JP2010223018A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP2010223018A
JP2010223018A JP2009068847A JP2009068847A JP2010223018A JP 2010223018 A JP2010223018 A JP 2010223018A JP 2009068847 A JP2009068847 A JP 2009068847A JP 2009068847 A JP2009068847 A JP 2009068847A JP 2010223018 A JP2010223018 A JP 2010223018A
Authority
JP
Japan
Prior art keywords
fuel
injection
fuel injection
air
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009068847A
Other languages
Japanese (ja)
Other versions
JP5235739B2 (en
Inventor
Kosuke Kanda
高輔 神田
Masayuki Saruwatari
匡行 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009068847A priority Critical patent/JP5235739B2/en
Publication of JP2010223018A publication Critical patent/JP2010223018A/en
Application granted granted Critical
Publication of JP5235739B2 publication Critical patent/JP5235739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To continue operation as much as possible while protecting an internal combustion engine when a fuel injection valve fails in the internal combustion engine including a plurality of fuel injection valves per cylinder in an intake air passage. <P>SOLUTION: A failure pattern is specified by detecting a relation of total of injection pulse width and actual injection total quantity of a cylinder in which air-fuel-ratio abnormality occurs. Then, assuming that one fuel injection valve is normal, an injection pulse width is corrected to return the actual injection total quantity to normal quantity. If air fuel ratio returns in a normal range as a result of the correction, it is decided that the assumption is correct and the failed fuel injection valve is specified. When the failure pattern and the failed fuel injection valve are specified, correction of injection pulse width and correction of fuel supply pressure are applied only to the failed fuel injection valve or to both fuel injection valves. If air fuel ratio is not returned in the normal range through the correction control, a fuel pump is stopped. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、1気筒当たり複数の燃料噴射弁を吸気通路に備える内燃機関に適用される燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device applied to an internal combustion engine provided with a plurality of fuel injection valves per cylinder in an intake passage.

特許文献1には、燃料噴射弁の動作異常を検出した場合に、エンジン回転数の制限や停止などのエンジン保護処置を行うエンジンの運転制御装置が開示されている。   Patent Document 1 discloses an engine operation control device that performs engine protection measures such as limiting or stopping the engine speed when an abnormal operation of a fuel injection valve is detected.

特開平8−210168号公報JP-A-8-210168

ところで、燃料噴射弁が故障した場合であっても、車両用の内燃機関においては走行できる状態を極力維持することが望まれ、特に、1気筒当たり複数の燃料噴射弁を吸気通路に備える内燃機関においては、複数の燃料燃料噴射弁のうちの一部が故障しても、他は正常に動作するので、内燃機関の保護を図りながら、機関運転の継続性をより確保できるようにすることが望まれていた。   By the way, even when a fuel injection valve fails, it is desirable to maintain a state in which the vehicle internal combustion engine can run as much as possible, and in particular, an internal combustion engine having a plurality of fuel injection valves per cylinder in the intake passage. In this case, even if some of the plurality of fuel fuel injection valves break down, the others operate normally, so that the continuity of engine operation can be further secured while protecting the internal combustion engine. It was desired.

本発明は上記実情に鑑みなされたものであり、1気筒当たり複数の燃料噴射弁を吸気通路に備える内燃機関において、燃料噴射弁の故障に対して、内燃機関の保護を図りながら、運転を極力継続させることができる内燃機関の燃料噴射制御装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in an internal combustion engine provided with a plurality of fuel injection valves per cylinder in an intake passage, operation is performed as much as possible while protecting the internal combustion engine against failure of the fuel injection valves. It is an object of the present invention to provide a fuel injection control device for an internal combustion engine that can be continued.

そのため、本発明では、複数の燃料噴射弁について故障の有無を診断し、故障発生が診断された場合に、前記複数の燃料噴射弁からの燃料噴射量の総量を、正常時の総量に近づけるように、前記複数の燃料噴射弁のうちの少なくとも1本について噴射パルス幅及び/又は燃料供給圧を補正するようにした。   Therefore, in the present invention, the presence or absence of a failure is diagnosed for a plurality of fuel injection valves, and when the occurrence of a failure is diagnosed, the total amount of fuel injection from the plurality of fuel injection valves is brought closer to the total amount during normal operation. In addition, the injection pulse width and / or the fuel supply pressure is corrected for at least one of the plurality of fuel injection valves.

上記発明によると、燃料噴射弁の故障に対して、内燃機関の保護を図りながら、運転を極力継続させることができる。   According to the above invention, the operation can be continued as much as possible while protecting the internal combustion engine against the failure of the fuel injection valve.

本発明の実施形態における内燃機関のシステム図である。1 is a system diagram of an internal combustion engine in an embodiment of the present invention. 本発明の実施形態における第1,第2燃料噴射弁に対する燃料の供給装置を示す図である。It is a figure which shows the fuel supply apparatus with respect to the 1st, 2nd fuel injection valve in embodiment of this invention. 本発明の実施形態における故障診断処理を示すフローチャートである。It is a flowchart which shows the failure diagnosis process in embodiment of this invention. 本発明の実施形態における空燃比センサの出力特性を示すタイムチャートである。It is a time chart which shows the output characteristic of the air fuel ratio sensor in the embodiment of the present invention. 本発明の実施形態における故障噴射弁を特定する処理を示すフローチャートである。It is a flowchart which shows the process which specifies the failure injection valve in embodiment of this invention. 本発明の実施形態における噴射パルス幅の補正処理を説明するための線図である。It is a diagram for demonstrating the correction process of the injection pulse width in embodiment of this invention. 本発明の実施形態における最大噴射パルス幅とバルブリフトとの相関を示すタイムチャートである。It is a time chart which shows the correlation with the maximum injection pulse width and valve lift in embodiment of this invention. 本発明の実施形態における故障噴射モードの選択処理を示すフローチャートである。It is a flowchart which shows the selection process of the failure injection mode in embodiment of this invention.

以下に本発明の実施の形態を説明する。
図1は、実施形態における車両用の内燃機関を示す。
図1に示す内燃機関1は、2つのバンクからなるV型6気筒機関であるが、直列機関や水平対向機関であってもよく、気筒数を6気筒に限定するものではない。
Embodiments of the present invention will be described below.
FIG. 1 shows an internal combustion engine for a vehicle in the embodiment.
The internal combustion engine 1 shown in FIG. 1 is a V-type six-cylinder engine composed of two banks, but may be an inline engine or a horizontally opposed engine, and the number of cylinders is not limited to six.

内燃機関1の各気筒の燃焼室2内は、吸気ダクト3、吸気マニホールド4a,4b、吸気ポート5を介して大気側と連通している。
前記燃焼室2(シリンダ)の吸気口2aは、吸気弁6で開閉され、ピストン7が降下するときに前記吸気弁6が開くと、燃焼室2内に空気が吸引される。
The combustion chamber 2 of each cylinder of the internal combustion engine 1 communicates with the atmosphere side through an intake duct 3, intake manifolds 4 a and 4 b, and an intake port 5.
The intake port 2a of the combustion chamber 2 (cylinder) is opened and closed by an intake valve 6. When the intake valve 6 is opened when the piston 7 is lowered, air is sucked into the combustion chamber 2.

一方、前記吸気マニホールド4a,4bのブランチ部(吸気通路)には、各気筒それぞれに第1燃料噴射弁8a、第2燃料噴射弁8bが介装されており、これら複数の燃料噴射弁8a,8bから噴射された燃料が空気と共に燃焼室2内に吸引される。   On the other hand, a branch portion (intake passage) of the intake manifolds 4a and 4b is provided with a first fuel injection valve 8a and a second fuel injection valve 8b for each cylinder, and the plurality of fuel injection valves 8a, The fuel injected from 8b is sucked into the combustion chamber 2 together with air.

前記シリンダ2内の燃料は、点火プラグ9による火花点火によって着火燃焼し、このときの爆発力がピストン7を押し下げ、該押し下げ力によってクランク軸10が回転駆動される。   The fuel in the cylinder 2 is ignited and burned by spark ignition by the spark plug 9, and the explosion force at this time pushes down the piston 7, and the crankshaft 10 is driven to rotate by the push-down force.

また、前記燃焼室2(シリンダ)の排気口2bは、排気弁11で開閉され、ピストン7が上昇するときに前記排気弁11が開くと、燃焼室2内に排気ガスが排気ポート12に排出される。   The exhaust port 2b of the combustion chamber 2 (cylinder) is opened and closed by an exhaust valve 11. When the exhaust valve 11 is opened when the piston 7 is raised, exhaust gas is discharged into the exhaust chamber 12 into the combustion chamber 2. Is done.

尚、前記吸気弁6及び排気弁11は、クランク軸10からの回転力が伝達されるカム軸に一体的に設けたカムによって、軸方向に往復動し、各気筒の行程に合わせて開駆動される。   The intake valve 6 and the exhaust valve 11 are reciprocated in the axial direction by a cam integrally provided with a cam shaft to which the rotational force from the crankshaft 10 is transmitted, and are opened according to the stroke of each cylinder. Is done.

ここで、吸気カム軸18a,18bのクランク軸10に対する相対回転位相を可変とすることで、吸気弁6のバルブ作動角の中心位相を進角・遅角変化させる、換言すれば、バルブ作動角一定のままで、吸気弁6の開時期IVO及び閉時期IVCを進角・遅角変化させる可変バルブタイミング機構(可変動弁機構)19a,19bが設けられている。   Here, by making the relative rotation phase of the intake camshafts 18a and 18b relative to the crankshaft 10 variable, the central phase of the valve operating angle of the intake valve 6 is changed by advance or retard, in other words, the valve operating angle. Variable valve timing mechanisms (variable valve mechanisms) 19a and 19b are provided for changing the advance timing / delay angle of the opening timing IVO and the closing timing IVC of the intake valve 6 while remaining constant.

前記排気ポート12には、排気マニホールド13a,13bの各ブランチ部が接続され、更に、排気マニホールド13a,13bの各集合部は合流して、排気ダクト14に接続されている。   The exhaust port 12 is connected to branch portions of the exhaust manifolds 13a and 13b, and the aggregate portions of the exhaust manifolds 13a and 13b are joined together and connected to the exhaust duct 14.

前記排気ダクト14には、排気を浄化するための三元触媒などの触媒装置を内蔵する触媒コンバータ15が介装されている。
また、前記吸気ダクト3には、電子制御スロットル16が介装されており、内燃機関1の吸入空気量が前記電子制御スロットル16で制御される。
The exhaust duct 14 is provided with a catalytic converter 15 containing a catalyst device such as a three-way catalyst for purifying exhaust gas.
An electronic control throttle 16 is interposed in the intake duct 3, and the intake air amount of the internal combustion engine 1 is controlled by the electronic control throttle 16.

前記燃料噴射弁8a,8bによる燃料噴射量及び燃料噴射時期は、ECM(エンジン・コントロール・モジュール)21によって制御される。
前記ECM21は、マイクロコンピュータを含んで構成され、各種センサからの信号を入力し、該入力信号を予め記憶されているプログラムに従って演算処理して、各気筒の燃料噴射弁8a,8bに対して噴射パルス信号を出力する。
The fuel injection amount and fuel injection timing by the fuel injection valves 8a and 8b are controlled by an ECM (Engine Control Module) 21.
The ECM 21 includes a microcomputer, inputs signals from various sensors, performs arithmetic processing on the input signals in accordance with a program stored in advance, and injects the fuel injection valves 8a and 8b of each cylinder. Outputs a pulse signal.

図2は、各気筒の燃料噴射弁8a,8bに対して燃料を圧送する燃料供給装置を示す。
図2において、燃料タンク51内に電動式の燃料ポンプ52が配置されており、該燃料ポンプ52は、燃料タンク51内の燃料を吸い込んで、燃料供給管53を介して燃料ギャラリー管54に燃料を圧送する。
FIG. 2 shows a fuel supply device that pumps fuel to the fuel injection valves 8a and 8b of each cylinder.
In FIG. 2, an electric fuel pump 52 is disposed in the fuel tank 51, and the fuel pump 52 sucks the fuel in the fuel tank 51 and supplies the fuel to the fuel gallery pipe 54 through the fuel supply pipe 53. Pump.

前記燃料ギャラリー管54には、各気筒の燃料噴射弁8a,8bが接続されている。
また、前記燃料ギャラリー管54内の燃料圧力(燃料噴射弁8a,8bに対する燃料供給圧)を検出する燃圧センサ55が設けられており、該燃圧センサ55の検出信号は、前記ECM21に入力される。
The fuel gallery pipe 54 is connected to fuel injection valves 8a and 8b for each cylinder.
Further, a fuel pressure sensor 55 for detecting the fuel pressure in the fuel gallery pipe 54 (fuel supply pressure to the fuel injection valves 8a and 8b) is provided, and a detection signal of the fuel pressure sensor 55 is input to the ECM 21. .

前記ECM21は、前記燃圧センサ55で検出される実際の燃圧、即ち、第1,第2燃料噴射弁8a,8bへの燃料供給圧が、目標燃圧に近づくように、前記燃料ポンプ52の印加電圧(燃料ポンプ52の吐出量)をフィードバック制御する。   The ECM 21 applies the voltage applied to the fuel pump 52 so that the actual fuel pressure detected by the fuel pressure sensor 55, that is, the fuel supply pressure to the first and second fuel injection valves 8a and 8b approaches the target fuel pressure. The feedback control of the (discharge amount of the fuel pump 52) is performed.

尚、第1,第2燃料噴射弁8a,8bに対する燃料供給圧の調整システムとしては、燃料供給管53や燃料ギャラリー管54から燃料タンクに戻す燃料量を調整することで、燃圧を目標圧に近づけるシステムであってもよい。   As a system for adjusting the fuel supply pressure for the first and second fuel injection valves 8a and 8b, the fuel pressure is adjusted to the target pressure by adjusting the amount of fuel returned from the fuel supply pipe 53 and the fuel gallery pipe 54 to the fuel tank. It may be a system that approaches.

前記ECM21が信号を入力する各種センサとしては、アクセル開度ACCを検出するアクセル開度センサ22、内燃機関1の冷却水温度TWを検出する水温センサ23、内燃機関1が搭載される車両の走行速度(車速)VSPを検出する車速センサ24、クランク軸10が単位角度だけ回転する毎の単位クランク角信号POSと基準クランク角位置毎の基準クランク角信号REFとをそれぞれに出力するクランク角センサ25、各バンクの排気マニホールド13a,13bの集合部にそれぞれ配置され、排気中の酸素濃度に基づいて各バンクの空燃比AFをそれぞれに検出する空燃比センサ26a,26b、内燃機関1の吸入空気流量QAを検出するエアフローセンサ27、前記電子制御スロットル16の開度TVOを検出するスロットル開度センサ28、電子制御スロットル16下流側の吸気通路内の圧力(吸気管負圧)PBを検出する圧力センサ(負圧センサ)29などが設けられている。   The various sensors to which the ECM 21 inputs signals include an accelerator opening sensor 22 that detects the accelerator opening ACC, a water temperature sensor 23 that detects the cooling water temperature TW of the internal combustion engine 1, and travel of a vehicle in which the internal combustion engine 1 is mounted. A vehicle speed sensor 24 that detects a speed (vehicle speed) VSP, and a crank angle sensor 25 that outputs a unit crank angle signal POS for each rotation of the crankshaft 10 by a unit angle and a reference crank angle signal REF for each reference crank angle position. The air-fuel ratio sensors 26a, 26b, which are respectively disposed in the collection portions of the exhaust manifolds 13a, 13b of each bank and detect the air-fuel ratio AF of each bank based on the oxygen concentration in the exhaust, respectively, and the intake air flow rate of the internal combustion engine 1 Airflow sensor 27 for detecting QA, throttle for detecting opening degree TVO of electronic control throttle 16 Degree sensor 28, such as a pressure sensor (negative pressure sensor) 29 for detecting the pressure (intake pipe negative pressure) PB within the intake passage of the electronic control throttle 16 downstream side.

尚、本実施形態のV型6気筒機関1は、第1バンクが第1気筒、第3気筒、第5気筒で構成され、第2バンクが第2気筒、第4気筒、第6気筒で構成され、前記空燃比センサ26aは第1バンクの各気筒の空燃比を検出し、前記空燃比センサ26bは第2バンクの各気筒の空燃比を検出する。   In the V-type six-cylinder engine 1 of the present embodiment, the first bank is composed of the first cylinder, the third cylinder, and the fifth cylinder, and the second bank is composed of the second cylinder, the fourth cylinder, and the sixth cylinder. The air-fuel ratio sensor 26a detects the air-fuel ratio of each cylinder in the first bank, and the air-fuel ratio sensor 26b detects the air-fuel ratio of each cylinder in the second bank.

前記第1燃料噴射弁8a及び第2燃料噴射弁8bは、気筒毎に、電子制御スロットル16の下流側でかつ吸気弁6よりも上流側の吸気通路(吸気ポート5)に配置され、それぞれに吸気弁6に向けて燃料を噴射する。   The first fuel injection valve 8a and the second fuel injection valve 8b are arranged in the intake passage (intake port 5) downstream of the electronic control throttle 16 and upstream of the intake valve 6 for each cylinder. Fuel is injected toward the intake valve 6.

ここで、前記第1燃料噴射弁8a及び第2燃料噴射弁8bは、吸気通路の上下流方向に前後して設置する他、吸気通路の同一横断面に並べて配置することもできる。
前記ECM21は、前記各種センサで検出される内燃機関1の運転条件に基づいて、前記第1燃料噴射弁8a及び第2燃料噴射弁8bの噴射パルス幅(ms)を算出し、各気筒の吸気行程にタイミングを合わせ、前記第1燃料噴射弁8a及び第2燃料噴射弁8bに対し前記噴射パルス幅の噴射パルス信号を出力する。
Here, the first fuel injection valve 8a and the second fuel injection valve 8b may be arranged side by side in the same cross section of the intake passage, in addition to being installed back and forth in the upstream and downstream direction of the intake passage.
The ECM 21 calculates the injection pulse width (ms) of the first fuel injection valve 8a and the second fuel injection valve 8b based on the operating conditions of the internal combustion engine 1 detected by the various sensors, and the intake air of each cylinder. The injection pulse signal having the injection pulse width is output to the first fuel injection valve 8a and the second fuel injection valve 8b in accordance with the timing.

また、前記ECM21は、前記第1燃料噴射弁8a,第2燃料噴射弁8bから噴射される燃料量の異常、即ち、燃料噴射弁8a,8bの動作異常を診断し、異常発生時には、燃料噴射弁8a,8bからの燃料噴射量の総量が正常時の量(そのときの吸入空気量に見合った量)に戻るように、噴射パルス幅や燃圧の補正を行う機能を有しており、以下では、係る異常診断・異常時の補正処理について詳細に説明する。   The ECM 21 diagnoses an abnormality in the amount of fuel injected from the first fuel injection valve 8a and the second fuel injection valve 8b, that is, an abnormal operation of the fuel injection valves 8a and 8b. It has a function of correcting the injection pulse width and the fuel pressure so that the total amount of fuel injection from the valves 8a and 8b returns to the normal amount (the amount corresponding to the intake air amount at that time). Now, the abnormality diagnosis / correction process at the time of abnormality will be described in detail.

図3のフローチャートは、第1燃料噴射弁8a,第2燃料噴射弁8bの故障診断を行い、かつ、故障パターンの判定を行う定時割り込みルーチン(診断手段としての機能)を示す。   The flowchart of FIG. 3 shows a scheduled interruption routine (function as a diagnostic means) that performs failure diagnosis of the first fuel injection valve 8a and the second fuel injection valve 8b and that determines a failure pattern.

まず、ステップS101では、空燃比センサ26a,26bの出力を読み込み、次のステップS102では、ステップS101で読み込んだ空燃比センサ26a,26bの出力に基づいて、第1燃料噴射弁8a,第2燃料噴射弁8bの少なくとも一方が故障している気筒を判別する。   First, in step S101, the outputs of the air-fuel ratio sensors 26a, 26b are read. In the next step S102, the first fuel injection valve 8a, the second fuel are output based on the outputs of the air-fuel ratio sensors 26a, 26b read in step S101. A cylinder in which at least one of the injection valves 8b has failed is determined.

前記故障気筒の判別は、各空燃比センサ26a,26bに各気筒の排気が到達するタイミングに基づいて、各気筒の空燃比を検出し、検出された空燃比が他の気筒の空燃比に対してばらつき範囲を超えて異なっている気筒を故障気筒として判別する。   The failure cylinder is determined by detecting the air-fuel ratio of each cylinder based on the timing at which the exhaust of each cylinder reaches the air-fuel ratio sensors 26a, 26b, and the detected air-fuel ratio is compared with the air-fuel ratio of other cylinders. Cylinders that are different from each other beyond the variation range are determined as failed cylinders.

即ち、第1バンクの空燃比を検出する空燃比センサ26aには、第1気筒、第3気筒、第5気筒の排気が時系列的にずれて到達し、各気筒の排気が空燃比センサ26aに到達するタイミングは、各気筒の排気行程から排気流速に応じた時間が経過した時点であり、前記排気流速は、機関回転速度NEに応じて推定できる。   That is, the exhaust gas of the first cylinder, the third cylinder, and the fifth cylinder arrives at the air-fuel ratio sensor 26a that detects the air-fuel ratio of the first bank in a time-series manner, and the exhaust gas of each cylinder reaches the air-fuel ratio sensor 26a. The timing to reach is when the time corresponding to the exhaust flow speed has elapsed from the exhaust stroke of each cylinder, and the exhaust flow speed can be estimated according to the engine speed NE.

従って、図4に示すような空燃比センサ26a,26bの出力と、各気筒の排気行程との相関から、各気筒の空燃比を示す空燃比センサ26a,26bの出力を特定でき、以って、空燃比を各気筒別に検出することが可能である。   Therefore, from the correlation between the outputs of the air-fuel ratio sensors 26a and 26b as shown in FIG. 4 and the exhaust stroke of each cylinder, the outputs of the air-fuel ratio sensors 26a and 26b indicating the air-fuel ratio of each cylinder can be specified. The air-fuel ratio can be detected for each cylinder.

各気筒の空燃比を検出すると、例えば、全気筒の平均空燃比と、各気筒別の空燃比との偏差を求め、該偏差の絶対値が予め設定された閾値を超えている気筒を、故障気筒として判別する。   When the air-fuel ratio of each cylinder is detected, for example, the deviation between the average air-fuel ratio of all the cylinders and the air-fuel ratio of each cylinder is obtained, and the cylinder whose absolute value exceeds the preset threshold is failed. It is determined as a cylinder.

前記閾値は、想定される気筒間における空気量の分配ばらつきや、第1燃料噴射弁8a,第2燃料噴射弁8bの噴射量ばらつきなどに基づき、燃料噴射弁8a,8bの正常時には超えることがない値として予め適合され、記憶されている。   The threshold value may be exceeded when the fuel injection valves 8a and 8b are normal, based on the assumed distribution of air amount between the cylinders and the injection amount variation of the first fuel injection valve 8a and the second fuel injection valve 8b. Pre-adapted and stored as no value.

尚、空燃比センサ26を各気筒それぞれに設けて、各気筒の空燃比を検出させることができ、また、空燃比を検出する方法としては、排気中の酸素濃度に基づく方法の他、例えば、点火プラグ9のギャップ間に発生するイオン電流を検出することにより空燃比を気筒別に検出する方法などを用いることができる。   An air-fuel ratio sensor 26 can be provided for each cylinder to detect the air-fuel ratio of each cylinder. In addition to the method based on the oxygen concentration in the exhaust, for example, the air-fuel ratio can be detected by, for example, A method of detecting the air-fuel ratio for each cylinder by detecting an ionic current generated between the gaps of the spark plug 9 can be used.

ステップS103では、ステップS102での空燃比の診断結果から、空燃比異常の気筒(燃料噴射弁が故障している気筒)が判別されたかを判断する。
そして、全気筒の空燃比が正常範囲内であると判断され、全気筒の燃料噴射弁8a,8bが正常に動作していると認められる場合には、そのまま本ルーチンを終了させ、空燃比異常の気筒(燃料噴射弁が故障している気筒)が判別された場合に、ステップS104へ進む。
In step S103, it is determined from the air-fuel ratio diagnosis result in step S102 whether an abnormal air-fuel ratio cylinder (cylinder in which the fuel injection valve has failed) has been determined.
When it is determined that the air-fuel ratios of all the cylinders are within the normal range and it is recognized that the fuel injection valves 8a and 8b of all the cylinders are operating normally, this routine is terminated as it is, and the air-fuel ratio abnormality is detected. When the cylinder (the cylinder in which the fuel injection valve is malfunctioning) is determined, the process proceeds to step S104.

ステップS104では、空燃比異常と判断された気筒の空燃比と、そのときの吸入空気量とから、空燃比異常気筒における実噴射総量を演算する。
前記実噴射総量とは、燃料噴射弁8a,8bの双方から噴射されたと見込まれる燃料の総和であり、前記演算された実噴射総量を、そのときの燃料噴射弁8aの噴射パルス幅と燃料噴射弁8bの噴射パルス幅との総和に対応させて記憶させる。
In step S104, the actual injection total amount in the cylinder with abnormal air-fuel ratio is calculated from the air-fuel ratio of the cylinder determined to be abnormal with air-fuel ratio and the intake air amount at that time.
The actual injection total amount is a sum of fuels expected to be injected from both the fuel injection valves 8a and 8b, and the calculated actual injection amount is calculated by using the injection pulse width of the fuel injection valve 8a and the fuel injection at that time. It memorize | stores corresponding to the sum total with the injection pulse width of the valve 8b.

