JP2010222809A - Method for refilling inside of cable sheath of existing prestressed concrete (pc) structure with grout - Google Patents

Method for refilling inside of cable sheath of existing prestressed concrete (pc) structure with grout Download PDF

Info

Publication number
JP2010222809A
JP2010222809A JP2009069584A JP2009069584A JP2010222809A JP 2010222809 A JP2010222809 A JP 2010222809A JP 2009069584 A JP2009069584 A JP 2009069584A JP 2009069584 A JP2009069584 A JP 2009069584A JP 2010222809 A JP2010222809 A JP 2010222809A
Authority
JP
Japan
Prior art keywords
grout
vacuum
pressure
pressure injection
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009069584A
Other languages
Japanese (ja)
Inventor
Makoto Narui
信 成井
Kazuhiko Tokugawa
和彦 徳川
Tsugio Ueno
次男 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Consultants Co Ltd
Original Assignee
Pacific Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Consultants Co Ltd filed Critical Pacific Consultants Co Ltd
Priority to JP2009069584A priority Critical patent/JP2010222809A/en
Publication of JP2010222809A publication Critical patent/JP2010222809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refilling the inside of a cable sheath of an existing PC structure with grout, which enables complete refilling to be performed, without leaving an air lock, by a grout-unfilled portion in the sheath for insertion of a prestressing (PC) tendon in the existing PC structure. <P>SOLUTION: In an air lock generation-expected position, there is the risk of having air trapped in the grout-unfilled portion 12 even by grout pressure injection performed by the grout pressure injection device 20, when the grout is pressurized and injected from a grout pressure injection port 13 by the grout pressure injection device 20 after the grout-unfilled portion 12 is decompressed. A branch passage, which is made of a vacuum pressure-resistant material and which communicates and branches off upward, is preprovided in the air lock generation-expected position; a vacuum pressure-resistant container 30 is attached to the branch passage; and the air in an air lock generation-expected portion and the grout around it are sucked in under suction pressure from the inside of the vacuum pressure-resistant container 30 immediately before the completion of the pressure injection of the grout by the grout pressure injection device. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部にグラウトを再充填する際に、より完全なグラウト充填を可能にする既設PC構造物におけるケーブルシース内へのグラウト再充填方法に関する。   The present invention relates to a cable sheath in an existing PC structure that enables more complete grout filling when refilling grout in a grout unfilled portion in a sheath for inserting a PC tendon material in an existing post-tension type PC structure. It relates to a method for refilling grout inside.

一般にポストテンション方式のPC構造物は、構造物内に設置したPC緊張材挿通用シース内にPC緊張材を挿通し、構造物のコンクリート硬化後にPC緊張材を緊張することによってプレストレスを導入するようにしており、プレストレス導入後にPC緊張材挿通用シース内の隙間にグラウトを充填している。   In general, a post-tension type PC structure introduces pre-stress by inserting a PC tension material into a PC tension material insertion sheath installed in the structure and tensioning the PC tension material after the concrete of the structure is hardened. In this way, the grout is filled in the gap in the sheath for inserting the PC tendon after introduction of the prestress.

近年、コンクリート構造物において、ひび割れや剥離、鉄筋腐食など、早期劣化が深刻な問題になっており、プレストレスを付与することでひび割れを生じさせないPC構造物においても例外ではない。PC構造物で特に問題となるのが、PC鋼材の腐食であり、その主要因がPCグラウト不良であり、初期のPCグラウト材料の品質と、施工時のグラウトの充填不良により、劣化損傷であるPC鋼材の腐食や破断が発生した。これは1980年代後半から1990年代にかけて顕在化した。しかし、対策が不十分のまま今日に至っている。   In recent years, early deterioration such as cracking, peeling and reinforcing steel corrosion has become a serious problem in concrete structures, and it is no exception in PC structures that do not cause cracking by applying prestress. A particular problem with PC structures is the corrosion of PC steel, the main cause of which is PC grout failure, and deterioration damage due to the quality of the initial PC grout material and poor grout filling during construction. Corrosion and breakage of PC steel occurred. This became apparent from the late 1980s to the 1990s. However, it has reached today with insufficient measures.

一方、最近の非破壊検査法の進歩により、グラウト充填不良部の検査が容易に出来るようになり、グラウト未充填部への再充填が可能となったことに伴って、そのシース内の未充填部へグラウトを再充填する工法が開発されている。その主なものとして、圧入工法(例えば非特許文献1)、真空ポンプを併用した真空グラウト工法がある(例えば非特許文献2、特許文献1)。   On the other hand, recent advances in non-destructive inspection methods have made it easier to inspect grout-filled parts and refill grout-unfilled parts. A method of refilling the grout to the part has been developed. Mainly, there are a press-fitting method (for example, Non-Patent Document 1) and a vacuum grout method using a vacuum pump (for example, Non-Patent Document 2 and Patent Document 1).

圧入工法は、グラウト未充填箇所を推定し、その区間の両端部2箇所に削孔し、削孔された孔間の通気を確認した後、一方の孔を注入用、他方の孔を排出用としてグラウトの加圧注入を行う方法である。また、真空グラウト工法は、グラウト未充填部に排出口とグラウト加圧注入口とを形成し、排出口から真空ポンプによってPC緊張材挿通用シース内を減圧し、その減圧状態を保ちながらグラウト加圧注入口から圧送ポンプによりグラウトを圧入し、排出口からグラウトが排出されるのを待って注入を停止させるものである。
PCグラウトの再注入等補修マニュアル(案) 財団法人鉄道総合技術研究所 川田技報 Vol.23 2004 56頁〜61頁 道路橋PC桁の補修・補強工事 特開2005−23567号公報
The press-fitting method estimates grout unfilled locations, drills holes at two locations on both ends of the section, confirms ventilation between the drilled holes, and then injects one hole and discharges the other. As a method of performing pressure injection of grout. In the vacuum grout method, a discharge port and a grout pressure injection port are formed in the unfilled part of the grout, and the inside of the sheath for inserting the PC tendon is reduced by a vacuum pump from the discharge port, and the grout pressure injection is performed while maintaining the reduced pressure state. The grout is press-fitted by a pressure pump from the inlet, and the injection is stopped after the grout is discharged from the outlet.
PC grout reinfusion repair manual (draft) Railway Technical Research Institute Kawada Technical Report Vol. 23 2004 Pages 56-61 Repair and reinforcement work for road bridge PC girders JP 2005-23567 A

上述した従来の再充填方法では、グラウト加圧注入口及び排出口がグラウト未充填部の端部に近ければ近いほど再充填はより完成度の高いものとすることができるが、現在の非破壊検査方法では、既存のPC緊張材挿通用シース内におけるグラウト未充填部と充填部分との境目を正確に知ることができず、このため、グラウト加圧注入口と排出口との間から外れた両端部分にグラウト未充填部が残るという問題がある。     In the above-described conventional refilling method, the closer the grout pressure inlet and outlet are to the end of the grout unfilled part, the more complete the refilling can be. In the method, the boundary between the unfilled portion of the grout and the filled portion in the existing sheath for inserting the PC tendon cannot be accurately known, and therefore, both end portions separated from between the grout pressurizing inlet and the outlet. There is a problem that a grout unfilled portion remains.

本発明は、上述の如き従来の問題に鑑み、既存のPC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、空気溜りを残さず、より完全な再充填が可能な既設PC構造物におけるケーブルシース内へのグラウト再充填方法の提供を目的としてなされたものである。   In view of the above-described conventional problems, the present invention is an existing PC structure that can be completely refilled without leaving an air pocket in a grout unfilled portion in a sheath for inserting a PC tension member in an existing PC structure. It was made for the purpose of providing a method for refilling grout into a cable sheath of an object.

上述の如き従来の問題を解決し、所期の目的を達成するための請求項1に記載の発明の特徴は、既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、前記グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内のグラウト未充填部に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に耐真空圧容器を、前記排出口に真空ポンプをそれぞれ連通させ、しかる後、該真空ポンプによりグラウト未充填部及び耐真空圧容器内を減圧させつつ前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、排出口からのグラウトの排出を待って該排出口の開閉弁を閉じ、前記耐真空圧容器内へグラウトが吸引されるまで前記グラウト加圧注入装置による加圧を継続させることにある。     In order to solve the above-mentioned conventional problems and achieve the intended purpose, the invention according to claim 1 is characterized in that the grout is not filled in the sheath for inserting the PC tendon in the existing post-tension type PC structure. A grout pressure injection port for injecting grout into the grout unfilled portion and a discharge port for discharging air in the grout unfilled portion are formed in the grout pressure filling device. In the method of refilling the grout into the cable sheath in the existing PC structure in which the grout is pressure-injected by the grout, the grout unfilled portion in the sheath for inserting the PC tension material is also obtained by the grout pressure injection by the grout pressure injecting device A component made of a vacuum pressure-resistant material that branches in advance upwards to the expected air pocket where air can be trapped. A passage is provided, a vacuum pressure vessel is connected to the branch passage, and a vacuum pump is connected to the discharge port, and then the grout pressure is increased while the grout unfilled portion and the vacuum pressure vessel are decompressed by the vacuum pump. The grouting pressurization injection apparatus starts the grouting pressure injection by the injection apparatus, waits for the grouting to be discharged from the discharge opening, closes the opening / closing valve of the discharge opening, and sucks the grout into the vacuum-resistant container. It is to continue pressurization by.

請求項2に記載の発明の特徴は、既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、前記グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内の未充填部分に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に耐真空圧容器を開閉弁を介して連通させるとともに前記排出口に真空ポンプを開閉弁を介して連通させ、しかる後、前記真空ポンプにより未充填部分及び耐真空圧容器内を減圧させ、該減圧度が所定の値に達した時に前記分岐路の開閉弁を閉じて耐真空圧容器を密閉し、前記真空ポンプによる減圧を継続させつつ前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、排出口からのグラウトの排出を待って前記分岐路の開閉弁を開き、前記分岐路内を減圧させることによって、耐真空圧容器内へ空気溜り発生予想部分内の空気及びその周囲のグラウトを耐真空圧容器内に吸引させることにある。   The invention according to claim 2 is characterized in that a grout pressure injection port for injecting grout into the grout unfilled portion in the PC tension material insertion sheath in the existing post-tension type PC structure. And a discharge port for discharging the air in the unfilled portion of the grout, and grout is reintroduced into the cable sheath in the existing PC structure in which grout is pressurized and injected from the grout pressure injection port by a grout pressure injection device. In the filling method, it is communicated upward in advance to an anticipated position of an air pool where air may be trapped in an unfilled portion in the sheath for inserting the PC tendon material even by grout pressure injection by the grout pressure injection device. When a branch path made of a vacuum-resistant material that branches is provided, and a vacuum-pressure vessel communicates with the branch path via an on-off valve Further, a vacuum pump is communicated with the discharge port via an on-off valve, and then the unfilled portion and the inside of the vacuum pressure resistant vessel are depressurized by the vacuum pump, and the branching is performed when the depressurization degree reaches a predetermined value. Close the on-off valve of the passage, seal the vacuum pressure resistant container, start the pressure injection of the grout by the grout pressure injection device while continuing the pressure reduction by the vacuum pump, and wait for the discharge of the grout from the discharge port Opening the on-off valve of the branch path and reducing the pressure inside the branch path is to suck the air in the expected portion of the air accumulation into the vacuum pressure resistant container and the surrounding grout into the vacuum resistant container. .

請求項3に記載の発明の特徴は、既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内のグラウト未充填部に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に、内部を減圧した状態の耐真空圧容器を開閉弁を介して取り付けるとともに前記排出口に真空ポンプを開閉弁を介して連通させ、しかる後、該真空ポンプによりグラウト未充填部及び耐真空圧容器内を減圧させつつ前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、排出口からのグラウトの排出を待って前記分岐路の開閉弁を開くことによって前記分岐路内を減圧させ、空気溜り発生予想部分内の空気及びその周囲のグラウトを耐真空圧容器内に吸引させることにある。   According to a third aspect of the present invention, there is provided a grout pressure injection port for injecting grout into the grout unfilled portion in the sheath for inserting the PC tendon material in the existing post-tension type PC structure. And a discharge port for discharging the air in the unfilled portion of the grout, and grout is reintroduced into the cable sheath in the existing PC structure in which grout is pressurized and injected from the grout pressure injection port by a grout pressure injection device. In the filling method, it is communicated upward in advance to the predicted position of the air pool where air may be trapped in the grout unfilled portion in the PC tension material insertion sheath even by the grout pressure injection by the grout pressure injection device. A branch passage made of a vacuum-resistant material that branches off is provided, and a vacuum-resistant container with a reduced pressure inside is opened in the branch passage. A vacuum pump is connected to the discharge port via an on-off valve and is attached via a valve, and then the grouting by the grouting pressure injection device is performed while the grouting unfilled portion and the vacuum-resistant container are depressurized by the vacuum pump. The pressure in the branch path is reduced by opening the on-off valve of the branch path after waiting for the discharge of the grout from the discharge port, and the air in the expected portion of the air pool and the surrounding grout are reduced. The purpose is to suck into the vacuum-resistant container.

請求項4に記載の発明の特徴は、既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内のグラウト未充填部に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に内部を減圧した状態の耐真空圧容器を開閉弁を介して取り付けるとともに前記排出口に開閉弁を取り付け、然る後、前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、前記排出口からのグラウトが排出されるのを待って、排出口の開閉弁を閉じるとともに前記耐真空圧容器の開閉弁を開くことによって前記分岐路内を減圧させ、空気溜り発生予想部分内の空気及びその周囲のグラウトを耐真空圧容器内に吸引させることにある。   A feature of the invention described in claim 4 is that a grout pressure injection port for injecting grout into the grout unfilled portion in the sheath for inserting the PC tendon material in the existing post-tension type PC structure. And a discharge port for discharging the air in the unfilled portion of the grout, and grout is reintroduced into the cable sheath in the existing PC structure in which grout is pressurized and injected from the grout pressure injection port by a grout pressure injection device. In the filling method, it is communicated upward in advance to the expected position of the air pool where air may be trapped in the grout unfilled portion in the PC tension material insertion sheath even by the grout pressure injection by the grout pressure injection device. A branch passage made of a vacuum-resistant material that branches off is provided, and the vacuum-pressure vessel with the internal pressure reduced is opened and closed in the branch passage. And an opening / closing valve is attached to the discharge port, and then the pressure injection of the grout by the grout pressure injection device is started, and after waiting for the grout to be discharged from the discharge port, the discharge is performed. By closing the outlet on-off valve and opening the on-off valve of the vacuum-resistant container, the inside of the branch passage is depressurized, and the air in the anticipated portion of the air accumulation and the surrounding grout are sucked into the vacuum-resistant container. It is in.

