JP2010223771A - Spectral sensitivity measuring device and current/voltage characteristic measuring device of solar cell - Google Patents

Spectral sensitivity measuring device and current/voltage characteristic measuring device of solar cell Download PDF

Info

Publication number
JP2010223771A
JP2010223771A JP2009071593A JP2009071593A JP2010223771A JP 2010223771 A JP2010223771 A JP 2010223771A JP 2009071593 A JP2009071593 A JP 2009071593A JP 2009071593 A JP2009071593 A JP 2009071593A JP 2010223771 A JP2010223771 A JP 2010223771A
Authority
JP
Japan
Prior art keywords
measuring device
spectral sensitivity
current
light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009071593A
Other languages
Japanese (ja)
Inventor
Kazuyuki Ikegami
和志 池上
Tsutomu Miyasaka
力 宮坂
Kenjiro Tejima
健次郎 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peccell Technologies Inc
Original Assignee
Peccell Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peccell Technologies Inc filed Critical Peccell Technologies Inc
Priority to JP2009071593A priority Critical patent/JP2010223771A/en
Publication of JP2010223771A publication Critical patent/JP2010223771A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation device for measuring current/voltage characteristics of a photoelectric cell simultaneously with the spectral sensitivity spectrum of the photoelectric cell easily when developing or using the photoelectric cell for generating electricity by utilizing light of the sun, or the like. <P>SOLUTION: Spectral sensitivity and current/voltage characteristics are measured by a spectral sensitivity measuring device and a current/voltage characteristic measuring device of a photoelectric cell, where two condensing mirrors 1, 2 are disposed around one white light source 3, and one of the condensed light beams is introduced to a spectrograph 4, is converted to monochromatic light, and then is emitted; the other light beam is emitted through a simulated solar light spectrum filter 5, and the two light beams can be applied to a photoelectric cell 101 to be measured by superposition through bifurcation optical fibers 8, 9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光電池の評価装置に関する。 The present invention relates to a photovoltaic cell evaluation apparatus.

近年、太陽エネルギーを電力に変換する光電変換素子として、固体のpn接合型太陽電池が活発に研究されている。固体接合型太陽電池は、シリコン結晶やアモルファスシリコン薄膜、非シリコン系の化合物半導体の多層薄膜を用いている。そして、固体接合型太陽電池は、高温もしくは真空下で製造する必要がある。そのため、固体接合型太陽電池の製造には、プラントのコストが高くなり、エネルギーペイバックタイムが長くなるとの欠点がある。 In recent years, solid pn junction solar cells have been actively studied as photoelectric conversion elements that convert solar energy into electric power. Solid-junction solar cells use a silicon crystal, an amorphous silicon thin film, or a multilayer thin film of a non-silicon compound semiconductor. And it is necessary to manufacture a solid junction type solar cell under high temperature or a vacuum. Therefore, the manufacture of solid junction solar cells has the disadvantages of increased plant cost and longer energy payback time.

次世代の太陽電池として、低温でより低コストで製造が可能な有機系太陽電池の開発が期待されている。有機系太陽電池では、大気中で低コストの量産が可能な色素増感型太陽電池が特に注目されている。グレッチェルは、色素増感型太陽電池について、色素増感された多孔質半導体膜を用いる高効率の光電変換方法を提案している。色素増感型太陽電池は、固体接合型太陽電池における固体(半導体)−固体(半導体)接合の代りに、固体(半導体)−液体(電解液)接合を採用する湿式太陽電池である。色素増感型太陽電池は、エネルギー変換効率が11%という高い値まで達しており、電気エネルギーの供給源として有望である。 As a next-generation solar cell, development of an organic solar cell that can be manufactured at a low temperature and at a lower cost is expected. Among organic solar cells, dye-sensitized solar cells that can be mass-produced at low cost in the atmosphere are particularly attracting attention. Gretcher has proposed a highly efficient photoelectric conversion method using a dye-sensitized porous semiconductor film for a dye-sensitized solar cell. A dye-sensitized solar cell is a wet solar cell that employs a solid (semiconductor) -liquid (electrolyte) junction instead of a solid (semiconductor) -solid (semiconductor) junction in a solid junction solar cell. The dye-sensitized solar cell has a high energy conversion efficiency of 11% and is promising as a source of electric energy.

色素増感型太陽電池に対する注目度がますます高まる一方で、多くの研究機関や研究者が増加している。例えば色素増感太陽電池の評価は、電流電圧特性及び分光感度測定を行うことが一般的であるが、測定者が必ずしも十分な計測に関する知識を持ち合わせているわけではない。この評価装置としては、文献(特許文献1)にて、正確な単色光の分光感度の測定が可能な色素増感型太陽電池の分光感度測定装置に関する技術が知られている。すなわち、色素増感型太陽電池の分光感度測定装置は、単色光照射装置と、バイアス光照射装置と、分光感度測定装置を備えており、それら単色光照射装置並びにバイアス光照射装置から出射される光を、被測定色素増感型太陽電池セルに照射し、その状態で分光感度測定装置にて測定するものである。 While more and more attention is being paid to dye-sensitized solar cells, many research institutions and researchers are increasing. For example, evaluation of a dye-sensitized solar cell is generally performed by measuring current-voltage characteristics and spectral sensitivity, but a measurer does not necessarily have sufficient knowledge about measurement. As this evaluation apparatus, a technique related to a spectral sensitivity measuring apparatus for a dye-sensitized solar cell capable of accurately measuring the spectral sensitivity of monochromatic light is known in the literature (Patent Document 1). That is, a spectral sensitivity measuring device for a dye-sensitized solar cell includes a monochromatic light irradiation device, a bias light irradiation device, and a spectral sensitivity measurement device, and is emitted from the monochromatic light irradiation device and the bias light irradiation device. Light is irradiated to the dye-sensitized solar cell to be measured, and in that state, the light is measured with a spectral sensitivity measuring device.