尚、本実施形態において、燃料噴射弁8a,8bの噴射率(cc/sec)は同一であり、噴射量の分担率は50%ずつであるものとする。
従って、燃料噴射弁8a,8bが正常であれば、噴射パルス幅の総和と前記噴射率(cc/sec)とに対応する量の燃料が噴射されることになる。
In the present embodiment, the fuel injection valves 8a and 8b have the same injection rate (cc / sec), and the injection rate sharing rate is 50%.
Therefore, if the fuel injection valves 8a and 8b are normal, an amount of fuel corresponding to the sum of the injection pulse widths and the injection rate (cc / sec) is injected.

ステップS105では、空燃比異常気筒について、噴射パルス幅の総和と、実噴射総量とを対とするデータを、異なるパルス幅総和について複数求められたか否か、換言すれば、噴射パルス幅の総和に対する実噴射総量の変化特性を検出できたかを判断する。   In step S105, for the air-fuel ratio abnormal cylinder, it is determined whether or not a plurality of data for different pulse width sums for the sum of the sum of the injection pulse widths and the actual injection total amount has been obtained, in other words, with respect to the sum of the injection pulse widths. It is determined whether the change characteristic of the actual total injection amount has been detected.

即ち、噴射パルス幅の総和の変化に対する噴射総量の変化特性を検出したいので、異なる噴射パルス幅毎に噴射総量を得て、これらのデータ間を直線補間することで、空燃比異常気筒における、噴射パルス幅と実噴射総量との相関を求める。   That is, since it is desired to detect the change characteristic of the total injection amount with respect to the change in the total injection pulse width, the injection total amount is obtained for each different injection pulse width, and linear interpolation is performed between these data, so that the The correlation between the pulse width and the actual injection total amount is obtained.

尚、本実施形態では、上記のように、直線補間によって噴射パルス幅と実噴射総量との相関を求めるから、少なくともデータ数として2つ以上を必要とするが、3つ以上のデータに基づく曲線補間演算を行わせることもできる。   In the present embodiment, as described above, since the correlation between the injection pulse width and the actual total injection amount is obtained by linear interpolation, at least two data items are required. However, a curve based on three or more data items is required. Interpolation can also be performed.

そして、噴射パルス幅の総和と、実噴射総量とを対とするデータが複数求められ、噴射パルス幅の総和に対する実噴射総量の変化特性を検出できると、ステップS106へ進む。   Then, when a plurality of pairs of data of the sum of the injection pulse widths and the actual injection total amount are obtained and the change characteristic of the actual injection total amount with respect to the sum of the injection pulse widths can be detected, the process proceeds to step S106.

ステップS106では、検出された噴射パルス幅と実噴射総量との相関と、基準の変化特性(設計上の特性)とを比較することで、空燃比異常を発生させた燃料噴射弁8a,8bの故障パターンを判別する。   In step S106, the correlation between the detected injection pulse width and the actual total injection amount is compared with the reference change characteristic (design characteristic), so that the fuel injection valves 8a and 8b in which the air-fuel ratio abnormality has occurred are compared. Determine the failure pattern.

前記基準の変化特性(設計上の特性)とは、設計上の噴射率(cc/sec)で燃料噴射された場合の特性である。
ここで、2本の燃料噴射弁8a,8bのうちの1本が燃料を全く噴射しない場合、実噴射総量が基準特性に対して半分に減って、フローチャート中に示す特性(1)のような特性を示すことになる。
The reference change characteristic (design characteristic) is a characteristic when fuel is injected at a design injection rate (cc / sec).
Here, when one of the two fuel injection valves 8a and 8b does not inject fuel at all, the actual injection total amount is reduced by half with respect to the reference characteristic, as shown in the characteristic (1) shown in the flowchart. It will show the characteristics.

従って、実際に求めた噴射パルス幅と実噴射総量との相関が、特性(1)のような特性に適合する場合には、空燃比の異常が、2本の燃料噴射弁8a,8bのうちの1本が燃料を全く噴射しないことに因るものであると判断できる。   Therefore, if the correlation between the actually obtained injection pulse width and the actual total injection amount is suitable for the characteristic (1), an abnormality in the air-fuel ratio may occur between the two fuel injection valves 8a and 8b. It can be determined that one of these is due to the fact that no fuel is injected.

また、2本の燃料噴射弁8a,8bのうちの1本が、開弁状態に固着し、常に一定流量の燃料を噴き続ける場合、この一定流量に、正常な方の燃料噴射弁の噴射パルス幅の増大に応じて増える噴射量が加算されるから、噴射パルス幅の総和に対する実噴射総量の特性は、前記フローチャート中に示す特性(4)のようになる。   In addition, when one of the two fuel injection valves 8a and 8b is fixed in an open state and always injects a constant flow rate of fuel, the injection pulse of the normal fuel injection valve is set to this constant flow rate. Since the injection amount that increases as the width increases is added, the characteristic of the actual total injection amount with respect to the sum of the injection pulse widths is the characteristic (4) shown in the flowchart.

従って、実際に求めた噴射パルス幅と実噴射総量との相関が、特性(4)のような特性に適合する場合には、空燃比の異常が、2本の燃料噴射弁8a,8bのうちの1本が開状態に固着していることに因るものであると判断できる。   Accordingly, if the correlation between the actually obtained injection pulse width and the actual total injection amount matches the characteristic (4), an abnormality in the air-fuel ratio is detected in the two fuel injection valves 8a and 8b. It can be judged that this is due to the fact that one of these is fixed in the open state.

そして、開弁状態に固着している燃料噴射弁が、最大リフト状態で固着していれば、この燃料噴射弁が噴く一定流量の燃料が最大流量となり、その分、噴射パルス幅に対する実噴射総量が多くなり、噴射パルス幅と実噴射総量との相関が、フローチャート中に示す特性(5)のようになる。   If the fuel injection valve fixed in the valve open state is fixed in the maximum lift state, the constant flow of fuel injected by the fuel injection valve becomes the maximum flow rate, and the actual injection total amount corresponding to the injection pulse width correspondingly. And the correlation between the injection pulse width and the actual total injection amount is as shown in characteristic (5) in the flowchart.

従って、実際に求めた噴射パルス幅と実噴射総量との相関が、特性(5)のような特性に適合する場合には、空燃比の異常が、2本の燃料噴射弁8a,8bのうちの1本が最大リフト状態(全開状態)に固着していることに因るものであると判断でき、特性(4)のような特性に適合するのは、中間リフト状態(中間開度状態)に固着していることに因るものであると判断できる。   Therefore, when the correlation between the actually obtained injection pulse width and the actual total injection amount matches the characteristic (5), an abnormality in the air-fuel ratio is detected in the two fuel injection valves 8a and 8b. It can be judged that this is due to the fact that one of the two is fixed in the maximum lift state (fully opened state), and it is the intermediate lift state (intermediate opening state) that meets the characteristics such as characteristic (4). It can be determined that this is due to the fact that it adheres to the surface.

また、燃料噴射弁8a,8bの故障態様としては、噴射パルス幅に対する噴射量の感度(ゲイン)、即ち、噴射パルス幅の変化量に対する噴射量の変化量が変わってしまうことがあり、燃料噴射弁8a,8bのうちの1本の感度が増大変化した場合には、フローチャート中に示す特性(2)のようになり、逆に、感度が減少変化した場合には、フローチャート中に示す特性(3)のようになる。   Further, as a failure mode of the fuel injection valves 8a and 8b, the sensitivity (gain) of the injection amount with respect to the injection pulse width, that is, the change amount of the injection amount with respect to the change amount of the injection pulse width may change. When the sensitivity of one of the valves 8a and 8b increases and changes, the characteristic (2) shown in the flowchart is obtained. Conversely, when the sensitivity decreases and decreases, the characteristic ( It becomes like 3).

従って、実際に求めた噴射パルス幅と実噴射総量との相関が、特性(2)のような特性に適合する場合には、空燃比の異常が、2本の燃料噴射弁8a,8bのうちの1本の感度が増大変化したことに因るものであると判断でき、実際に求めた噴射パルス幅と実噴射総量との相関が、特性(3)のような特性に適合する場合には、空燃比の異常が、2本の燃料噴射弁8a,8bのうちの1本の感度が減少変化したことに因るものであると判断できる。   Therefore, if the correlation between the actually obtained injection pulse width and the actual total injection amount matches the characteristic (2), an abnormality in the air-fuel ratio is detected in the two fuel injection valves 8a and 8b. In the case where the correlation between the actually obtained injection pulse width and the actual total injection amount is suitable for the characteristic (3), Therefore, it can be determined that the abnormality of the air-fuel ratio is caused by a decrease in the sensitivity of one of the two fuel injection valves 8a and 8b.

前記ステップS106では、空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(1)〜(5)のいずれに該当するかを判断する。
そして、ステップS107では、空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(1)〜(5)のいずれかに該当したか否かを判断する。
In step S106, it is determined which of the above characteristics (1) to (5) the change characteristic of the actual injection total amount with respect to the total injection pulse width in the air-fuel ratio abnormal cylinder.
In step S107, it is determined whether or not the change characteristic of the actual injection total amount with respect to the sum of the injection pulse widths in the air-fuel ratio abnormal cylinder corresponds to any of the characteristics (1) to (5).

そして、空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の特性が、前記特性(1)〜(5)のいずれか1つに該当した場合には、ステップS108へ進み、前記特性(1)〜(5)のそれぞれに対応して設定されている故障パターンフラグF1〜F5のうち、該当する特性(1)〜(5)に対応する故障パターンフラグに1を設定する。   When the characteristic of the actual injection total amount with respect to the sum of the injection pulse widths in the air-fuel ratio abnormal cylinder corresponds to any one of the characteristics (1) to (5), the process proceeds to step S108, and the characteristic (1 Among the failure pattern flags F1 to F5 set corresponding to each of () to (5), 1 is set to the failure pattern flag corresponding to the corresponding characteristics (1) to (5).

従って、前記特性(1)〜(5)のいずれか1つに該当した場合、フラグF1〜F5のうちの1が設定されているフラグから、該当した故障パターンを判別できることになる。
また、空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(1)〜(5)のいずれにも該当しないと判断された場合、即ち、故障パターンが不明である場合には、ステップS109へ進み、前記特性(1)〜(5)のそれぞれに対応して設定されている故障パターンフラグF1〜F5の全てに1を設定する。
Accordingly, when any one of the characteristics (1) to (5) is satisfied, the corresponding failure pattern can be determined from the flag in which one of the flags F1 to F5 is set.
Further, when it is determined that the change characteristic of the actual total injection amount with respect to the total injection pulse width in the air-fuel ratio abnormal cylinder does not correspond to any of the above characteristics (1) to (5), that is, the failure pattern is unknown. In this case, the process proceeds to step S109, and 1 is set to all of the failure pattern flags F1 to F5 set corresponding to each of the characteristics (1) to (5).

ところで、前記故障パターンの判別においては、2本の燃料噴射弁8a,8bのいずれが故障しているかは判断されないため、故障パターンフラグF1〜F5のいずれか1つに1が設定された場合には、図5のフローチャートに示すルーチンに従って、故障した燃料噴射弁の特定を行う。   By the way, in the determination of the failure pattern, it is not determined which of the two fuel injection valves 8a and 8b has failed, and therefore, when 1 is set to any one of the failure pattern flags F1 to F5. Identifies the failed fuel injection valve according to the routine shown in the flowchart of FIG.

まず、ステップS201(補正手段)では、そのときの実噴射総量が、基準特性上の正規の総量からずれている分を、正常な燃料噴射弁の噴射パルス幅を補正することで相殺すべく、正常な燃料噴射弁の噴射パルス幅Tinewを演算する。   First, in step S201 (correction means), the amount of deviation of the actual total injection amount from the normal total amount on the reference characteristic is offset by correcting the injection pulse width of the normal fuel injection valve. The injection pulse width Tinew of a normal fuel injection valve is calculated.

ここで、正常な燃料噴射弁として、第1燃料噴射弁8aを仮定し、更に、第1燃料噴射弁8aは、噴射パルス幅に対する噴射量の特性(噴射率)が設計値(基準特性)であるものと仮定する。   Here, the first fuel injection valve 8a is assumed as a normal fuel injection valve. Further, the first fuel injection valve 8a has a design value (reference characteristic) of the injection amount characteristic (injection rate) with respect to the injection pulse width. Assume that there is.

例えば、特性(1)の場合には、正常に開弁動作する燃料噴射弁だけでそのときに必要とされる燃料量が噴射されるように、燃料噴射弁8aの噴射パルス幅Tinewを前記基準特性に基づいて設定する。   For example, in the case of the characteristic (1), the injection pulse width Tinew of the fuel injection valve 8a is used as the reference so that the fuel amount required at that time is injected only by the fuel injection valve that is normally opened. Set based on characteristics.

