JP2010226398A - Radio communication system, radio receiver and radio communication method - Google Patents

Radio communication system, radio receiver and radio communication method Download PDF

Info

Publication number
JP2010226398A
JP2010226398A JP2009071030A JP2009071030A JP2010226398A JP 2010226398 A JP2010226398 A JP 2010226398A JP 2009071030 A JP2009071030 A JP 2009071030A JP 2009071030 A JP2009071030 A JP 2009071030A JP 2010226398 A JP2010226398 A JP 2010226398A
Authority
JP
Japan
Prior art keywords
autocorrelation function
wireless
ofdm
correlation
high autocorrelation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009071030A
Other languages
Japanese (ja)
Other versions
JP5139355B2 (en
Inventor
Kanshiro Kashiki
勘四郎 樫木
Kazunori Takeuchi
和則 竹内
Akira Yamaguchi
明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Research Inc
Original Assignee
KDDI R&D Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI R&D Laboratories Inc filed Critical KDDI R&D Laboratories Inc
Priority to JP2009071030A priority Critical patent/JP5139355B2/en
Publication of JP2010226398A publication Critical patent/JP2010226398A/en
Application granted granted Critical
Publication of JP5139355B2 publication Critical patent/JP5139355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate complication due to the use of different systems in the system of selecting one optimum system from different radio systems, to reduce the influence of frequency selective fading and to perform selection and determination in a low layer without depending on a radio system as much as possible. <P>SOLUTION: The radio receiver applied to the radio communication system for selecting one of two or more kinds of OFDM communication systems and performing radio communication includes: OFDM demodulation parts 5-3(A-Z) for demodulating OFDM signals including a function (hereafter called a high autocorrelation function) highly autocorrelated to a predetermined frequency sub channel received from a radio transmitter; correlation ratio calculation parts 5-4(A-Z) for calculating the correlation value of a received high autocorrelation function and a known high autocorrelation function and calculating a correlation ratio indicating a ratio of the correlation value when there is no time difference and the correlation value when there is a time difference for each OFDM communication system; and a selection device 6-2 for selecting the OFDM communication system of the highest correlation ratio. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、無線送信装置と無線受信装置との間で、複数種類のOFDM通信方式からいずれかを選定して無線通信を行なう技術に関する。   The present invention relates to a technique for performing wireless communication between a wireless transmission device and a wireless reception device by selecting one of a plurality of types of OFDM communication schemes.

近年、コグニティブ無線や、へテロジーニアス無線など、異なる複数無線システムを用いて、サービスエリアの補完、信頼性の向上、周波数スペクトラムの有効利用を図ることが提唱されている。通常、1つの無線システム内においては、それぞれのシステム固有に伝送品質を測定し、システム内での時間や周波数スロット切替を行ない、そのシステムの利用効率を向上させている。例えば、WI−LANでのRSSI値や、WiMAXでのCINR値が、これら伝送品質に該当する。   In recent years, it has been proposed to use different wireless systems such as cognitive radio and heterogeneous radio to supplement service areas, improve reliability, and effectively use frequency spectrum. Usually, in one radio system, transmission quality is measured unique to each system, and time and frequency slot switching in the system is performed to improve the utilization efficiency of the system. For example, an RSSI value in WI-LAN and a CINR value in WiMAX correspond to these transmission qualities.

複数の異なるシステムを対象として1つのシステムを選択する場合は、これらシステム固有のパラメータを、何らかの統一したパラメータに変換あるいは置換し、選択の判断を行なう必要がある。この変換(あるいは置換)を行なう為には、数式あるいは実験などを行ない、変換方法を決める必要があるが、種々のパラメータが係るので、一般的には容易ではない。   When one system is selected for a plurality of different systems, it is necessary to convert or replace these system-specific parameters into some uniform parameters and determine the selection. In order to perform this conversion (or replacement), it is necessary to determine the conversion method by performing mathematical formulas or experiments, but since it involves various parameters, it is generally not easy.

また、広いサービスエリアをカバーする広帯域無線通信システムでは、基地局と端末間が見通し外の場合、反射や回折等による遅延波の干渉により、伝搬路の周波数特性がフラットではない、いわゆる周波数選択性フェージングを受ける。そのため、最近新たに実用化されようとしている通信システムでは、このフェージングへの耐性を考慮してOFDM方式が適用されている。同方式においても、フェージングの影響を最小限に抑える無線システム選択方式が望まれる。   In a broadband wireless communication system covering a wide service area, when the base station and the terminal are out of line of sight, the frequency characteristics of the propagation path are not flat due to interference of delayed waves due to reflection, diffraction, etc. Receive fading. For this reason, OFDM systems are applied to communication systems that are about to be put into practical use recently in consideration of resistance to fading. Also in this system, a radio system selection system that minimizes the influence of fading is desired.

特許文献1では、異システム間ハンドオフ方法および無線通信端末が開示されている。特許文献1記載の技術では、異なる無線システムのハンドオフにおいて、現在のスループットとハンドオフ先の推定スループットを比較し、スループットの改善が見込まれる場合にハンドオフの処理を行なう。   Patent Document 1 discloses a different system handoff method and a wireless communication terminal. In the technique described in Patent Document 1, in handoff of different wireless systems, the current throughput is compared with the estimated throughput of the handoff destination, and handoff processing is performed when improvement in throughput is expected.

また、特許文献2では、異種無線システム間のハンドオフ制御システム、そのシステムに使用されるエッジノードおよび移動通信端末装置が開示されている。特許文献2記載の技術では、端末から同じ情報を伝送し、いわゆるソフトハンドオフを行う。しかし、切り替え(あるいはハンドオフ)の判断を行なう基準が述べられていない。   Patent Document 2 discloses a handoff control system between different types of wireless systems, an edge node used in the system, and a mobile communication terminal device. In the technique described in Patent Document 2, the same information is transmitted from the terminal, and so-called soft handoff is performed. However, there is no description of the criteria for determining switching (or handoff).

また、非特許文献1には、雑音の中に埋もれている微弱信号を検出する際に、信号の誤検出確率、すなわち、存在しないのに存在するという判断を行なう確率を小さくする技術が開示されている。非特許文献1記載の方式では、周期自己相関関数(Cyclic Autocorrelation Function:CAF)と称される符号系列を用いて、自己相関により信号を検出している。   Also, Non-Patent Document 1 discloses a technique for reducing the probability of erroneous detection of a signal, that is, the probability of determining that it does not exist when detecting a weak signal buried in noise. ing. In the method described in Non-Patent Document 1, a signal is detected by autocorrelation using a code sequence called a cyclic autocorrelation function (CAF).