請求項5に記載の発明の特徴は、請求項3又は4の何れか1の請求項の構成に加え、前記耐真空圧容器は、その全部又は1部に内部が透視できる透視可能材料を使用したものを使用し、該耐真空圧容器内を予め減圧した状態に密閉しておき、施工現場において前記耐真空圧容器を、開閉弁を介して前記分岐路に連通させ、該開閉弁を開くことによって前記分岐路内を減圧させることにある。   The feature of the invention described in claim 5 is that, in addition to the configuration of any one of claims 3 and 4, the vacuum resistant container uses a see-through material whose inside can be seen through all or a part thereof. The vacuum-resistant container is sealed in a pre-depressed state, and the vacuum-resistant container is communicated with the branch passage via an on-off valve at the construction site, and the on-off valve is opened. This is to depressurize the inside of the branch path.

請求項6に記載の発明の特徴は、請求項1〜4又は5の何れか1の請求項の構成に加え、前記耐真空圧容器は、合成樹脂又はガラス製の透明な耐圧容器であって、該容器に開閉弁によって開閉される吸排気路を連通させた耐真空圧性の合成樹脂容器を使用することにある。   According to a sixth aspect of the present invention, in addition to the structure of any one of the first to fourth or fifth aspects, the vacuum pressure resistant container is a transparent pressure resistant container made of synthetic resin or glass. Another object of the present invention is to use a vacuum pressure-resistant synthetic resin container in which an intake / exhaust passage opened and closed by an opening / closing valve is connected to the container.

本発明においては、グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内のグラウト未充填部に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に耐真空圧容器を連通させ、この耐真空圧容器内を減圧した状態でグラウト加圧注入装置による加圧注入を行うことにより、従来のグラウト未充填部内の減圧と加圧注入のみでは空気溜りが形成される部分の空気及びその周囲のグラウトが耐真空圧容器内に吸引されることとなり、空気溜りが発生しないグラウト再充填ができる。   In the present invention, in advance toward the predicted position of the air pool where air may be trapped in the grout unfilled portion in the PC tendon insertion sheath even by the grout pressure injection by the grout pressure injection device. A branch passage made of a vacuum pressure-resistant material that communicates and branches is provided, a vacuum pressure vessel is connected to the branch passage, and pressure injection by a grout pressure injection device is performed while the vacuum pressure vessel is decompressed. As a result, the air in the portion where the air pocket is formed and the surrounding grout are sucked into the vacuum pressure resistant container only by the pressure reduction and pressure injection in the conventional unfilled portion of the grout, and the grout is regenerated without the air pool. Can be filled.

また、内部を減圧した状態の耐真空圧容器を開閉弁を介して取り付け、且つ、前記排出口に真空ポンプを連通させ、しかる後、該真空ポンプによりグラウト未充填部及び耐真空圧容器内を減圧させつつ前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、排出口からのグラウトの排出を待って前記分岐路の開閉弁を開くことによって前記分岐路内を減圧させ、空気溜り発生予想部分内の空気を耐真空圧容器内に吸引させるようにしてもよく、この場合には、耐真空圧容器内の減圧状態が工場における管理下によって形成されるため、作業の確実性が担保できる。   In addition, a vacuum-resistant container with a reduced pressure inside is attached via an on-off valve, and a vacuum pump is connected to the discharge port, and then the grout unfilled part and the vacuum-resistant container are filled by the vacuum pump. While the pressure is reduced, the pressure injection of the grout is started by the grout pressure injection device, and the inside of the branch path is decompressed by opening the opening / closing valve of the branch path after waiting for the discharge of the grout from the discharge port, thereby generating an air pocket. The air in the anticipated part may be sucked into the vacuum-resistant container. In this case, the reduced pressure state in the vacuum-resistant container is formed under the control of the factory, so the work reliability is guaranteed. it can.

更に、本発明に使用する耐真空圧容器は、その全部又は1部に内部が透視できる透視可能材料を使用したものを使用し、該耐真空圧容器内を予め減圧した状態に密閉しておき、施工現場において前記耐真空圧容器を、開閉弁を介して前記分岐路に連通させ、該開閉弁を開くことによって前記分岐路内を減圧させるようにすることにより、予め内部を減圧状態にした耐真空圧容器の現場への搬入が容易となり、しかもその容器は再利用することができ経済性が高い。また、空気溜りの除去状況は、耐真空圧容器内へのグラウトの吐出を外部から目視することによって容易に把握することができる。   Furthermore, the vacuum-resistant container used in the present invention is made of a transparent material that can be seen through in its entirety or in one part, and the inside of the vacuum-resistant container is previously sealed in a depressurized state. In addition, the vacuum pressure-resistant container is communicated with the branch path via an on-off valve at the construction site, and the inside of the branch path is decompressed in advance by opening the on-off valve. The vacuum-resistant container can be easily brought into the field, and the container can be reused and is highly economical. Moreover, the removal status of the air pocket can be easily grasped by visually observing the discharge of the grout into the vacuum pressure resistant container.

更に、本発明に使用する耐真空圧容器は、合成樹脂又はガラス製の透明な耐圧容器であって、該容器に開閉弁によって開閉される吸排気路を連通させた耐真空圧性の合成樹脂容器を使用することにより、容器の洗浄、再使用ができ、軽量で運搬が容易で現場における作業性が向上する。   Further, the vacuum pressure resistant container used in the present invention is a transparent pressure resistant container made of synthetic resin or glass, and the vacuum pressure resistant synthetic resin container in which an intake / exhaust passage opened and closed by an on-off valve is connected to the container. By using, the container can be washed and reused, and it is lightweight and easy to transport, improving workability on site.

本発明の実施の形態を、実施例の図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings of the embodiments.

まず、既設PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部を探査する。未充填発生場所としては、PC緊張材の端部定着部付近、先流れ区間(主として下り傾斜部分で発生し、グラウトがシース内にいっぱいにならない状態で流れる部分)、水平部などが発生しやすい。   First, the grout unfilled portion in the PC tendon insertion sheath in the existing PC structure is searched. Unfilled places are likely to occur near the end fixing part of the PC tendon material, the pre-flow section (parts that mainly occur in the downward inclined part and the grout does not fill the sheath), the horizontal part, etc. .

また、PC緊張材挿通用シース内に未充填部がある場合のコンクリート構造体の外観として、水の浸透、シースに沿った湿潤、ひび割れ、遊離石灰が観察されるため、これらの部分を重点的に探査する。   In addition, as the appearance of the concrete structure when there is an unfilled part in the sheath for inserting PC tendon, water penetration, wetting along the sheath, cracks, and free lime are observed, so these parts are emphasized. Exploring.

探査法として次の方法の何れか、或は複数を組み合わせて使用できる。   Any of the following methods or a combination of a plurality of methods can be used as the exploration method.

1.X線透過法
高出力X線発生装置を用いてグラウト充填状態を検査する。画像処理をデジタルX線検査システムと組み合わせることにより精度の高い検査が出来る。しかしこれには、装置が大掛かりとなる、取り扱い上の法的規制がある、検出深さに限界がある、等の問題がある。
1. X-ray transmission method The grout filling state is inspected using a high-power X-ray generator. By combining image processing with a digital X-ray inspection system, high-precision inspection can be performed. However, this has problems such as a large-scale device, legal restrictions on handling, and a limit in detection depth.