また、特性(3)のように、燃料噴射弁8bからの実噴射量が正常時よりも少なくなっていると仮定される場合には、故障した燃料噴射弁8bによる噴射量の減少分と、正常な燃料噴射弁8aの分担分との総和が、正常な燃料噴射弁8aから噴射されるように、前記基準特性から噴射パルス幅Tinewを設定する。   Further, when it is assumed that the actual injection amount from the fuel injection valve 8b is smaller than that in the normal state as in the characteristic (3), the decrease in the injection amount by the failed fuel injection valve 8b, The injection pulse width Tinew is set from the reference characteristics so that the sum of the normal fuel injection valve 8a and the share of the normal fuel injection valve 8a is injected from the normal fuel injection valve 8a.

即ち、図6に示すように、燃料噴射弁8aの分担量に、燃料噴射弁8bの噴射量が減った分を加算した量が、故障状態で実噴射総量を必要量に戻すために要求される燃料噴射弁8aの噴射量であり、基準特性上でこの噴射量に対応する噴射パルス幅を、Tinewとする。   That is, as shown in FIG. 6, an amount obtained by adding the reduced amount of the fuel injection valve 8b to the share of the fuel injection valve 8a is required to return the actual total injection amount to the required amount in the failure state. The injection pulse width corresponding to the injection amount on the reference characteristics is Tinew.

また、特性(2)〜(5)のように、故障した燃料噴射弁8bからの実噴射量が正常時よりも多くなっている仮定される場合には、故障した燃料噴射弁8bによる噴射量の増加分だけ、正常な燃料噴射弁8aによる燃料噴射量を減らすように、前記基準特性から噴射パルス幅Tinewを設定する。   In addition, as in the characteristics (2) to (5), when it is assumed that the actual injection amount from the failed fuel injection valve 8b is larger than normal, the injection amount by the failed fuel injection valve 8b. The injection pulse width Tinew is set based on the reference characteristics so as to reduce the fuel injection amount by the normal fuel injection valve 8a by the increment of.

ステップS202では、前記設定された噴射パルス幅Tinewによる噴射が実現可能であるか否かを判断する。
具体的には、予め設定された燃料噴射開始タイミング(例えば吸気弁6の開弁時期IVO)で噴射を開始させた場合、吸気弁6の閉弁時期IVCまでに噴射パルス幅Tinewによる燃料噴射が終わらない場合には、噴射された燃料の全てを1回の吸気行程で燃焼室内に吸引させることができないので、噴射パルス幅Tinewによる噴射が不能と判断する。
In step S202, it is determined whether or not the injection with the set injection pulse width Tinew can be realized.
Specifically, when the injection is started at a preset fuel injection start timing (for example, the valve opening timing IVO of the intake valve 6), the fuel injection with the injection pulse width Tinew is performed by the valve closing timing IVC of the intake valve 6. If not completed, it is determined that injection by the injection pulse width Tinew is impossible because all of the injected fuel cannot be sucked into the combustion chamber in one intake stroke.

換言すれば、図7に示すように、そのときの燃料噴射開始タイミング(例えば開弁時期IVO)から前記閉弁時期IVCまでの時間が、最大パルス幅Timaxであり、この最大パルス幅Timaxよりも噴射パルス幅Tinewが大きい場合に噴射不能を判定し、噴射パルス幅Tinewが最大パルス幅Timax以下であれば噴射可能を判定する。   In other words, as shown in FIG. 7, the time from the fuel injection start timing (for example, the valve opening timing IVO) to the valve closing timing IVC at that time is the maximum pulse width Timax, which is larger than the maximum pulse width Timax. When the injection pulse width Tinew is large, it is determined that injection is impossible. When the injection pulse width Tinew is equal to or less than the maximum pulse width Timax, it is determined that injection is possible.

尚、詳細には、燃料噴射弁8a,8bから噴射された燃料が吸気弁を通過するまでには、噴霧の輸送時間を要するので、最大パルス幅Timaxは、前記閉時期IVCよりも前記輸送時間だけ前の時点で噴射を終了するように設定する。   In detail, since the fuel sprayed from the fuel injection valves 8a and 8b needs to take a spray transportation time before passing through the intake valve, the maximum pulse width Timax is greater than the transportation time than the closing timing IVC. It is set so that the injection ends only at the previous time point.

そして、噴射パルス幅Tinewによる噴射が実現可能であれば、ステップS203へ進み、空燃比異常気筒において正常であると仮定した燃料噴射弁8aの噴射パルス幅Ti1newに前記噴射パルス幅Tinewをセットする一方で、空燃比異常気筒において故障していると仮定した燃料噴射弁8bの噴射パルス幅Ti2newについては、正常判定時と同じパルス幅Ti2oldを設定する。   If injection with the injection pulse width Tinew is feasible, the process proceeds to step S203, and the injection pulse width Tinew is set to the injection pulse width Ti1new of the fuel injection valve 8a that is assumed to be normal in the air-fuel ratio abnormal cylinder. Thus, for the injection pulse width Ti2new of the fuel injection valve 8b that is assumed to be malfunctioning in the air-fuel ratio abnormal cylinder, the same pulse width Ti2old as in the normal determination is set.

尚、正常時には、燃料噴射弁8aの噴射パルス幅Ti1oldと、燃料噴射弁8bの噴射パルス幅Ti2oldとが同じであるものとする。
一方、燃料噴射弁8aの噴射パルス幅Tinewによる噴射が実現不能であれば、ステップS204へ進み、燃料噴射弁8aの噴射パルス幅Ti1newにTimaxをセットして、噴射できる最大パルス幅に補正する一方、燃料噴射弁8bの噴射パルス幅Ti2newについては、噴射パルス幅Ti2oldに、TinewとTimaxとの差分を加算することで、燃料噴射弁8a,8bによる総噴射量としてTimaxによる制限を行わない場合と同じにする。
In the normal state, it is assumed that the injection pulse width Ti1old of the fuel injection valve 8a is the same as the injection pulse width Ti2old of the fuel injection valve 8b.
On the other hand, if the injection with the injection pulse width Tinew of the fuel injection valve 8a cannot be realized, the process proceeds to step S204, where Timax is set to the injection pulse width Ti1new of the fuel injection valve 8a to correct the maximum pulse width that can be injected. As for the injection pulse width Ti2new of the fuel injection valve 8b, by adding the difference between Tinew and Timax to the injection pulse width Ti2old, the total injection amount by the fuel injection valves 8a and 8b is not limited by Timax. Make the same.

Ti2new=Ti2old+(Tinew−Timax)
ステップS205では、上記噴射パルス幅Ti1new,Ti2newに基づき空燃比異常気筒における燃料噴射弁8a,8bの燃料噴射を行わせる。
Ti2new = Ti2old + (Tinew-Timax)
In step S205, fuel injection of the fuel injection valves 8a and 8b in the abnormal air-fuel ratio cylinder is performed based on the injection pulse widths Ti1new and Ti2new.

ステップS206では、噴射パルス幅Ti1old,Ti2oldでの噴射状態で、空燃比異常気筒と判定された気筒の空燃比を、前記空燃比センサ26a,26bの出力に基づいて検出する。   In step S206, the air-fuel ratio of the cylinder determined to be an abnormal air-fuel ratio in the injection state with the injection pulse widths Ti1old and Ti2old is detected based on the outputs of the air-fuel ratio sensors 26a and 26b.

そして、ステップS207では、空燃比異常気筒と判定された気筒の空燃比が、上記噴射パルス幅Ti1new,Ti2newに基づき噴射を行わせた結果、目標空燃比に近づき、目標空燃比を含む所定範囲内になったか否かを判断する。   In step S207, the air-fuel ratio of the cylinder determined to be an abnormal air-fuel ratio approaches the target air-fuel ratio as a result of performing injection based on the injection pulse widths Ti1new, Ti2new, and falls within a predetermined range including the target air-fuel ratio. It is determined whether or not.

前記所定範囲とは、空燃比ばらつきとして許容される範囲である。
上記噴射パルス幅Ti1new,Ti2newは、燃料噴射弁8aが正常であると仮定し、燃料噴射弁8bが故障していると仮定し、燃料噴射弁8bからの噴射量の過不足分だけ、燃料噴射弁8aの噴射量を補正するように設定されている。
The predetermined range is a range allowed as air-fuel ratio variation.
The above injection pulse widths Ti1new and Ti2new assume that the fuel injection valve 8a is normal, assume that the fuel injection valve 8b has failed, and inject fuel by the excess or deficiency of the injection amount from the fuel injection valve 8b. It is set to correct the injection amount of the valve 8a.

従って、上記噴射パルス幅Ti1new,Ti2newに基づいて燃料噴射弁8a,8bによる燃料噴射を行わせた結果、空燃比が目標空燃比付近に戻ったということは、前記仮定通りに、燃料噴射弁8aが正常で、燃料噴射弁8bが故障している(動作異常を生じている)と判断できる。   Therefore, as a result of the fuel injection by the fuel injection valves 8a and 8b based on the injection pulse widths Ti1new and Ti2new, the air-fuel ratio has returned to the vicinity of the target air-fuel ratio. Is normal, and it can be determined that the fuel injection valve 8b is out of order (operational abnormality has occurred).

そこで、ステップS207で、空燃比異常気筒と判定された気筒の空燃比が、噴射パルス幅の補正によって目標空燃比を含む所定範囲内になったと判断された場合には、ステップS208へ進み、燃料噴射弁8bが故障していると判断する。   Therefore, if it is determined in step S207 that the air-fuel ratio of the cylinder determined to be an abnormal air-fuel ratio has become within a predetermined range including the target air-fuel ratio by correcting the injection pulse width, the process proceeds to step S208, where It is determined that the injection valve 8b is out of order.

一方、上記噴射パルス幅Ti1new,Ti2newに基づいて燃料噴射弁8a,8bによる燃料噴射を行わせた結果、空燃比が目標空燃比付近に戻らなかった場合には、前記仮定が間違っていて、実際には、燃料噴射弁8aが故障していて(動作異常を生じていて)、燃料噴射弁8bが正常であると判断できる。   On the other hand, as a result of performing fuel injection by the fuel injection valves 8a and 8b based on the injection pulse widths Ti1new and Ti2new, if the air-fuel ratio does not return to the vicinity of the target air-fuel ratio, the assumption is incorrect and the actual In this case, it can be determined that the fuel injection valve 8a is malfunctioning (because of abnormal operation) and the fuel injection valve 8b is normal.

そこで、ステップS207で、空燃比異常気筒と判定された気筒の空燃比が、噴射パルス幅の補正を行っても目標空燃比を含む所定範囲内にならなかったと判断された場合には、ステップS209へ進み、燃料噴射弁8aが故障していると判断する。   Therefore, if it is determined in step S207 that the air-fuel ratio of the cylinder determined to be an abnormal air-fuel ratio does not fall within the predetermined range including the target air-fuel ratio even when the injection pulse width is corrected, step S209 is performed. It is determined that the fuel injection valve 8a has failed.

例えば、燃料噴射弁8aが閉固着していて燃料を噴射しない場合、特性(1)に相当するとして故障パターンの判断がなされるが、この場合、燃料噴射弁8aの噴射パルス幅を増大補正しても噴射量が増えることがないため、空燃比異常気筒の空燃比は目標空燃比付近に近づくことはない。   For example, when the fuel injection valve 8a is closed and fixed and fuel is not injected, the failure pattern is determined as corresponding to the characteristic (1). In this case, the injection pulse width of the fuel injection valve 8a is increased and corrected. However, since the injection amount does not increase, the air-fuel ratio of the abnormal air-fuel ratio cylinder does not approach the target air-fuel ratio.

一方、燃料噴射弁8bが閉固着していて燃料を噴射しない場合であって、特性(1)に相当するとして故障パターンの判断がなされた場合、燃料噴射弁8aの噴射パルス幅を増大補正することで噴射量が増え、空燃比異常気筒の空燃比は目標空燃比付近に近づくことになる。   On the other hand, when the fuel injection valve 8b is closed and fixed and fuel is not injected, and the failure pattern is determined to correspond to the characteristic (1), the injection pulse width of the fuel injection valve 8a is increased and corrected. As a result, the injection amount increases, and the air-fuel ratio of the abnormal air-fuel ratio cylinder approaches the target air-fuel ratio.

従って、燃料噴射弁8aの噴射パルス幅を補正した結果、空燃比異常気筒の空燃比が目標空燃比付近に戻れば、燃料噴射弁8aが正常で、燃料噴射弁8bが故障しているものと判断でき、逆に、燃料噴射弁8aの噴射パルス幅を補正しても、空燃比異常気筒の空燃比が目標空燃比付近に戻らない場合には、燃料噴射弁8bが正常で、燃料噴射弁8aが故障しているものと判断できる。   Therefore, as a result of correcting the injection pulse width of the fuel injection valve 8a, if the air-fuel ratio of the abnormal air-fuel ratio returns to the vicinity of the target air-fuel ratio, the fuel injection valve 8a is normal and the fuel injection valve 8b is faulty. Conversely, if the air-fuel ratio of the abnormal air-fuel ratio does not return to the vicinity of the target air-fuel ratio even if the injection pulse width of the fuel injection valve 8 a is corrected, the fuel injection valve 8 b is normal and the fuel injection valve It can be determined that 8a is out of order.

また、例えば、燃料噴射弁8bの噴射パルス幅に対する噴射量の感度が増大変化していて、当該気筒の空燃比がリッチになった場合、総噴射量の過剰分だけ燃料噴射弁8aの噴射量を減らそうとするが、燃料噴射弁8aは基準特性で燃料を噴射し、燃料噴射弁8aの噴射パルス幅の補正も基準特性に従って行われるから、総噴射量の過剰分を精度良く補正できることになる。   Further, for example, when the sensitivity of the injection amount with respect to the injection pulse width of the fuel injection valve 8b is increasing and the air-fuel ratio of the cylinder becomes rich, the injection amount of the fuel injection valve 8a is excessive by the total injection amount. However, since the fuel injection valve 8a injects fuel with the reference characteristic and the correction of the injection pulse width of the fuel injection valve 8a is also performed according to the reference characteristic, it is possible to accurately correct the excess of the total injection amount. Become.

一方、燃料噴射弁8aの噴射パルス幅に対する噴射量の感度が増大変化していて、当該気筒の空燃比がリッチになった場合、総噴射量の過剰分だけ燃料噴射弁8aの噴射量を減らそうとするが、燃料噴射弁8aは噴射パルス幅に対する噴射量の感度は実際には基準特性よりも高いのに対し、燃料噴射弁8aの噴射パルス幅の補正は、基準特性に従って行われるから、総噴射量の過剰分を精度良く補正することができず、空燃比異常気筒の空燃比は目標空燃比に向けて変化するものの、燃料噴射弁8aが正常であるときに比べて、目標空燃比への収束性は低下する。   On the other hand, when the sensitivity of the injection amount with respect to the injection pulse width of the fuel injection valve 8a is increasing and the air-fuel ratio of the cylinder becomes rich, the injection amount of the fuel injection valve 8a is reduced by an excess of the total injection amount. Although the fuel injection valve 8a actually has higher sensitivity of the injection amount with respect to the injection pulse width than the reference characteristic, the correction of the injection pulse width of the fuel injection valve 8a is performed according to the reference characteristic. Although the excess amount of the total injection amount cannot be accurately corrected and the air-fuel ratio of the abnormal air-fuel ratio changes toward the target air-fuel ratio, the target air-fuel ratio is higher than when the fuel injection valve 8a is normal. Convergence to decreases.

従って、感度異常に対しても、燃料噴射弁8aの噴射パルス幅を補正した結果、空燃比異常気筒の空燃比が目標空燃比付近に戻れば、燃料噴射弁8aが正常で、燃料噴射弁8bが故障しているものと判断でき、逆に、燃料噴射弁8aの噴射パルス幅を補正しても、空燃比異常気筒の空燃比が目標空燃比付近にまで充分に戻らない場合には、燃料噴射弁8bが正常で、燃料噴射弁8aが故障しているものと判断できる。   Therefore, even if the sensitivity is abnormal, if the air-fuel ratio of the abnormal air-fuel ratio returns to the vicinity of the target air-fuel ratio as a result of correcting the injection pulse width of the fuel injection valve 8 a, the fuel injection valve 8 a is normal and the fuel injection valve 8 b. If the air-fuel ratio of the abnormal air-fuel ratio does not sufficiently return to the vicinity of the target air-fuel ratio even if the injection pulse width of the fuel injection valve 8a is corrected, It can be determined that the injection valve 8b is normal and the fuel injection valve 8a is malfunctioning.

但し、感度異常においては、いずれの燃料噴射弁が故障していても、噴射パルス幅Ti1new,Ti2newに基づいて燃料噴射弁8a,8bによる燃料噴射を行わせれば、空燃比異常気筒の空燃比が目標空燃比に近づくことになり、閉固着や開固着の場合のような明確な差異が生じ難い。   However, in the case of sensitivity abnormality, if any fuel injection valve has failed, if the fuel injection by the fuel injection valves 8a and 8b is performed based on the injection pulse widths Ti1new and Ti2new, the air-fuel ratio of the cylinder with abnormal air-fuel ratio becomes The target air-fuel ratio is approached, and a clear difference is unlikely to occur as in the case of closed sticking or open sticking.

そこで、前述のように、燃料噴射弁8aが正常であると仮定して、燃料噴射弁8aの噴射パルス幅の補正によって総噴射量を修正する処理と、逆に、燃料噴射弁8bが正常であると仮定して、燃料噴射弁8bの噴射パルス幅の補正によって総噴射量を修正する処理とをそれぞれ時系列に行わせ、それぞれの処理の結果得られた空燃比が、より目標空燃比に近い方の仮定が正しかったと判断させることができる。   Therefore, as described above, assuming that the fuel injection valve 8a is normal, the process of correcting the total injection amount by correcting the injection pulse width of the fuel injection valve 8a, conversely, the fuel injection valve 8b is normal. Assuming that there is a process, the process of correcting the total injection amount by correcting the injection pulse width of the fuel injection valve 8b is performed in time series, and the air-fuel ratio obtained as a result of each process is made to reach the target air-fuel ratio more. It can be determined that the nearer assumption was correct.

また、前記最大パルス幅Timaxによって噴射パルス幅Tinewに制限を加えると、燃料噴射弁8a,8bのいずれが故障しているかの判定精度を低下させることになるため、前記最大パルス幅Timaxよりも噴射パルス幅Tinewがカットされた場合、又は、カット量が閾値を超えた場合に、前述のように、総噴射量を正常値に近づけるための噴射パルス幅を行う燃料噴射弁(正常を仮定する燃料噴射弁)を入れ替え、それぞれで得られた空燃比がより目標空燃比に近い方の結果を採用することができる。   Further, if the injection pulse width Tinew is limited by the maximum pulse width Timax, the determination accuracy of which one of the fuel injection valves 8a and 8b is faulty is lowered. Therefore, the injection is performed more than the maximum pulse width Timax. When the pulse width Tinew is cut, or when the cut amount exceeds the threshold, as described above, the fuel injection valve that performs the injection pulse width to bring the total injection amount close to the normal value (the fuel that assumes normality) The result obtained when the air-fuel ratio obtained by each is closer to the target air-fuel ratio can be adopted.

前記カット量の大きさを判別する閾値は、カット量の大小による判定精度の変化に基づいて設定され、判定精度を確保できる最大カット量を基準に設定される。
上記のようにして、故障パターンの判別と、故障した燃料噴射弁の判別とを行うと、続いて、故障状態で燃料噴射をどのように行わせるかを示す故障時用噴射モードの選択処理を、図8のフローチャートに示すルーチンに従って行う。
The threshold value for determining the size of the cut amount is set based on a change in determination accuracy depending on the size of the cut amount, and is set based on the maximum cut amount that can ensure the determination accuracy.
After determining the failure pattern and the failed fuel injection valve as described above, the failure injection mode selection process indicating how to perform fuel injection in the failure state is subsequently performed. This is performed according to the routine shown in the flowchart of FIG.

ステップS301では、前記故障パターンフラグF1〜F5のうちの少なくとも1つに1が設定されているか否かを判断する。
そして、故障パターンフラグF1〜F5の全てがゼロである場合には、空燃比異常気筒が検出されていない状態であるので、ステップS302へ進み、機関運転条件に基づいて設定される噴射パルス幅の噴射パルス信号に基づいて燃料噴射弁8a,8bの噴射を制御する通常の噴射モードを実行させる。
In step S301, it is determined whether or not 1 is set in at least one of the failure pattern flags F1 to F5.
If all of the failure pattern flags F1 to F5 are zero, the air-fuel ratio abnormal cylinder is not detected, so the process proceeds to step S302, and the injection pulse width set based on the engine operating condition is set. A normal injection mode for controlling the injection of the fuel injection valves 8a and 8b is executed based on the injection pulse signal.

一方、故障パターンフラグF1〜F5のうちの少なくとも1つに1が設定されている場合、即ち、空燃比異常気筒が検出されていて、故障パターン及び故障噴射弁の判別がなされている場合には、ステップS303(補正手段)へ進み、1が設定されている故障パターンフラグF1〜F5に応じて、故障時用噴射モードを選択する。   On the other hand, when 1 is set in at least one of the failure pattern flags F1 to F5, that is, when the abnormal air-fuel ratio cylinder is detected and the failure pattern and the failure injection valve are determined. Then, the process proceeds to step S303 (correction means), and the failure injection mode is selected according to the failure pattern flags F1 to F5 in which 1 is set.

前記故障時用噴射モードとして、大略的に以下のモードA〜Cが設定されている。
A…故障した燃料噴射弁だけを補正制御
B…燃料噴射弁8a,8bの双方を補正制御
C…燃料ポンプ52を停止させて燃料噴射停止
尚、故障パターンフラグF1〜F5のうちの少なくとも1つに1が設定された場合には、車両の運転者に対して、ランプやブザーや画面表示などによって故障の発生を警告することが好ましい。
The following modes A to C are generally set as the failure-time injection mode.
A: Correction control for only the failed fuel injection valve B: Correction control for both the fuel injection valves 8a and 8b C: Stop fuel injection by stopping the fuel pump 52 Note that at least one of the failure pattern flags F1 to F5 When 1 is set to 1, it is preferable to warn the driver of the vehicle of the occurrence of a failure by a lamp, a buzzer, a screen display or the like.

以下では、故障時用噴射モードの設定をより詳細に説明する。
「特性(1)の場合での故障時用噴射モード」
まず、空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(1)に近似していて、故障パターンフラグF1に1が設定された場合(F1=1、かつ、F2〜F5=0の場合)には、前記モードA又はBを選択する。
Hereinafter, the setting of the injection mode for failure will be described in more detail.
"Injection mode for failure in case of characteristic (1)"
First, when the change characteristic of the actual total injection amount with respect to the sum of the injection pulse widths in the air-fuel ratio abnormal cylinder is close to the characteristic (1), and 1 is set in the failure pattern flag F1 (F1 = 1, and In the case of F2 to F5 = 0), the mode A or B is selected.

前記特性(1)は、2本の燃料噴射弁8a,8bのうちの1本が燃料を全く噴射しない場合であるので、正常判定されている燃料噴射弁の噴射パルス幅を補正して、正常時に2本で噴射される燃料量を、正常判定されている燃料噴射弁だけから噴射させる。   Since the characteristic (1) is a case where one of the two fuel injection valves 8a and 8b does not inject fuel at all, the injection pulse width of the fuel injection valve determined to be normal is corrected to be normal. The amount of fuel that is sometimes injected by two is injected only from the fuel injection valve that has been determined to be normal.

詳細には、前記図5のフローチャートのステップS201〜ステップS204と同様に、正常である燃料噴射弁が、本来の分担分である燃料量に加算して、故障した燃料噴射弁に分担されていた燃料量も噴射するように、換言すれば、正常な燃料噴射弁だけで全噴射量を噴射するように、正常である燃料噴射弁の噴射パルス幅を補正設定する。   Specifically, as in steps S201 to S204 in the flowchart of FIG. 5, the normal fuel injection valve is added to the fuel amount that is the original share, and is shared by the failed fuel injection valve. The injection pulse width of the normal fuel injection valve is corrected and set so that the fuel amount is also injected, in other words, the entire injection amount is injected only by the normal fuel injection valve.

ここで、噴射パルス幅の補正設定は、空燃比異常気筒(2本の燃料噴射弁8a,8bのうちの1本が閉固着した気筒)についてだけ行わせ、他気筒(2本の燃料噴射弁8a,8bが共に正常である気筒)については、燃料噴射弁8a,8bが分担して燃料を噴射させるようにできる。   Here, the correction setting of the injection pulse width is performed only for the abnormal air-fuel ratio cylinder (the cylinder in which one of the two fuel injection valves 8a and 8b is closed and fixed), and the other cylinder (two fuel injection valves). For the cylinders in which both 8a and 8b are normal, the fuel injection valves 8a and 8b can share and inject the fuel.

但し、1本の燃料噴射弁で燃料を噴射する気筒と、2本の燃料噴射弁で燃料を分担して噴射する気筒とで、混合気形成に差異が生じ、各気筒の発生トルクや排気性状に差が生じる場合があるので、前述のように、1気筒で2本のうちの1本の燃料噴射弁が燃料を噴射しなくなった場合には、全気筒において1本の燃料噴射弁で燃料噴射させる故障時用噴射モードとすることが好ましい。   However, there is a difference in mixture formation between the cylinder that injects fuel with one fuel injector and the cylinder that injects fuel with two fuel injectors, and the generated torque and exhaust properties of each cylinder As described above, when one of the two fuel injection valves in one cylinder stops injecting fuel as described above, the fuel injection by one fuel injection valve in all the cylinders. It is preferable to use a failure-time injection mode for injection.