また、非特許文献2には、OFDM信号のプリアンブル信号を用いて、伝搬路の周波数特性を推定し、その逆関数により、伝送路の等価を図る技術が開示されている。   Non-Patent Document 2 discloses a technique for estimating a frequency characteristic of a propagation path using a preamble signal of an OFDM signal and achieving transmission line equivalence by an inverse function thereof.

特開2008−270990号公報JP 2008-270990 A 特開2004−274458号公報JP 2004-274458 A

村岡他、コグニティブ無線における最大周期自己相関選択に基づくスペクトルセンシング(2008年信学会通信ソサイエティ大会、B−17−2)Muraoka et al., Spectrum Sensing Based on Maximum Period Autocorrelation Selection in Cognitive Radio (2008 IEICE Communication Society Conference, B-17-2) 藤本貴、樫木勘四郎、野原光夫、竹内和則、松村隆司,“ソフトウェア無線による伝搬状態モニタ装置の基本特性について”,電子情報通信学会,信学技報,vol.107,no.352,SR2007−60,pp.93−98,2007年11月Takashi Fujimoto, Kanshiro Kashiwagi, Mitsuo Nohara, Kazunori Takeuchi, Takashi Matsumura, “Basic Characteristics of Propagation State Monitoring Device Using Software Defined Radio”, IEICE, IEICE Technical Report, vol. 107, no. 352, SR2007-60, pp. 93-98, November 2007

従来から、異なる複数の無線システムの内の1つを選択することにより(2つ以上のシステムの併用でも可)、サービスエリアの補充、信頼性の向上、周波数スペクトラムの有効利用を図ろうとする試みが提唱されているが、この際の重要な検討項目の1つは、選択の迅速化、選択方式の単純化である。選択方式としては、物理層(第1レイヤ)でのパラメータの監視、MAC層(第2レイヤ)でのパラメータの監視、IP層(第3レイヤ)でのパラメータの監視、並びにこれらの組み合わせがある。例えば、特許文献1では、判断をスループットにより行なっている。この場合は、無線システムが異なるため、選択されたシステムが最適であるとは限らないし、さらに選択判断までに時間がかかるおそれがある。   Conventional attempts to replenish service areas, improve reliability, and effectively use frequency spectrum by selecting one of a plurality of different wireless systems (a combination of two or more systems is possible). In this case, one of the important consideration items is to speed up the selection and simplify the selection method. Selection methods include parameter monitoring at the physical layer (first layer), parameter monitoring at the MAC layer (second layer), parameter monitoring at the IP layer (third layer), and combinations thereof. . For example, in Patent Document 1, the determination is made based on the throughput. In this case, since the radio systems are different, the selected system is not necessarily optimal, and there is a possibility that it takes time to make a selection decision.

また、伝送遅延を判断基準とする方式も考えられるが、その場合にはシステムあるいは装置化の影響をそのまま受けてしまう可能性がある。また、RSSIやCINRでの判定を行う方法も考えられるが、これらはシステムにより導出方法が違う可能性もある。そのため、システムパラメータ等を統一するよう変換や置換を行なう必要がありその検討は容易ではなく、また正しい解が得られるとは限らない。   A method using transmission delay as a criterion is also conceivable, but in that case, there is a possibility that the system or apparatus may be affected as it is. In addition, although a method of performing determination by RSSI or CINR is also conceivable, there is a possibility that the derivation method differs depending on the system. Therefore, it is necessary to perform conversion and replacement so as to unify system parameters and the like, and the examination is not easy, and a correct solution is not always obtained.

また、見通し外通信において広帯域の通信を行なう場合には、いわゆる周波数選択性フェージングを受けるので、伝送特性に周波数特性が現れることがあり得る。   In addition, when performing broadband communication in non-line-of-sight communication, so-called frequency selective fading is received, so that frequency characteristics may appear in transmission characteristics.

本発明は、このような事情に鑑みてなされたものであり、異なる無線システムを使うことによる複雑性を排除し、さらに周波数選択性フェージングの影響を軽減し、無線システムにできる限り依存しない低レイヤでの切り替え判定を行なうことができる無線通信システム、無線受信装置および無線通信方法を提供することを目的とする。   The present invention has been made in view of such circumstances, eliminates the complexity of using different radio systems, further reduces the effects of frequency selective fading, and is a low layer that does not depend on the radio system as much as possible. An object of the present invention is to provide a wireless communication system, a wireless reception device, and a wireless communication method that can perform switching determination at the same time.

(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、無線送信装置と無線受信装置との間で、複数種類のOFDM通信方式からいずれかを選定して無線通信を行なう無線通信システムであって、前記無線送信装置は、特定の周波数サブチャネルに高自己相関関数(自己相関の高い関数を意味する)を含むOFDM信号を前記無線受信装置へ送信し、前記無線受信装置は、各OFDM通信方式について、前記無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比が最も大きいOFDM通信方式を選択することを特徴としている。   (1) In order to achieve the above object, the present invention takes the following measures. That is, the wireless communication system of the present invention is a wireless communication system that performs wireless communication by selecting any of a plurality of types of OFDM communication schemes between a wireless transmission device and a wireless reception device, and the wireless transmission device Transmits an OFDM signal including a high autocorrelation function (meaning a high autocorrelation function) to a specific frequency subchannel to the radio reception apparatus, and the radio reception apparatus transmits the radio signal for each OFDM communication scheme. OFDM communication with the highest correlation ratio, which shows the ratio between the correlation value when there is no time difference and the correlation value when there is a time difference, by calculating the correlation value between the high autocorrelation function received from the device and the known high autocorrelation function It is characterized by selecting a method.

このように、各OFDM通信方式について、無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比が最も大きいOFDM通信方式を選択するので、比較的簡単に複数の異種無線システムの選択のためのパラメータを得ることができると共に、選択の信頼性を高めることができる。   Thus, for each OFDM communication system, the correlation value between the high autocorrelation function received from the wireless transmission device and the known high autocorrelation function is calculated, and the correlation value when there is no time difference and the correlation value when there is a time difference Since the OFDM communication scheme having the largest correlation ratio indicating the ratio to the above is selected, parameters for selecting a plurality of different types of wireless systems can be obtained relatively easily, and the reliability of the selection can be improved.

(2)また、本発明の無線通信システムにおいて、前記無線受信装置は、システム帯域全体の伝搬路における周波数特性を測定し、前記高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、前記システム帯域全体の伝搬路における周波数特性の平均値との差分を補正することを特徴としている。   (2) Further, in the wireless communication system of the present invention, the wireless reception device measures a frequency characteristic in a propagation path of the entire system band, and a frequency characteristic in a propagation path of a specific frequency subchannel including the high autocorrelation function. And the difference between the average value of the frequency characteristics in the propagation path of the entire system band is corrected.

このように、高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、システム帯域全体の伝搬路における周波数特性の平均値との差分を補正するので、高自己相関関数を含む周波数サブチャネルを過小評価または過大評価することを回避し、誤差を小さくすることが可能となる。   In this way, the difference between the frequency characteristic in the propagation path of a specific frequency subchannel including a high autocorrelation function and the average value of the frequency characteristic in the propagation path of the entire system band is corrected, so that the frequency including the high autocorrelation function is corrected. It is possible to avoid underestimation or overestimation of the subchannel and reduce the error.

(3)また、本発明の無線受信装置は、複数種類のOFDM通信方式からいずれかを選定して無線通信を行なう無線通信システムに適用される無線受信装置であって、無線送信装置から受信した特定の周波数サブチャネルに高自己相関関数を含むOFDM信号を復調するOFDM復調部と、既知の高自己相関関数を記憶する記憶部と、前記各OFDM通信方式について、前記受信した高自己相関関数と前記既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比を計算する相関比計算部と、前記相関比が最も大きいOFDM通信方式を選択する選択部と、を備えることを特徴としている。   (3) Further, the wireless reception device of the present invention is a wireless reception device applied to a wireless communication system that performs wireless communication by selecting one of a plurality of types of OFDM communication schemes, and received from the wireless transmission device An OFDM demodulator that demodulates an OFDM signal including a high autocorrelation function in a specific frequency subchannel, a storage unit that stores a known high autocorrelation function, and the received high autocorrelation function for each of the OFDM communication methods, Calculating a correlation value with the known high autocorrelation function, calculating a correlation ratio indicating a ratio between a correlation value when there is no time difference and a correlation value when there is a time difference, and the correlation ratio is And a selection unit that selects the largest OFDM communication system.

このように、各OFDM通信方式について、無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比が最も大きいOFDM通信方式を選択するので、比較的簡単に複数の異種無線システムの選択のためのパラメータを得ることができると共に、選択の信頼性を高めることができる。   Thus, for each OFDM communication system, the correlation value between the high autocorrelation function received from the wireless transmission device and the known high autocorrelation function is calculated, and the correlation value when there is no time difference and the correlation value when there is a time difference Since the OFDM communication scheme having the largest correlation ratio indicating the ratio to the above is selected, parameters for selecting a plurality of different types of wireless systems can be obtained relatively easily, and the reliability of the selection can be improved.

(4)また、本発明の無線受信装置は、システム帯域全体の伝搬路における周波数特性を測定する伝搬路特性推定部をさらに備え、前記相関比計算部は、前記高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、前記システム帯域全体の伝搬路における周波数特性の平均値との差分を補正して相関比を計算し、前記選択部は、補正後の相関比が最も大きいOFDM通信方式を選択することを特徴としている。   (4) In addition, the wireless reception device of the present invention further includes a propagation path characteristic estimation unit that measures frequency characteristics in the propagation path of the entire system band, and the correlation ratio calculation unit includes a specific function including the high autocorrelation function. The correlation ratio is calculated by correcting the difference between the frequency characteristic in the propagation path of the frequency subchannel and the average value of the frequency characteristics in the propagation path of the entire system band, and the selection unit has the largest correlation ratio after the correction. It is characterized by selecting an OFDM communication system.

このように、高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、システム帯域全体の伝搬路における周波数特性の平均値との差分を補正するので、高自己相関関数を含む周波数サブチャネルを過小評価または過大評価することを回避し、誤差を小さくすることが可能となる。   In this way, the difference between the frequency characteristic in the propagation path of a specific frequency subchannel including a high autocorrelation function and the average value of the frequency characteristic in the propagation path of the entire system band is corrected, so that the frequency including the high autocorrelation function is corrected. It is possible to avoid underestimation or overestimation of the subchannel and reduce the error.

(5)また、本発明の無線通信方法は、無線送信装置と無線受信装置との間で、複数種類のOFDM通信方式からいずれかを選定して無線通信を行なう無線通信方法であって、前記無線送信装置において、特定の周波数サブチャネルに高自己相関関数を含むOFDM信号を前記無線受信装置へ送信するステップと、前記無線受信装置において、各OFDM通信方式について、前記無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比を計算するステップと、前記相関比が最も大きいOFDM通信方式を選択するステップと、を少なくとも含むことを特徴としている。   (5) Moreover, the wireless communication method of the present invention is a wireless communication method for performing wireless communication by selecting one of a plurality of types of OFDM communication schemes between a wireless transmission device and a wireless reception device, In the wireless transmission device, a step of transmitting an OFDM signal including a high autocorrelation function in a specific frequency subchannel to the wireless reception device; and in the wireless reception device, for each OFDM communication scheme, the high signal received from the wireless transmission device Calculating a correlation value between an autocorrelation function and a known high autocorrelation function, calculating a correlation ratio indicating a ratio between a correlation value when there is no time difference and a correlation value when there is a time difference; and And selecting at least the largest OFDM communication system.

このように、各OFDM通信方式について、無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比が最も大きいOFDM通信方式を選択するので、比較的簡単に複数の異種無線システムの選択のためのパラメータを得ることができると共に、選択の信頼性を高めることができる。   Thus, for each OFDM communication system, the correlation value between the high autocorrelation function received from the wireless transmission device and the known high autocorrelation function is calculated, and the correlation value when there is no time difference and the correlation value when there is a time difference Since the OFDM communication scheme having the largest correlation ratio indicating the ratio to the above is selected, parameters for selecting a plurality of different types of wireless systems can be obtained relatively easily, and the reliability of the selection can be improved.

(6)また、本発明の無線通信方法は、前記無線受信装置において、システム帯域全体の伝搬路における周波数特性を測定するステップと、前記高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、前記システム帯域全体の伝搬路における周波数特性の平均値との差分を補正するステップと、をさらに含むことを特徴としている。   (6) Further, in the wireless communication method of the present invention, in the wireless reception device, a step of measuring frequency characteristics in the propagation path of the entire system band, and a propagation path of a specific frequency subchannel including the high autocorrelation function And a step of correcting a difference between the frequency characteristic and an average value of the frequency characteristic in the propagation path of the entire system band.

このように、高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、システム帯域全体の伝搬路における周波数特性の平均値との差分を補正するので、高自己相関関数を含む周波数サブチャネルを過小評価または過大評価することを回避し、誤差を小さくすることが可能となる。   In this way, the difference between the frequency characteristic in the propagation path of a specific frequency subchannel including a high autocorrelation function and the average value of the frequency characteristic in the propagation path of the entire system band is corrected, so that the frequency including the high autocorrelation function is corrected. It is possible to avoid underestimation or overestimation of the subchannel and reduce the error.

本発明によれば、各OFDM通信方式について、無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比が最も大きいOFDM通信方式を選択するので、比較的簡単に複数の異種無線システムの選択のためのパラメータを得ることができると共に、選択の信頼性を高めることができる。   According to the present invention, for each OFDM communication system, a correlation value between a high autocorrelation function received from a wireless transmission device and a known high autocorrelation function is calculated, and when there is a time difference and a correlation value when there is no time difference, Since the OFDM communication method having the largest correlation ratio indicating the ratio to the correlation value is selected, parameters for selecting a plurality of different types of wireless systems can be obtained relatively easily, and the reliability of the selection can be improved. it can.

代表的な自己相関の高いM系列の自己相関関数を示す図である。It is a figure which shows the autocorrelation function of a typical M series with high autocorrelation. OFDM方式のフレーム構成の概念を示す図である。It is a figure which shows the concept of the frame structure of OFDM system. ビット差τ=0の場合におけるM系列の受信信号と受信側で既知の信号との相関値を求める計算部を示す図である。It is a figure which shows the calculation part which calculates | requires the correlation value of the received signal of M series in the case of bit difference (tau) = 0 and a known signal on the receiving side. ビット差τ=1シンボルの場合における M系列の受信信号と受信側で既知の信号との相関値を求める計算部を示す図である。It is a figure which shows the calculation part which calculates | requires the correlation value of the received signal of M series in the case of bit difference (tau) = 1 symbol and a known signal on the receiving side. 第1の実施形態に係る無線通信システムの基本構成を示す図である。It is a figure which shows the basic composition of the radio | wireless communications system which concerns on 1st Embodiment. 第1の実施形態に係る無線通信システムの構成を示す図である。It is a figure which shows the structure of the radio | wireless communications system which concerns on 1st Embodiment. 伝搬路特性推定を行なう装置の構成を示す図である。It is a figure which shows the structure of the apparatus which performs propagation path characteristic estimation. 伝搬路の周波数特性推定部で得られる特性の概念を示す図である。It is a figure which shows the concept of the characteristic obtained in the frequency characteristic estimation part of a propagation path. 周波数選択性フェージングの影響を考慮して相関比を補正する場合の装置構成を示す図である。It is a figure which shows the apparatus structure in the case of correct | amending a correlation ratio in consideration of the influence of frequency selective fading. 第2の実施形態に係る無線通信システムの概略構成を示す図である。It is a figure which shows schematic structure of the radio | wireless communications system which concerns on 2nd Embodiment.

本実施形態は、WiMAXやLTEなどのOFDM方式を用いる無線方式に適用されるものである。特に、周波数の有効利用を図り、また信頼性の高い無線伝送を実施する為に、既存の複数の無線システムを選択し、切り替えて利用する。既存システムのシステムパラメータに手を入れることなく、比較的容易に選択判定並びに選択実施を行なえる手法を提供する。以下、本発明の実施形態について図面を参照して説明する。   The present embodiment is applied to a radio system using an OFDM system such as WiMAX or LTE. In particular, a plurality of existing radio systems are selected and switched to be used in order to effectively use frequencies and to perform highly reliable radio transmission. Provided is a method for making selection determination and selection execution relatively easily without changing the system parameters of an existing system. Embodiments of the present invention will be described below with reference to the drawings.

本実施形態では、M系列のような自己相関特性Ra(τ)が良好なデータ系列を利用する。M系列の自己相関関数は、式(1)のように表すことができる。即ち、符号長がLのM系列m(m=1 or −1)において、図1のように、時間差τがゼロ(時間差無し)の場合にはピークが立ち、そうでない場合は−1/Lとなる。 In the present embodiment, a data sequence having a good autocorrelation characteristic Ra (τ) such as an M sequence is used. The autocorrelation function of the M sequence can be expressed as in Equation (1). That is, in the M sequence m i (m i = 1 or −1) with a code length of L, a peak appears when the time difference τ is zero (no time difference) as shown in FIG. 1, and otherwise −1. / L.

Figure 2010226398
信号復調時に相関をとると、式(1)のmのうちの1つは雑音n(ここでは、平均値ゼロの白色ガウス雑音を仮定)を含んだ信号(=m+nとする)、他の1つは、M系列に相当する信号で復調側では既知の信号である。従って、この場合、相関関数の符号長L内で平均値を求めると、τがゼロの場合は、E[・]をL内での時間平均と定義すると、
1+E[n] :τ=0 ・・・(2)
また、τがゼロ以外では、
−1/L+E[n] :τ=0以外 ・・・(3)
となる。本実施形態では、式(2)と式(3)との比(あるいは差)を検出し、その比が大きな無線方式を選択する。
Figure 2010226398
Taking a correlation during signal demodulation, one of the m i in the formula (1) is noise n (here, zero mean white Gaussian noise assumptions) (a = m + n) the signals containing, other One is a signal corresponding to the M sequence, which is a known signal on the demodulation side. Therefore, in this case, when the average value is obtained within the code length L of the correlation function, when τ is zero, if E [•] is defined as the time average within L,
1 + E [n]: τ = 0 (2)
If τ is not zero,
−1 / L + E [n]: other than τ = 0 (3)
It becomes. In the present embodiment, the ratio (or difference) between Expression (2) and Expression (3) is detected, and a radio system having a large ratio is selected.

通常、雑音の平均値E[n]はゼロとなるが、平均時間が有限であるため、ゼロ以外の値をとり得る。なお、M系列のような関数は、周期自己相関関数(CAF:Cyclic Autocorrelation Function)と称されることもある。   Normally, the average value E [n] of noise is zero, but since the average time is finite, it can take a value other than zero. A function such as an M sequence may be referred to as a cyclic autocorrelation function (CAF).

上記のように、本実施形態では、式(2)と(3)の値の比(あるいは差、以下では“相関比“と呼称する。)を用いて、希望信号の雑音に対する大きさの度合いを、各々の無線システムについて知ることができる。言い換えると、M系列信号の復調信号の同期をとった自己相関関数(τ=0)の平均値と、例えば1シンボルシフトさせた時(τ=0以外、1シンボルに制限する必要はないが)の自己相関関数の平均値を比較することになる。これは、受信信号のSN比の比較とほぼ等価とも考えられる。   As described above, in the present embodiment, the degree of the magnitude of the desired signal with respect to noise is calculated using the ratio (or difference, hereinafter referred to as “correlation ratio”) of the values of equations (2) and (3). Can be known about each wireless system. In other words, the average value of the autocorrelation function (τ = 0) obtained by synchronizing the demodulated signal of the M-sequence signal and, for example, when shifted by one symbol (other than τ = 0, it is not necessary to limit to one symbol) The average values of the autocorrelation functions are compared. This is considered to be almost equivalent to the comparison of the SN ratio of the received signal.

なお、通常、OFDM方式を用いる無線通信システムでは、適応変調を適用し、通信路の状態により変調方式の多値数(例えば、QPSKは4、16QAMは16、64QAMは64など)を変更するが、本方式は無線システムの受信性能の測定であるので、判別の誤差が小さくなるよう、変調方式は2相PSKの方が望ましい。また、復調信号は軟判定データの方がよい。   Normally, in a wireless communication system using the OFDM system, adaptive modulation is applied, and the multi-value number of the modulation system (for example, 4 for QPSK, 16 for 16QAM, 64 for 64QAM, etc.) is changed. Since this method is a measurement of the reception performance of the wireless system, the two-phase PSK is preferable as the modulation method so that the discrimination error is reduced. The demodulated signal is preferably soft decision data.

本実施形態では、無線システムの低レイヤでの判定が行なえる基準を提供しているので、変調方式が同じであれば、異なる無線システムであっても、本方式を適用できる。従って同じ基準での選択判断を行なうことができるという特徴を有する。   In the present embodiment, since a reference is provided that enables determination at a lower layer of the wireless system, this method can be applied to different wireless systems as long as the modulation method is the same. Therefore, it has the feature that selection judgment can be made based on the same standard.

図2は、OFDM方式のフレーム構成を示す図である。図2に示すように、OFDM方式のフレームは、プリアンブル部2−1、周波数サブチャネル2−2、および時間サブチャネル2−3を含む。本実施形態では、周波数サブチャネル2−2にM系列を含めることを想定している。時間サブチャネ2−3にM系列を含めても同様な効果が得られる。   FIG. 2 is a diagram showing a frame structure of the OFDM scheme. As shown in FIG. 2, the OFDM frame includes a preamble section 2-1, a frequency subchannel 2-2, and a time subchannel 2-3. In the present embodiment, it is assumed that an M sequence is included in the frequency subchannel 2-2. The same effect can be obtained even if the M series is included in the time subchannel 2-3.

M系列の符号長に関しては、長い方が望ましく、例えば1023ビット等が考えられる。但し、符号長が長すぎると、情報ビット数が減ってしまう。また、無線信号のフレーム長が符号長よりも短くなる場合には、高自己相関関数の特性が劣化しないように、引き続くフレーム長に継続させることが望ましい。何らかの理由により、符号長がフレーム長の制限を受ける場合に、符号長Lが短い別の符号を用いた方式も適用可能であるが、特性は劣化する可能性がある。   The longer the code length of the M sequence is desirable, for example, 1023 bits can be considered. However, if the code length is too long, the number of information bits is reduced. In addition, when the frame length of the radio signal is shorter than the code length, it is desirable to continue to the subsequent frame length so that the characteristics of the high autocorrelation function do not deteriorate. For some reason, when the code length is limited by the frame length, a method using another code with a short code length L can be applied, but the characteristics may deteriorate.

また、ここではM系列で代表させているが、M系列でなくても、自己相関において時間ずれがある場合に相関が小さくなるような、例えば、Gold符号であってもよい。   In addition, although the M sequence is represented here, for example, a Gold code may be used in which the correlation is small when there is a time shift in autocorrelation, even if the M sequence is not used.

さらに、見通し外通信において広帯域の通信を行なう場合には、いわゆる周波数選択性フェージングを受けるので、周波数サブチャネルにM系列を含める場合には周波数特性が現れ特性が劣化する可能性がある。本特許は、このようなフェージングを受ける場合も想定して周波数軸上で補正を行なえる機能も有している。   Further, when performing broadband communication in non-line-of-sight communication, so-called frequency selective fading is received, and therefore, when an M sequence is included in a frequency subchannel, frequency characteristics may appear and the characteristics may deteriorate. This patent also has a function of performing correction on the frequency axis assuming such fading.

[第1の実施形態]
図3は、受信側におけるM系列の自己相関器の構成を示す図である。図3では、ビット差が無い場合(τ=0)を示している。上段3−1は、受信したM系列であり、下段3−2は受信側で予め持っているM系列である。各々の該当するデータの積を乗算器3−3でとり、その和を加算器3−4で計算し、除算器3−5において、Lで除算後、相関値が得られる。この場合には、雑音を無視すると、相関値は式(1)に示すように“1”となる。
[First Embodiment]
FIG. 3 is a diagram illustrating a configuration of an M-sequence autocorrelator on the reception side. FIG. 3 shows a case where there is no bit difference (τ = 0). The upper stage 3-1 is the received M series, and the lower stage 3-2 is the M series that is held in advance on the receiving side. The product of each corresponding data is taken by the multiplier 3-3, the sum is calculated by the adder 3-4, and after dividing by L in the divider 3-5, the correlation value is obtained. In this case, if the noise is ignored, the correlation value is “1” as shown in Expression (1).

図4は、1ビットずらした場合のデータ構成を示す図である。図4では、受信側で既知のデータ3−2の左端はデータが入っていないが(“−”で表示)が、符号長が十分長い場合は(例えば1023)、無視しても実質影響はないと考えられる。雑音を無視した場合、相関値は式(1)に示す通り“−1/L”となる。   FIG. 4 is a diagram illustrating a data configuration in the case of shifting by 1 bit. In FIG. 4, the left end of the known data 3-2 on the receiving side does not contain data (indicated by “−”), but if the code length is sufficiently long (for example, 1023), there is no substantial effect even if ignored. It is not considered. When noise is ignored, the correlation value is “−1 / L” as shown in Equation (1).

図5は、本実施形態に係る無線通信システムの基本構成を示す図である。OFDM送信部5−1は、図2に示したようなOFDM信号を作成し受信側へ送信する。送信信号は無線伝搬路5−2を経てOFDM復調部5−3に入力される。OFDM復調部5−3は、受信した信号を復調し軟判定データを作成し、そのデータを用いて相関比計算部5−4で相関比を得る。M系列記憶部5−5では、送信側と同じM系列を有している。   FIG. 5 is a diagram showing a basic configuration of the wireless communication system according to the present embodiment. The OFDM transmitter 5-1 creates an OFDM signal as shown in FIG. 2 and transmits it to the receiving side. The transmission signal is input to the OFDM demodulator 5-3 via the radio propagation path 5-2. The OFDM demodulator 5-3 demodulates the received signal to create soft decision data, and the correlation ratio calculator 5-4 obtains the correlation ratio using the data. The M sequence storage unit 5-5 has the same M sequence as that on the transmission side.

図6は、本実施形態に係る無線通信システムの構成を示す図である。システムAに対する受信信号を、(OFDM)復調部5−3(A〜Z)で軟判定データとして復元し、相関比計算部5−4(A〜Z)で相関比を計算する。システムB、C等でも同じ操作を行ない、これらの相関比は、相関比比較部6−1で比較され、最も相関比の大きな値の無線システムが選択される。選択装置6−2は、相関比比較部6−1で選択された無線システムに切り替えを行なう。   FIG. 6 is a diagram illustrating a configuration of the wireless communication system according to the present embodiment. The received signal for system A is restored as soft decision data by (OFDM) demodulator 5-3 (AZ), and the correlation ratio is calculated by correlation ratio calculator 5-4 (AZ). The same operation is performed in the systems B, C, etc., and these correlation ratios are compared by the correlation ratio comparison unit 6-1, and the wireless system having the largest correlation ratio is selected. The selection device 6-2 switches to the wireless system selected by the correlation ratio comparison unit 6-1.

図7は、伝搬路特性推定を行う装置の構成を示す図である。この装置では、RF部7−1、A/Dコンバータ7−2、FFT部7−3を通った後の信号のうち、プリアンブル部2−1を取り出し、その振幅や位相を検波することにより、伝搬路特性の推定を行う。推定された特性は、通常、等価部7−4において伝搬路の歪みを補償するために用いられる。なお、伝搬路の周波数特性(伝達関数)取得は、従来の技術の再利用ですむ(非特許文献1)。   FIG. 7 is a diagram illustrating a configuration of an apparatus that performs channel characteristic estimation. In this device, by extracting the preamble part 2-1 from the signal after passing through the RF part 7-1, the A / D converter 7-2, and the FFT part 7-3 and detecting its amplitude and phase, Estimate propagation path characteristics. The estimated characteristics are usually used to compensate for propagation path distortion in the equivalent section 7-4. In addition, the frequency characteristics (transfer function) of the propagation path can be acquired by reusing the conventional technique (Non-patent Document 1).

図8は、伝搬路の周波数特性推定部で得られる特性の概念を示す図である。送信側から送られた信号が反射や回折により受信側では遅延波となり(多重路伝搬波)、そのため広帯域信号の場合には送信信号自身が干渉となり、周波数歪を生じさせる。本実施形態で用いるM系列を用いた相関値による無線システムの選択方式では、M系列が含まれる周波数サブチャネルが、例えば、図8に示す位置にあった時は、過小評価(真の値よりも小さな測定値)してしまう可能性がある。そこで、周波数特性の平均値も計算しておいて補正することにより、誤差を小さくすることができる。即ち、図8の記号を用いて、
(補正された相関比)=(Pave)/(Po)×(測定された相関比)
とすればよい。過大評価となる場合も同様の計算を行なえばよい。
FIG. 8 is a diagram illustrating a concept of characteristics obtained by the frequency characteristic estimation unit of the propagation path. A signal transmitted from the transmission side becomes a delayed wave (multipath propagation wave) on the reception side due to reflection or diffraction, so that in the case of a wideband signal, the transmission signal itself becomes interference and causes frequency distortion. In the radio system selection method using the correlation value using the M sequence used in this embodiment, for example, when the frequency subchannel including the M sequence is in the position shown in FIG. May be a small measurement value). Therefore, the error can be reduced by calculating and correcting the average value of the frequency characteristics. That is, using the symbols in FIG.
(Corrected correlation ratio) = (Pave) / (Po) × (measured correlation ratio)
And it is sufficient. The same calculation may be performed in the case of overestimation.

図9は、周波数選択性フェージングの影響を考慮して相関比を補正する場合の装置構成を示す図である。無線伝搬路5−2では、送信側と受信側が見通し外の場合には、多重路伝搬が生じ、遅延による周波数選択性フェージングが発生する。このため、本装置では、図5に示した構成に伝搬路特性推定部7−5を付加した構成となっている。その推定値が相関比計算部5−4に入力されて、補正が行なわれる。   FIG. 9 is a diagram illustrating a device configuration in the case of correcting the correlation ratio in consideration of the influence of frequency selective fading. In the radio propagation path 5-2, when the transmission side and the reception side are out of line of sight, multipath propagation occurs and frequency selective fading due to delay occurs. For this reason, in this apparatus, it is the structure which added the propagation path characteristic estimation part 7-5 to the structure shown in FIG. The estimated value is input to the correlation ratio calculation unit 5-4, and correction is performed.

[第2の実施形態]
図10は、第2の実施形態に係る無線通信システムの概略構成を示す図である。この無線通信システムでは、図6に示した構成を基本とし、周波数選択性フェージングの影響を考慮して、その影響を小さくする構成が採られている。(OFDM)復調部5−3(A〜Z)は、受信した信号を復調し、軟判定データを作成し、そのデータと伝搬路特性推定部/補正係数計算部10−1(A〜Z)で得られるデータを用いて、相関比計算部5−4(A〜Z)で相関比を得る。システムB、C等でも同じ操作を行なう。これらの相関比は、相関比比較部6−1で比較され、選択装置6−2において、最も相関比の大きな値の無線システムが選択される。
[Second Embodiment]
FIG. 10 is a diagram illustrating a schematic configuration of a wireless communication system according to the second embodiment. This radio communication system is based on the configuration shown in FIG. 6 and adopts a configuration in which the influence is reduced in consideration of the influence of frequency selective fading. (OFDM) demodulator 5-3 (AZ) demodulates the received signal, creates soft decision data, and the data and propagation path characteristic estimator / correction coefficient calculator 10-1 (AZ) The correlation ratio is obtained by the correlation ratio calculation unit 5-4 (A to Z) using the data obtained in the above. The same operation is performed in the systems B and C. These correlation ratios are compared by the correlation ratio comparison unit 6-1, and the selection system 6-2 selects the radio system having the largest correlation ratio.

以上説明したように、本実施形態に係る無線通信システムによれば、比較的簡単に複数の異種無線システムの選択のためのパラメータを得ることができる。また、信頼性の向上を図ることができる。なお、上記の説明では、OFDMを対象にしているが、基本的には変調方式が同じあれば、FDMやTDMも対象とする複数無線システムに含めることが可能である。また、本方式は、低レイヤでパラメータを観測していることにより得られるものであるが、上位レイヤのパラメータも併用することにより、より望ましい選択方式を実現することも可能である。   As described above, according to the radio communication system according to the present embodiment, parameters for selecting a plurality of different radio systems can be obtained relatively easily. Further, the reliability can be improved. In the above description, OFDM is targeted. However, if the modulation scheme is basically the same, it can be included in a plurality of wireless systems that also target FDM and TDM. In addition, this method is obtained by observing parameters in a lower layer, but a more desirable selection method can also be realized by using parameters in an upper layer together.

2−1 OFDM信号のプリアンブル部
2−2 OFDM信号の周波数サブチャネル
2−3 OFDM信号の時間サブチャネル
3−1 M系列のデータ(受信側での復調信号)
3−2 M系列のデータ(受信側での既知データ)
3−3 乗算器
3−4 加算器
3−5 Lによる除算器
5−1 OFDM送信部
5−2 無線伝搬路
5−3(A〜Z) (OFDM)復調部
5−4(A〜Z) 相関比計算部
5−5 M系列記憶部
6−1 相関比比較部
6−2 選択装置
7−1 RF部
7−2 A/Dコンバータ
7−3 FFT部
7−4 等価部
7−5 伝搬路特性推定部(伝達関数の推定)
10−1(A〜Z) 伝搬路特性推定部/補正係数計算部
2-1 OFDM signal preamble section 2-2 OFDM signal frequency subchannel 2-3 OFDM signal time subchannel 3-1 M-sequence data (demodulated signal on receiving side)
3-2 M series data (known data on the receiving side)
3-3 Multiplier 3-4 Adder 3-5 Divider by L 5-1 OFDM Transmitter 5-2 Radio Propagation Channel 5-3 (AZ) (OFDM) Demodulator 5-4 (AZ) Correlation Ratio Calculation Unit 5-5 M Sequence Storage Unit 6-1 Correlation Ratio Comparison Unit 6-2 Selection Device 7-1 RF Unit 7-2 A / D Converter 7-3 FFT Unit 7-4 Equivalent Unit 7-5 Propagation Path Characteristic estimation unit (transfer function estimation)
10-1 (A to Z) Propagation path characteristic estimation unit / correction coefficient calculation unit

Claims (6)

無線送信装置と無線受信装置との間で、複数種類のOFDM通信方式からいずれかを選定して無線通信を行なう無線通信システムであって、
前記無線送信装置は、特定の周波数サブチャネルに高自己相関関数を含むOFDM信号を前記無線受信装置へ送信し、
前記無線受信装置は、各OFDM通信方式について、前記無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比が最も大きいOFDM通信方式を選択することを特徴とする無線通信システム。
A wireless communication system that performs wireless communication between a wireless transmission device and a wireless reception device by selecting one of a plurality of types of OFDM communication methods,
The wireless transmission device transmits an OFDM signal including a high autocorrelation function in a specific frequency subchannel to the wireless reception device,
The wireless reception device calculates a correlation value between a high autocorrelation function received from the wireless transmission device and a known high autocorrelation function for each OFDM communication method, and when there is a correlation value and a time difference when there is no time difference A wireless communication system, wherein an OFDM communication system having a largest correlation ratio indicating a ratio with a correlation value of the selected wireless communication system is selected.
前記無線受信装置は、システム帯域全体の伝搬路における周波数特性を測定し、前記高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、前記システム帯域全体の伝搬路における周波数特性の平均値との差分を補正することを特徴とする請求項1記載の無線通信システム。   The radio reception apparatus measures frequency characteristics in a propagation path of the entire system band, and determines a frequency characteristic in a propagation path of a specific frequency subchannel including the high autocorrelation function and a frequency characteristic in a propagation path of the entire system band. The wireless communication system according to claim 1, wherein a difference from the average value is corrected. 複数種類のOFDM通信方式からいずれかを選定して無線通信を行なう無線通信システムに適用される無線受信装置であって、
無線送信装置から受信した特定の周波数サブチャネルに高自己相関関数を含むOFDM信号を復調するOFDM復調部と、
既知の高自己相関関数を記憶する記憶部と、
前記各OFDM通信方式について、前記受信した高自己相関関数と前記既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比を計算する相関比計算部と、
前記相関比が最も大きいOFDM通信方式を選択する選択部と、を備えることを特徴とする無線受信装置。
A radio receiving apparatus applied to a radio communication system that performs radio communication by selecting one of a plurality of types of OFDM communication systems,
An OFDM demodulator that demodulates an OFDM signal including a high autocorrelation function in a specific frequency subchannel received from a wireless transmission device;
A storage unit for storing a known high autocorrelation function;
For each OFDM communication method, a correlation value between the received high autocorrelation function and the known high autocorrelation function is calculated, and a ratio between a correlation value when there is no time difference and a correlation value when there is a time difference is shown. A correlation ratio calculation unit for calculating a correlation ratio;
And a selection unit that selects the OFDM communication scheme having the largest correlation ratio.
システム帯域全体の伝搬路における周波数特性を測定する伝搬路特性推定部をさらに備え、
前記相関比計算部は、前記高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、前記システム帯域全体の伝搬路における周波数特性の平均値との差分を補正して相関比を計算し、
前記選択部は、補正後の相関比が最も大きいOFDM通信方式を選択することを特徴とする請求項3記載の無線受信装置。
A propagation path characteristic estimation unit for measuring frequency characteristics in the propagation path of the entire system band;
The correlation ratio calculation unit corrects a difference between a frequency characteristic in a propagation path of a specific frequency subchannel including the high autocorrelation function and an average value of the frequency characteristics in a propagation path of the entire system band to obtain a correlation ratio. Calculate
The radio reception apparatus according to claim 3, wherein the selection unit selects an OFDM communication system having the largest corrected correlation ratio.
無線送信装置と無線受信装置との間で、複数種類のOFDM通信方式からいずれかを選定して無線通信を行なう無線通信方法であって、
前記無線送信装置において、特定の周波数サブチャネルに高自己相関関数を含むOFDM信号を前記無線受信装置へ送信するステップと、
前記無線受信装置において、各OFDM通信方式について、前記無線送信装置から受信した高自己相関関数と既知の高自己相関関数との相関値を算出し、時間差が無い場合の相関値と時間差が有る場合の相関値との比を示す相関比を計算するステップと、
前記相関比が最も大きいOFDM通信方式を選択するステップと、を少なくとも含むことを特徴とする無線通信方法。
A wireless communication method for performing wireless communication by selecting any of a plurality of types of OFDM communication methods between a wireless transmission device and a wireless reception device,
In the wireless transmission device, transmitting an OFDM signal including a high autocorrelation function in a specific frequency subchannel to the wireless reception device;
In the wireless receiver, for each OFDM communication system, a correlation value between a high autocorrelation function received from the wireless transmitter and a known high autocorrelation function is calculated, and there is a correlation value and a time difference when there is no time difference Calculating a correlation ratio indicating a ratio with a correlation value of
And selecting at least the OFDM communication method having the largest correlation ratio.
前記無線受信装置において、システム帯域全体の伝搬路における周波数特性を測定するステップと、
前記高自己相関関数を含む特定の周波数サブチャネルの伝搬路における周波数特性と、前記システム帯域全体の伝搬路における周波数特性の平均値との差分を補正するステップと、をさらに含むことを特徴とする請求項5記載の無線通信方法。
In the wireless reception device, measuring the frequency characteristics in the propagation path of the entire system band,
The method further includes correcting a difference between a frequency characteristic in a propagation path of a specific frequency subchannel including the high autocorrelation function and an average value of the frequency characteristics in the propagation path of the entire system band. The wireless communication method according to claim 5.
JP2009071030A 2009-03-23 2009-03-23 Wireless communication system, wireless receiving apparatus, and wireless communication method Expired - Fee Related JP5139355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071030A JP5139355B2 (en) 2009-03-23 2009-03-23 Wireless communication system, wireless receiving apparatus, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071030A JP5139355B2 (en) 2009-03-23 2009-03-23 Wireless communication system, wireless receiving apparatus, and wireless communication method

Publications (2)

Publication Number Publication Date
JP2010226398A true JP2010226398A (en) 2010-10-07
JP5139355B2 JP5139355B2 (en) 2013-02-06

Family

ID=43043111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071030A Expired - Fee Related JP5139355B2 (en) 2009-03-23 2009-03-23 Wireless communication system, wireless receiving apparatus, and wireless communication method

Country Status (1)

Country Link
JP (1) JP5139355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175196A (en) * 2011-02-17 2012-09-10 Ntt Docomo Inc Multimode wireless equipment, and method of finding connection destination system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150751A (en) * 1997-09-10 1999-06-02 Matsushita Electric Ind Co Ltd Equipment and method for switching channel
JP2000354266A (en) * 1999-06-11 2000-12-19 Sony Corp Radio communication terminal
JP2003274455A (en) * 2002-03-15 2003-09-26 Ntt Docomo Inc Cellular communication system and mobile station and method in the cellular communication system
WO2008093621A1 (en) * 2007-01-31 2008-08-07 Sharp Kabushiki Kaisha Mobile communication system, base station device, and mobile station device
WO2008108252A1 (en) * 2007-02-27 2008-09-12 Kyocera Corporation Radio communication terminal and in-cell return processing method
JP2009529252A (en) * 2006-02-08 2009-08-13 エルジー エレクトロニクス インコーポレイティド Method for transmitting channel quality information in a mobile communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150751A (en) * 1997-09-10 1999-06-02 Matsushita Electric Ind Co Ltd Equipment and method for switching channel
JP2000354266A (en) * 1999-06-11 2000-12-19 Sony Corp Radio communication terminal
JP2003274455A (en) * 2002-03-15 2003-09-26 Ntt Docomo Inc Cellular communication system and mobile station and method in the cellular communication system
JP2009529252A (en) * 2006-02-08 2009-08-13 エルジー エレクトロニクス インコーポレイティド Method for transmitting channel quality information in a mobile communication system
WO2008093621A1 (en) * 2007-01-31 2008-08-07 Sharp Kabushiki Kaisha Mobile communication system, base station device, and mobile station device
WO2008108252A1 (en) * 2007-02-27 2008-09-12 Kyocera Corporation Radio communication terminal and in-cell return processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175196A (en) * 2011-02-17 2012-09-10 Ntt Docomo Inc Multimode wireless equipment, and method of finding connection destination system

Also Published As

Publication number Publication date
JP5139355B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US7298784B2 (en) Reception method, reception apparatus and wireless transmission system using adaptive modulation scheme
JP5233454B2 (en) Mobile terminal station and reception quality measuring method
JP5024934B2 (en) Wireless communication device
US9398617B2 (en) Methods and apparatus for random access in a communication system
US20070147485A1 (en) Communication device and communication method
US6879626B1 (en) Transmission/reception apparatus and modulation system estimation method
KR100625686B1 (en) Mobile termile apparatus capable of efficiently measuring cnir and cnir measuring method thereof
EP1376963A2 (en) Detection of valid paths
US8634351B2 (en) LTE baseband receiver and method for operating same
JP3492565B2 (en) OFDM communication device and detection method
JP2003319005A (en) Symbol timing correction circuit, receiver, symbol timing correction method, and demodulation process method
KR101106692B1 (en) Apparatus and method for mode control in mimo communication system
JP5499687B2 (en) OFDM wireless communication terminal
JP4375577B2 (en) Adaptive modulation control apparatus and radio communication apparatus
JPWO2006098105A1 (en) Adaptive modulation control system and wireless communication device
CN101690054B (en) Memory-saving method for generating soft bit values from an OFDM signal
KR20070015996A (en) Apparatus and method for receiving channel quality information in a broadband wireless access communication system
KR20070074708A (en) Apparatus and method for channel state estimate in a wireless communication system
EP1499059A1 (en) Method and device for determining the link quality in an OFDM network
JP2008227622A (en) Reception device and communication method
EP2096774A1 (en) Method and computer program for estimating signal quality value as well as signal quality estimator, receiver and communication apparatus
JP2010124368A (en) Doppler frequency estimating device, receiving device, program, and method of estimating doppler frequency
JP2004165853A (en) Apparatus and method for radio communication
JP5172302B2 (en) Modulation method selection method for base station apparatus and base station apparatus using the same
JP5139355B2 (en) Wireless communication system, wireless receiving apparatus, and wireless communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees