JP5499687B2 - OFDM wireless communication terminal - Google Patents

OFDM wireless communication terminal Download PDF

Info

Publication number
JP5499687B2
JP5499687B2 JP2009290629A JP2009290629A JP5499687B2 JP 5499687 B2 JP5499687 B2 JP 5499687B2 JP 2009290629 A JP2009290629 A JP 2009290629A JP 2009290629 A JP2009290629 A JP 2009290629A JP 5499687 B2 JP5499687 B2 JP 5499687B2
Authority
JP
Japan
Prior art keywords
signal
probability distribution
subcarrier
ofdm
amplitude probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009290629A
Other languages
Japanese (ja)
Other versions
JP2011135161A (en
Inventor
泰 松本
薫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2009290629A priority Critical patent/JP5499687B2/en
Publication of JP2011135161A publication Critical patent/JP2011135161A/en
Application granted granted Critical
Publication of JP5499687B2 publication Critical patent/JP5499687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無線LAN(ローカルエリアネットワーク)などに用いるOFDM(Orthogonal Frequency-Division Multiplexing:直交周波数分割多重)方式無線端末で、特に、近傍の電子情報機器などから発生する電磁雑音によるスループットの劣化を軽減したOFDM無線通信端末に関するものである。   The present invention is an OFDM (Orthogonal Frequency-Division Multiplexing) type wireless terminal used in a wireless LAN (local area network) and the like, and in particular, the degradation of throughput due to electromagnetic noise generated from nearby electronic information devices. The present invention relates to a reduced OFDM wireless communication terminal.

OFDMを用いたテレビ放送や無線通信は、劣悪な伝送路(チャネル)状況に簡単に適応でき、狭帯域伝送路干渉やマルチパス伝達による符号間干渉とフェージングおよびタイミング同期エラーに対して強く、高い周波数利用効率をもち、シングル周波数ネットワークが容易に実現できる等の利点があることから、既によく使われている。   Television broadcasts and wireless communications using OFDM can be easily adapted to poor transmission channel conditions, and are highly resistant to narrowband transmission channel interference, intersymbol interference due to multipath transmission, fading, and timing synchronization errors. It has already been used frequently because it has the advantage of having a frequency utilization efficiency and easily realizing a single frequency network.

その一例として、例えば、OFDM無線通信としては、WiMAX(Worldwide Interoperability for Microwave Access)などの公衆無線通信や、無線LANなどがよく知られている。この場合の問題点として、特に無線LAN用の無線通信端末では、パーソナルコンピュータ(PC)などの電子情報機器にその端末が内蔵される場合に、それ自体やその近傍の電子情報機器から発生する電磁雑音によるビット誤り率やスループットの劣化が起こることが知られている。   For example, public wireless communication such as WiMAX (Worldwide Interoperability for Microwave Access), wireless LAN, and the like are well known as OFDM wireless communication. As a problem in this case, particularly in a wireless communication terminal for a wireless LAN, when the terminal is built in an electronic information device such as a personal computer (PC), electromagnetic waves generated from the electronic information device in its vicinity or in the vicinity thereof are generated. It is known that bit error rate and throughput are degraded due to noise.

この様に、受信電力や周囲の電磁雑音などによるビット誤り率が増加すると、パケット誤りが増加し、パケットの再送回数が増加してスループットが低下する。複合後のパケット中に1ビットの誤りがあっても、パケット全体を再送しなければならないのでスループットへの影響が大きい。   In this way, when the bit error rate due to reception power, surrounding electromagnetic noise, or the like increases, packet errors increase, the number of packet retransmissions increases, and throughput decreases. Even if there is a 1-bit error in the combined packet, the entire packet must be retransmitted, which has a large effect on the throughput.

この様な性能低下を緩和する方法の一つとして、変調方式や符号化率、あるいはパケット長を周囲の電磁環境に合わせて適応的に変更してパケット当たりの情報伝送量を削減し、パケット誤り率の増加を防止することによってスループットの劣化を抑える手段が用いられる。この方法で問題となるのは、通信リンクの置かれている電磁環境の変化をいかにして評価し、最も適切な変調方式や符号化や復号方式を選択する方法である。   One way to mitigate such performance degradation is to reduce the amount of information transmitted per packet by adaptively changing the modulation method, coding rate, or packet length according to the surrounding electromagnetic environment, thereby reducing packet errors. Means are used to suppress throughput degradation by preventing an increase in rate. The problem with this method is how to evaluate the change in the electromagnetic environment where the communication link is placed, and to select the most appropriate modulation method, encoding and decoding method.

従来行われている方法は、送信側ではパケット送信先からのACK信号(ACKnowledgement信号)をモニタして、不達パケットの割合が一定限度以上であれば伝送速度を低下させる。不達パケットが非常に少ない場合には伝送速度を増加させる。   In the conventional method, the transmission side monitors the ACK signal (ACKnowledgement signal) from the packet transmission destination, and reduces the transmission rate if the ratio of undelivered packets exceeds a certain limit. If the number of undelivered packets is very small, the transmission rate is increased.

一方受信側では
1)OFDM信号中の定まった周波数やタイミングで送信されている内容が既知のパイロット信号を用いて、サブキャリアごとの信号レベルを推定する。
2)パイロット信号の復調結果や無信号時の受信電力から、サブキャリア毎の雑音電力を推定する。
3)上記1)2)の結果を用いて、サブキャリア毎の信号/雑音電力比を推定し、これに基づき誤り訂正符号の軟判定復号器に入力されるビットに重み付けを行なう、すなわち信号/雑音電力比の小さいサブキャリアから復調された、正しい信頼性が小さなビットには小さい重みをつける。
On the other hand, on the receiving side, 1) the signal level for each subcarrier is estimated using a pilot signal whose contents transmitted at a fixed frequency and timing in the OFDM signal are known.
2) The noise power for each subcarrier is estimated from the demodulation result of the pilot signal and the received power when there is no signal.
3) The signal / noise power ratio for each subcarrier is estimated using the results of 1) and 2) above, and based on this, the bits input to the soft decision decoder of the error correction code are weighted, that is, the signal / A bit having a small correct reliability and demodulated from a subcarrier having a small noise power ratio is assigned a small weight.