例えば、空燃比異常気筒で、燃料噴射弁8bが燃料を噴射しない場合(閉固着している場合)、全気筒の燃料噴射弁8bに対する噴射パルス信号の出力を停止させて(噴射パルス幅を0msとして)噴射動作を停止させると共に、全気筒の燃料噴射弁8aに対して、各気筒における必要燃料量の全量を噴射させる噴射パルス幅の噴射パルス信号を出力し、全気筒において、燃料噴射弁8aだけが燃料噴射を行うようにする。   For example, when the fuel injection valve 8b does not inject fuel in the abnormal air-fuel ratio cylinder (when the fuel injection valve 8b is firmly closed), the output of the injection pulse signal to the fuel injection valves 8b of all the cylinders is stopped (the injection pulse width is 0 ms). The injection operation is stopped, and an injection pulse signal having an injection pulse width for injecting all of the required fuel amount in each cylinder is output to the fuel injection valves 8a of all the cylinders. Only make fuel injection.

但し、1本の燃料噴射弁でそのときの吸入空気量に見合った量(必要量)の燃料を噴射させる場合、噴射パルス幅が長くなってしまうので、燃料供給圧を増大補正することで、単位開弁時間当たりの噴射量(噴射率)を増大させ、噴射動作させる燃料噴射弁の開弁時間が短くなるようにすることができる。   However, when the amount of fuel corresponding to the intake air amount at that time (necessary amount) is injected with one fuel injection valve, the injection pulse width becomes long, so by increasing the fuel supply pressure, By increasing the injection amount (injection rate) per unit valve opening time, it is possible to shorten the valve opening time of the fuel injection valve that performs the injection operation.

例えば、予め設定された燃料噴射開始タイミングで噴射を開始させた場合、吸気弁6の閉弁時期IVCまでに燃料噴射が終わらない場合には、閉弁時期IVCの後で噴射された燃料は、次回の吸気行程までシリンダ内に吸引されないことになってしまう。   For example, when the injection is started at a preset fuel injection start timing and the fuel injection does not end by the closing timing IVC of the intake valve 6, the fuel injected after the closing timing IVC is It will not be sucked into the cylinder until the next intake stroke.

そこで、1本の燃料噴射弁で必要量の全量を噴射させる場合であって、噴射終了時期が閉弁時期IVCの後になってしまう場合には、燃料供給圧を増大補正することで、閉弁時期IVCまでに噴射が終わるようにすることができる。
「特性(2)の場合での故障時用噴射モード」
空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(2)に近似している場合、即ち、1本の燃料噴射弁の噴射パルス幅に対する噴射量の感度が増大変化している場合には、感度が増す故障を生じている燃料噴射弁から余分な燃料が噴射されて、空燃比がリッチ化するので、前記モードA又はBを選択し、空燃比異常気筒において、少なくとも故障した燃料噴射弁からの噴射量を減らして、正常時の噴射総量に近づけるようにする。
Therefore, when the entire required amount is injected by one fuel injection valve and the injection end timing comes after the valve closing timing IVC, the fuel supply pressure is increased and corrected. The injection can be completed by time IVC.
"Injection mode for failure in case of characteristic (2)"
When the change characteristic of the actual total injection quantity with respect to the total injection pulse width in the air-fuel ratio abnormal cylinder is close to the characteristic (2), that is, the sensitivity of the injection quantity to the injection pulse width of one fuel injection valve increases. If it has changed, excess fuel is injected from the malfunctioning fuel injection valve that increases the sensitivity and the air-fuel ratio becomes rich. Therefore, the mode A or B is selected, and the air-fuel ratio abnormal cylinder is selected. Then, at least the injection amount from the failed fuel injection valve is reduced so that it approaches the normal injection total amount.

具体的には、空燃比異常気筒において、感度が増す故障を生じている燃料噴射弁について、噴射パルス幅を減少補正し、余分に噴射される燃料量を減らすようにする。
又は、感度が増す故障を生じている燃料噴射弁について噴射パルス幅を減少補正し、かつ、正常な感度の燃料噴射弁についても噴射パルス幅を減少補正し、補正後の噴射パルス幅の噴射パルス信号を出力することで、正常時の噴射総量に近づけるようにする。
Specifically, in the air-fuel ratio abnormal cylinder, the injection pulse width of the fuel injection valve in which a failure with increased sensitivity occurs is corrected to reduce the amount of extra injected fuel.
Alternatively, the injection pulse width is corrected to decrease for a fuel injection valve in which a failure with increased sensitivity occurs, and the injection pulse width is corrected to decrease for a fuel injection valve with normal sensitivity, and the injection pulse having the corrected injection pulse width is corrected. By outputting a signal, it is made close to the normal injection total amount.

但し、空燃比異常気筒であって噴射パルス幅が補正される気筒と、空燃比正常気筒であって噴射パルス幅の補正が行われない気筒とで、混合気形成に差異が生じ、各気筒の発生トルクや排気性状に差が生じる場合があるので、空燃比異常気筒で正常な燃料噴射弁のみで噴射させると共に、空燃比正常気筒においても1本の燃料噴射弁で燃料噴射させることができる。   However, there is a difference in the air-fuel mixture formation between the cylinder with the abnormal air-fuel ratio and the injection pulse width corrected, and the cylinder with the normal air-fuel ratio and the injection pulse width not corrected. Since there may be a difference in generated torque and exhaust properties, it is possible to inject only with a normal fuel injection valve in an air-fuel ratio abnormal cylinder, and also with a single fuel injection valve in a normal air-fuel ratio cylinder.

前記特性(2)に対する故障時用噴射モードとしては、燃料噴射弁8a,8bに対する燃料供給圧を低下させ、同じ噴射パルス幅に対して実際に噴射される燃料量を減らして正常時の噴射総量に近づけることもできる。   As the failure-time injection mode for the characteristic (2), the fuel supply pressure to the fuel injection valves 8a and 8b is reduced, and the amount of fuel actually injected for the same injection pulse width is reduced to reduce the total injection amount at normal time. It can also be close to.

但し、燃料供給圧の低下は、空燃比異常気筒以外の燃料噴射弁8a,8bに対する燃圧も低下させることになるので、空燃比異常気筒以外では、噴射パルス幅を増大補正する必要が生じる。   However, the decrease in the fuel supply pressure also decreases the fuel pressure for the fuel injection valves 8a and 8b other than the air-fuel ratio abnormal cylinder, so that the injection pulse width needs to be increased and corrected except for the air-fuel ratio abnormal cylinder.

そこで、各気筒別に燃料供給圧を個別に設定できるように構成すれば、空燃比異常気筒(特性(2)の故障パターンが生じている気筒)だけについて、燃料供給圧を低下させることができる。   Therefore, if the fuel supply pressure can be individually set for each cylinder, the fuel supply pressure can be reduced only for the abnormal air-fuel ratio cylinder (the cylinder in which the failure pattern of the characteristic (2) occurs).

また、燃料供給圧の低下と、噴射パルス幅の減少補正とを併用することができる。
「特性(3)の場合での故障時用噴射モード」
空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(3)に近似している場合、即ち、1本の燃料噴射弁の噴射パルス幅に対する噴射量の感度が減少変化している場合には、感度が減る故障を生じている燃料噴射弁からの燃料噴射量が不足し、空燃比がリーン化するので、前記モードA又はBを選択し、空燃比異常気筒において、少なくとも故障した燃料噴射弁からの噴射量を増やして、正常時の噴射総量に近づけるようにする。
Further, a decrease in the fuel supply pressure and a correction for reducing the injection pulse width can be used in combination.
"Injection mode for failure in case of characteristic (3)"
When the change characteristic of the actual injection total amount with respect to the sum of the injection pulse widths in the air-fuel ratio abnormal cylinder is close to the characteristic (3), that is, the sensitivity of the injection amount with respect to the injection pulse width of one fuel injection valve decreases. If it has changed, the fuel injection amount from the fuel injection valve causing the failure with reduced sensitivity becomes insufficient and the air-fuel ratio becomes lean. Therefore, the mode A or B is selected, and the air-fuel ratio abnormal cylinder is selected. Then, at least the injection amount from the failed fuel injection valve is increased so as to be close to the normal injection total amount.

具体的には、空燃比異常気筒において、感度が減る故障を生じている燃料噴射弁について、噴射パルス幅を増大補正し、燃料噴射量の不足分を減らすようにする。
又は、感度が減る故障を生じている燃料噴射弁について噴射パルス幅を増大補正し、かつ、正常な感度の燃料噴射弁についても噴射パルス幅を増大補正し、補正後の噴射パルス幅の噴射パルス信号を出力することで、正常時の噴射総量に近づけるようにする。
Specifically, in the air-fuel ratio abnormal cylinder, the injection pulse width is corrected to be increased for the fuel injection valve in which the sensitivity is reduced, so that the shortage of the fuel injection amount is reduced.
Alternatively, the injection pulse width is corrected to be increased for a fuel injection valve having a failure with reduced sensitivity, and the injection pulse width is also corrected to be increased for a fuel injection valve having normal sensitivity. By outputting a signal, it is made close to the normal injection total amount.

但し、空燃比異常気筒であって噴射パルス幅が補正される気筒と、空燃比正常気筒であって噴射パルス幅の補正が行われない気筒とで、混合気形成に差異が生じ、各気筒の発生トルクや排気性状に差が生じる場合があるので、空燃比異常気筒で正常な燃料噴射弁のみで噴射させると共に、空燃比正常気筒においても1本の燃料噴射弁で燃料噴射させることができる。   However, there is a difference in the air-fuel mixture formation between the cylinder with the abnormal air-fuel ratio and the injection pulse width corrected, and the cylinder with the normal air-fuel ratio and the injection pulse width not corrected. Since there may be a difference in generated torque and exhaust properties, it is possible to inject only with a normal fuel injection valve in an air-fuel ratio abnormal cylinder, and also with a single fuel injection valve in a normal air-fuel ratio cylinder.

前記特性(3)に対する故障時用噴射モードとしては、燃料噴射弁8a,8bに対する燃料供給圧を増大させ、同じ噴射パルス幅に対して実際に噴射される燃料量を増やして正常時の噴射総量に近づけることもできる。   As the failure-time injection mode for the characteristic (3), the fuel supply pressure to the fuel injection valves 8a and 8b is increased, and the fuel amount actually injected for the same injection pulse width is increased to increase the total injection amount at normal time. It can also be close to.

但し、燃料供給圧の増大は、空燃比異常気筒以外の燃料噴射弁8a,8bに対する燃圧も増大させることになるので、空燃比異常気筒以外では、噴射パルス幅を減少補正する必要が生じる。   However, since the increase in the fuel supply pressure also increases the fuel pressure for the fuel injection valves 8a and 8b other than the air-fuel ratio abnormal cylinder, it is necessary to correct the injection pulse width to be decreased except for the air-fuel ratio abnormal cylinder.

そこで、各気筒別に燃料供給圧を個別に設定できるように構成すれば、空燃比異常気筒(特性((3)の故障パターンが生じている気筒)だけについて、燃料供給圧を増大させることができる。   Therefore, if the fuel supply pressure can be set individually for each cylinder, the fuel supply pressure can be increased only for the abnormal air-fuel ratio cylinder (the cylinder in which the characteristic ((3) failure pattern occurs)). .

また、燃料供給圧の増大と、噴射パルス幅の増大補正とを併用することができる。
「特性(4)の場合での故障時用噴射モード」
空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(4)に近似している場合、即ち、1本の燃料噴射弁が開弁状態で(中間リフト位置で)固着していて、燃料を常に噴射している場合には、前記モードA又はBを選択し、空燃比異常気筒における噴射総量を減らして、正常時の噴射総量に近づけるようにし、モードA又はBで目標空燃比付近に戻すことができない場合には、前記モードCを選択し、燃料ポンプ52(燃料噴射弁8a,8bによる燃料噴射)を停止させて、内燃機関1を停止させる。
Further, an increase in fuel supply pressure and an increase correction in injection pulse width can be used in combination.
"Injection mode for failure in case of characteristic (4)"
When the change characteristic of the total actual injection amount with respect to the sum of the injection pulse widths in the air-fuel ratio abnormal cylinder is close to the characteristic (4), that is, one fuel injection valve is in the open state (at the intermediate lift position). When the fuel is fixed and the fuel is always injected, the mode A or B is selected, the total injection amount in the cylinder with abnormal air-fuel ratio is reduced so as to approach the normal injection total amount, and the mode A or B is selected. If it is not possible to return to the vicinity of the target air-fuel ratio, the mode C is selected, the fuel pump 52 (fuel injection by the fuel injection valves 8a, 8b) is stopped, and the internal combustion engine 1 is stopped.