2.電磁波レーダー法
電磁波をコンクリート表面から内部に放射し、対象物からの反射波を受信し画像処理する事により位置確認を行う技術。
2. Electromagnetic radar method A technology that confirms the position by radiating electromagnetic waves from the concrete surface into the interior, receiving the reflected waves from the object, and processing the images.

3.広帯域超音波法
広帯域(2.5〜1000kHz)の超音波を一度に発信することで、周波数調整作業が不要となり作業効率が良くなる。一方向からの計測が可能。シースまでのかぶり厚が26cm以内であればグラウト充填探査が可能である。
3. Broadband ultrasonic method By transmitting a broadband (2.5 to 1000 kHz) ultrasonic wave at a time, frequency adjustment work becomes unnecessary and work efficiency is improved. Measurement from one direction is possible. Grout filling exploration is possible if the cover thickness to the sheath is within 26 cm.

4.衝撃弾性波法
衝撃による振動が空隙や鉄筋などに反射した弾性波を測定して、その波形の強弱により内部欠陥を判断する方法。得られた波形をスペクトルイメージングにより、可視化することで比較的容易に充填度を判断できる。
4). Shock elastic wave method This method measures the elastic waves reflected by vibrations from impacts in voids and reinforcing bars, and determines internal defects based on the strength of the waveform. The degree of filling can be determined relatively easily by visualizing the obtained waveform by spectral imaging.

5.磁気探査法
マグネットからPC鋼材に磁界を供給し、破断箇所で生じる磁気変化を検出する方法である。
5). Magnetic exploration method This is a method of detecting a magnetic change that occurs at a fracture location by supplying a magnetic field from a magnet to a PC steel material.

上記の探査法によってグラウト未充填部を特定し、その両端と想定される位置に対応するPC構造物表面にマーキングする。   The grout unfilled portion is identified by the above-described exploration method, and the surface of the PC structure corresponding to the positions assumed to be both ends thereof is marked.

次いで、図1、図2に示すようにPC構造物10の表面から、PC緊張材挿通用シース11内におけるグラウト未充填部12に通じるグラウト加圧注入口13、同未充填部12内の空気を吸引するための排出口14及びグラウト再充填後の空気溜り発生予想位置の上側に通じる分岐口15を削孔によって形成する。   Next, as shown in FIGS. 1 and 2, from the surface of the PC structure 10, the grout pressure injection port 13 leading to the grout unfilled portion 12 in the PC tendon material insertion sheath 11 and the air in the unfilled portion 12 are supplied. A discharge port 14 for suction and a branch port 15 that leads to the upper side of the predicted position of occurrence of air accumulation after refilling grout are formed by drilling.

この削孔は、図1に示すようにグラウト未充填部12が一方向に傾斜している場合には、傾斜の下側の端部近くの側面側にグラウト加圧注入口13を形成し、上側の端部近くの側面側に排出口14を形成する。この場合グラウト再充填後の空気溜り発生予想位置はグラウト未充填部12の前記排出口14より上端部側となるため、分岐口15は、排出口14より上側の端部により近づけた位置の上面側又は側面側とすることが好ましい。   When the grout unfilled portion 12 is inclined in one direction as shown in FIG. 1, this hole is formed with a grout pressure injection port 13 on the side surface near the lower end of the inclination, The discharge port 14 is formed on the side surface near the end of the. In this case, since the expected position of air accumulation after refilling the grout is on the upper end side from the discharge port 14 of the grout unfilled portion 12, the upper surface of the branch port 15 is closer to the end portion above the discharge port 14. It is preferable to set it as the side or the side.

また、グラウト未充填部12が、その中央が低く両端が高い下向き弧状である場合や、水平でその長さが大きい場合には、図2に示すようにグラウト加圧注入口13を中央部分に、排出口14を両端側に形成し、分岐口15は、排出口14より端部側にそれぞれ形成する。   In addition, when the grout unfilled portion 12 is in a downward arc shape whose center is low and both ends are high, or when the length is horizontal and large, as shown in FIG. The discharge port 14 is formed on both ends, and the branch port 15 is formed on the end side from the discharge port 14.

削孔方法としてはコアドリル、ウオータージェットによる方法がある。コアドリルは鋼材損傷の危険がある。それゆえウオータージェットによる削孔方法が望ましく、特許第3388127号公報に示されている装置が使用できる。   As a drilling method, there are a core drill method and a water jet method. Core drills are at risk of steel damage. Therefore, a water jet drilling method is desirable, and the apparatus disclosed in Japanese Patent No. 3388127 can be used.

このようにして各口13,14,15を形成した後、通気を確認するとともに、グラウト未充填部12内をファイバースコープで観察し、ドライか湿潤か、水があるか、鋼線は健全か、錆の発生はあるか、破断しているか等の現状を把握する。水が入っていれば、一番低い位置を削孔して水抜きし、水抜きが困難な場合、グラウト加圧注入口から乾燥空気を送気し、シース内の水分を除去する。   After forming the respective mouths 13, 14, and 15 in this way, the ventilation is confirmed, and the inside of the grout unfilled portion 12 is observed with a fiber scope, and is dry or wet, is there water, is the steel wire healthy? And grasp the current state of whether rust is generated or broken. If water is contained, the lowest position is drilled to drain water, and if it is difficult to drain water, dry air is sent from the grout pressure inlet to remove moisture in the sheath.

次いで、グラウト加圧注入口13にグラウト注入用ホース16を、排出口14に真空吸引ホース17を、分岐口15に真空吸引ホース18をそれぞれ取り付ける。これらのホースとしてはテトロンブレードホースが使用できる。また、取り付けに際してはパテなどで密閉する。   Next, a grout injection hose 16 is attached to the grout pressure injection port 13, a vacuum suction hose 17 is attached to the discharge port 14, and a vacuum suction hose 18 is attached to the branch port 15. Tetron blade hoses can be used as these hoses. In addition, it is sealed with a putty or the like when mounting.

グラウト注入用ホース16はグラウト加圧注入装置20に対し、開閉弁22を介在させて連通させ、排出口14の真空吸引ホース17は真空ポンプ21に開閉弁23を介して連通させる。更に分岐口15の真空吸引ホース18には耐真空圧容器30を開閉弁32を介して連通させる。この耐真空圧容器30には内部の圧力を表示する真空計34を取り付けておく。   The grout injection hose 16 communicates with the grout pressurization injection apparatus 20 through an on-off valve 22, and the vacuum suction hose 17 at the discharge port 14 communicates with the vacuum pump 21 through the on-off valve 23. Further, a vacuum-resistant container 30 is communicated with the vacuum suction hose 18 of the branch port 15 via an opening / closing valve 32. A vacuum gauge 34 that displays the internal pressure is attached to the vacuum pressure vessel 30.