送信側における従来法の問題点としては、次のものがある。例えば、特定のサブキャリアに対して妨害が生じている場合でも、送信側ではそれが判らないため、送信する全サブキャリアの変調方式を変更する必要があるので無駄が大きくなる場合がある。また、パケット不達情報をモニタしながら変調方式の変更を繰り返す必要があるので、最適な伝送速度に収束するまで時間がかかる、また電磁環境の時間変動が大きい場合には収束しない、といった点があげられる。   Problems with the conventional method on the transmission side include the following. For example, even when interference occurs for a specific subcarrier, since it is not known on the transmission side, it is necessary to change the modulation schemes of all subcarriers to be transmitted, which may increase waste. In addition, since it is necessary to repeatedly change the modulation method while monitoring packet non-delivery information, it takes time to converge to the optimum transmission rate, and it does not converge when the time fluctuation of the electromagnetic environment is large. can give.

一方、受信側で行う上記対策法の最大の問題点としては、次のものがある。これは、雑音の影響を、信号/雑音電力比のみで評価せざるを得ないという点に由来する。外来雑音が無視できると仮定できる場合には、周波数依存性の無いガウス雑音(受信機雑音)が支配的とみなせるため、サブチャネル毎の信号/雑音電力比のみで雑音の影響を評価できる。しかし、通常は外来雑音を含んでおり、これは周波数依存性を持つ非ガウス雑音であるのが一般的である。例えば雑音がインパルス状の場合には、同電力のガウス雑音に比較してビット誤り率の劣化が著しい場合が多いことが知られている。このため、雑音の統計的性質を無視して単に信号/雑音電力のみを基準に送信変調方式や誤り訂正方式を設定すると、結果的に雑音の影響を過大評価もしくは過小評価する可能性がある。   On the other hand, the biggest problem of the above countermeasures performed on the receiving side is as follows. This comes from the fact that the influence of noise must be evaluated only by the signal / noise power ratio. When it can be assumed that external noise can be ignored, Gaussian noise (receiver noise) having no frequency dependence can be regarded as dominant, and therefore the influence of noise can be evaluated only by the signal / noise power ratio for each subchannel. However, it usually includes extraneous noise, which is generally non-Gaussian noise with frequency dependence. For example, when the noise is impulse-like, it is known that the bit error rate is often significantly deteriorated compared to the Gaussian noise having the same power. For this reason, if the transmission modulation method and error correction method are set based on only the signal / noise power while ignoring the statistical properties of noise, the influence of noise may be overestimated or underestimated as a result.

妨害波によって引き起こされるデジタル回線の品質劣化(ビット誤り率:BER)が、妨害波強度の統計パラメータ(振幅確率分布:APD)から推定されることが報告されている。ここで、APDは、測定時間Tにおいて、その振幅があるレベルLを超える時間率である。   It has been reported that quality degradation (bit error rate: BER) of a digital line caused by an interference wave is estimated from a statistical parameter (amplitude probability distribution: APD) of the interference wave intensity. Here, APD is a time rate at which the amplitude exceeds a certain level L at the measurement time T.

例えば、非特許文献1では、電子機器から放射される雑音のAPDを用いたOFDM信号の受信品質評価法が記載されており、特に、OFDM電波を受信するデジタルテレビ受信機では、BERは、ガウスノイズのもとでの符号化効果を用いて、干渉ノイズのAPDで近似的に評価できることが示されている。また、非特許文献2では、雑音のAPDを用いたデジタル変調方式に対するビット誤り率推定法が記載されており、例えば、デジタルコヒーレントラジオ受信機でのBERとAPDとの関連が示されている。また、非特許文献3には、雑音のAPDを用いた多値変調方式に対するビット誤り率推定法が記載されており、例えば、干渉性の信号によるAPDとBERとの関連性は、QAMや多重PSKなどの変調方式によって変わることが示されている。   For example, Non-Patent Document 1 describes a reception quality evaluation method of an OFDM signal using an APD of noise radiated from an electronic device. In particular, in a digital television receiver that receives OFDM radio waves, BER is Gaussian. It has been shown that the encoding effect under noise can be used to approximately evaluate with the APD of interference noise. Non-Patent Document 2 describes a bit error rate estimation method for a digital modulation scheme using a noise APD. For example, the relationship between BER and APD in a digital coherent radio receiver is shown. Non-Patent Document 3 describes a bit error rate estimation method for a multi-level modulation scheme using a noise APD. For example, the relationship between an APD and a BER by a coherent signal is QAM or multiplexing. It is shown that it varies depending on a modulation scheme such as PSK.

また、非特許文献4には、OFDM信号のサブキャリア毎の雑音電力を用いた誤り訂正/ビタビ復号器への入力ビットの重み付けの効果が記載されている。また、非特許文献5には、雑音周波数の情報を用いた誤り訂正/ビタビ復号器への入力ビットの重み付けの効果が記載されている。また、非特許文献6には、軟判定回路におけるサブキャリア重み付け技術が記載されている。   Non-Patent Document 4 describes the effect of weighting input bits to an error correction / Viterbi decoder using noise power for each subcarrier of an OFDM signal. Non-Patent Document 5 describes the effect of weighting of input bits to an error correction / Viterbi decoder using noise frequency information. Non-Patent Document 6 describes a subcarrier weighting technique in a soft decision circuit.