具体的には、空燃比異常気筒において、故障して常に噴射する燃料噴射弁からの噴射燃料が過剰に多く、空燃比をリッチ化させる場合には、正常な燃料噴射弁の噴射パルス幅を減少補正し、燃料噴射量の過剰分を減らすようにする。   Specifically, in an abnormal air / fuel ratio cylinder, when there is an excessively large amount of fuel injected from the fuel injection valve that always fails and injects, and the air / fuel ratio is made rich, the injection pulse width of the normal fuel injection valve is reduced. Make corrections to reduce excess fuel injection.

前記噴射パルス幅の減少補正として、最大には正常な燃料噴射弁の噴射を停止させることになるが、正常な燃料噴射弁の噴射を停止させてもリッチ状態を解消できない場合には、燃料供給圧を減少補正して、故障して常に噴射する燃料噴射弁から噴射される燃料量を減らすようにできる。   As a decrease correction of the injection pulse width, the normal fuel injection valve injection is stopped at the maximum, but if the rich state cannot be resolved even if the normal fuel injection valve injection is stopped, the fuel supply It is possible to reduce the amount of fuel injected from the fuel injection valve that always injects due to a failure by correcting the pressure to decrease.

前記燃料供給圧の減少は、空燃比異常気筒だけ(若しくは開固着した燃料噴射弁だけ)について行わせることが好ましいが、他の正常な気筒においても一律に燃料供給圧が減少する場合には、正常な気筒において噴射パルス幅に対する燃料噴射量が減るので、噴射パルス幅の増大補正が必要になる。   The decrease in the fuel supply pressure is preferably performed only for the air-fuel ratio abnormal cylinder (or only the fuel injection valve that is fixed open), but in the case where the fuel supply pressure is reduced even in other normal cylinders, Since the fuel injection amount with respect to the injection pulse width decreases in a normal cylinder, it is necessary to correct the increase in the injection pulse width.

また、故障して常に噴射する燃料噴射弁からの噴射量が、高回転高負荷時には、本来の分担分よりも少なくなる場合があり、この場合には、正常な燃料噴射弁の噴射パルス幅を増大補正し、燃料噴射量の不足分を補うようにする。   In addition, the injection amount from the fuel injection valve that always injects due to failure may be less than the original share at high rotation and high load.In this case, the injection pulse width of the normal fuel injection valve is reduced. Increase correction is made to compensate for the shortage of fuel injection amount.

ここで、正常な燃料噴射弁の噴射パルス幅の増大補正を、噴射終了が吸気弁6の閉弁時期IVCになるまで進めても、リーン状態を解消できない場合には、燃料供給圧を増大補正して、故障して常に噴射する燃料噴射弁から噴射される燃料量を増やすことができ、また、噴射終了が吸気弁6の閉弁時期IVCになる噴射パルス幅で、目標空燃比が得られる吸入空気量を上限値として、内燃機関1の吸入空気量を制限することもできる。   Here, if the lean state cannot be resolved even if the increase correction of the injection pulse width of the normal fuel injection valve is advanced until the end of injection reaches the closing timing IVC of the intake valve 6, the fuel supply pressure is increased and corrected. Thus, it is possible to increase the amount of fuel injected from the fuel injection valve that always fails and injects, and the target air-fuel ratio is obtained with the injection pulse width at which the end of injection becomes the closing timing IVC of the intake valve 6. The intake air amount of the internal combustion engine 1 can also be limited with the intake air amount as an upper limit.

また、燃料供給圧を増大補正してもリーン状態を解消できない場合には、燃料ポンプ52を停止させて内燃機関1を停止させることができる。
また、噴射パルス幅の補正、又は、噴射パルス幅の補正及び燃料供給圧の補正によって、空燃比異常気筒の空燃比を目標空燃比に充分に近づけることができない場合には、燃料ポンプ52(燃料噴射弁8a,8bによる燃料噴射)を停止させて、内燃機関1を停止させることで、過剰リッチ状態で1気筒が運転されることを回避する。
「特性(5)の場合での故障時用噴射モード」
空燃比異常気筒における噴射パルス幅の総和に対する実噴射総量の変化特性が、前記特性(5)に近似している場合、即ち、1本の燃料噴射弁が全開位置で固着していて、最大量の燃料を常に噴射している場合には、前記モードA又はBを選択し、空燃比異常気筒における噴射総量を減らして、正常時の噴射総量に近づけるようにし、モードA又はBで目標空燃比付近に戻すことができない場合には、前記モードCを選択し、燃料ポンプ52(燃料噴射弁8a,8bによる燃料噴射)を停止させて、内燃機関1を停止させる。
If the lean state cannot be resolved even if the fuel supply pressure is increased, the internal combustion engine 1 can be stopped by stopping the fuel pump 52.
If the air-fuel ratio of the air-fuel ratio abnormal cylinder cannot be made sufficiently close to the target air-fuel ratio by correcting the injection pulse width, or correcting the injection pulse width and correcting the fuel supply pressure, the fuel pump 52 (fuel By stopping the fuel injection by the injection valves 8a and 8b and stopping the internal combustion engine 1, it is avoided that one cylinder is operated in an excessively rich state.
"Injection mode for failure in case of characteristic (5)"
When the change characteristic of the actual injection total amount with respect to the sum of the injection pulse widths in the air-fuel ratio abnormal cylinder is close to the characteristic (5), that is, one fuel injection valve is fixed at the fully opened position, and the maximum amount When mode A or B is always injected, the mode A or B is selected, the total injection amount in the cylinder with abnormal air-fuel ratio is reduced so as to approach the normal injection total amount, and the target air-fuel ratio in mode A or B If it cannot be returned to the vicinity, the mode C is selected, the fuel pump 52 (fuel injection by the fuel injection valves 8a and 8b) is stopped, and the internal combustion engine 1 is stopped.

具体的には、燃料供給圧を最大限に下げることで、全開位置で固着している燃料噴射弁からの噴射量を減らし、また、空燃比異常気筒の正常な燃料噴射弁の噴射パルス幅を減少補正(噴射パルス幅=0を含む)して、総噴射量の減少を図る。   Specifically, by reducing the fuel supply pressure to the maximum, the injection amount from the fuel injection valve fixed at the fully open position is reduced, and the injection pulse width of the normal fuel injection valve of the cylinder with abnormal air-fuel ratio is reduced. Reduction correction (including injection pulse width = 0) is performed to reduce the total injection amount.

そして、最大限に燃圧を低下させ、更に、正常な燃料噴射弁の噴射パルス幅を最大限に減少補正(噴射停止)しても、空燃比のリッチ化を解消できない場合には、燃料ポンプ52(燃料噴射弁8a,8bによる燃料噴射)を停止させて、内燃機関1を停止させることで、過剰リッチ状態で1気筒が運転されることを回避する。   If the richness of the air-fuel ratio cannot be eliminated even if the fuel pressure is reduced to the maximum and the injection pulse width of the normal fuel injection valve is reduced to the maximum (injection is stopped), the fuel pump 52 By stopping (fuel injection by the fuel injection valves 8a and 8b) and stopping the internal combustion engine 1, it is avoided that one cylinder is operated in an excessively rich state.

尚、特性(1)〜(5)のいずれのパターンにも該当しないものの、空燃比異常が検出された気筒について、故障している燃料噴射弁を特定できた場合には、空燃比がリッチであれば、故障している燃料噴射弁の噴射パルス幅を減少させ、空燃比がリーンであれば、故障している燃料噴射弁の噴射パルス幅を増大させ、係る噴射パルス幅の補正で空燃比を目標空燃比付近に戻すことができなければ、更に、正常な燃料噴射弁の噴射パルス幅を補正することができる。   Although none of the patterns of the characteristics (1) to (5) is applicable, if the malfunctioning fuel injection valve can be identified for the cylinder in which the air-fuel ratio abnormality is detected, the air-fuel ratio is rich. If there is, the injection pulse width of the failed fuel injection valve is decreased, and if the air-fuel ratio is lean, the injection pulse width of the failed fuel injection valve is increased, and the air-fuel ratio is corrected by correcting the injection pulse width. If it cannot be returned to the vicinity of the target air-fuel ratio, the normal injection pulse width of the fuel injection valve can be corrected.

但し、特性(1)〜(5)のいずれのパターンにも該当しない場合には、燃料噴射弁8a,8bが2本同時に故障している場合や、故障した燃料噴射弁における噴射パルス幅に対する噴射量傾向が不安定である場合などが想定され、いずれの場合も実噴射量を補正して目標空燃比付近に安定させることが難しいので、直ちに燃料ポンプ52を停止させるようにしてもよい。   However, when none of the patterns of the characteristics (1) to (5) is applicable, the case where two fuel injection valves 8a and 8b are simultaneously in failure, or the injection with respect to the injection pulse width in the failed fuel injection valve It is assumed that the amount tendency is unstable. In any case, it is difficult to correct the actual injection amount and stabilize it near the target air-fuel ratio. Therefore, the fuel pump 52 may be stopped immediately.

以上のように、本実施形態の故障時用噴射モードでは、故障した燃料噴射弁による噴射量の補正や、故障した燃料噴射弁と対をなして設けられている正常な燃料噴射弁による噴射量の補正によって、総噴射量をそのときの吸入空気量に見合った量に戻すようにするので、燃料噴射弁8a,8bに故障が生じても、内燃機関の保護を図りながら、内燃機関1の運転を継続させることができる。   As described above, in the failure injection mode of the present embodiment, the injection amount is corrected by the failed fuel injection valve or the injection amount by the normal fuel injection valve provided in a pair with the failed fuel injection valve. Therefore, even if the fuel injection valves 8a and 8b fail, the internal combustion engine 1 can be protected while protecting the internal combustion engine. Driving can be continued.

また、噴射パルス幅の補正や燃料供給圧の補正によって、空燃比を目標空燃比付近に戻すことができない場合には、燃料ポンプ52を停止させるので、開固着故障した燃料噴射弁から燃料が噴射され続けることを抑制し、また、一部気筒だけ空燃比が大きく異なるために、気筒間で発生トルクが大きく異なったり、排気性状が大きく悪化した状態で運転されることを抑制できる。   Further, when the air-fuel ratio cannot be returned to the vicinity of the target air-fuel ratio by correcting the injection pulse width or the fuel supply pressure, the fuel pump 52 is stopped, so that fuel is injected from the fuel injection valve that has failed to be stuck open. In addition, since the air-fuel ratios of some cylinders are greatly different from each other, it is possible to prevent the generated torque from being greatly different among the cylinders or the engine from being operated in a state in which the exhaust properties are greatly deteriorated.

尚、上記実施形態では、各気筒の吸気通路に設けられる燃料噴射弁を2本としたが、3本以上であってもよく、1つの気筒に設けられる複数の燃料噴射弁の噴射率や噴霧角などの噴射特性が相互に異なるものであっても良い。   In the above embodiment, two fuel injection valves are provided in the intake passage of each cylinder. However, three or more fuel injection valves may be provided, and injection rates and sprays of a plurality of fuel injection valves provided in one cylinder may be used. The injection characteristics such as corners may be different from each other.

また、正常状態における複数の燃料噴射弁による燃料噴射の分担率は、均一である必要はなく、運転条件(機関負荷、機関回転速度、機関温度)などに応じて分担比が可変に設定されるものであっても良い。   Further, the ratio of fuel injection by the plurality of fuel injection valves in the normal state does not need to be uniform, and the ratio of sharing is variably set according to operating conditions (engine load, engine speed, engine temperature) and the like. It may be a thing.

また、本実施形態のようなV型機関においては、閉固着や感度異常が発生した燃料噴射弁が設けられている気筒を含むバンクを休止させ、他方のバンクの運転を継続させることができる。   Further, in the V-type engine as in the present embodiment, the bank including the cylinder provided with the fuel injection valve in which the closed adhering or sensitivity abnormality has occurred can be stopped and the operation of the other bank can be continued.

ここで、上記実施形態から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。
(イ)請求項3記載の内燃機関の燃料噴射制御装置において、
前記複数の燃料噴射弁の噴射パルス幅の総和と前記複数の燃料噴射弁による燃料噴射量の総量との相関特性を求め、該相関特性と予め記憶されている基準特性との比較によって、故障パターンを判別する内燃機関の燃料噴射制御装置。
Here, technical ideas other than the claims that can be grasped from the above embodiment will be described together with effects.
(A) In the fuel injection control device for an internal combustion engine according to claim 3,
A correlation characteristic between a sum of injection pulse widths of the plurality of fuel injection valves and a total amount of fuel injection amounts by the plurality of fuel injection valves is obtained, and a failure pattern is determined by comparing the correlation characteristic with a pre-stored reference characteristic. A fuel injection control device for an internal combustion engine for determining the engine.

上記発明によると、基準特性に対して一定噴射量だけシフトしている場合や、基準特性の傾きと異なる傾きで、噴射パルス幅の変化に対して総噴射量が変化している場合などを区別することができ、故障パターンを適切に判別できる。
(ロ)請求項2記載の内燃機関の燃料噴射制御装置において、
前記内燃機関が、複数気筒からの排気の合流部で、排気中の酸素濃度に基づいて空燃比を検出する空燃比センサを備え、
前記空燃比検出手段が、前記空燃比センサからの検出信号と、各気筒の排気行程との相関から、各気筒の空燃比を示す検出信号を求め、気筒別に空燃比を検出する内燃機関の燃料噴射制御装置。
According to the above invention, the case where the injection amount is shifted by a certain amount with respect to the reference characteristic or the case where the total injection amount is changed with respect to the change of the injection pulse width at a slope different from the inclination of the reference characteristic is distinguished. And the failure pattern can be properly determined.
(B) The fuel injection control device for an internal combustion engine according to claim 2,
The internal combustion engine includes an air-fuel ratio sensor that detects an air-fuel ratio based on an oxygen concentration in the exhaust gas at a junction of exhaust gas from a plurality of cylinders,
A fuel for an internal combustion engine in which the air-fuel ratio detecting means obtains a detection signal indicating the air-fuel ratio of each cylinder from the correlation between the detection signal from the air-fuel ratio sensor and the exhaust stroke of each cylinder, and detects the air-fuel ratio for each cylinder. Injection control device.

上記発明によると、各気筒の排気が、空燃比センサに到達するタイミングが異なることを利用して、1つの空燃比センサを用いて各気筒の空燃比を検出することができる。
(ハ)請求項2記載の内燃機関の燃料噴射制御装置において、
前記診断手段が、故障が発生していると仮定する燃料噴射弁を、複数の燃料噴射弁の中から入れ替えて設定し、それぞれについて前記補正手段による補正を行わせ、補正制御の結果、空燃比異常が最も大きく縮小した場合の仮定を、最終的に選択する内燃機関の燃料噴射制御装置。
According to the above invention, the air-fuel ratio of each cylinder can be detected using one air-fuel ratio sensor by utilizing the timing at which the exhaust of each cylinder reaches the air-fuel ratio sensor.
(C) The fuel injection control device for an internal combustion engine according to claim 2,
The diagnosis means sets a fuel injection valve that is assumed to have failed to be replaced with one from among a plurality of fuel injection valves, and makes corrections by the correction means for each of the fuel injection valves. A fuel injection control device for an internal combustion engine that finally selects an assumption when the abnormality is greatly reduced.

上記発明によると、故障の程度が小さく、実際には故障していない燃料噴射弁を故障していると仮定した場合と、実際に故障している燃料噴射弁を故障していると仮定した場合とで、補正結果に明確な差が生じない場合であっても、故障した燃料噴射弁の特定を精度良く行える。
(ニ)請求項1記載の内燃機関の燃料噴射制御装置において、
前記補正手段が、前記複数の燃料噴射弁のうちの1本が閉固着故障した気筒が生じた場合、当該気筒以外の気筒において、燃料噴射を行わせる燃料噴射弁を1本減らす内燃機関の燃料噴射制御装置。
According to the above invention, when it is assumed that the degree of failure is small and the fuel injector that has not actually failed is assumed to have failed, and when the fuel injector that has actually failed is assumed to have failed Thus, even when there is no clear difference between the correction results, the failed fuel injection valve can be identified with high accuracy.
(D) A fuel injection control device for an internal combustion engine according to claim 1,
The fuel of the internal combustion engine in which the correction means reduces one fuel injection valve for performing fuel injection in a cylinder other than the cylinder when one of the plurality of fuel injection valves is closed and failed. Injection control device.

上記発明によると、前記複数の燃料噴射弁のうちの1本が閉固着故障した気筒だけで、他の気筒よりも少ない数の燃料噴射弁で噴射が行われると、混合気形成に気筒間で差が生じることになるため、例えば、2本のうちの1本が閉固着故障した気筒が発生すると、全気筒で、1本だけで燃料噴射を行わせる。   According to the above invention, when injection is performed with only one cylinder of the plurality of fuel injection valves having a closed stuck failure and a smaller number of fuel injection valves than the other cylinders, the mixture is formed between the cylinders. For example, when a cylinder in which one of the two cylinders is closed and stuck is generated, fuel injection is performed with only one cylinder in all cylinders.

1…内燃機関、2…燃焼室、3…吸気ダクト、4a,4b…吸気マニホールド、5…吸気ポート、6…吸気弁、8a…第1燃料噴射弁、8b…第2燃料噴射弁、16…電子制御スロットル、21…ECM(エンジン・コントロール・モジュール)、26a,26b…空燃比センサ   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Combustion chamber, 3 ... Intake duct, 4a, 4b ... Intake manifold, 5 ... Intake port, 6 ... Intake valve, 8a ... First fuel injection valve, 8b ... Second fuel injection valve, 16 ... Electronically controlled throttle, 21 ... ECM (engine control module), 26a, 26b ... Air-fuel ratio sensor

Claims (3)

1気筒当たり複数の燃料噴射弁を吸気通路に備える内燃機関に適用される燃料噴射制御装置であって、
前記複数の燃料噴射弁について故障の有無を診断する診断手段と、
前記診断手段で故障発生が診断された場合に、前記複数の燃料噴射弁からの燃料噴射量の総量を、正常時の総量に近づけるように、前記複数の燃料噴射弁のうちの少なくとも1本について噴射パルス幅及び/又は燃料供給圧を補正する補正手段と、
を含む内燃機関の燃料噴射制御装置。
A fuel injection control device applied to an internal combustion engine having a plurality of fuel injection valves per cylinder in an intake passage,
Diagnosing means for diagnosing the presence or absence of failure for the plurality of fuel injection valves;
About at least one of the plurality of fuel injection valves so that the total amount of fuel injection from the plurality of fuel injection valves is close to the total amount at normal time when the occurrence of a failure is diagnosed by the diagnosis means Correction means for correcting the injection pulse width and / or the fuel supply pressure;
A fuel injection control device for an internal combustion engine.
前記診断手段が、気筒別に空燃比を検出する空燃比検出手段を含み、気筒別に検出される空燃比に基づいて空燃比異常が発生している気筒を判別し、空燃比異常が判別された気筒に備えられている前記複数の燃料噴射弁のうちの1本について故障発生を仮定し、該仮定に基づいて前記補正手段による補正制御を行わせ、前記補正手段による補正制御の結果、前記空燃比異常が縮小した場合に、故障発生を仮定した燃料噴射弁について故障発生を判定する請求項1記載の内燃機関の燃料噴射制御装置。   The diagnosis means includes an air-fuel ratio detection means for detecting an air-fuel ratio for each cylinder, determines a cylinder in which an air-fuel ratio abnormality has occurred based on the air-fuel ratio detected for each cylinder, and the cylinder in which the air-fuel ratio abnormality has been determined Assuming that a failure occurs in one of the plurality of fuel injection valves provided in the engine, the correction means performs correction control based on the assumption, and as a result of the correction control by the correction means, the air-fuel ratio 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein when the abnormality is reduced, the occurrence of the failure is determined for the fuel injection valve assuming that the failure has occurred. 前記診断手段が、前記噴射パルス幅と燃料噴射量との相関に基づいて、故障パターンを判別する請求項1記載の内燃機関の燃料噴射制御装置。   2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the diagnosis unit determines a failure pattern based on a correlation between the injection pulse width and a fuel injection amount.
JP2009068847A 2009-03-19 2009-03-19 Fuel injection control device for internal combustion engine Active JP5235739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068847A JP5235739B2 (en) 2009-03-19 2009-03-19 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068847A JP5235739B2 (en) 2009-03-19 2009-03-19 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010223018A true JP2010223018A (en) 2010-10-07
JP5235739B2 JP5235739B2 (en) 2013-07-10

Family

ID=43040491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068847A Active JP5235739B2 (en) 2009-03-19 2009-03-19 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5235739B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083186A (en) * 2011-10-07 2013-05-09 Toyota Motor Corp Device for determining cylinder having air-fuel ratio imbalance
US8601863B2 (en) 2011-03-25 2013-12-10 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus and abnormality determination method for multi-cylinder internal combustion engine
JP2014031723A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Diagnosis device for internal combustion engine
JP2015034521A (en) * 2013-08-09 2015-02-19 株式会社デンソー Fuel injection control device
US9008877B2 (en) 2011-12-28 2015-04-14 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method of controlling the same
JP2016176361A (en) * 2015-03-19 2016-10-06 三菱電機株式会社 Fuel supply control device for internal combustion engine
CN110914529A (en) * 2018-07-11 2020-03-24 日立汽车系统株式会社 Control device and diagnostic method for internal combustion engine
CN113250838A (en) * 2021-06-28 2021-08-13 潍柴动力股份有限公司 Injection valve fault diagnosis method, system, equipment and storage medium
CN113847154A (en) * 2021-11-02 2021-12-28 潍柴动力股份有限公司 Injection valve fault detection method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079135A (en) * 1983-10-04 1985-05-04 Mazda Motor Corp Fuel injection quantity controller for engine
JP2003314413A (en) * 2002-04-18 2003-11-06 Nissan Motor Co Ltd Fuel injection device of internal combustion engine
JP2009203884A (en) * 2008-02-27 2009-09-10 Denso Corp Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079135A (en) * 1983-10-04 1985-05-04 Mazda Motor Corp Fuel injection quantity controller for engine
JP2003314413A (en) * 2002-04-18 2003-11-06 Nissan Motor Co Ltd Fuel injection device of internal combustion engine
JP2009203884A (en) * 2008-02-27 2009-09-10 Denso Corp Control device for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601863B2 (en) 2011-03-25 2013-12-10 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus and abnormality determination method for multi-cylinder internal combustion engine
JP2013083186A (en) * 2011-10-07 2013-05-09 Toyota Motor Corp Device for determining cylinder having air-fuel ratio imbalance
US9008877B2 (en) 2011-12-28 2015-04-14 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method of controlling the same
JP2014031723A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Diagnosis device for internal combustion engine
JP2015034521A (en) * 2013-08-09 2015-02-19 株式会社デンソー Fuel injection control device
US9140183B2 (en) 2013-08-09 2015-09-22 Denso Corporation Fuel injection controller
JP2016176361A (en) * 2015-03-19 2016-10-06 三菱電機株式会社 Fuel supply control device for internal combustion engine
CN110914529A (en) * 2018-07-11 2020-03-24 日立汽车系统株式会社 Control device and diagnostic method for internal combustion engine
CN113250838A (en) * 2021-06-28 2021-08-13 潍柴动力股份有限公司 Injection valve fault diagnosis method, system, equipment and storage medium
CN113847154A (en) * 2021-11-02 2021-12-28 潍柴动力股份有限公司 Injection valve fault detection method and device
CN113847154B (en) * 2021-11-02 2023-08-18 潍柴动力股份有限公司 Method and device for detecting faults of injection valve

Also Published As

Publication number Publication date
JP5235739B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5235739B2 (en) Fuel injection control device for internal combustion engine
EP2031232B1 (en) Cetane number detection means and engine having the cetane number detection means
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
US8683977B2 (en) Control system and control method for internal combustion engine
US8548718B2 (en) Air/fuel ratio variation abnormality detection apparatus, and abnormality detection method
US8805609B2 (en) Apparatus and method for detecting abnormal air-fuel ratio variation
US7681565B2 (en) Air/fuel ratio control system for internal combustion engine
US9043121B2 (en) Air-fuel ratio variation abnormality detecting device and air-fuel ratio variation abnormality detecting method
US8676477B2 (en) Rotational fluctuation malfunction detection device and rotational fluctuation malfunction detection method for internal combustion engine
JP2009203884A (en) Control device for internal combustion engine
US8949001B2 (en) Control apparatus and control method for internal combustion engine
US7343900B2 (en) Ignition timing controller of internal combustion engine
JP5835364B2 (en) Fuel injection device for internal combustion engine
US20210324814A1 (en) Control Device and Diagnostic Method for Internal Combustion Engine
JP5703802B2 (en) Fuel injection device for internal combustion engine
JP5427715B2 (en) Engine control device
JP2004340065A (en) Control device for hydrogen engine
US8635993B2 (en) Air-fuel ratio control device of internal combustion engine
JP4854796B2 (en) Abnormality detection device for internal combustion engine
JP2001304029A (en) Fuel injection amount control device for engine
JP2013241867A (en) Controller for internal combustion engine
JP2013117203A (en) Device for controlling internal combustion engine
JP2011132918A (en) Fuel injection control device of internal combustion engine
US20040255575A1 (en) Failure detecting apparatus for exhaust secondary air supply system
JP6331016B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250