単色光照射装置は、被測定セルに単色光を照射するもので単色光源、集光鏡、入射光学系(集光レンズ)、入射スリットと、モノクロメータと、出射スリットと、出射光学系(集光レンズ)とを含む。また、バイアス光源が発生する白色バイアスは、単色光SBに重畳され、被測定セルに照射する。このように2光源を用いる方法は、複雑な光源経路を有しており、ランプの寿命を2種類管理しなければならないこと、そのランプ較正などの煩雑なメンテナンスを必要とするものであり問題があった。 The monochromatic light irradiation device irradiates a cell to be measured with monochromatic light, and is a monochromatic light source, a condensing mirror, an incident optical system (condensing lens), an incident slit, a monochromator, an exit slit, and an exit optical system (collector). Optical lens). Further, the white bias generated by the bias light source is superimposed on the monochromatic light SB and irradiates the measured cell. As described above, the method using two light sources has a complicated light source path, and two types of lamp life must be managed, and complicated maintenance such as lamp calibration is required. there were.

公開特許公報2003−57114号Published patent publication 2003-57114

これらの問題は、一つの白色光源の周囲に2つの集光ミラーを配置し、集光された光の一方は分光器に導入され単色光に変換されたのち出射され、もう一方の光は擬似太陽光スペクトルフィルタを通じて出射され、これら二つの光は二分岐ファイバを通じて重畳されて被測定光電池を照射することができる光電池の分光感度測定装置および電流−電圧特性測定装置、によって解決された。   These problems are that two condensing mirrors are arranged around one white light source, one of the collected light is introduced into the spectrograph and converted to monochromatic light, and the other light is simulated. It was solved by a spectral sensitivity measuring device and a current-voltage characteristic measuring device of a photovoltaic cell that can be emitted through a solar spectrum filter, and these two lights can be superimposed through a bifurcated fiber to irradiate the measured photovoltaic cell.

まず、本発明の白色光源について記す。本発明においては、光源として一個の白色光源を2分割して分光器に導入された単色光と、擬似太陽光スペクトルフィルタを通した擬似太陽光スペクトルの白色光にすることが重要な本機器の特徴であり、その元となる白色光源は非常に重要な要素である。白色光源として、キセノンランプ、ハロゲンランプ等を使用できる。その形状や発光強度は、本発明の色素増感光電池の性能評価に支障が無い限り、特に限定されない、しかし、均一な光量を発する形状が好ましく、そのためには均一な面を持つ球状や円盤状の光源が好ましい。また、その発光強度は、強度が10〜2000mW/cmであることが好ましく、さらには50〜1000mW/cmであることが好ましく、特には70〜500mW/cmであることが好ましい。 First, the white light source of the present invention will be described. In the present invention, it is important to use a single white light source divided into two as a light source and convert the monochromatic light introduced into the spectroscope into white light of a pseudo solar spectrum through a pseudo solar spectrum filter. It is a feature, and the white light source from which it is derived is a very important factor. A xenon lamp, a halogen lamp, or the like can be used as the white light source. The shape and light emission intensity are not particularly limited as long as the performance evaluation of the dye-sensitized photovoltaic cell of the present invention is not hindered, but a shape that emits a uniform amount of light is preferable, and for that purpose, a spherical or disk shape with a uniform surface is preferable. The light source is preferred. Also, the emission intensity is preferably strength of 10~2000mW / cm 2, more preferably a 50~1000mW / cm 2, and particularly preferably from 70~500mW / cm 2.

次に、本発明の白色光を分光する部分を記述する。本発明においては、白色光源の周囲に2つの集光ミラーを配置して、単色光と擬似太陽光スペクトルにすることも大きな特徴であり、以下に詳細に記述する。集光ミラーにより集光された光の一方を分光器に導入して単色光に変換後に出射し、もう一方の光は擬似太陽光スペクトルフィルタを通じて出射される。 Next, a portion for spectrally separating white light according to the present invention will be described. In the present invention, two condensing mirrors are arranged around a white light source to form monochromatic light and a pseudo-sunlight spectrum, which will be described in detail below. One of the lights condensed by the condenser mirror is introduced into the spectroscope and emitted after being converted into monochromatic light, and the other light is emitted through the pseudo solar spectrum filter.

まず集光ミラーの形態は特に限定されないが、好ましい形態としての例を以下に記す。光源としては、150Wキセノンランプを用いており、単色光を作る分光器の集光系はミラー型であり、分光器には二次光をカットするためのフィルタ自動切換え機構内臓しており、フィルタとしては、代表として例えばL37とR64の少なくとも2種類を備えており、さらに出射口には光チョッパーとして内臓型周波数可変チョッパー(0.1〜100Hz)を組み込んだものを挙げることが出来る。さらに、擬似太陽光スペクトルの出射側は、ミラー型の集光系を備えており、さらに、擬似太陽光スペクトルフィルタを有することが好ましい。 First, the form of the condensing mirror is not particularly limited, but an example as a preferred form is described below. As the light source, a 150W xenon lamp is used, and the condensing system of the spectroscope for producing monochromatic light is a mirror type. The spectroscope has a built-in automatic filter switching mechanism for cutting secondary light. As a representative, for example, at least two types of L37 and R64 are provided, and a built-in frequency variable chopper (0.1 to 100 Hz) is incorporated as an optical chopper at the exit. Furthermore, the emission side of the pseudo sunlight spectrum is provided with a mirror-type condensing system, and it is preferable to have a pseudo sunlight spectrum filter.