また、特許文献1(特表2009−535911号公報)には、OFDMシステムの各サブチャネルに関して、そのサブチャネルで検出されるエネルギーに基づいて変調方式及び誤り訂正符号化方式を選択するシステムが、開示されている。また、特許文献2(特表2006−501695号公報)には、OFDMシステム等価チャネルに対する計量に基づいて伝送するデータレートを決定する方法が開示されている。   Patent Document 1 (Japanese Translation of PCT International Publication No. 2009-535911) discloses a system that selects a modulation scheme and an error correction coding scheme based on energy detected in each subchannel of the OFDM system. It is disclosed. Japanese Patent Application Laid-Open No. 2006-501695 discloses a method for determining a data rate for transmission based on a metric for an OFDM system equivalent channel.

しかし、これらの開示や記載を単に集積しても、本発明のOFDM無線通信端末を実現できないことは明らかである。   However, it is clear that the OFDM wireless communication terminal of the present invention cannot be realized by simply integrating these disclosures and descriptions.

特表2009−535911号公報Special table 2009-535911 gazette 特表2006−501695号公報Special table 2006-501695 gazette

K. Gotoh et al., "Evaluation of sensitivity of digital TV receiver subjected to intrasystem interference", Proc. of the 8th Int. Symposium on Electromagnetic Compatibility (EMC Europe 2008), Hamburg, Germany, 727-730, September 8-12, 2008K. Gotoh et al., "Evaluation of sensitivity of digital TV receiver subjected to intrasystem interference", Proc. Of the 8th Int. Symposium on Electromagnetic Compatibility (EMC Europe 2008), Hamburg, Germany, 727-730, September 8-12 , 2008 K. Wiklundh, "Relation Between the Amplitude Probability Distribution of an Interfering Signal and its Impact on Digital Radio Receivers", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 48, NO. 3, 537-544, AUGUST 2006K. Wiklundh, "Relation Between the Amplitude Probability Distribution of an Interfering Signal and its Impact on Digital Radio Receivers", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 48, NO. 3, 537-544, AUGUST 2006 Y. Matsumoto, "On the Relation Between the Amplitude Probability Distribution of Noise and Bit Error Probability", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 4, 940-941, NOVEMBER 2007Y. Matsumoto, "On the Relation Between the Amplitude Probability Distribution of Noise and Bit Error Probability", IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 4, 940-941, NOVEMBER 2007 W. Lee and H. Park, "Performance analysis of Viterbi decoder using channel state information in COFDM system", IEEE Trans . Broadcasting, vol . 44, no . 4, pp . 488・496, Dec . 1998 .W. Lee and H. Park, "Performance analysis of Viterbi decoder using channel state information in COFDM system", IEEE Trans.Broadcasting, vol. 44, no.4, pp. 488-496, Dec. 1998. Y. Matsumoto, K. Fujii, A. Sugiura, and T. Murakami, "Impact of Electromagnetic Noises from PCs on the Performance of MB-OFDM UWB Devices, " 13th IEEE International Symposium on Consumer Electronics, May 2009Y. Matsumoto, K. Fujii, A. Sugiura, and T. Murakami, "Impact of Electromagnetic Noises from PCs on the Performance of MB-OFDM UWB Devices," 13th IEEE International Symposium on Consumer Electronics, May 2009 守倉正博,久保田周治,「802 .11高速無線LAN教科書」インプレス、216頁、2005年Masahiro Morikura, Shuji Kubota, “802.11 High-Speed Wireless LAN Textbook”, 216 pages, 2005

上記の様に、周波数依存性を持つ非ガウス雑音、例えば、インパルス状の雑音の場合には、同電力のガウス雑音に比較してビット誤り率の劣化が著しい場合が多いことが知られている。つまり、雑音の統計的性質を無視して、単に信号/雑音電力のみを基準に送信変調方式や誤り訂正方式を設定すると、結果的に雑音の影響を過大評価もしくは過小評価することになる。   As described above, in the case of non-Gaussian noise having frequency dependency, for example, impulse-like noise, it is known that the bit error rate is often significantly deteriorated compared to Gaussian noise of the same power. . That is, ignoring the statistical properties of noise and setting the transmission modulation method and error correction method based on only the signal / noise power, the effect of noise is overestimated or underestimated as a result.

そこで、本発明では、電磁環境の評価に信号/雑音電力比でなく、APDおよびAPDとそこから推定されるBERの関係を用いて、送信手段または受信手段における信号修飾を行い、受信手段から出力される情報のビット誤り率を抑制する。   Therefore, in the present invention, the signal modification in the transmission means or the reception means is performed using the relationship between the APD and the APD and the BER estimated from the APD and the BER estimated from the signal / noise power ratio instead of the signal / noise power ratio in the electromagnetic environment evaluation, and the output from the reception means. The bit error rate of the received information.