次いで、排出口14の開閉弁23及び耐真空圧容器30の開閉弁32を開け、他のグラウト加圧注入装置20の開閉弁22を閉じて真空ポンプ21を作動させ、グラウト未充填部12内を減圧し、真空計34やホースのつぶれで真空状態を確認する。耐真空圧容器30はグラウト未充填部12に通じているために、共に減圧されるため、真空計34によってグラウト未充填部12内の真空度を知ることができる。   Next, the opening / closing valve 23 of the discharge port 14 and the opening / closing valve 32 of the vacuum pressure resistant container 30 are opened, the opening / closing valve 22 of the other grout pressurizing and injection device 20 is closed, and the vacuum pump 21 is operated. The vacuum state is confirmed by crushing the vacuum gauge 34 or the hose. Since the vacuum-resistant container 30 communicates with the unfilled portion 12 of the grout and is decompressed together, the vacuum gauge 34 can know the degree of vacuum in the unfilled portion 12 of the grout.

所望の真空状態(減圧状態)、具体的にはケージ圧表示で−0.09Mpaに達したことが確認されたら開閉弁22を開くと共にグラウト加圧注入装置20を作動させてグラウト再充填を開始する。このとき真空ポンプ21は作動したままとしておく。これによって減圧状態にあるグラウト未充填部12内にグラウトaが注入され、図3に示すように排出口14まで達するとそこから排出される。この排出口14からのグラウトaの排出が確認されたら、真空ポンプ21の開閉弁23を閉じると共に真空ポンプ21の作動を停止させる。   When it is confirmed that the desired vacuum state (reduced pressure state), specifically, -0.09 Mpa is reached on the cage pressure display, the on-off valve 22 is opened and the grout pressurizing / injecting device 20 is operated to start grout refilling. To do. At this time, the vacuum pump 21 is kept operating. As a result, the grout a is injected into the unfilled grout portion 12 in the decompressed state, and is discharged from the outlet 14 as shown in FIG. When the discharge of the grout a from the discharge port 14 is confirmed, the on-off valve 23 of the vacuum pump 21 is closed and the operation of the vacuum pump 21 is stopped.

グラウト加圧注入装置20からの加圧注入は継続させたままにしておく。このとき耐真空圧容器30内は減圧状態にあるため、図4に示すように排出口14より分岐口15側にある空気が吸引され、この空気と共に排出口周囲に達したグラウトが耐真空圧容器30内に吸引される。耐真空圧容器30内へのグラウトの上昇が確認され、ホース18のつぶれが戻ったら開閉弁32を閉じる。   The pressure injection from the grout pressure injection device 20 is continued. At this time, since the inside of the vacuum pressure resistant container 30 is in a decompressed state, as shown in FIG. 4, the air on the branch port 15 side is sucked from the discharge port 14, and the grout that reaches the periphery of the discharge port together with this air is It is sucked into the container 30. When it is confirmed that the grout has risen into the vacuum-resistant container 30 and the hose 18 has been crushed, the on-off valve 32 is closed.

その後グラウト加圧注入装置20による加圧を0.5Mpa程度に達するまで継続した後、グラウト加圧注入装置20の開閉弁22を閉じ、加圧状態でグラウトを硬化させ、硬化後に非破壊検査により充填確認を行う。   After that, pressurization by the grout pressure injection device 20 is continued until it reaches about 0.5 Mpa, and then the on-off valve 22 of the grout pressure injection device 20 is closed, and the grout is cured in a pressurized state. Check filling.

尚、耐真空圧容器30としては図5に示す構造のものが使用できる。これは透明な合成樹脂又はガラス製の耐圧製容器を使用する。該容器に使用できる合成樹脂材料としては、例えば、アクリル、ポリエチレン、ポリカーボネートがある。   In addition, as the vacuum-resistant container 30, the thing of the structure shown in FIG. 5 can be used. This uses a transparent plastic or glass pressure-resistant container. Examples of the synthetic resin material that can be used for the container include acrylic, polyethylene, and polycarbonate.

耐真空圧容器30は、上面開口型の容器本体30aと、その上面開口を開閉する密閉蓋30bとからなっており、容器本体30aの胴部には内部に連通する吸排気路31が設けられ、この吸排気路31に開閉弁32が設けられている。そして吸排気路31の先端が前述した分岐口15に連通させた真空吸引ホース18の先端を連通させる継ぎ手部33となっている。   The vacuum pressure resistant container 30 includes a top-opening container body 30a and a sealing lid 30b that opens and closes the top opening, and a body portion of the container body 30a is provided with an intake / exhaust passage 31 communicating with the inside. The intake / exhaust passage 31 is provided with an open / close valve 32. The tip of the intake / exhaust passage 31 serves as a joint portion 33 that communicates the tip of the vacuum suction hose 18 communicated with the aforementioned branch port 15.

尚、上述の実施例では、真空ポンプ21によりグラウト未充填部12及び耐真空圧容器30内を減圧させ、該減圧度が所定の値に達した時にグラウト加圧注入装置20によるグラウトの加圧注入を開始させるようにしているが、この他に、真空ポンプ21により未充填部分及び耐真空圧容器30内を減圧させ、該減圧度が所定の値に達した時に耐真空圧容器30の開閉弁32を閉じて耐真空圧容器30を密閉した状態で前記グラウト加圧注入装置20によるグラウトの加圧注入を開始させ、排出口14からのグラウトの排出を待って耐真空圧容器の開閉弁を開き、分岐路内を減圧させるようにしても良い。   In the above-described embodiment, the grout unfilled portion 12 and the vacuum pressure resistant vessel 30 are depressurized by the vacuum pump 21 and when the depressurization degree reaches a predetermined value, the grout pressurizing device 20 pressurizes the grout. In addition to this, in addition to this, the vacuum pump 21 is used to depressurize the unfilled portion and the vacuum pressure resistant container 30 and when the degree of decompression reaches a predetermined value, the vacuum resistant container 30 is opened and closed. With the valve 32 closed and the vacuum pressure resistant vessel 30 sealed, the pressure injection of the grout by the grout pressure injecting device 20 is started, and after waiting for the discharge of the grout from the discharge port 14, the valve for opening and closing the vacuum pressure resistant vessel is started. May be opened to depressurize the inside of the branch path.

更に、上述の各実施例では、耐真空圧容器30内の減圧を、排出口14に連通させた真空ポンプ21によってグラウト未充填部12とともに減圧しているが、この他、耐真空圧容器30内を、現場又は減圧設備のある工場等で予め真空ポンプを使用して空気溜り除去作業に必要な真空度まで減圧しておく。これを前述したPC構造物10上に搬入し、継ぎ手部33に構造物10上に突出している分岐口からの真空吸引ホース18を、気密をもたせた状態に連結する。この状態で前述した真空ポンプ21による減圧及びグラウト加圧注入装置20によるグラウトの加圧注入を行い、排出口14からのグラウトの排出を確認し、真空ポンプ21の開閉弁22を閉じた後、吸排気路31の開閉弁32を開く。これによって排出口14より分岐口14側にある空気が吸引され、この空気と共に排出口周囲に達したグラウトが耐真空圧容器30内に吸引させるようにしてもよい。   Further, in each of the embodiments described above, the reduced pressure in the vacuum-resistant container 30 is reduced together with the grout unfilled portion 12 by the vacuum pump 21 communicated with the discharge port 14. The inside is depressurized in advance to a degree of vacuum necessary for removing air pools using a vacuum pump at the site or a factory with a depressurization facility. This is carried onto the PC structure 10 described above, and the vacuum suction hose 18 from the branch port protruding on the structure 10 is connected to the joint portion 33 in a state of being airtight. In this state, after reducing the pressure by the vacuum pump 21 and the pressure injection of the grout by the grout pressure injection device 20 as described above, confirming the discharge of the grout from the discharge port 14, and closing the on-off valve 22 of the vacuum pump 21, The on-off valve 32 of the intake / exhaust passage 31 is opened. As a result, air on the branch port 14 side is sucked from the discharge port 14, and the grout reaching the periphery of the discharge port together with this air may be sucked into the vacuum-resistant container 30.

更に、前述した従来の圧入工法においても実施することができ、この場合には真空ポンプを使用せず、図1、図2に示す実施例における排出口14に開閉弁23のみを取り付ける。また、耐真空圧容器30は、開閉弁32付のものを使用し、予め所望の真空度に減圧したものを搬入して使用する。   Furthermore, it can also be carried out in the conventional press-fitting method described above. In this case, only the on-off valve 23 is attached to the discharge port 14 in the embodiment shown in FIGS. 1 and 2 without using a vacuum pump. Further, the vacuum pressure resistant vessel 30 is provided with an on-off valve 32, and is used by carrying in a pressure reduced to a desired degree of vacuum in advance.

開閉弁23開いた状態で、グラウト加圧注入装置20によるグラウトの加圧注入を開始させ、排出口14からのグラウトが排出されるのを待って、該排出口14の開閉弁23を閉じるとともに耐真空圧容器30の開閉弁32を開くことによって分岐路内を減圧させ、空気溜り発生予想部分内の空気及びその周囲のグラウトを耐真空圧容器内に吸引させる。   With the on-off valve 23 open, the grout pressurization and injection device 20 starts pressurizing the grout, waits for the grout from the outlet 14 to be discharged, and closes the on-off valve 23 of the outlet 14. By opening the on-off valve 32 of the vacuum pressure resistant container 30, the inside of the branch path is depressurized, and the air and the surrounding grout are sucked into the vacuum pressure resistant container.

尚、上述したように予め真空ポンプ等の減圧設備によって減圧した状態の耐真空圧容器30を使用する場合には、容器毎に圧力計を必要とせず、簡易な容器が使用でき、更に、予め減圧した耐真空圧容器30を搬入して使用できるため、施工現場における減圧作業時間が短縮される。   As described above, when using the vacuum-resistant container 30 that has been previously decompressed by a decompression facility such as a vacuum pump, a simple container can be used without requiring a pressure gauge for each container. Since the decompressed vacuum pressure resistant container 30 can be carried in and used, the decompression time at the construction site is shortened.

本発明方法を実施した例の装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the apparatus of the example which enforced the method of this invention. 同、他の例の装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the apparatus of another example same as the above. 本発明方法におけるグラウト再充填の途中の状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the state in the middle of grout refill in the method of this invention. 同、グラウト再充填完了状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows a grout refill completion state same as the above. 本発明に使用する耐真空圧容器の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the vacuum-resistant container used for this invention.

a グラウト
10 PC構造物
11 PC緊張材挿通用シース
12 グラウト未充填部
13 グラウト加圧注入口
14 排出口
15 分岐口
16 グラウト注入用ホース
17,18 真空吸引ホース
20 グラウト加圧注入装置
21 真空ポンプ
22,23 開閉弁
30 耐真空圧容器
30a 容器本体
30b 密閉蓋
31 吸排気路
32 開閉弁
33 継ぎ手部
34 真空計
a grout 10 PC structure 11 PC tension material insertion sheath 12 grout unfilled portion 13 grout pressure injection port 14 outlet 15 branch port 16 grout injection hose 17, 18 vacuum suction hose 20 grout pressure injection device 21 vacuum pump 22 , 23 On-off valve 30 Vacuum-resistant pressure vessel 30 a Container body 30 b Sealing lid 31 Intake / exhaust passage 32 On-off valve 33 Joint portion 34 Vacuum gauge

Claims (6)

既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、
前記グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内のグラウト未充填部に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に耐真空圧容器を、前記排出口に真空ポンプをそれぞれ連通させ、しかる後、該真空ポンプによりグラウト未充填部及び耐真空圧容器内を減圧させつつ前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、排出口からのグラウトの排出を待って該排出口の開閉弁を閉じ、前記耐真空圧容器内へグラウトが吸引されるまで前記グラウト加圧注入装置による加圧を継続させることを特徴としてなる既設PC構造物におけるケーブルシース内へのグラウト再充填方法。
A grout pressure injection port for injecting grout into the grout unfilled portion and air in the grout unfilled portion are discharged into the grout unfilled portion in the sheath for inserting the PC tendon material in the existing post-tension type PC structure. In the grout refilling method into the cable sheath in the existing PC structure in which the grout pressure injection port is formed and the grout is pressurized and injected by the grout pressure injection device.
The resistance to branching upward in advance to the predicted position of the air reservoir where air may be trapped in the grout unfilled portion in the PC tendon insertion sheath also by the grout pressure injection by the grout pressure injection device. A branch passage made of a vacuum pressure material is provided, and a vacuum pressure vessel is connected to the branch passage, and a vacuum pump is connected to the discharge port, and then the grout unfilled portion and the vacuum pressure vessel are evacuated by the vacuum pump. The pressure injection of the grout by the grout pressure injection device is started while the pressure is reduced, the grout is discharged from the discharge port, the opening / closing valve of the discharge port is closed, and the grout is sucked into the vacuum-resistant pressure vessel. The grout refilling method in the cable sheath in the existing PC structure characterized by continuing the pressurization by the grout pressure injection device until
既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、
前記グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内の未充填部分に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に耐真空圧容器を開閉弁を介して連通させるとともに前記排出口に真空ポンプを開閉弁を介して連通させ、しかる後、前記真空ポンプにより未充填部分及び耐真空圧容器内を減圧させ、該減圧度が所定の値に達した時に前記分岐路の開閉弁を閉じて耐真空圧容器を密閉し、前記真空ポンプによる減圧を継続させつつ前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、排出口からのグラウトの排出を待って前記分岐路の開閉弁を開き、前記分岐路内を減圧させることによって、耐真空圧容器内へ空気溜り発生予想部分内の空気及びその周囲のグラウトを耐真空圧容器内に吸引させることを特徴としてなる既設PC構造物内のグラウト未充填部分の再充填方法。
A grout pressure injection port for injecting grout into the grout unfilled portion and air in the grout unfilled portion are discharged into the grout unfilled portion in the sheath for inserting the PC tendon material in the existing post-tension type PC structure. In the grout refilling method into the cable sheath in the existing PC structure in which the grout pressure injection port is formed and the grout is pressurized and injected by the grout pressure injection device.
Anti-vacuum for branching upward in advance to the expected position of the air pool where air may be trapped in the unfilled portion in the sheath for inserting the PC tendon even by the grouting pressure injection by the grouting pressure injection device A branch passage made of a pressure-sensitive material is provided, and a vacuum-proof container is connected to the branch passage via an on-off valve, and a vacuum pump is connected to the discharge port via the on-off valve. The inside of the filling part and the vacuum pressure resistant container is depressurized, and when the degree of decompression reaches a predetermined value, the branch valve is closed to seal the vacuum resistant container, and the decompression by the vacuum pump is continued. Initiating pressure injection of grout by the grout pressure injection device, waiting for the discharge of grout from the outlet, opening the branch valve, and reducing the pressure in the branch path A method for refilling a grout unfilled portion in an existing PC structure, characterized in that air in a portion where air accumulation is expected to occur in the vacuum-resistant vessel and the surrounding grout are sucked into the vacuum-resistant vessel .
既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、
グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内のグラウト未充填部に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に、内部を減圧した状態の耐真空圧容器を開閉弁を介して取り付けるとともに前記排出口に真空ポンプを開閉弁を介して連通させ、しかる後、該真空ポンプによりグラウト未充填部及び耐真空圧容器内を減圧させつつ前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、排出口からのグラウトの排出を待って前記分岐路の開閉弁を開くことによって前記分岐路内を減圧させ、空気溜り発生予想部分内の空気及びその周囲のグラウトを耐真空圧容器内に吸引させることを特徴としてなる既設PC構造物におけるケーブルシース内へのグラウト再充填方法。
The grout pressure filling inlet for injecting grout into the grout unfilled portion and the air in the grout unfilled portion are discharged into the grout unfilled portion in the sheath for inserting the PC tendon material in the existing post-tension type PC structure. In the method for refilling grout into the cable sheath in the existing PC structure in which the grout pressure injection port is formed and the grout pressure injection device is used to press-inject the grout from the grout pressure injection port.
Anti-vacuum that branches in advance upwards to the predicted position of the occurrence of air pool where air may be trapped in the grout unfilled portion in the sheath for inserting PC tension material also by the grouting pressure injection by the grouting pressure injection device A branch passage made of a pressure-resistant material is provided, and a vacuum pressure-resistant container with a reduced pressure inside is attached to the branch passage through an on-off valve, and a vacuum pump is connected to the discharge port through the on-off valve. In addition, the grouting pressure injection device starts the grouting pressure injection while the grouting pressure filling device is decompressed by the vacuum pump and waits for the grouting from the discharge port to open and close the branch path. By opening the valve, the inside of the branch passage is depressurized, and the air in the anticipated portion of the air pool and the surrounding grout are sucked into the vacuum-resistant container. Grout refilling method into the cable sheath in the existing PC structure formed as a feature.
既設のポストテンション方式PC構造物におけるPC緊張材挿通用シース内のグラウト未充填部に、該グラウト未充填部にグラウトを注入するためのグラウト加圧注入口と該グラウト未充填部内の空気を排出するための排出口とを形成し、前記グラウト加圧注入口からグラウト加圧注入装置によってグラウトを加圧注入する既設PC構造物におけるケーブルシース内へのグラウト再充填方法において、
グラウト加圧注入装置によるグラウト加圧注入によっても前記PC緊張材挿通用シース内のグラウト未充填部に空気が閉じ込められる恐れのある空気溜り発生予想位置に、あらかじめ上方に向かって連通分岐する耐真空圧性の材料からなる分岐路を設け、該分岐路に内部を減圧した状態の耐真空圧容器を開閉弁を介して取り付けるとともに前記排出口に開閉弁を取り付け、然る後、前記グラウト加圧注入装置によるグラウトの加圧注入を開始させ、前記排出口からのグラウトが排出されるのを待って、排出口の開閉弁を閉じるとともに前記耐真空圧容器の開閉弁を開くことによって前記分岐路内を減圧させ、空気溜り発生予想部分内の空気及びその周囲のグラウトを耐真空圧容器内に吸引させることを特徴としてなる既設PC構造物におけるケーブルシース内へのグラウト再充填方法。
A grout pressure injection port for injecting grout into the grout unfilled portion and air in the grout unfilled portion are discharged into the grout unfilled portion in the sheath for inserting the PC tendon material in the existing post-tension type PC structure. In the grout refilling method into the cable sheath in the existing PC structure in which the grout pressure injection port is formed and the grout is pressurized and injected by the grout pressure injection device.
Anti-vacuum that branches in advance upwards to the predicted position of the occurrence of air pool where air may be trapped in the grout unfilled portion in the sheath for inserting PC tension material also by the grouting pressure injection by the grouting pressure injection device A branch passage made of a pressure-resistant material is provided, and a vacuum-resistant container with a reduced pressure inside is attached to the branch passage through an on-off valve and an on-off valve is attached to the discharge port, and then the grout pressure injection The apparatus begins to pressurize the grout by the apparatus, waits for the grout to be discharged from the discharge port, closes the open / close valve of the discharge port, and opens the open / close valve of the vacuum pressure resistant container. In an existing PC structure characterized by sucking air in a portion where air pool is expected to occur and surrounding grout into a vacuum-resistant vessel. Grout re-filling method into the Burushisu.
前記耐真空圧容器は、その全部又は1部に内部が透視できる透視可能材料を使用したものを使用し、該耐真空圧容器内を予め減圧した状態に密閉しておき、施工現場において前記耐真空圧容器を、開閉弁を介して前記分岐路に連通させ、該開閉弁を開くことによって前記分岐路内を減圧させる請求項3又は4の何れか1に記載のPC構造物におけるPC緊張材挿通用シース内へのグラウトの注入方法。   The vacuum-resistant container is made of a transparent material that can be seen through in its entirety or in part, and the vacuum-resistant container is sealed in a state where the vacuum-resistant container has been previously depressurized, and the vacuum-resistant container is used at the construction site. The PC tension member in the PC structure according to any one of claims 3 and 4, wherein a vacuum pressure vessel is communicated with the branch passage via an on-off valve, and the inside of the branch passage is decompressed by opening the on-off valve. Injecting grout into the insertion sheath. 前記耐真空圧容器は、合成樹脂又はガラス製の透明な耐圧容器であって、該容器に開閉弁によって開閉される吸排気路を連通させた耐真空圧性の合成樹脂容器を使用する請求項1〜4又は5のいずれか1に記載のPC構造物におけるPC緊張材挿通用シース内へのグラウトの注入方法。   2. The vacuum pressure resistant container is a transparent pressure resistant container made of synthetic resin or glass, and uses a vacuum pressure resistant synthetic resin container in which an intake / exhaust passage opened and closed by an opening / closing valve is connected to the container. A method for injecting grout into a PC tendon insertion sheath in the PC structure according to any one of -4 or 5.
JP2009069584A 2009-03-23 2009-03-23 Method for refilling inside of cable sheath of existing prestressed concrete (pc) structure with grout Pending JP2010222809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069584A JP2010222809A (en) 2009-03-23 2009-03-23 Method for refilling inside of cable sheath of existing prestressed concrete (pc) structure with grout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069584A JP2010222809A (en) 2009-03-23 2009-03-23 Method for refilling inside of cable sheath of existing prestressed concrete (pc) structure with grout

Publications (1)

Publication Number Publication Date
JP2010222809A true JP2010222809A (en) 2010-10-07

Family

ID=43040293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069584A Pending JP2010222809A (en) 2009-03-23 2009-03-23 Method for refilling inside of cable sheath of existing prestressed concrete (pc) structure with grout

Country Status (1)

Country Link
JP (1) JP2010222809A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002056A (en) * 2011-06-13 2013-01-07 Ps Mitsubishi Construction Co Ltd Corrosion suppressing method for pc tendon
JP2013002055A (en) * 2011-06-13 2013-01-07 Ps Mitsubishi Construction Co Ltd Corrosion suppressing method for pc tendon
JP2013241758A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into cavity inside pc tendon insertion sheath in existing pc structure
JP2013241760A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into cavity inside sealed pc tendon insertion sheath in existing pc structure
JP2013241762A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for re-injecting grout into grout-unfilled cavity inside pc tendon insertion sheath
JP2013241761A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into cavity inside sealed pc tendon insertion sheath in existing pc structure
JP2013241759A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into pc tendon fixing portion side sheath end portion having air permeability at pc tendon fixing portion in existing pc structure
JP2013249638A (en) * 2012-05-31 2013-12-12 Ps Mitsubishi Construction Co Ltd Method for re-injecting grout into grout unfilled cavity inside pc tendon insertion sheath
JP2013249637A (en) * 2012-05-31 2013-12-12 Ps Mitsubishi Construction Co Ltd Method for re-injecting grout into grout unfilled cavity inside pc tendon insertion sheath
JP2014062402A (en) * 2012-09-21 2014-04-10 Ps Mitsubishi Construction Co Ltd Hose connection device for grout reinjection
JP2014105527A (en) * 2012-11-29 2014-06-09 Makoto Narui Method of refilling grout into grout-unfilled cavity in sheath of existing pc structure
WO2016050979A1 (en) * 2014-10-03 2016-04-07 Vsl International Ag Tendons grouting with recirculation
JP2017206418A (en) * 2016-05-19 2017-11-24 デンカ株式会社 PC grout and PC grout injection method
KR102145129B1 (en) * 2019-09-17 2020-08-14 주식회사 후레씨네코리아 Method for repairing grout of tendon tube of post-tensioned structures
KR20200132527A (en) 2019-05-17 2020-11-25 컨텍이앤씨 주식회사 Method of filling construction of Grout Using Differencial Head Where in Sheath Tube of Post-Tension Bridge
KR102285578B1 (en) * 2020-11-17 2021-08-04 김동완 Repair method for defective grouting filling of external steel wire sheath pipe for PSC bridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023567A (en) * 2003-06-30 2005-01-27 Japan Highway Public Corp Prestressed concrete grout reinjection method
JP2006144492A (en) * 2004-11-24 2006-06-08 Anderson Technology Kk Grouting construction method into cable sheath including vacuum exhaustion process in pc structure
JP2008285950A (en) * 2007-05-21 2008-11-27 Makoto Narui Grouting method into prestressed concrete tendon insertion sheath in prestressed concrete structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023567A (en) * 2003-06-30 2005-01-27 Japan Highway Public Corp Prestressed concrete grout reinjection method
JP2006144492A (en) * 2004-11-24 2006-06-08 Anderson Technology Kk Grouting construction method into cable sheath including vacuum exhaustion process in pc structure
JP2008285950A (en) * 2007-05-21 2008-11-27 Makoto Narui Grouting method into prestressed concrete tendon insertion sheath in prestressed concrete structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002056A (en) * 2011-06-13 2013-01-07 Ps Mitsubishi Construction Co Ltd Corrosion suppressing method for pc tendon
JP2013002055A (en) * 2011-06-13 2013-01-07 Ps Mitsubishi Construction Co Ltd Corrosion suppressing method for pc tendon
JP2013241758A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into cavity inside pc tendon insertion sheath in existing pc structure
JP2013241760A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into cavity inside sealed pc tendon insertion sheath in existing pc structure
JP2013241762A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for re-injecting grout into grout-unfilled cavity inside pc tendon insertion sheath
JP2013241761A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into cavity inside sealed pc tendon insertion sheath in existing pc structure
JP2013241759A (en) * 2012-05-18 2013-12-05 Ps Mitsubishi Construction Co Ltd Method for injecting rust-proofing agent aqueous solution into pc tendon fixing portion side sheath end portion having air permeability at pc tendon fixing portion in existing pc structure
JP2013249637A (en) * 2012-05-31 2013-12-12 Ps Mitsubishi Construction Co Ltd Method for re-injecting grout into grout unfilled cavity inside pc tendon insertion sheath
JP2013249638A (en) * 2012-05-31 2013-12-12 Ps Mitsubishi Construction Co Ltd Method for re-injecting grout into grout unfilled cavity inside pc tendon insertion sheath
JP2014062402A (en) * 2012-09-21 2014-04-10 Ps Mitsubishi Construction Co Ltd Hose connection device for grout reinjection
JP2014105527A (en) * 2012-11-29 2014-06-09 Makoto Narui Method of refilling grout into grout-unfilled cavity in sheath of existing pc structure
WO2016050979A1 (en) * 2014-10-03 2016-04-07 Vsl International Ag Tendons grouting with recirculation
JP2017206418A (en) * 2016-05-19 2017-11-24 デンカ株式会社 PC grout and PC grout injection method
KR20200132527A (en) 2019-05-17 2020-11-25 컨텍이앤씨 주식회사 Method of filling construction of Grout Using Differencial Head Where in Sheath Tube of Post-Tension Bridge
KR102145129B1 (en) * 2019-09-17 2020-08-14 주식회사 후레씨네코리아 Method for repairing grout of tendon tube of post-tensioned structures
KR102285578B1 (en) * 2020-11-17 2021-08-04 김동완 Repair method for defective grouting filling of external steel wire sheath pipe for PSC bridge

Similar Documents

Publication Publication Date Title
JP2010222809A (en) Method for refilling inside of cable sheath of existing prestressed concrete (pc) structure with grout
JP6098009B2 (en) Method of refilling grout into grout unfilled cavity in sheath of existing PC structure
CN101503881B (en) Method for reinforcing underwater structure by fiber-reinforced composite material grid ribs
CN104074368B (en) Concrete structure reinforcing method, self-anchored prestress assembly, assembled tensioning assembly
CN105352884B (en) Test the experimental method and component of concrete and coal, rock or concrete adhesion strength
CN101393136B (en) Post-tensioned concrete structure pore squeezing quality detection method
CN105604344B (en) A kind of reinforcement means for having crack interior wall
JP5074118B2 (en) Method of injecting filling material into concrete structure, and injector used for injection method
JP2011006983A (en) Repair method for cross-section of concrete structure
JP2017156247A (en) Inspection frame and non-destructive inspection device
JP2011021463A (en) Injection method for pc grout
JP4982666B2 (en) Method of injecting grout into sheath for inserting PC tendon in PC structure
CN108951608A (en) Reinforce Diaphragm Wall Wharf underwater concrete structure construction engineering method
JP2014152447A (en) Small diameter corrosion-resistant ferroconcrete stake
KR101284618B1 (en) Dry way injection grouting method for concrete structure in water
JP5474900B2 (en) Method for cleaning voids in concrete slabs
KR101503816B1 (en) Vacuum grouting method for filling post-tensioned concrete grout in sheath tube of post-tensioned bridge
KR102043390B1 (en) System for detecting grouting defection of psc (pre stressed concrete) bridge using power shutdown apparatus, and method for the same
JP6480672B2 (en) Concrete frame reinforcement method for water supply equipment
CN109750795B (en) Grouting sleeve with detection pipe and grouting fullness detection and slurry supplementing method thereof
JP5861964B2 (en) Method for confirming rust prevention effect by injection of aqueous solution of rust inhibitor in grout unfilled cavity
JP6144541B2 (en) Grout reinjection method and cap member
JP4221674B2 (en) Regeneration repair method in the ground anchor method
CN204112596U (en) Self-anchoring type prestressing force assembly, assembling stretch-draw assembly
CN104554650B (en) A kind of very fast peace benefit technology

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120229