参照して、X方向において転動部材が駆動子よりも内側にある場合と外側にある場合の被駆動部材の駆動特性の違いについて説明する。図8は、比較例に係るリニア駆動型超音波モータ200の構成を示す分解斜視図である。図9は、転動部材が駆動子よりも内側にある場合(四角印)と外側にある場合(丸印)の被駆動部材の駆動特性を示すグラフである。図9の横軸は圧電素子140の駆動周波数(Hz)であり、縦軸は圧電素子140の駆動によるシャフト160の移動速度(mm/s)である。   Here, with reference to FIG. 8, FIG. 9, the difference in the drive characteristic of the to-be-driven member when the rolling member is inside and outside the driving element in the X direction will be described. FIG. 8 is an exploded perspective view showing a configuration of a linear drive ultrasonic motor 200 according to a comparative example. FIG. 9 is a graph showing the driving characteristics of the driven member when the rolling member is inside (square mark) and outside (circle mark) than the driving element. The horizontal axis in FIG. 9 is the driving frequency (Hz) of the piezoelectric element 140, and the vertical axis is the moving speed (mm / s) of the shaft 160 driven by the piezoelectric element 140.

比較例に係るリニア駆動型超音波モータ200は、シャフト160の両端に連結部材191、192を固定していない点が上述の実施形態に係るリニア駆動型超音波モータ100と異なる。また、圧電素子140への給電方法は特に限定せず、ケース部材210は簡略表示している。   The linear drive ultrasonic motor 200 according to the comparative example is different from the linear drive ultrasonic motor 100 according to the above-described embodiment in that the connecting members 191 and 192 are not fixed to both ends of the shaft 160. In addition, a method for supplying power to the piezoelectric element 140 is not particularly limited, and the case member 210 is simply displayed.

リニア駆動型超音波モータ200においては、ストッパ機能を果たす連結部材191、192が設けられていないため、シャフト160の駆動により転動部材181、182、183、184は任意の位置まで転がる為、転動部材が駆動子の間に入り込む場合がある。   Since the linear drive ultrasonic motor 200 is not provided with the connecting members 191 and 192 that perform the stopper function, the rolling members 181, 182, 183, and 184 are rotated to arbitrary positions by driving the shaft 160. The moving member may enter between the driver elements.

図9において転動部材が駆動子よりも内側にある場合(四角印)は、リニア駆動型超音波モータ200において、4つの転動部材181、182、183、184のうちの対向する2つの転動部材が、X方向において、2つの駆動子142、143の間に入った場合の駆動特性を示している。   In FIG. 9, when the rolling member is inside the driver (square mark), in the linear drive ultrasonic motor 200, the two rolling members 181, 182, 183, and 184 that are opposed to each other are rotated. The driving characteristics when the moving member enters between the two driving elements 142 and 143 in the X direction are shown.

一方、図9において、転動部材が駆動子よりも外側にある場合(丸印)は、リニア駆動型超音波モータ200において、4つの転動部材181、182、183、184のすべてが、X方向において、2つの駆動子142、143の間に入っていない場合の駆動特性を示している。この駆動特性は、4つの転動部材181、182、183、184のすべてが2つの駆動子142、143の間に入らないように配置された、上述の実施形態に係るリニア駆動型超音波モータ100に対応する。   On the other hand, in FIG. 9, when the rolling member is outside the driver (circle), in the linear drive ultrasonic motor 200, all of the four rolling members 181, 182, 183, 184 are X In the direction, the drive characteristics when not between the two driver elements 142 and 143 are shown. This drive characteristic is such that the four rolling members 181, 182, 183, 184 are arranged so that all of the four rolling members 181, 182, 183, 184 do not enter between the two drive elements 142, 143. Corresponding to 100.

図9に示すように、転動部材が駆動子よりも外側にある場合(丸印)、駆動周波数全域において得られる移動速度が、転動部材が駆動子よりも内側にある場合(四角印)に比べ高く、駆動特性がよいことが分かる。   As shown in FIG. 9, when the rolling member is outside the driver (circle), the moving speed obtained in the entire driving frequency is when the rolling member is inside the driver (square). It can be seen that the driving characteristics are high.

次に、図10から図12を参照して変形例について説明する。図10は、変形例に係るリニア駆動型超音波モータのケース部材310とベース部材320の構成を示す側面図である。図11は、変形例に係るケース部材310とベース部材320との組み付けを開始したときの状態を示す断面図である。図12は、変形例に係るケース部材310とベース部材320との組み付けを終了したときの状態を示す断面図である。なお、図10においては、ケース部材310とベース部材320以外の部材の図示を省略している。また、図11、12においては、ケース部材310内の詳細な構成の図示を省略している。   Next, a modified example will be described with reference to FIGS. FIG. 10 is a side view showing the configuration of the case member 310 and the base member 320 of the linear drive ultrasonic motor according to the modification. FIG. 11 is a cross-sectional view showing a state when assembly of the case member 310 and the base member 320 according to the modification is started. FIG. 12 is a cross-sectional view showing a state when the assembly of the case member 310 and the base member 320 according to the modification is finished. In FIG. 10, illustration of members other than the case member 310 and the base member 320 is omitted. In addition, in FIGS. 11 and 12, the detailed configuration inside the case member 310 is not shown.

変形例に係るリニア駆動型超音波モータでは、ケース部材310にスライド溝311、312を設け、ベース部材320に係止部321、322を設けている点が上述の実施形態に係るリニア駆動型超音波モータ100と異なる。これ以外の構成は、上述の実施形態に係るリニア駆動型超音波モータ100と同様であるため、その詳細な説明は省略し、同じ部材には同じ符号を付する。   In the linear drive ultrasonic motor according to the modification, the slide grooves 311 and 312 are provided in the case member 310, and the locking portions 321 and 322 are provided in the base member 320. Different from the sonic motor 100. Since the configuration other than this is the same as that of the linear drive ultrasonic motor 100 according to the above-described embodiment, the detailed description thereof is omitted, and the same reference numerals are given to the same members.

係止部321、322は、ベース部材320のX方向に延びる側壁323の上部からY方向(X方向及びZ方向に垂直な方向)に延びる突起である。係止部321、322は、X方向において互いに離間するように所定位置に配置されている。   The locking portions 321 and 322 are protrusions extending in the Y direction (a direction perpendicular to the X direction and the Z direction) from the upper portion of the side wall 323 extending in the X direction of the base member 320. The locking portions 321 and 322 are arranged at predetermined positions so as to be separated from each other in the X direction.

スライド溝311、312は、ケース部材310を構成する壁部のうち、Y方向(図10から図12の紙面に垂直な方向)に直交する壁部313の下部に形成されている。このスライド溝311、312は、側面視で同一の略逆L字状の溝形状をなしており、一端は、ケース部材310の下面から上方へ向かうように形成された開口部311a、312aとなっており、他端は、開口部311a、312aからX方向へ延びる経路からZ方向下側へ広がる凹部311b、312bとなっている。開口部311a、312aは、係止部321、322と同じ間隔で形成されている。また、スライド溝311、312内で係止部321、322がX方向に移動できる距離をLとしている。   The slide grooves 311 and 312 are formed in the lower part of the wall part 313 orthogonal to the Y direction (direction perpendicular to the paper surface of FIGS. 10 to 12) among the wall parts constituting the case member 310. The slide grooves 311 and 312 have substantially the same inverted L-shaped groove shape in a side view, and one end is an opening 311a and 312a formed so as to extend upward from the lower surface of the case member 310. The other end is a recess 311b, 312b that extends downward from the path extending in the X direction from the openings 311a, 312a. The openings 311a and 312a are formed at the same interval as the locking portions 321 and 322. Further, the distance that the locking portions 321 and 322 can move in the X direction in the slide grooves 311 and 312 is L.

ケース部材310とベース部材320との組み付けは、まず、開口部311a、312aから係止部321、322をそれぞれ挿入して、係止部321、322の上面がスライド溝311、312の内壁に当接するまで、ケース部材310とベース部材320をZ方向に相対移動させる。係止部321、322の上面がスライド溝311、312の内壁に当接したとき、図11に示すように、ベース部材320のX方向両端に設けた位置規制部324の一方が連結部材192に当接する。   The case member 310 and the base member 320 are assembled by first inserting the locking portions 321 and 322 from the openings 311a and 312a, respectively, and the upper surfaces of the locking portions 321 and 322 abut against the inner walls of the slide grooves 311 and 312. The case member 310 and the base member 320 are relatively moved in the Z direction until they come into contact with each other. When the upper surfaces of the locking portions 321 and 322 are in contact with the inner walls of the slide grooves 311 and 312, one of the position restricting portions 324 provided at both ends in the X direction of the base member 320 is connected to the connecting member 192 as shown in FIG. Abut.

次に、係止部321、322をスライド溝311、312内でX方向に移動させる。係止部321、322は、距離Lだけ移動すると、凹部311b、312bに嵌合可能な位置に到達する。ここで、ケース部材310とベース部材320をZ方向に相対移動させて、係止部321、322を凹部311b、312b内に嵌合させると、X方向におけるケース部材310とベース部材320の相対移動が規制され、組み付けが完了する。このとき、図12に示すように、ケース部材310とベース部材320のX方向の中心位置が一致する。   Next, the locking portions 321 and 322 are moved in the X direction within the slide grooves 311 and 312. When the locking portions 321 and 322 move by the distance L, the locking portions 321 and 322 reach positions where they can be fitted into the recesses 311b and 312b. Here, when the case member 310 and the base member 320 are relatively moved in the Z direction and the locking portions 321 and 322 are fitted in the recesses 311b and 312b, the case member 310 and the base member 320 are relatively moved in the X direction. Is regulated and assembly is completed. At this time, as shown in FIG. 12, the center positions of the case member 310 and the base member 320 in the X direction coincide with each other.

変形例に係るリニア駆動型超音波モータにおいては、スライド溝311、312の形状に沿って係止部321、322を移動させるように、ケース部材310とベース部材320を相対移動させるだけで、自動的に、容易かつ確実に、ケース部材310とベース部材320の位置を合わせることができ、組み付けのずれを抑えることができる。   In the linear drive ultrasonic motor according to the modified example, the case member 310 and the base member 320 are simply moved relative to each other so that the locking portions 321 and 322 are moved along the shapes of the slide grooves 311 and 312. In particular, the positions of the case member 310 and the base member 320 can be aligned easily and reliably, and assembly displacement can be suppressed.

以上のように、本発明に係るリニア駆動型超音波モータは、小型機器の精度の高い駆動に適している。   As described above, the linear drive ultrasonic motor according to the present invention is suitable for high-precision driving of small devices.

100 リニア駆動型超音波モータ
110 ケース部材
111、112、113、114 開口部
115、116 突起部
117、118 内壁凸部
120 ベース部材
121、122 係止部
123 突出部
130 押圧部材
140 圧電素子
141 支持部材
142、143 駆動子
151、152 給電部材
160 シャフト
170 案内部材
171、172、173、174 切り欠き部
181、182、183、184 転動部材
191、192 連結部材
200 リニア駆動型超音波モータ
210 ケース部材
310 ケース部材
311 スライド溝
311a 開口部
311b 凹部
312 スライド溝
312a 開口部
312b 凹部
313 壁部
320 ベース部材
321、322 係止部
323 壁部
324 位置規制部
DESCRIPTION OF SYMBOLS 100 Linear drive type ultrasonic motor 110 Case member 111,112,113,114 Opening part 115,116 Protrusion part 117,118 Inner wall convex part 120 Base member 121,122 Locking part 123 Protruding part 130 Pressing member 140 Piezoelectric element 141 Support Member 142, 143 Driver 151, 152 Power supply member 160 Shaft 170 Guide member 171, 172, 173, 174 Notch 181, 182, 183, 184 Rolling member 191, 192 Connecting member 200 Linear drive ultrasonic motor 210 Case Member 310 Case member 311 Slide groove 311a Opening portion 311b Recessed portion 312 Slide groove 312a Opening portion 312b Recessed portion 313 Wall portion 320 Base member 321, 322 Locking portion 323 Wall portion 324 Position restricting portion

Claims (4)

圧電素子を有する超音波振動子と、
前記超音波振動子との間の摩擦力により相対的に駆動される被駆動部材と、
前記超音波振動子と前記被駆動部材との間に摩擦力が生じるように前記超音波振動子を押圧する押圧部材と、
前記被駆動部材に当接する球状の複数の転動部材と、
前記転動部材を介して前記被駆動部材を移動可能に支持するベース部材と、
を少なくとも具備するリニア駆動型超音波モータにおいて、
前記超音波振動子には前記被駆動部材と当接する二つの駆動子が設けられており、
前記複数の転動部材は、前記被駆動部材が駆動される方向において、前記二つの駆動子の間に入らないような間隔で配置されていることを特徴とするリニア駆動型超音波モータ。
An ultrasonic transducer having a piezoelectric element;
A driven member that is relatively driven by a frictional force with the ultrasonic transducer;
A pressing member that presses the ultrasonic transducer so that a frictional force is generated between the ultrasonic transducer and the driven member;
A plurality of spherical rolling members in contact with the driven member;
A base member that movably supports the driven member via the rolling member;
In a linear drive ultrasonic motor comprising at least
The ultrasonic transducer is provided with two driving elements that come into contact with the driven member,
The linearly driven ultrasonic motor, wherein the plurality of rolling members are arranged at intervals that do not enter between the two driver elements in a direction in which the driven member is driven.
前記被駆動部材が円筒面を有し、前記転動部材が4つであることを特徴とする請求項1に記載のリニア駆動型超音波モータ。   The linearly driven ultrasonic motor according to claim 1, wherein the driven member has a cylindrical surface and the number of rolling members is four. 前記超音波振動子及び前記押圧部材を収容するケース部材と、
前記被駆動部材に固定され、外部装置に前記被駆動部材の変位を伝達する連結部材と、を備え、
前記連結部材は、前記ケース部材と当接することで前記被駆動部材の移動距離を所望の距離とするストッパ機能を有することを特徴とする請求項1または請求項2に記載のリニア駆動型超音波モータ。
A case member that houses the ultrasonic transducer and the pressing member;
A coupling member fixed to the driven member and transmitting the displacement of the driven member to an external device;
The linear drive ultrasonic wave according to claim 1, wherein the connecting member has a stopper function that makes a moving distance of the driven member a desired distance by contacting the case member. motor.
前記転動部材は案内部材に案内され、これにより、前記被駆動部材が駆動される方向における前記転動部材の間隔が、前記二つの駆動子の間隔に、前記被駆動部材の所定移動距離に対応して前記転動部材が転がる距離を加えた間隔となることを特徴とする請求項1から請求項3のいずれか1項に記載のリニア駆動型超音波モータ。   The rolling member is guided by a guide member, so that the distance between the rolling members in the direction in which the driven member is driven is equal to the distance between the two driver elements and the predetermined moving distance of the driven member. The linear drive ultrasonic motor according to any one of claims 1 to 3, wherein a distance corresponding to a rolling distance of the rolling member is correspondingly added.
JP2009153324A 2009-02-25 2009-06-29 Linear-drive type ultrasonic motor Withdrawn JP2010226940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153324A JP2010226940A (en) 2009-02-25 2009-06-29 Linear-drive type ultrasonic motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009041861 2009-02-25
JP2009153324A JP2010226940A (en) 2009-02-25 2009-06-29 Linear-drive type ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2010226940A true JP2010226940A (en) 2010-10-07

Family

ID=43043511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153324A Withdrawn JP2010226940A (en) 2009-02-25 2009-06-29 Linear-drive type ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2010226940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196212A1 (en) * 2013-06-07 2014-12-11 キヤノン株式会社 Linear ultrasonic motor and optical device equipped with same
JP2016082611A (en) * 2014-10-10 2016-05-16 キヤノン株式会社 Drive unit
JP2016082862A (en) * 2014-10-10 2016-05-16 キヤノン株式会社 Driving device and optical device using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196212A1 (en) * 2013-06-07 2014-12-11 キヤノン株式会社 Linear ultrasonic motor and optical device equipped with same
JP2014239605A (en) * 2013-06-07 2014-12-18 キヤノン株式会社 Linear ultrasonic motor and optical device having the same
GB2527011A (en) * 2013-06-07 2015-12-09 Canon Kk Linear ultrasonic motor and optical device equipped with same
US9917536B2 (en) 2013-06-07 2018-03-13 Canon Kabushiki Kaisha Linear ultrasonic motor and optical apparatus including the same
GB2527011B (en) * 2013-06-07 2019-01-23 Canon Kk Linear ultrasonic motor and optical device equipped with same
DE112014002708B4 (en) 2013-06-07 2022-08-11 Canon Kabushiki Kaisha Ultrasonic linear motor and optical device comprising the same
JP2016082611A (en) * 2014-10-10 2016-05-16 キヤノン株式会社 Drive unit
JP2016082862A (en) * 2014-10-10 2016-05-16 キヤノン株式会社 Driving device and optical device using the same

Similar Documents

Publication Publication Date Title
JP4802313B2 (en) Holding device for piezoelectric vibrator
US7999439B2 (en) Linear drive ultrasonic motor
JP2009142014A (en) Ultrasonic motor
JP2008306907A (en) Ultrasonic motor
JP5810303B2 (en) Drive device
JP2008178250A (en) Pressing mechanism of ultrasonic resonator and ultrasonic motor
JP6546464B2 (en) Linear drive device and optical device using vibration wave motor
JP2010141973A (en) Ultrasonic motor
JP2010226940A (en) Linear-drive type ultrasonic motor
JP2009268240A (en) Linear drive type ultrasonic motor
JP2008253068A (en) Oscillatory wave drive unit
US9653675B2 (en) Driving apparatus, lens apparatus including the same, and imaging apparatus
WO2003076313A1 (en) Ultrasonic levitation device
US8368287B2 (en) Ultrasonic motor mechanism
JP5246918B2 (en) Linear drive type ultrasonic motor
JP2017060279A (en) Vibration wave motor
JP2008172930A (en) Vibratory driver
US8390171B2 (en) Ultrasonic motor mechanism
JP6602037B2 (en) DRIVE DEVICE AND OPTICAL DEVICE HAVING THE SAME
JP2019180175A (en) Linear type actuator
JP5483845B2 (en) Vibration wave motor
JP2009268241A (en) Linear drive type ultrasonic motor
JP7098438B2 (en) Vibration wave motor and drive device using vibration wave motor
JP5677363B2 (en) Vibration wave driving device and vibrator
WO2010113764A1 (en) Ultrasonic motor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904