本発明は、OFDM信号を送信する送信手段と該OFDM信号を受信する受信手段とを含む送受信システムにおいて上記受信手段として用いるOFDM無線通信端末に関するものであって、受信したOFDM信号を各サブキャリア毎のスペクトルに変換するスペクトル分解手段と、上記スペクトルのそれぞれについて振幅確率分布を生成するそれぞれの振幅確率分布測定手段と、上記振幅確率分布を上記電波における無信号時間帯に取得する様に制御する制御手段と、を備える。このような構成において、上記無信号時間帯に上記各サブキャリア毎に取得されたそれぞれの上記振幅確率分布を上記送信手段または上記受信手段における信号修飾に用いて、上記受信手段から出力される情報のビット誤り率を抑制するものであり、上記受信手段は誤り訂正復号器に軟判定復号器を備えるものであって、上記無信号時間帯に取得した振幅確率分布を用いて、上記受信手段における誤り訂正復号器に入力される復調ビットの重み付けを行う。ここで、送信手段における信号修飾とは、信号の送信形態に関するものであり、符号化方法や変調方法等に関して信号を変形するものである。また、受信手段における信号修飾とは、信号の受信形態、特に、復調方法や復号方法に関して信号を変形するものである。 The present invention relates to an OFDM wireless communication terminal used as the receiving means in a transmission / reception system including a transmitting means for transmitting an OFDM signal and a receiving means for receiving the OFDM signal. The received OFDM signal is received for each subcarrier. Spectrum decomposition means for converting the spectrum into each spectrum; amplitude probability distribution measurement means for generating an amplitude probability distribution for each of the spectra; and control for controlling the amplitude probability distribution to be acquired in a no-signal time zone in the radio wave. Means. In such a configuration, information output from the receiving means using the amplitude probability distribution acquired for each subcarrier in the no-signal time zone for signal modification in the transmitting means or the receiving means. The error correction decoder includes a soft decision decoder, and the reception means uses the amplitude probability distribution acquired in the no-signal time zone. The demodulated bits input to the error correction decoder are weighted . Here, the signal modification in the transmission means relates to the transmission form of the signal, and modifies the signal with respect to the encoding method, the modulation method and the like. The signal modification in the receiving means is a modification of the signal with respect to the signal reception mode, particularly the demodulation method and decoding method.

また、本発明のOFDM無線通信端末は、予め取得した上記の振幅確率分布とビット誤り率の関係と、各サブチャネルの上記無信号時間帯に取得した振幅確率分布を用意した状態で、上記受信手段において取得された信号電力指標から上記送信手段における変調方式を上記ビット誤り率を所望の限度値以下にする制御を行うものである。   In addition, the OFDM wireless communication terminal of the present invention provides the above-described reception in a state in which the relationship between the amplitude probability distribution acquired in advance and the bit error rate is prepared, and the amplitude probability distribution acquired in the no-signal time zone of each subchannel is prepared. The modulation means in the transmission means is controlled from the signal power index acquired in the means so that the bit error rate is not more than a desired limit value.

また、上記送信手段におけるサブチャネル毎の信号電力配分について、上記ビット誤り率を所望の限度値以下にする制御を行うことで決定するものである。   Further, the signal power distribution for each subchannel in the transmission means is determined by controlling the bit error rate to be equal to or less than a desired limit value.

また、上記受信手段は、予定のビット誤り率を得るために必要な各サブキャリアの信号電力を上記振幅確率分布から予測し、上記スペクトル分解手段から取得した各サブキャリアの信号電力とのそれぞれの比を導出するサブキャリア信号電力比較手段を備えるものであって、上記サブキャリア信号電力比較手段の上記のそれぞれの比を予定の値にする様に上記の復調ビットの重み付けを行うものである。   The receiving means predicts the signal power of each subcarrier necessary for obtaining a predetermined bit error rate from the amplitude probability distribution, and each of the signal power of each subcarrier obtained from the spectrum decomposition means Subcarrier signal power comparison means for deriving the ratio is provided, and the demodulation bits are weighted so that the respective ratios of the subcarrier signal power comparison means are set to predetermined values.

例えば無線LAN端末では、通常PCなどの情報電子機器に組みこまれて使用されるため、その端末自身からの雑音の影響を受けることになるが、本発明によってその様な影響が緩和され、通信速度(スループット)が向上する。   For example, since a wireless LAN terminal is usually used by being incorporated in an information electronic device such as a PC, it is affected by noise from the terminal itself. Speed (throughput) is improved.

OFDM方式パケット無線通信端末の受信部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the receiving part of an OFDM system packet radio | wireless communication terminal. APDの定義を説明するための時間−振幅図である。It is a time-amplitude diagram for demonstrating the definition of APD. 受信機雑音のみの場合と、それに干渉波が加わった場合の確率密度分布例を信号強度に対して示す図である。It is a figure which shows the example of probability density distribution with respect to signal strength in the case of only receiver noise, and when an interference wave is added to it. サブチャネル毎のAPDからOFDM信号の受信BERを推定する式を示す表である。It is a table | surface which shows the type | formula which estimates the reception BER of an OFDM signal from APD for every subchannel. BER推定結果とサブキャリア信号強度の関係を示す図である。It is a figure which shows the relationship between a BER estimation result and subcarrier signal strength.

図1に、OFDM方式パケット無線通信端末の受信部50の構成例を示す。
アンテナで受信した電波は周波数変換部1で中間周波数に周波数変換し、受信フィルタ2で所望の周波数帯域の中間周波数帯信号を濾波する。濾波された中間周波数帯信号はAD(アナログ/デジタル)変換部3でデジタル信号に変換し、ガードインターバル除去部4でガードインターバルを除去した後、FFT(高速フーリエ)演算部5でフーリエ変換してスペクトルに分解し、チャネル等価部6で各チャネルのサブキャリア信号の振幅が一定になる様に調整し、サブキャリアデマッピング部7で相空間上の信号点からデジタル信号に変換し、デインタリーブ部8で各サブキャリア毎に分割したデジタル信号を統合して元に戻し、誤り訂正復号部9で前記デジタル信号の誤り訂正を行い、出力する。
FIG. 1 shows a configuration example of the receiving unit 50 of the OFDM packet radio communication terminal.
The radio wave received by the antenna is frequency-converted to an intermediate frequency by the frequency conversion unit 1, and the intermediate frequency band signal of a desired frequency band is filtered by the reception filter 2. The filtered intermediate frequency band signal is converted into a digital signal by an AD (analog / digital) converter 3, a guard interval is removed by a guard interval remover 4, and then subjected to Fourier transform by an FFT (fast Fourier) calculator 5. The signal is decomposed into spectrums, adjusted so that the amplitude of the subcarrier signal of each channel becomes constant by the channel equivalent unit 6, converted from a signal point on the phase space to a digital signal by the subcarrier demapping unit 7, and deinterleaved 8, the digital signals divided for each subcarrier are integrated and returned to the original state, and the error correction decoding unit 9 performs error correction of the digital signals and outputs them.