次に、集光ミラーにより集光された光の一方を分光器に導入して単色光に変換する分光器について記述する。好ましい焦点距離は100mm以上300mm以下であり、口径比は、3以上5以下のものが好ましい。分光器に内蔵される回折格子は、1200line/mm以上600line/mm以下のものから選択する。ブレーズ波長は、被測定光電池の感度に適切なものを選択することが好ましく、色素増感型太陽電池においては、500nmを選択することが好ましい。出射スリットは、幅1mm以上5mm以下から選択する。出射光の強度は、480 nmにおいて、0.1 mW以上5mW以下であることが好ましく、0.1mW以上2mW以下であることがさらに好ましい。波長純度は、照射強度に依存し、1nm以上30nm以下の範囲である。特に好ましい分光器は、非対称型変形ツェルニターナマウント型であり、焦点距離は100 mm、口径比F=3.0である。分光器に内蔵される回折格子は、600 lines/mm、ブレーズ波長 500nmのものを用いる。出射スリットは幅2 mm、高さ3.5 mmであり、出射光の強度は480 nmで2 mW 以上、波長純度は約 30 nmである。照射波長は、300 nmから1100 nmまで1nmの分解能で変化させることが可能である。   Next, a spectroscope will be described in which one of the light collected by the condensing mirror is introduced into the spectroscope and converted into monochromatic light. The focal length is preferably 100 mm or more and 300 mm or less, and the aperture ratio is preferably 3 or more and 5 or less. The diffraction grating built in the spectrometer is selected from 1200 line / mm to 600 line / mm. The blaze wavelength is preferably selected to be appropriate for the sensitivity of the photovoltaic cell to be measured, and 500 nm is preferably selected for the dye-sensitized solar cell. The exit slit is selected from 1 mm to 5 mm in width. The intensity of the emitted light is preferably 0.1 mW or more and 5 mW or less, and more preferably 0.1 mW or more and 2 mW or less at 480 nm. The wavelength purity depends on the irradiation intensity and ranges from 1 nm to 30 nm. A particularly preferable spectroscope is an asymmetrical modified Zernitaner mount type having a focal length of 100 mm and an aperture ratio F = 3.0. The diffraction grating built into the spectrometer is 600 lines / mm and has a blaze wavelength of 500 nm. The exit slit has a width of 2 mm and a height of 3.5 mm. The intensity of the emitted light is 2 mW or more at 480 nm and the wavelength purity is about 30 nm. The irradiation wavelength can be changed from 300 nm to 1100 nm with a resolution of 1 nm.

もう一方の光である擬似太陽光を発現する擬似太陽光スペクトルフィルタについて記述する。本発明の好ましい擬似太陽光スペクトルフィルタは、1)JIS規格に定められた結晶系太陽電池セル出力測定方法 (JIS C 8913)、および2)アモルファス太陽電池セル出力測定方法 (JIS C 8934)におけるAクラスのスペクトルに合致した光を出射するものであり、その出力は基準太陽光スペクトルの照射光量1sun (100 mW cm-2)の出力に対応するものであり、かつ400 nm〜800 nmの可視部においては、約55 mW cm-2を出力できるものである。さらに、減光フィルタとの組み合わせにより、その出力を、基準太陽光スペクトルとしての強度において1 mW cm-2 から100 mW cm-2まで段階的に変更することができる。 The pseudo-sunlight spectrum filter that expresses the other sunlight, pseudo-sunlight, will be described. Preferred pseudo solar spectral filters of the present invention are: 1) a crystal solar cell output measuring method (JIS C 8913) defined in JIS standard, and 2) an amorphous solar cell output measuring method (JIS C 8934). It emits light that matches the spectrum of the class, and its output corresponds to the output of 1 sun (100 mW cm -2 ) of the reference solar spectrum, and the visible part of 400 nm to 800 nm Can output about 55 mW cm -2 . Furthermore, by combining with a neutral density filter, the output can be changed stepwise from 1 mW cm −2 to 100 mW cm −2 in intensity as a reference solar spectrum.

次の上述の二つの光は、二分岐ファイバに導かれるが、そのファイバについて記す。本発明の二分岐ファイバは重畳されて被測定光電池を照射するものであるが、その形状は特に限定されず、分光感度測定装置に必要な光を到達すればよい。一般には、円筒状であるが四角い形状でもよい。好ましいファイバの形態の例として、ファイバ部は2分岐224芯石英バンドルファイバで入射側には単色光用には、直径0.5mmの光ファイバを112本を縦型に3.5mm×2mmに配置したもの、および白色バイアス光用には、112本を直径3mmに配置して用いた。また出射側には単色光/白色バイアス光混合して、ファイバを直径4.2mmにランダムに配置して用いた。さらに、フォルダは着脱可能とした。 The following two lights described above are guided to the bifurcated fiber, and the fiber will be described. The bifurcated fiber of the present invention is superimposed to irradiate the photocell to be measured, but its shape is not particularly limited, and it is sufficient that light necessary for the spectral sensitivity measuring apparatus can be reached. In general, it is cylindrical, but may be square. As an example of a preferable fiber form, the fiber part is a bifurcated 224-core quartz bundle fiber, and for the monochromatic light on the incident side, 112 optical fibers with a diameter of 0.5 mm are arranged in a vertical shape of 3.5 mm × 2 mm. 112 and white bias light were used with 112 wires arranged at a diameter of 3 mm. Further, monochromatic light / white bias light was mixed on the emission side, and fibers were randomly arranged with a diameter of 4.2 mm. In addition, the folder is removable.

次に本発明では、分光感度測定装置を使用するものであり以下に記述する。本発明の分光感度測定装置では、分光感度測定手段として、被測定セルに生じる検出信号から暗電流を除去する補正手段を含めることができる。暗電流は、色素増感型太陽電池などの光電池の電解液を流れる化学電流に起因する。これを除去することで、正確な分光感度スペクトルを得ることができる。 Next, in the present invention, a spectral sensitivity measuring device is used, which will be described below. In the spectral sensitivity measuring apparatus of the present invention, the spectral sensitivity measuring means can include a correcting means for removing dark current from the detection signal generated in the measured cell. The dark current is caused by a chemical current flowing through the electrolyte of a photovoltaic cell such as a dye-sensitized solar cell. By removing this, an accurate spectral sensitivity spectrum can be obtained.

本発明の分光感度測定装置には、超低周波動作機能を持つ光学チョッパを設けることができる。この光学チョッパは、モータとしてサーボモータを使用すること、また光ブレードはサーボモータ回転軸に直結させることが好適である。こうすることにより、光学チョッパは単色光の超低周波数での安定したチョッピングを実現できる。本発明の分光感度測定装置では、光ブレードの位相が異なる位置にフォトインタラプタを2つ設け、かつ分光感度測定手段に、フォトインタラプタの一方の検出信号を、他方の検出信号でラッチするラッチ回路を設けることができる。このように構成することで、サーボモータを超低速駆動する場合にも、チャタリングが生じることはない。 The spectral sensitivity measuring apparatus of the present invention can be provided with an optical chopper having an ultra-low frequency operation function. This optical chopper preferably uses a servo motor as a motor, and the optical blade is directly connected to the servo motor rotating shaft. By doing so, the optical chopper can realize stable chopping of monochromatic light at an extremely low frequency. In the spectral sensitivity measuring apparatus of the present invention, two photo interrupters are provided at positions where the phases of the optical blades are different, and a latch circuit for latching one detection signal of the photo interrupter with the other detection signal is provided in the spectral sensitivity measuring means. Can be provided. With this configuration, chattering does not occur even when the servo motor is driven at an extremely low speed.

また、本発明の分光感度測定装置が、チョピング周波数の表示機能を持つ場合には、サーボモータのシャフトに取り付けたエンコーダの出力信号の周波数に基づき、光学チョッパの周波数表示を行うことができる。たとえば、光学チョッパに設けたフォトインタラプタの検出信号に基づいて周波数表示を行うと、サーボモータを超低速で駆動させる場合に、その表示に長時間がかかる。これに対して、サーボモータのシャフトに取り付けたエンコーダの出力信号に基づいて周波数表示を行う場合には、光学チョッパの周波数を短時間で(すなわち、リアルタイムで)表示することができる。 Further, when the spectral sensitivity measuring apparatus of the present invention has a function of displaying a chopping frequency, the frequency display of the optical chopper can be performed based on the frequency of the output signal of the encoder attached to the shaft of the servo motor. For example, if frequency display is performed based on a detection signal from a photo interrupter provided in an optical chopper, it takes a long time to display the servo motor when driven at an extremely low speed. On the other hand, when the frequency is displayed based on the output signal of the encoder attached to the shaft of the servo motor, the frequency of the optical chopper can be displayed in a short time (that is, in real time).

本発明の光電池の分光感度測定装置は一個の白色光源を使用し、DC測定モード、AC測定モードによらず、正確な単色光の分光感度の測定が可能となる。 The spectral sensitivity measuring device for a photovoltaic cell of the present invention uses a single white light source, and can accurately measure the spectral sensitivity of monochromatic light regardless of the DC measurement mode or the AC measurement mode.

分光感度測定装置の光源、分光器、光ファイバの配置図Arrangement of light source, spectroscope, and optical fiber of spectral sensitivity measuring device 分光感度測定装置の被測定セル、電流検出装置の配置図Arrangement of measured cell and current detector of spectral sensitivity measuring device N719色素を用いた色素増感太陽電池の分光感度スペクトルSpectral sensitivity spectrum of dye-sensitized solar cell using N719 dye N719色素を用いた色素増感太陽電池のI−VカーブIV curve of dye-sensitized solar cell using N719 dye

図1は、本発明に係る分光感度測定装置の好適な一実施の形態を示している。同図に示すように、基本的な構成は従来と異なり、白色光照射装置と単色光照射装置と、電流検出装置とを備えている。つまり、従来別々に仕様されている二つの光源装置が、一つの装置内に備えられており、光源部からの白色光をバイアス光として被測定セル101に照射し、その状態で被測定セル101に分光器からの単色光を照射させ、その時の被測定セル101の出力信号に基づいて、電流検出装置で測定するものである。 FIG. 1 shows a preferred embodiment of a spectral sensitivity measuring apparatus according to the present invention. As shown in the figure, the basic configuration is different from the conventional one, and includes a white light irradiation device, a monochromatic light irradiation device, and a current detection device. That is, two light source devices that have been conventionally specified separately are provided in one device, and white light from the light source unit is irradiated to the measured cell 101 as bias light, and the measured cell 101 is in that state. Is irradiated with monochromatic light from a spectroscope and measured with a current detector based on the output signal of the cell under measurement 101 at that time.

そして、本形態における分光感度測定装置は、光学チョッパを駆動することでAC測定モードでの分光感度測定ができ、また停止することでDC測定モードでの分光感度測定ができる。
電流検出装置はロックインアンプを内蔵していてもよく、当該ロックインアンプにより、被測定セルのAC測定モードでの光電流を取り出すことができる。本発明の分光感度測定装置では、良好な分光感度(すなわち良好なS/N比)を得ることができる。また本発明の分光感度測定装置では、サーボモータは、光ブレードを超低速で回転させることができるので、光照射に対する応答が遅い被測定色素増感型太陽電池セル(被測定セル)の分光感度測定を正確に行うことができる。
The spectral sensitivity measuring apparatus according to this embodiment can measure the spectral sensitivity in the AC measurement mode by driving the optical chopper, and can perform the spectral sensitivity measurement in the DC measurement mode by stopping.
The current detection device may include a lock-in amplifier, and the lock-in amplifier can extract a photocurrent in the AC measurement mode of the cell to be measured. With the spectral sensitivity measuring apparatus of the present invention, good spectral sensitivity (that is, good S / N ratio) can be obtained. In the spectral sensitivity measuring apparatus of the present invention, the servo motor can rotate the optical blade at an ultra-low speed, so that the spectral sensitivity of the measured dye-sensitized solar cell (measured cell) that is slow in response to light irradiation. Measurement can be performed accurately.

色素増感型太陽電池において、電解液を流れる化学電流が大きく、しかも変動するため、これが光照射に依存しない暗電流となり、単色光の分光感度の測定電流に誤差が生じる。更にまた、被測定セルの分光感度測定値から暗電流分を除去するための補正装置(図示せず)を設けることができる。この補正装置により、各測定波長についての分光感度の実測値から、暗電流分を差し引き、分光感度を求めることができる。暗電流は、単色光の光路中にシャッターを挿入して、シャッター挿入前の分光感度測定値から、シャッター挿入後の分光感度測定値を差し引くことにより求めることができる。本実施の形態では、分光感度測定装置に光チョッパの周波数表示機能を持たせることができる。 In the dye-sensitized solar cell, the chemical current flowing through the electrolytic solution is large and fluctuates, and this becomes a dark current that does not depend on light irradiation, and an error occurs in the measurement current of the spectral sensitivity of monochromatic light. Furthermore, a correction device (not shown) for removing the dark current component from the spectral sensitivity measurement value of the cell to be measured can be provided. With this correction device, the spectral sensitivity can be obtained by subtracting the dark current from the measured spectral sensitivity value for each measurement wavelength. The dark current can be obtained by inserting a shutter in the optical path of monochromatic light and subtracting the spectral sensitivity measurement value after insertion of the shutter from the spectral sensitivity measurement value before insertion of the shutter. In the present embodiment, the spectral sensitivity measuring device can have a frequency display function of an optical chopper.

本発明の光電池の分光感度測定装置および電流−電圧特性測定装置は、利用される場合の光電池は特に限定されず、例えば色素増感太陽電池、有機薄膜太陽電池、化合物半導体太陽電池、シリコン太陽電池などを挙げることが出来る。以下に本発明について、その具体的な例を示すがこれらに限定されるものではない。 The photovoltaic cell spectral sensitivity measuring device and the current-voltage characteristic measuring device of the present invention are not particularly limited when used. For example, a dye-sensitized solar cell, an organic thin film solar cell, a compound semiconductor solar cell, a silicon solar cell. And so on. Although the specific example is shown below about this invention, it is not limited to these.

(色素増感太陽電池素子の分光感度スペクトルのACモードによる評価)
分光感度が規定された校正用シリコンセル(浜松ホトニクスS1337-1010BQ)を、測定機の試料ボックス(図面12)にセットし、光照射用の光ファイバ(図面11)の先端を接射させた。校正用シリコンセルの測定時には照射光は、単色光のみとした。単色光の照射用のチョッパー周波数を、1 Hzに設定して、単色光300 nmから900 nmを5 nmづつ波長を変えながら測定した。測定セルの出力信号はロックインアンプ(図面22)(LI-5630型ロックインアンプ、NF回路社製)に接続し、各波長において5秒間の積算を行いながらデータをパソコン上に取得した。チョッパー周波数と照射波長の設定は、専用計測ソフトウェアを用いてパソコンより制御した。ここで取得したデータと、校正データをパソコン上で計算することにより、各波長の照射光量を計算し、パソコンに保存して、その後の被測定光電池の測定に用いた。
(Evaluation of spectral sensitivity spectrum of dye-sensitized solar cell element by AC mode)
A calibration silicon cell (Hamamatsu Photonics S1337-1010BQ) with a specified spectral sensitivity was set in a sample box (Drawing 12) of a measuring machine, and the tip of an optical fiber for light irradiation (Drawing 11) was contacted. When measuring the calibration silicon cell, the irradiation light was only monochromatic light. The chopper frequency for monochromatic light irradiation was set to 1 Hz, and the monochromatic light was measured while changing the wavelength from 300 nm to 900 nm by 5 nm. The output signal of the measurement cell was connected to a lock-in amplifier (Diagram 22) (LI-5630 type lock-in amplifier, manufactured by NF Circuit Co., Ltd.), and data was acquired on a personal computer while integrating for 5 seconds at each wavelength. The setting of the chopper frequency and irradiation wavelength was controlled from a personal computer using dedicated measurement software. By calculating the data acquired here and the calibration data on a personal computer, the irradiation light quantity of each wavelength was calculated, stored in the personal computer, and used for the subsequent measurement of the photocell.

つづいて、N719色素を増感色素として用いた被測定色素増感太陽電池を測定機の試料ボックスにセットし、光照射用の光ファイバの先端を接射させた。二分岐ファイバの一方より白色バイアス光(擬似太陽光)を出射し、もう一方より単色光を出射することで、白色バイアス光(擬似太陽光)と単色光を重畳させて照射した。この状態で、校正用シリコンセルの測定時と同じ条件である、単色光の照射用のチョッパー周波数を、1 Hzに設定して、単色光300 nmから900 nmを5 nmづつ波長を変えながら測定した。測定セルの出力信号はロックインアンプに接続し、各波長において5秒間の積算を行いながらデータをパソコン上に取得した。パソコン上では、校正セルの測定データを用いて、被測定シリコン光電池の分光感度スペクトルデータを表示した。結果を図3に示す。図3の結果から判るように、色素増感型太陽電池の分光特性を測定したところ、優れた分光感度曲線が得られた。これは従来の測定方法に比べても同等以上の測定結果であり、単一の光源からなる本発明の装置がすぐれたものであることを実証するものである。 Subsequently, a dye-sensitized solar cell to be measured using N719 dye as a sensitizing dye was set in a sample box of a measuring machine, and the tip of an optical fiber for light irradiation was contacted. White bias light (pseudo sunlight) was emitted from one of the two-branched fibers, and monochromatic light was emitted from the other, so that the white bias light (pseudo sunlight) and the monochromatic light were superimposed and irradiated. In this state, set the chopper frequency for monochromatic light irradiation to 1 Hz, which is the same condition as when measuring the calibration silicon cell, and measure the monochromatic light from 300 nm to 900 nm while changing the wavelength by 5 nm. did. The output signal of the measurement cell was connected to a lock-in amplifier, and data was acquired on a personal computer while integrating for 5 seconds at each wavelength. On the personal computer, the spectral sensitivity spectrum data of the silicon photocell to be measured was displayed using the measurement data of the calibration cell. The results are shown in FIG. As can be seen from the results of FIG. 3, when the spectral characteristics of the dye-sensitized solar cell were measured, an excellent spectral sensitivity curve was obtained. This is a measurement result equivalent to or better than that of the conventional measurement method, and demonstrates that the apparatus of the present invention consisting of a single light source is excellent.

(色素増感太陽電池素子のI-V特性の評価)
光源として、本願発明の測定装置において、被測定光電池の分光感度スペクトルの測定に続いて、白色光(擬似太陽光)のみを照射することで、I−V特性を測定した(図4)。被測定光電池の出力は、被測定光電池の出力の出力切替機(図面17)により、パソコンに接続されたソースメータ(図面21)(2400型ソースメータ、Keithley社製)に接続した。電流電圧特性は、1sunの光照射下、バイアス電圧を、0Vから0.8Vまで、0.01V単位で変化させながら出力電流を測定した。出力電流の測定は、各電圧ステップにおいて、電圧を変化後、0.05秒後から0.15秒後の値を積算することで行った。バイアス電圧を、逆方向に0.8Vから0Vまでステップさせる測定も行い、順方向と逆方向の測定の平均値を、光電流データとした。
(Evaluation of IV characteristics of dye-sensitized solar cell elements)
As the light source, in the measurement apparatus of the present invention, following the measurement of the spectral sensitivity spectrum of the photocell to be measured, only white light (pseudo sunlight) was irradiated to measure the IV characteristics (FIG. 4). The output of the measured photocell was connected to a source meter (Fig. 21) (2400 type source meter, manufactured by Keithley) connected to a personal computer by an output switching device (Fig. 17) of the output of the measured photocell. For the current-voltage characteristics, the output current was measured while changing the bias voltage from 0 V to 0.8 V in units of 0.01 V under 1 sun light irradiation. The output current was measured by integrating the values after 0.05 seconds and 0.15 seconds after changing the voltage in each voltage step. Measurement was also performed by stepping the bias voltage from 0.8 V to 0 V in the reverse direction, and the average value of the measurement in the forward direction and the reverse direction was used as photocurrent data.

1. 集光ミラー
2. 集光ミラー
3. キセノンランプ
4. 分光器(二次光カットフィルタ自動切換え機及びチョッパーユニット内蔵)
5. 白色光集光系(擬似太陽光フィルタ内蔵)
6. 単色光出射用フォルダ
7. 白色光(擬似太陽光)出射用フォルダ
8. 白色光(擬似太陽光)用ファイバ
9. 単色光用ファイバ
10. 光ファイバ分岐ユニット
11. 照射用光ファイバ
12. 試料ボックス
13. 試料ボックスの扉
14. 被測定セルからの出力プラス
15. 被測定セルの出力マイナス
16. BNCケーブル(被測定セルの出力接続用)
17. 被測定セルの出力切り替え機
18. BNCケーブル(ロックインアンプへの接続用(分光感度のAC測定用))
19. BNCケーブル(ソースメーターへの接続用(I−V測定及び、分光感度のDC測定用))
20. ロックインアンプ
21. ソースメーター
22. BNCケーブル(チョッパーの周波数信号のロックインアンプへの入力用)
100. 測定機本体
101. 被測定光電池
1. Condensing mirror 2. 2. Condensing mirror Xenon lamp4. Spectrometer (Built-in secondary light cut filter automatic switching machine and chopper unit)
5). White light collection system (built-in pseudo solar filter)
6). 6. Monochromatic light output folder 7. White light (pseudo sunlight) emission folder 8. White light (pseudo sunlight) fiber Monochromatic optical fiber 10. 10. Optical fiber branch unit Irradiation optical fiber 12. Sample box 13. Sample box door 14. Output from measured cell plus 15. Output of measured cell minus 16. BNC cable (for output connection of measured cell)
17. 18. Output switch for cell under measurement BNC cable (for connection to lock-in amplifier (for AC measurement of spectral sensitivity))
19. BNC cable (for connection to source meter (for IV measurement and spectral sensitivity DC measurement))
20. Lock-in amplifier 21. Source meter 22. BNC cable (for input of chopper frequency signal to lock-in amplifier)
100. Measuring machine body 101. Photovoltaic cell to be measured

Claims (10)

一つの白色光源の周囲に2つの集光ミラーを配置し、集光された光の一方は分光器に導入され単色光に変換されたのち出射され、もう一方の光は擬似太陽光スペクトルフィルタを通じて出射され、これら二つの光は二分岐ファイバを通じて重畳されて被測定光電池を照射することができる光電池の分光感度測定装置および電流−電圧特性測定装置。 Two condensing mirrors are arranged around one white light source, one of the collected light is introduced into the spectrograph and converted into monochromatic light, and then the other light is emitted through a pseudo solar spectrum filter. A spectral sensitivity measuring device and a current-voltage characteristic measuring device for a photovoltaic cell that can be emitted and these two lights can be superimposed through a bifurcated fiber to irradiate the measured photovoltaic cell. 被測定光電池の照射用の光ファイバは、直径200μm以下のファイバを100本以上束ねた構成であることを特徴とする請求項1に記載の光電池の分光感度測定装置および電流−電圧特性測定装置。 2. The spectral sensitivity measuring device and current-voltage characteristic measuring device for a photovoltaic cell according to claim 1, wherein the optical fiber for irradiation of the measured photovoltaic cell has a configuration in which 100 or more fibers having a diameter of 200 [mu] m or less are bundled. 被測定光電池照射用の二分岐光ファイバにおいて二つの入射口のうち一方は四角に束ねられており、もう一方は円形に束ねられており、かつ、出射口の形は円形に束ねられていることを特徴とする請求項1および2に記載の光電池の分光感度測定装置および電流−電圧特性測定装置。 In the bifurcated optical fiber for irradiating the measured photocell, one of the two entrances is bundled in a square, the other is bundled in a circle, and the shape of the exit is bundled in a circle The spectral sensitivity measuring device and current-voltage characteristic measuring device for a photovoltaic cell according to claim 1 and 2. 本体に内蔵された分光器は、本体外部に接続された制御装置により300nmから1200nmの任意の波長の単色光を出射できることを特徴とする請求項1〜3に記載の分光感度測定装置および電流−電圧特性測定装置。 The spectroscope built in the main body can emit monochromatic light having an arbitrary wavelength of 300 nm to 1200 nm by a control device connected to the outside of the main body. Voltage characteristic measuring device. 一つの白色光源から二つの集光ミラーで分岐された二つの光である白色光と単色光は、本体に接続された制御装置により外部への出射を、それぞれ独立にオンまたはオフすることができる機構をもつ請求項1〜4に記載の光電池の分光感度測定装置および電流−電圧特性測定装置。 White light and monochromatic light, which are two lights branched from two light collecting mirrors from one white light source, can be independently turned on or off by the control device connected to the main body. The spectral sensitivity measuring device and current-voltage characteristic measuring device for a photovoltaic cell according to claim 1 having a mechanism. 前記単色光の照射手段には、被測定光電池セルに照射する単色光をチョッピングする超低周波動作機能を持つ光学チョッパを含むことを特徴とする請求項1〜5に記載の光電池の分光感度測定装置および電流−電圧測定装置。 6. The spectral sensitivity measurement of a photovoltaic cell according to claim 1, wherein said monochromatic light irradiation means includes an optical chopper having an ultra-low frequency operation function of chopping monochromatic light irradiated to a measured photovoltaic cell. Device and current-voltage measuring device. 二分岐光ファイバの出射口の直径は2mm 〜10mmであり、被測定光電池に出射口を接射させることで、照射光量を規定することができる請求項1〜6に記載の分光感度測定装置および電流−電圧特性測定装置。 The diameter of the exit port of the bifurcated optical fiber is 2 mm to 10 mm, and the amount of irradiation light can be defined by bringing the exit port into contact with the measured photovoltaic cell, Current-voltage characteristic measuring device. キセノンランプの点灯電源と直立型のキセノンランプは同一の本体に内蔵されており直立型のキセノンランプの上部と、水平方向に2箇所の排気用ファンを設置しており、これら二つのファンで、点灯電源とランプの両方を強制冷却する機構を有する請求項1〜7に記載の分光感度測定装置および電流−電圧特性測定装置。 The xenon lamp lighting power supply and the upright xenon lamp are built in the same body, and the upper part of the upright xenon lamp and two exhaust fans are installed in the horizontal direction. With these two fans, The spectral sensitivity measuring device and the current-voltage characteristic measuring device according to claim 1, further comprising a mechanism for forcibly cooling both the lighting power source and the lamp. 被測定光電池への光照射は、光ファイバの先端を接射させる方式をとることを特徴とする請求項1〜8に記載の分光感度測定装置および電流−電圧特性測定装置。 The spectral sensitivity measuring device and the current-voltage characteristic measuring device according to claim 1, wherein the light irradiation to the measured photovoltaic cell takes a system in which the tip of the optical fiber is touched. 電流電圧特性と分光感度特性は、被測定光電池の位置や配線をまったく変更することなく、連続して測定できることを特徴とする請求項1〜9に分光感度測定装置および電流−電圧特性測定装置。 10. The spectral sensitivity measuring device and the current-voltage characteristic measuring device according to claim 1, wherein the current-voltage characteristic and the spectral sensitivity characteristic can be measured continuously without changing the position or wiring of the photocell to be measured.
JP2009071593A 2009-03-24 2009-03-24 Spectral sensitivity measuring device and current/voltage characteristic measuring device of solar cell Pending JP2010223771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071593A JP2010223771A (en) 2009-03-24 2009-03-24 Spectral sensitivity measuring device and current/voltage characteristic measuring device of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071593A JP2010223771A (en) 2009-03-24 2009-03-24 Spectral sensitivity measuring device and current/voltage characteristic measuring device of solar cell

Publications (1)

Publication Number Publication Date
JP2010223771A true JP2010223771A (en) 2010-10-07

Family

ID=43041116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071593A Pending JP2010223771A (en) 2009-03-24 2009-03-24 Spectral sensitivity measuring device and current/voltage characteristic measuring device of solar cell

Country Status (1)

Country Link
JP (1) JP2010223771A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256778A (en) * 2011-06-10 2012-12-27 Konica Minolta Optics Inc Short circuit current measurement device, solar cell evaluation device, short circuit current measurement method, and solar cell evaluation method
JP2013221857A (en) * 2012-04-17 2013-10-28 Konica Minolta Inc Solar cell evaluation device and method
JP2013235937A (en) * 2012-05-08 2013-11-21 Konica Minolta Inc Solar battery evaluation device and method
JP2013235938A (en) * 2012-05-08 2013-11-21 Konica Minolta Inc Solar battery evaluation device and method
WO2016006750A1 (en) * 2014-07-09 2016-01-14 한국에너지기술연구원 Optical biasing apparatus and solar cell spectral responsivity measurement apparatus having same
KR101787894B1 (en) 2016-05-26 2017-10-19 한국건설생활환경시험연구원 Discoloration measurment system for bipv module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256778A (en) * 2011-06-10 2012-12-27 Konica Minolta Optics Inc Short circuit current measurement device, solar cell evaluation device, short circuit current measurement method, and solar cell evaluation method
JP2013221857A (en) * 2012-04-17 2013-10-28 Konica Minolta Inc Solar cell evaluation device and method
JP2013235937A (en) * 2012-05-08 2013-11-21 Konica Minolta Inc Solar battery evaluation device and method
JP2013235938A (en) * 2012-05-08 2013-11-21 Konica Minolta Inc Solar battery evaluation device and method
WO2016006750A1 (en) * 2014-07-09 2016-01-14 한국에너지기술연구원 Optical biasing apparatus and solar cell spectral responsivity measurement apparatus having same
JP2016019464A (en) * 2014-07-09 2016-02-01 コリア インスティチュート オブ エナジー リサーチ Optical bias device, and spectral sensitivity measurement device for solar battery including the same
KR101619318B1 (en) * 2014-07-09 2016-05-10 한국에너지기술연구원 The light biasing device and the solar cell spectral response measurement apparatus comprising the same
KR101787894B1 (en) 2016-05-26 2017-10-19 한국건설생활환경시험연구원 Discoloration measurment system for bipv module

Similar Documents

Publication Publication Date Title
JP2010223771A (en) Spectral sensitivity measuring device and current/voltage characteristic measuring device of solar cell
Ananda External quantum efficiency measurement of solar cell
Freunek et al. Maximum efficiencies of indoor photovoltaic devices
JP2009522539A (en) Test apparatus and test method for PV concentrator module
TW201205046A (en) Sunlight simulator with detection device and solar cell detection device
CN112737504B (en) Micro-area multispectral response photoelectric tester for multi-junction solar cell
CN101710171A (en) Universal AC measurement method for external quantum efficiency of solar battery
JP5761372B2 (en) Device for measuring spectral sensitivity of solar cells
CN101694511B (en) Method for absolutely measuring external quatum efficiency of solar batteries via direct current method
Hartman et al. Spectral response measurements for solar cells
JP2013089632A (en) Spectral sensitivity measurement method, spectral sensitivity measurement device and control program therefor
Fischer et al. Scanning IQE-measurement for accurate current determination on very large area solar cells
Slami et al. Manual method for measuring the external quantum efficiency for solar cells
WO2012172767A1 (en) Spectral sensitometer, and spectral sensitometeric method
Rodríguez et al. Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules
AU2011212294B2 (en) Method for determining characteristics of a photoconverter without contact
Chadel et al. Influence of the spectral distribution of light on the characteristics of photovoltaic panel. Comparison between simulation and experimental
JP2013156132A (en) Solar cell evaluation device and solar cell evaluation method
JP5741774B1 (en) Solar cell absolute spectral sensitivity measuring apparatus and method
Kasemann et al. Monitoring of indoor light conditions for photovoltaic energy harvesting
FR3079692A1 (en) PHOTOVOLTAIC ALTERNATOR HAVING A PERIODIC SURFACE CURRENT GENERATOR CONCENTRATION.
Holovský et al. Measurement of the open-circuit voltage of individual subcells in a dual-junction solar cell
KR101417668B1 (en) Quantum efficiency measurement system for large scale solar cell module
Shvarts et al. Indoor characterization of the multijunction III-V solar cells and concentrator modules
CN117353660B (en) Multi-junction battery spectral responsivity test method and device