APDは、図2に示す様に、雑音振幅がある振幅値(スレッショルド値xk)を超える時間率で表され、次の様にスレッショルド値xkの関数となる。 As shown in FIG. 2, the APD is represented by a time rate at which the noise amplitude exceeds a certain amplitude value (threshold value x k ), and is a function of the threshold value x k as follows.

Figure 0005499687
ここで、Wi(xk)は雑音振幅がある振幅値(スレッショルド値xk)を超える時間、T0は測定時間長、p(y)は確率密度分布である。
Figure 0005499687
Here, W i (x k ) is a time when the noise amplitude exceeds a certain amplitude value (threshold value x k ), T 0 is a measurement time length, and p (y) is a probability density distribution.

図3に、受信機雑音のみの場合と、それに干渉波が加わった場合の確率密度分布例を信号強度に対して示す。この図から干渉波が加わった場合の確率密度分布は、白色雑音の場合とは明確に異なることが分かる。   FIG. 3 shows an example of probability density distribution with respect to signal intensity when only receiver noise is present and when an interference wave is added thereto. From this figure, it can be seen that the probability density distribution when an interference wave is added is clearly different from the case of white noise.

本発明に特有の部分として、FFT(高速フーリエ)演算部5からの信号で、無信号時間帯の雑音についてAPDを測定する雑音APD部11があるが、この無信号時間帯には信号到来判定部10で判定した時間帯を用いる。   As a specific part of the present invention, there is a noise APD unit 11 that measures APD with respect to noise in a no-signal time zone with a signal from an FFT (Fast Fourier) arithmetic unit 5. The time zone determined by the unit 10 is used.

本発明は、上記無信号時間帯に上記各サブキャリア毎に取得されたそれぞれの上記振幅確率分布を上記送信手段または上記受信手段における信号修飾に用いて、上記受信手段から出力される情報のビット誤り率を抑制するものである。ここで、送信手段における信号修飾とは、信号の送信形態に関するものであり、符号化方法や変調方法等に関して符号化や変調において信号を変形することを指す。また、送信においてAPDを信号修飾に用いるとは、APDに応じて符号化方法や変調方法を変えることを意味する。また、受信手段における信号修飾とは、信号の受信形態、特に、復調方法や復号方法に関して復調や復号において信号を変形することを指し、受信においてAPDを信号修飾に用いるとは、APDに応じて復調方法や複号方法を変えることを意味する。   The present invention uses the amplitude probability distribution acquired for each subcarrier in the no-signal time zone for signal modification in the transmission means or the reception means, and uses bits of information output from the reception means. The error rate is suppressed. Here, the signal modification in the transmission means relates to a signal transmission form, and refers to modifying a signal in encoding or modulation with respect to an encoding method or a modulation method. Moreover, using APD for signal modification in transmission means changing the encoding method and the modulation method according to APD. The signal modification in the reception means refers to the signal reception form, in particular, the modification of the signal in the demodulation and decoding with respect to the demodulation method and the decoding method, and the use of APD for signal modification in reception corresponds to the APD. This means changing the demodulation method and decoding method.

図1の構成において、APDを得るための構成は、具体的には以下のものである。通信信号が受信されていない時間帯におけるFFTの結果(同相および直交成分)の2乗和平方根を計算して雑音振幅を求め、一定時間内に得られる雑音振幅の時間変動のヒストグラムをサブチャネル毎に作成する。このヒストグラムを振幅の大きい方から累積すればAPDが得られる。   In the configuration of FIG. 1, the configuration for obtaining the APD is specifically as follows. The noise amplitude is obtained by calculating the square root sum of squares of the FFT results (in-phase and quadrature components) in the time zone when no communication signal is received, and a histogram of the time variation of the noise amplitude obtained within a certain time is obtained for each subchannel. To create. APD can be obtained by accumulating this histogram from the one with the larger amplitude.

図1の構成では、OFDM受信機に備わっているFFT機能を用いて無信号時間に受信される雑音のFFTを行い、そのAPDを各サブキャリア毎に同時測定するが、OFDM受信機から独立し同等の機能を備える装置を用いてもよいことは明らかである。   In the configuration of FIG. 1, the FFT function of the OFDM receiver is used to perform FFT of noise received in no signal time, and the APD is simultaneously measured for each subcarrier, but is independent of the OFDM receiver. Obviously, a device having an equivalent function may be used.

ここで、雑音のAPDと信号電力が与えられると、各種の変調方式や同期検波方式について、誤り訂正を行う前のOFDM信号の復調ビット誤り率が近似的に推定できることが知られており(非特許文献1,2,3)、これを図4に示す。   Here, it is known that when a noise APD and signal power are given, the demodulation bit error rate of the OFDM signal before error correction can be approximately estimated for various modulation schemes and synchronous detection schemes (non- Patent Documents 1, 2, and 3) are shown in FIG.

雑音APD部11からの出力を送信手段における信号修飾に用いる場合は、この出力を、チャネル等価部6でのチャネル等価に用いる信号とともにBER制御部12に送る。BER制御部12では、雑音のAPDとチャネル等価用信号とから、予め入力した情報を用いて、現状のBERを推定し、これを目標の値に制御するために必要な変調方式や符号化率などを決定する。この様に決定された変調方式や符号化率を伝送部20を通じて送信端末へ伝送する。送信端末では、伝送された変調方式や符号化率に従ってOFDM信号を送信する。   When the output from the noise APD unit 11 is used for signal modification in the transmission means, this output is sent to the BER control unit 12 together with a signal used for channel equivalent in the channel equivalent unit 6. The BER control unit 12 estimates the current BER using information input in advance from the APD of noise and the channel equivalent signal, and controls the modulation scheme and coding rate necessary for controlling this to a target value. Etc. The modulation scheme and coding rate determined in this way are transmitted to the transmitting terminal through the transmission unit 20. The transmitting terminal transmits an OFDM signal according to the transmitted modulation scheme and coding rate.

上記のAPDとBERの関係を用い、各サブチャネルの雑音APDと信号電力から、誤り訂正前のBERを所望の値にするために必要な変調方式を直接定め、図1の機能2の様に送信側に指示する。雑音が連続的かインパルス状かといった違いはAPDに明確に現れるため、雑音電力による指標に比較して精度が良い。   Using the above relationship between APD and BER, the modulation method necessary for setting the BER before error correction to a desired value is directly determined from the noise APD and signal power of each subchannel, as shown in function 2 in FIG. Instruct the sender. Since the difference between whether the noise is continuous or impulse appears clearly in the APD, it is more accurate than the index based on the noise power.

また、変調方式を変更する代わりにサブチャネル毎の信号電力配分を修正しても良い。例えば、BERの要求値からサブキャリア信号強度を決めるためには、図5に示すBER推定結果とサブキャリア信号強度の関係から、雑音APDによるビット誤り率推定と所要信号レベルの推定を行うことができる。これには、サブチャネルAとBのAPDの結果に応じて、BERの要求値に対する所要信号レベルAとBを図5のように求める。その際、チャネルAおよびBから復調されるビットの重みとして、比(実際の信号レベルA/所要信号レベルA)および比(実際の信号レベルB/所要信号レベルB)をそれぞれ用いる。   Further, the signal power distribution for each subchannel may be modified instead of changing the modulation method. For example, in order to determine the subcarrier signal strength from the required BER value, the bit error rate estimation by the noise APD and the required signal level estimation may be performed from the relationship between the BER estimation result and the subcarrier signal strength shown in FIG. it can. For this purpose, the required signal levels A and B with respect to the required value of BER are obtained as shown in FIG. 5 according to the results of the APDs of subchannels A and B. At this time, the ratio (actual signal level A / required signal level A) and ratio (actual signal level B / required signal level B) are used as weights of bits demodulated from the channels A and B, respectively.

上記いずれの場合も、BERの推定に用いる各サブキャリアの電力が求められていることが前提であるが、これはパイロット信号等を用いて推定する。また、雑音APDは目的とするBER(誤り訂正前:多くの場合は10-2〜10-4程度)以下の確率まで正しく求めることが望ましい。 In any of the above cases, it is assumed that the power of each subcarrier used for BER estimation is obtained, but this is estimated using a pilot signal or the like. In addition, it is desirable that the noise APD is correctly obtained up to a target BER (before error correction: in many cases about 10 −2 to 10 −4 ) or less.

また、雑音APD部11からの出力を受信手段における信号修飾に用いる場合は、この出力を軟判定設定部13に送り、復号時ビットの重み付けを設定する。この重み付けの設定に当たっては、チャネル等価部6からのチャネル等価用信号を用いて、各チャネル毎の重み付けを変えることが望ましい。軟判定設定部13の出力信号を誤り訂正復号部9に用いる場合は、誤り訂正復号部9には軟判定復号器を用いる。   When the output from the noise APD unit 11 is used for signal modification in the receiving means, this output is sent to the soft decision setting unit 13 to set the weighting of the decoding bit. In setting the weighting, it is desirable to change the weighting for each channel using the channel equivalent signal from the channel equivalent unit 6. When the output signal of the soft decision setting unit 13 is used for the error correction decoding unit 9, a soft decision decoder is used for the error correction decoding unit 9.

図1の機能3に示す様に、上記のAPD測定結果を用いて、受信側の誤り訂正復号器に入力される復調ビットの重み付けを行うこともできる。復調ビットの重み付けの方法としては、例えば一定のBERを得るために必要な各サブキャリアの信号電力をAPDから予測し、実際の信号電力との比を用いる方法などが考えられる。上記と同様に、例えば、図5に示すBER推定結果とサブキャリア信号強度の関係から、サブチャネルAとBのAPDの結果に応じて、BERの要求値に対する所要信号レベルAとBを求める。ここで、チャネルAおよびBから復調されるビットの重みとして、比(実際の信号レベルA/所要信号レベルA)および比(実際の信号レベルB/所要信号レベルB)をそれぞれ用いる。   As shown in function 3 of FIG. 1, the above-mentioned APD measurement result can be used to weight the demodulated bits input to the error correction decoder on the receiving side. As a method of weighting the demodulated bits, for example, a method of predicting the signal power of each subcarrier necessary for obtaining a constant BER from the APD and using a ratio with the actual signal power can be considered. Similarly to the above, for example, from the relationship between the BER estimation result and the subcarrier signal strength shown in FIG. 5, the required signal levels A and B for the required BER values are obtained according to the APD results of the subchannels A and B. Here, the ratio (actual signal level A / required signal level A) and ratio (actual signal level B / required signal level B) are used as weights of bits demodulated from channels A and B, respectively.

なお、前述した送信側の変調方式や送信電力分布の最適化は、複数の異なる雑音環境下の端末によって同時受信の必要がある信号には使用できない。一方受信側での対策は、個々の受信機の置かれた電磁環境に対して個別に適用可能なので、用途に応じて使い分けることができる。   Note that the above-described transmission modulation scheme and transmission power distribution optimization cannot be used for signals that need to be simultaneously received by a plurality of terminals in different noise environments. On the other hand, the countermeasures on the receiving side can be applied to the electromagnetic environment in which each receiver is placed, and can be used properly according to the purpose.

本発明は、デジタルAV機器(地上デジタルチューナ、DVDレコーダ、携帯ビデオレコーダ、カーナビゲーション機器などに搭載されるODFM方式を使用した無線通信用デバイス、例えば、無線LAN、無線PANなどに利用できる。   The present invention can be used for a wireless communication device using an ODFM system, such as a wireless LAN and a wireless PAN, which is mounted on a digital AV device (terrestrial digital tuner, DVD recorder, portable video recorder, car navigation device, etc.).

1 周波数変換部
2 受信フィルタ
3 AD(アナログ/デジタル)変換部
4 ガードインターバル除去部
5 FFT(高速フーリエ)演算部
6 チャネル等価部
7 サブキャリアデマッピング部
8 デインタリーブ部
9 誤り訂正復号部
10 信号到来判定部
11 雑音APD部
12 BER制御部
13 軟判定設定部
20 伝送部
50 OFDM方式パケット無線通信端末の受信部
DESCRIPTION OF SYMBOLS 1 Frequency conversion part 2 Reception filter 3 AD (analog / digital) conversion part 4 Guard interval removal part 5 FFT (fast Fourier) calculation part 6 Channel equivalent part 7 Subcarrier demapping part 8 Deinterleaving part 9 Error correction decoding part 10 Signal Arrival determination unit 11 Noise APD unit 12 BER control unit 13 Soft decision setting unit 20 Transmission unit 50 Reception unit of OFDM packet radio communication terminal

Claims (4)

OFDM信号を送信する送信手段と、該OFDM信号を受信する受信手段とを含む送受信システムにおいて上記受信手段として用いるOFDM無線通信端末であって、
受信したOFDM信号を、各サブキャリア毎のスペクトルに変換するスペクトル分解手段と、
上記スペクトルのそれぞれについて、振幅確率分布を生成するそれぞれの振幅確率分布測定手段と、
上記振幅確率分布を、上記電波における無信号時間帯に取得するように制御する制御手段と、を備え、
上記無信号時間帯に上記各サブキャリア毎に取得されたそれぞれの上記振幅確率分布を上記送信手段または上記受信手段における信号修飾に用いて、上記受信手段から出力される情報のビット誤り率を抑制するものであり、
上記受信手段は誤り訂正復号器に軟判定復号器を備えるものであって、
上記無信号時間帯に取得した振幅確率分布を用いて、上記受信手段における誤り訂正復号器に入力される復調ビットの重み付けを行うことを特徴とするOFDM無線通信端末。
An OFDM wireless communication terminal used as the receiving means in a transmission / reception system including a transmitting means for transmitting an OFDM signal and a receiving means for receiving the OFDM signal,
Spectral decomposition means for converting the received OFDM signal into a spectrum for each subcarrier;
For each of the spectra, each amplitude probability distribution measuring means for generating an amplitude probability distribution;
Control means for controlling to acquire the amplitude probability distribution in a no-signal time zone in the radio wave,
The amplitude probability distribution acquired for each subcarrier in the no-signal time zone is used for signal modification in the transmission means or the reception means, thereby suppressing the bit error rate of information output from the reception means. Is what
The receiving means comprises a soft decision decoder in an error correction decoder,
An OFDM wireless communication terminal characterized in that weighting of demodulated bits input to an error correction decoder in the receiving means is performed using an amplitude probability distribution acquired in the no-signal time period.
予め取得した上記の振幅確率分布とビット誤り率の関係と、各サブチャネルの上記無信号時間帯に取得した振幅確率分布と、上記受信手段において取得された信号電力指標とから、
上記送信手段における変調方式を、上記ビット誤り率を所望の限度値以下にする様に制御することを特徴とする請求項1に記載のOFDM無線通信端末。
From the relationship between the amplitude probability distribution acquired in advance and the bit error rate, the amplitude probability distribution acquired in the no-signal time zone of each subchannel, and the signal power index acquired in the receiving means,
2. The OFDM wireless communication terminal according to claim 1, wherein the modulation scheme in the transmission means is controlled so that the bit error rate is less than or equal to a desired limit value.
予め取得した上記の振幅確率分布とビット誤り率の関係と、各サブチャネルの上記無信号時間帯に取得した振幅確率分布と、上記受信手段において取得された信号電力指標とから、
上記送信手段におけるサブチャネル毎の信号電力配分を、上記ビット誤り率を所望の値にする制御を行うことを特徴とする請求項1に記載のOFDM無線通信端末。
From the relationship between the amplitude probability distribution acquired in advance and the bit error rate, the amplitude probability distribution acquired in the no-signal time zone of each subchannel, and the signal power index acquired in the receiving means,
2. The OFDM wireless communication terminal according to claim 1, wherein the signal power distribution for each subchannel in the transmission means is controlled to make the bit error rate a desired value.
上記受信手段は、予定のビット誤り率を得るために必要な各サブキャリアの信号電力を上記振幅確率分布から予測し、上記スペクトル分解手段から取得した各サブキャリアの信号電力とのそれぞれの比を導出するサブキャリア信号電力比較手段を備え、The receiving means predicts the signal power of each subcarrier necessary for obtaining a predetermined bit error rate from the amplitude probability distribution, and calculates the ratio of the signal power of each subcarrier obtained from the spectrum decomposition means. A subcarrier signal power comparing means for deriving,
上記サブキャリア信号電力比較手段の上記のそれぞれの比を予定の値にするように上記の復調ビットの重み付けを行うことを特徴とする請求項1に記載のOFDM無線通信端末。2. The OFDM radio communication terminal according to claim 1, wherein the demodulation bits are weighted so that the respective ratios of the subcarrier signal power comparison means are set to predetermined values.
JP2009290629A 2009-12-22 2009-12-22 OFDM wireless communication terminal Expired - Fee Related JP5499687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290629A JP5499687B2 (en) 2009-12-22 2009-12-22 OFDM wireless communication terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290629A JP5499687B2 (en) 2009-12-22 2009-12-22 OFDM wireless communication terminal

Publications (2)

Publication Number Publication Date
JP2011135161A JP2011135161A (en) 2011-07-07
JP5499687B2 true JP5499687B2 (en) 2014-05-21

Family

ID=44347468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290629A Expired - Fee Related JP5499687B2 (en) 2009-12-22 2009-12-22 OFDM wireless communication terminal

Country Status (1)

Country Link
JP (1) JP5499687B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712992B2 (en) * 2012-10-30 2015-05-07 日本電気株式会社 Noise power measuring apparatus and noise power measuring method
KR102017885B1 (en) * 2012-11-26 2019-10-22 한국전자통신연구원 Apparatus and method for evaluating statistical interference concerning multi-source noise environment of electromagnetic zone
JP6835582B2 (en) 2014-07-23 2021-02-24 日本電気株式会社 Electromagnetic interference wave measuring device, electromagnetic interference wave measuring method, and electromagnetic interference wave measuring program
US11172455B2 (en) 2019-07-16 2021-11-09 Microsoft Technology Licensing, Llc Peak to average power output reduction of RF systems utilizing error correction
US11086719B2 (en) 2019-07-16 2021-08-10 Microsoft Technology Licensing, Llc Use of error correction codes to prevent errors in neighboring storage
US10911284B1 (en) 2019-07-16 2021-02-02 Microsoft Technology Licensing, Llc Intelligent optimization of communication systems utilizing error correction
US11075656B2 (en) 2019-07-16 2021-07-27 Microsoft Technology Licensing, Llc Bit error reduction of communication systems using error correction
US11044044B2 (en) 2019-07-16 2021-06-22 Microsoft Technology Licensing, Llc Peak to average power ratio reduction of optical systems utilizing error correction
US11063696B2 (en) 2019-07-16 2021-07-13 Microsoft Technology Licensing, Llc Increasing average power levels to reduce peak-to-average power levels using error correction codes
US11031961B2 (en) 2019-07-16 2021-06-08 Microsoft Technology Licensing, Llc Smart symbol changes for optimization of communications using error correction
US10911141B1 (en) 2019-07-30 2021-02-02 Microsoft Technology Licensing, Llc Dynamically selecting a channel model for optical communications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279646B2 (en) * 2003-10-16 2009-06-17 シャープ株式会社 Communication device
JP4533814B2 (en) * 2005-07-06 2010-09-01 シャープ株式会社 Communication method and communication apparatus
JP5173490B2 (en) * 2008-02-28 2013-04-03 独立行政法人情報通信研究機構 Sensitivity degradation estimation system and sensitivity degradation estimation method

Also Published As

Publication number Publication date
JP2011135161A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5499687B2 (en) OFDM wireless communication terminal
JP4539539B2 (en) Soft decision value correction method, receiver, program
CN101232474B (en) Apparatus and method for receiving signal in broadband wireless access system
JP5248608B2 (en) Communication system, receiver and communication method
US20080043888A1 (en) Eliminating narrowband interference in a receiver
US20070258366A1 (en) Transmission Control Frame Generation Device, Transmission Control Frame Processing Device, Transmission Control Frame Generation Method, and Transmission Control Frame Processing Method
KR20070067680A (en) Wireless communication apparatus and wireless communication method
WO2010010867A1 (en) Reception method and reception device
JPWO2006098105A1 (en) Adaptive modulation control system and wireless communication device
WO2009066915A1 (en) Apparatus and method for reporting channel quality indicator in wireless communication system
EP2544391A1 (en) Channel estimation circuit, channel estimation method, and receiver
US9680593B2 (en) Apparatus and method for receiving signal in wireless communication system
TW200805944A (en) Link quality prediction
US8111790B2 (en) Mitigating interference in a coded communication system
US20070032199A1 (en) Apparatus and method for receiving channel quality information in a mobile communication system
US9444575B2 (en) Wireless communication system, receiver, transmitter, and transmission rate control method
TWI481220B (en) Estimating method for maximum channel delay and cyclic prefix (cp) averaging method in ofdm receiver
US9628303B2 (en) Receiver apparatus and frequency selectivity interference correction method
US8295413B2 (en) Doppler frequency estimating device, receiving device, recording medium and Doppler frequency estimating method
US8223825B2 (en) Method and computer program for estimating signal quality value, and signal quality estimator, receiver and communication apparatus
JP4875642B2 (en) Noise power estimation apparatus and method
US11805000B2 (en) Wireless telecommunication base station and process for high-mobility scenarios
JP2011139450A (en) Method for mitigating noise in symbol received over wireless network in receiver
US9137060B2 (en) Method of cancelling inter-subcarrier interference in distributed antenna system and apparatus for performing the same
Tan An adaptive orthogonal frequency division multiplexing baseband modem for wideband wireless channels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees