JP2010222723A - Flameproof fiber bundle and method for producing carbon fiber - Google Patents

Flameproof fiber bundle and method for producing carbon fiber Download PDF

Info

Publication number
JP2010222723A
JP2010222723A JP2009069580A JP2009069580A JP2010222723A JP 2010222723 A JP2010222723 A JP 2010222723A JP 2009069580 A JP2009069580 A JP 2009069580A JP 2009069580 A JP2009069580 A JP 2009069580A JP 2010222723 A JP2010222723 A JP 2010222723A
Authority
JP
Japan
Prior art keywords
fiber bundle
producing
oxidizing gas
heat treatment
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009069580A
Other languages
Japanese (ja)
Inventor
Eiji Fujioka
英治 藤岡
Tatsuya Nakatani
達也 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009069580A priority Critical patent/JP2010222723A/en
Publication of JP2010222723A publication Critical patent/JP2010222723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a flameproof fiber bundle capable of providing a carbon fiber bundle having few structural defects in a single fiber in a method for producing the carbon fiber bundle; and to provide the method for producing the carbon fiber bundle capable of achieving the stabilization of the strength at the production of the carbon fiber bundle, especially the stabilization of the strength at the start of the production. <P>SOLUTION: The method for producing the flameproof fiber bundle by heating a polyacrylonitrile-based fiber bundle having a fiber fineness of 100-30,000 dtex and a number of filaments of 500-70,000 in a heat treating furnace in which an oxidizing gas is circulated in an oxidizing atmosphere at 200-300°C. The method includes: circulating the oxidizing gas through a filtering device which has a filter medium unit having an aggregate in which 97-100% by volume of ceramic particles or metal particles have a particle diameter of 2-80 mm, and packed in the interior thereof, and which is installed in the interior of the heat-treating furnace and/or the circulating duct part of the heat-treating furnace. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭素繊維製造方法において強度が安定した炭素繊維を与える耐炎化繊維を製造可能な、耐炎化繊維の製造方法である。   The present invention is a method for producing a flame-resistant fiber capable of producing a flame-resistant fiber that gives a carbon fiber having a stable strength in the carbon fiber production method.

炭素繊維束を構成する単繊維の構造的欠陥が少ない炭素繊維を補強材として用いれば、力学的性質の優れたコンポジットが得られることが知られている。このような、単繊維の構造的欠陥が少ない炭素繊維束を提供するために、様々な技術開発が行われている。   It is known that a composite having excellent mechanical properties can be obtained by using, as a reinforcing material, a carbon fiber having few structural defects of a single fiber constituting a carbon fiber bundle. In order to provide such a carbon fiber bundle with few structural defects of a single fiber, various technical developments are performed.

かかる技術の一つとして、炭素繊維製造の工程で用いられる耐炎化炉において、酸化性気体中に含まれる粉塵等を除去することにより、最終的に単繊維の構造的欠陥が少ない炭素繊維束を提供することが提案されている。例えば、目びらき1μm以下の焼結金属フィルターを用いて耐炎化炉に送風する空気をろ過し、清浄化する方法が提案されている(例えば 特許文献1)。しかしながら、本方法では、ホコリ収集による圧損が増えて耐炎化炉内の循環風速変動が起こりうるため条件のコントロールが容易ではない。また燒結金属フィルターは、熱により変形する可能性が高く、変形により目びらきが変化するため、メンテナンスが煩雑となる。   As one of such technologies, a carbon fiber bundle having few structural defects of single fibers is finally obtained by removing dust contained in the oxidizing gas in a flameproofing furnace used in the process of carbon fiber production. Proposed to provide. For example, a method has been proposed in which air blown to a flameproofing furnace is filtered and cleaned using a sintered metal filter of 1 μm or less (for example, Patent Document 1). However, in this method, the pressure loss due to dust collection increases, and fluctuations in the circulating wind speed in the flameproofing furnace can occur, so it is not easy to control the conditions. In addition, the sintered metal filter is highly likely to be deformed by heat, and the glazing changes due to the deformation, so that maintenance becomes complicated.

また、同目的の別の技術として、ストランド由来のケバや粉末等の異物が蓄積し、耐炎化繊維を汚染するようになることを防ぐため、熱風循環路42内に金網等の異物除去手段を設けることが考えられる。炭素繊維製造の工程で用いられる耐炎化炉において熱風循環炉内風量を熱風風速センサーで検出し、前記検出信号の値を基準にして制御部で熱風循環手段の出力制御信号に転換し、出力制御信号で熱風循環手段の出力を制御して熱風循環手段の送風量を一定に保ち、また金網、パンチングプレート等の多孔質板などを用いて炉内異物を除去する方法が提案されている(例えば 特許文献2)。しかしながら、熱風循環送風量を一定に保つために熱風循環手段であるファンの出力を制御する方法は、金網部又はパンチングプレートが詰まることにより極端に圧損が発生したときに、ファンの回転数を制御して風速一定に保つことは現実的には難しいと考えられる。   Further, as another technique for the same purpose, in order to prevent foreign matter such as strands and powder derived from strands from accumulating and contaminating the flameproof fiber, foreign matter removal means such as a wire mesh is provided in the hot air circulation path 42. It is conceivable to provide it. In the flameproofing furnace used in the carbon fiber manufacturing process, the air volume inside the hot air circulating furnace is detected by the hot air speed sensor, and the control unit converts the detected air signal into an output control signal of the hot air circulating means based on the value of the detection signal, and output control. A method has been proposed in which the output of the hot air circulating means is controlled by a signal to keep the air blowing amount of the hot air circulating means constant, and foreign matter in the furnace is removed using a porous plate such as a wire mesh or a punching plate (for example, Patent Document 2). However, the method of controlling the output of the fan, which is the hot air circulation means, to keep the hot air circulation air flow constant is to control the rotation speed of the fan when extreme pressure loss occurs due to clogging of the metal mesh part or punching plate. Therefore, it is practically difficult to keep the wind speed constant.

特開昭58−220821号公報Japanese Patent Laid-Open No. 58-220821 特開2006−57222号公報JP 2006-57222 A

そこで本発明の課題は、従来技術の上述した問題点を解決し、炭素繊維束の製造方法において、耐炎化炉内に異物が発生または混入したとしても効率的に除去することができ、上記背景技術に述べた問題も生じない製造方法を得ることを目的とする。かかる製造方法によれば、たとえ耐炎化炉内に異物が発生または混入したとしても、単繊維の構造的欠陥が少ない炭素繊維束を提供することが可能となることが期待できる。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and in the carbon fiber bundle manufacturing method, even if foreign matter is generated or mixed in the flameproofing furnace, it can be efficiently removed, and the above background The object is to obtain a production method that does not cause the problems described in the technology. According to this manufacturing method, it can be expected that a carbon fiber bundle with few structural defects of single fibers can be provided even if foreign matter is generated or mixed in the flameproofing furnace.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1) 糸条繊度1000〜30000dtex、フィラメント数500〜70000のポリアクリロニトリル系繊維束を、酸化性気体を循環する熱処理炉内で酸化性雰囲気下で200〜300℃で加熱する耐炎化繊維束の製造方法であって、前記熱処理炉内(前記の、酸化性雰囲気下で200〜300℃で加熱することで耐炎化繊維束を得る熱処理炉のことを耐炎化炉とも記す。以下同じ)及び/または前記熱処理炉の循環ダクト部に体積基準で97〜100%が粒径2mm〜80mmであるセラミック粒又は金属粒の集合体をその内部に充填した濾材ユニットを有する濾過装置が設置され、該濾過装置を通して酸化性気体を循環させる耐炎化繊維束の製造方法。
The present invention employs the following means in order to solve such problems. That is,
(1) A flame-resistant fiber bundle in which a polyacrylonitrile fiber bundle having a yarn fineness of 1000 to 30000 dtex and a filament number of 500 to 70000 is heated at 200 to 300 ° C. in an oxidizing atmosphere in a heat treatment furnace in which an oxidizing gas is circulated. It is a manufacturing method, Comprising: In the said heat processing furnace (The heat processing furnace which obtains a flame-resistant fiber bundle by heating at 200-300 degreeC by said oxidizing atmosphere is also described as a flame-resistant furnace. Alternatively, a filtration device having a filter medium unit in which an aggregate of ceramic particles or metal particles having a particle size of 2 to 80 mm on a volume basis is installed in the circulation duct portion of the heat treatment furnace is installed. A method for producing a flame-resistant fiber bundle in which an oxidizing gas is circulated through an apparatus.

(2) 前記濾材ユニットの内部に充填された前記集合体がアルミナ、鉄、アルミニウム、及び、ステンレスからなる群より選ばれる少なくとも1種の材質から形成された前記(1)に記載の耐炎化繊維束の製造方法。   (2) The flameproof fiber according to (1), wherein the aggregate filled in the filter medium unit is formed of at least one material selected from the group consisting of alumina, iron, aluminum, and stainless steel. A method of manufacturing a bundle.

(3) 前記濾材ユニットの内部に充填された前記集合体の総表面積が、前記熱処理炉の酸化性気体の流れの方向に直交する断面積の7〜600倍である前記(1)または(2)に記載の耐炎化繊維束の製造方法。   (3) The above (1) or (2), wherein a total surface area of the aggregate filled in the filter medium unit is 7 to 600 times a cross-sectional area perpendicular to the direction of the oxidizing gas flow in the heat treatment furnace. ) For producing a flame-resistant fiber bundle.

(4) 前記濾材ユニットを前記酸化性気体が通過するのに要する時間が0.15〜
1.0秒である前記(1)〜(3)のいずれかに記載の耐炎化繊維束の製造方法。
(4) The time required for the oxidizing gas to pass through the filter medium unit is 0.15 to 0.15.
The method for producing a flame-resistant fiber bundle according to any one of (1) to (3), which is 1.0 seconds.

(5) 前記熱処理炉の酸化性気体の流れの方向に直交する断面の各位置における前記酸化性気体の風速のばらつきが、その平均に対し±20%以内である前記(1)〜(4)のいずれかに記載の耐炎化繊維束の製造方法。   (5) Said (1)-(4) whose dispersion | variation in the wind speed of the said oxidizing gas in each position of the cross section orthogonal to the direction of the flow of the oxidizing gas of the said heat treatment furnace is less than +/- 20% with respect to the average The manufacturing method of the flame-resistant fiber bundle in any one of.

(6) 前記循環ダクト内に、前記濾過装置の上流側となる位置にヒーターが設置されている前記(1)〜(5)のいずれかに記載の耐炎化繊維束の製造方法。   (6) The method for producing a flameproof fiber bundle according to any one of (1) to (5), wherein a heater is installed in the circulation duct at a position upstream of the filtration device.

(7) 前記循環ダクトにバイパスラインが設けられており、そのバイパスラインに濾過装置と循環ファンが設けられていることを特徴とする前記(1)〜(6)のいずれかに記載の耐炎化繊維束の製造方法。   (7) The flame resistance according to any one of (1) to (6), wherein a bypass line is provided in the circulation duct, and a filtration device and a circulation fan are provided in the bypass line. A method of manufacturing a fiber bundle.

(8) 前記(1)〜(7)のいずれかに記載の製造方法で得られた耐炎化繊維束を、不活性雰囲気下300〜3000℃で焼成する炭素繊維の製造方法。   (8) A method for producing carbon fibers, wherein the flame-resistant fiber bundle obtained by the production method according to any one of (1) to (7) is fired at 300 to 3000 ° C. in an inert atmosphere.

本発明によれば、直径2〜50mmのセラミック又は金属の集合体をその内部に充填した濾過装置を用いて耐炎化炉内の粉塵を連続的に除去することにより、単繊維の構造的欠陥が少ない炭素繊維束を提供することが可能な耐炎化繊維束を得ることができ、たとえ耐炎化炉内に異物が発生または混入したとしても、炭素繊維束の強度を低下を抑制し安定して維持することができる。また、該製造方法を適用することにより、耐炎化炉内の風速を一定に保つことができ、防災面においても問題を起こすことなく生産することができる。   According to the present invention, the structural defect of the single fiber is removed by continuously removing the dust in the flameproofing furnace using a filtration device filled with a ceramic or metal aggregate having a diameter of 2 to 50 mm. A flame-resistant fiber bundle capable of providing a small number of carbon fiber bundles can be obtained, and even if foreign matter is generated or mixed in the flame-proofing furnace, the strength of the carbon fiber bundle is suppressed and maintained stably. can do. Moreover, by applying this manufacturing method, the wind speed in a flame-resistant furnace can be kept constant, and it can produce without causing a problem also in a disaster prevention aspect.

また、このような異物の混入可能性が比較的高い、炭素繊維束の生産スタート時に、本発明を適用することにより強度安定化が短時間で図ることができる。   Moreover, strength stabilization can be achieved in a short time by applying the present invention at the start of production of carbon fiber bundles where the possibility of mixing such foreign substances is relatively high.

本発明で用いられる耐炎化炉の一例を示す概略摸式図である。It is a schematic model diagram which shows an example of the flameproofing furnace used by this invention. 本発明で用いられる濾材ユニットの一例を示す概略摸式図である。It is a schematic model diagram which shows an example of the filter medium unit used by this invention. 本発明で用いられる耐炎化炉の他の一例を示す概略摸式図である。It is a schematic model diagram which shows another example of the flameproofing furnace used by this invention. 本発明で用いられる耐炎化炉の他の一例を示す概略摸式図である。It is a schematic model diagram which shows another example of the flameproofing furnace used by this invention. 比較例で用いられる耐炎化炉の一例を示す概略摸式図である。It is a schematic model diagram which shows an example of the flameproofing furnace used by a comparative example. 比較例で用いられる耐炎化炉の一例を示す概略摸式図である。It is a schematic model diagram which shows an example of the flameproofing furnace used by a comparative example. 比較例で用いられるフィルターの一例を示す概略模式図である。It is a schematic diagram which shows an example of the filter used by a comparative example.

本発明では、ポリアクリロニトリル系繊維束を、酸化性気体を循環する熱処理炉内で酸化性雰囲気下で、複数本所定の間隔をおいて併走させ、熱処理を行い耐炎化繊維束を製造する。本発明が対象とするポリアクリロニトリル系繊維束1本の糸条の繊度は1000〜30000dtexである。1000dtex未満では本発明を適用しても強度改善が難しく、また、30000dtexを越えると、糸通過量が多いことから熱処理炉内粉塵発生量が増えることにより、生産中セラミック粒又は金属粒の集合体において粉塵が詰まることにより、粉塵除去などのメンテナンスを頻繁に実施する必要がある。好ましくは1500〜20000dtexであることが好ましい。なお、ポリアクリロニトリル系繊維束の糸条の繊度は、糸条が弛まないようにしながらN数5で糸長10mをサンプリングして採取した糸条重量の1mあたりの平均値を示す。   In the present invention, a plurality of polyacrylonitrile fiber bundles are allowed to run in parallel at a predetermined interval in an oxidizing atmosphere in a heat treatment furnace in which an oxidizing gas is circulated, and heat treatment is performed to produce a flameproof fiber bundle. The fineness of a single polyacrylonitrile fiber bundle targeted by the present invention is 1000 to 30000 dtex. If it is less than 1000 dtex, it is difficult to improve the strength even if the present invention is applied. If it exceeds 30000 dtex, the amount of dust passing through the heat treatment furnace increases due to the large amount of yarn passing through. Therefore, it is necessary to frequently perform maintenance such as dust removal due to clogging. Preferably it is 1500-20000 dtex. In addition, the fineness of the yarn of the polyacrylonitrile fiber bundle indicates an average value per 1 m of the yarn weight obtained by sampling the yarn length of 10 m with N number of 5 while preventing the yarn from loosening.

また、本発明に用いるポリアクリロニトリル系繊維束は、1本の糸条のフィラメント数500〜70000である。フィラメント数が500未満ではフィラメント数が少なく、欠陥のある単糸の割合が増える可能性があるため、本発明を適用しても強度改善が難しく、また70000より多くなると、熱処理炉内粉塵発生量が増えることにより、生産中セラミック粒又は金属粒の集合体において粉塵が詰まることにより、粉塵除去などのメンテナンスを頻繁に実施する必要が生じるためである。フィラメント数が1000〜60000本であることがより好ましい。   Moreover, the polyacrylonitrile fiber bundle used for this invention is the filament number 500-70000 of one thread | yarn. If the number of filaments is less than 500, the number of filaments is small and the proportion of defective single yarns may increase. Therefore, it is difficult to improve the strength even if the present invention is applied. This is because during the production, dust is clogged in the aggregate of ceramic grains or metal grains, and thus maintenance such as dust removal needs to be frequently performed. The number of filaments is more preferably 1000 to 60000.

本発明の耐炎化繊維束の製造方法において同時に処理されるポリアクリロニトリル系繊維束の糸条の本数については特に限定されるものではないが、10〜2000本であることが望ましい。10本未満の場合、原糸起因で生成する粉塵量が少ないため、本願を適用するまでもなく、また2000本を越えると逆に粉塵量が多くなることにより、濾過装置への目詰まりが顕著となりプロセスが安定しない場合がある。かかる点から、より好ましくは20〜1500本である。   The number of yarns of the polyacrylonitrile fiber bundle that is simultaneously processed in the method for producing a flame resistant fiber bundle of the present invention is not particularly limited, but is preferably 10 to 2000. If the number is less than 10, the amount of dust generated due to the raw yarn is small, so it is not necessary to apply the present application. On the other hand, if the number exceeds 2000, the amount of dust increases. The process may not be stable. From this point, more preferably 20 to 1500.

本発明の耐炎化繊維束の製造方法において糸条の走行速度は、特に限定されるものではないが、0.5〜40m/分であることが望ましい。0.5m/分より遅いと耐炎化炉内を通過する時間が長くなることにより、本発明を適用したとしても炉内に舞っている微量の粉塵が走行糸に付着して、ローラーなどの圧着により走行糸に欠陥をつくり強度低下する場合があり、また、40m/分より速ければ、糸切れ処置に対応することが困難な場合があり、生産管理の難易度が高くなることから好ましくない。かかる観点から、1.0〜30m/分であれば、より好ましい。   In the method for producing a flameproof fiber bundle of the present invention, the running speed of the yarn is not particularly limited, but is preferably 0.5 to 40 m / min. If it is slower than 0.5 m / min, the time required to pass through the flameproofing furnace becomes longer, so that even if the present invention is applied, a small amount of dust floating in the furnace adheres to the running yarn, and pressure bonding such as a roller. May cause a defect in the running yarn and reduce the strength, and if it is faster than 40 m / min, it may be difficult to cope with the yarn breakage treatment, and the difficulty of production management becomes high, which is not preferable. From this viewpoint, 1.0 to 30 m / min is more preferable.

本発明の耐炎化繊維束の製造方法において熱処理炉の処理温度は200〜300℃である。200℃未満では熱処理が不十分なため高温炉にて糸切れが発生し、300℃を越えると走行糸が蓄熱して暴走反応を起こし火災発生するためである。好ましくは220〜290℃である。   In the method for producing a flameproof fiber bundle of the present invention, the treatment temperature of the heat treatment furnace is 200 to 300 ° C. If the temperature is lower than 200 ° C., the heat treatment is insufficient, so that yarn breakage occurs in a high-temperature furnace. If the temperature exceeds 300 ° C., the running yarn accumulates heat and causes a runaway reaction, resulting in a fire. Preferably it is 220-290 degreeC.

本発明の耐炎化繊維束の製造方法に適用する熱処理炉及び熱処理炉の循環ダクト部の材質は上記処理温度に耐えられるものであれば、特に限定されるものではないが、金属粉塵を発生し難いことからステンレス鋼(SUS)が望ましい。   The material of the heat treatment furnace and the circulation duct part of the heat treatment furnace applied to the method for producing a flame resistant fiber bundle of the present invention is not particularly limited as long as it can withstand the above treatment temperature, but generates metal dust. Stainless steel (SUS) is desirable because it is difficult.

本発明の耐炎化繊維束の製造方法では、前記熱処理炉内及び/または前記熱処理炉の循環ダクト部に濾過装置が設置され、該濾過装置を通して酸化性気体を循環させる。該濾過装置内の濾材ユニットには、粒径の範囲が2mm〜80mmの大きさのセラミック粒又は金属粒の集合体がその内部に全粒子中の体積基準で97〜100%の割合で充填されている。セラミック粒又は金属粒の形状としては、空隙を確保する点から球であることが好ましい。粒径が2mmより小さい粒子が、全粒子中で体積基準で3%を超えると、熱処理炉内粉塵が集合体に堆積した際圧損を受けやすく風速が下がり防災上危険になる。また、粒径が80mmより大きい粒子が、全粒子中で体積基準で3%を超えると、炉内粉塵を捕集しにくく、濾過効果が発揮できない。粒径のより好ましい範囲は3mm〜30mmである。また、該範囲であれば粒径の異なった集合体を混合しても構わない。なお、ここでいう粒径とは、(i) 体積同等球の直径を代表径とし、(ii) 個別粒子の径を表すものとする。   In the flameproof fiber bundle manufacturing method of the present invention, a filtration device is installed in the heat treatment furnace and / or in a circulation duct portion of the heat treatment furnace, and an oxidizing gas is circulated through the filtration device. The filter medium unit in the filtration device is filled with an aggregate of ceramic particles or metal particles having a particle size range of 2 mm to 80 mm in a proportion of 97 to 100% based on the volume of all particles. ing. The shape of the ceramic grains or metal grains is preferably a sphere from the viewpoint of securing a void. If particles with a particle size of less than 2 mm exceed 3% on the basis of the volume of all particles, when the dust in the heat treatment furnace accumulates on the aggregate, it tends to be subject to pressure loss and the wind speed is lowered, which is dangerous for disaster prevention. Moreover, when the particle size of particles larger than 80 mm exceeds 3% on a volume basis in all particles, it is difficult to collect the dust in the furnace, and the filtration effect cannot be exhibited. A more preferable range of the particle diameter is 3 mm to 30 mm. Moreover, as long as it is in this range, aggregates having different particle sizes may be mixed. In addition, the particle diameter here means (i) the diameter of a volume equivalent sphere as a representative diameter, and (ii) the diameter of individual particles.

前記濾材ユニットに充填されたセラミック粒又は金属粒の集合体がアルミナや鉄、アルミニウム、ステンレス等耐熱性に優れた物質が好ましく用いることができるが、腐食に強いという観点からステンレスが、好ましく、粉塵の主成分であるシリカの捕集だけでなくシリカ発生源となるシリコンを吸着して粉塵発生を抑えることができるという観点ではシリコン吸着に優れたアルミナを用いるのが好ましい。尚、濾材ユニット以外にシリコン吸着を目的としてハニカム状、発泡状、パウダー状、フィルター状のアルミナおよび/またはセラミックを熱処理炉内に設置することも好ましい。   As the aggregate of ceramic particles or metal particles filled in the filter medium unit, a material having excellent heat resistance such as alumina, iron, aluminum, and stainless steel can be preferably used, but stainless steel is preferable from the viewpoint of being resistant to corrosion, and dust. From the viewpoint of not only collecting silica, which is the main component, but also adsorbing silicon as a silica generation source to suppress dust generation, it is preferable to use alumina that is excellent in silicon adsorption. In addition to the filter medium unit, it is also preferable to install honeycomb-like, foam-like, powder-like, or filter-like alumina and / or ceramic in a heat treatment furnace for the purpose of silicon adsorption.

前記濾材ユニットの内部に充填されたセラミック粒又は金属粒の集合体の表面積が、前記熱処理炉の酸化性気体の流れの方向に直交する断面積の7〜600倍であることが望ましい。7倍を下回ると十分粉塵が取れないため効果を発揮しない場合がある。逆に600倍を越えると圧損を受けやすく熱処理炉内風速が下がり防災上危険である場合がある。より好ましくは10〜350倍である。ここでセラミック粒又は金属粒の集合体の表面積の測定方法は、球状の粒集合体の中からランダムサンプリングして得られた100個を1つ1つ直径を測定して球体の表面積として計算し、その平均値を粒径全体の表面積代表値とした。尚、濾材ユニットの形状や取り付け方法については、風向きに対して充填されたセラミック粒又は金属粒の集合体の表面積を大きく設置することにより、粉塵を効率良く捕集できる構造であれば、円柱形、直方体又はその集合体等、特に限定するものでないが、例えば、図2のように長さ1000mm、幅200mmの直方体の濾材ユニットを、熱処理炉内風速に対し45°の角度に傾けた状態で設置して、熱処理炉内の粉塵を捕集する態様が、好ましい方法として挙げられる。   The surface area of the aggregate of ceramic particles or metal particles filled in the filter medium unit is preferably 7 to 600 times the cross-sectional area perpendicular to the direction of the oxidizing gas flow in the heat treatment furnace. If it is less than 7 times, the dust may not be sufficiently removed and the effect may not be exhibited. On the other hand, if it exceeds 600 times, it tends to be subject to pressure loss, and the wind speed in the heat treatment furnace may decrease, which may be dangerous for disaster prevention. More preferably, it is 10 to 350 times. Here, the method of measuring the surface area of the aggregate of ceramic particles or metal particles is to calculate the surface area of the sphere by measuring the diameter of 100 particles randomly sampled from the spherical particle aggregate one by one. The average value was used as a representative surface area for the entire particle size. As for the shape and attachment method of the filter medium unit, if the structure can collect dust efficiently by installing a large surface area of the aggregate of ceramic particles or metal particles filled in the wind direction, it is cylindrical. Although not particularly limited, such as a rectangular parallelepiped or an aggregate thereof, for example, a rectangular parallelepiped filter medium unit having a length of 1000 mm and a width of 200 mm as shown in FIG. 2 is inclined at an angle of 45 ° with respect to the wind speed in the heat treatment furnace. A preferred method is to install and collect the dust in the heat treatment furnace.

本発明の耐炎化繊維束の製造方法において、熱処理炉内の酸化性気体が濾材ユニット内のセラミック粒又は金属粒の集合体と接触する時間は0.15秒以上であることが好ましい。これは0.15秒未満であると粉塵の捕集効率が下がり、熱処理炉内を循環する酸化性気体内の粉塵を十分に捕集することができない場合があるためであり、設備サイズと分解効率の上限を考慮して、酸化性気体と濾材ユニット内のセラミック粒又は金属粒の集合体との接触時間は1.0秒以下が好ましい。ここで濾材ユニット内のセラミック粒又は金属粒の集合体と酸化性気体との接触時間とは、濾材ユニット内のセラミック粒又は金属粒の集合体の充填体積すなわち内部空隙部を含んだ見かけの体積[m3]を酸化性気体の流量[Nm3/秒]で割った値のことである。 In the method for producing a flame-resistant fiber bundle of the present invention, it is preferable that the time during which the oxidizing gas in the heat treatment furnace contacts the aggregate of ceramic particles or metal particles in the filter medium unit is 0.15 seconds or more. This is because if it is less than 0.15 seconds, the dust collection efficiency is lowered, and dust in the oxidizing gas circulating in the heat treatment furnace may not be collected sufficiently. In consideration of the upper limit of efficiency, the contact time between the oxidizing gas and the aggregate of ceramic particles or metal particles in the filter medium unit is preferably 1.0 second or less. Here, the contact time between the ceramic particles or metal particles aggregate in the filter medium unit and the oxidizing gas is the filling volume of the ceramic particles or metal particle aggregate in the filter medium unit, that is, the apparent volume including the internal voids. It is a value obtained by dividing [m 3 ] by the flow rate of oxidizing gas [Nm 3 / sec].

本発明の耐炎化繊維束の製造方法に用いられる熱処理炉において、前記熱処理炉の酸化性気体の流れの方向に直交する断面の各位置における前記酸化性気体の風速のばらつきが、その平均に対し±20%以内となるよう風速を制御することが好ましい。風速斑が±20%を越えると、風速斑により濾過装置の局所部分において粉塵を捕集することになり圧損を受けやすくなる恐れがある。風速斑を改善するために整流板を熱処理炉内へ設置する方法が考えられるが、整流板の形状は濾過装置を設置する位置に応じて形状を設定すれば良く、濾過装置の手前での各地点風速が均一になるように、風速の高い地点に整流板を入れるように設計すれば形状等は特に限定されるものではない。例えば、図1のように斜線部濾過装置の上流側に整流板を設置して、機幅方向の風速斑を一定になるように設置するのが好ましい。   In the heat treatment furnace used in the method for producing a flame-resistant fiber bundle of the present invention, the variation in the wind speed of the oxidizing gas at each position of the cross section perpendicular to the direction of the oxidizing gas flow in the heat treatment furnace is relative to the average. It is preferable to control the wind speed to be within ± 20%. When the wind speed spot exceeds ± 20%, the wind speed spot causes dust to be collected at a local portion of the filtration device, which may easily cause pressure loss. In order to improve wind speed spots, a method of installing a baffle plate in the heat treatment furnace can be considered, but the shape of the baffle plate may be set according to the position where the filtration device is installed. The shape and the like are not particularly limited as long as the rectifying plate is designed to be inserted at a point where the wind speed is high so that the point wind speed is uniform. For example, as shown in FIG. 1, it is preferable to install a rectifying plate on the upstream side of the shaded part filtration device so that the wind speed spots in the machine width direction are constant.

循環ダクト内に濾過装置を設置するときは、粉塵の発生源であるヒーターの下流側に濾過装置を設置することが好ましく、ヒーター部で発生した粉塵を濾過装置で捕集することができる。   When installing the filtration device in the circulation duct, it is preferable to install the filtration device on the downstream side of the heater, which is a dust generation source, and the dust generated in the heater section can be collected by the filtration device.

本発明の耐炎化繊維束の製造方法に用いられる熱処理炉において、熱処理炉内の粉塵を長期間に渡って捕集するために、前記循環ダクトにバイパスラインが設け、そのバイパスラインに濾過装置と循環ファンを設けることもまた、好ましい。かかる場合、圧損による風速変化を受けにくくするため、バイパスラインの分岐部分に圧力を調整できるダンパーを設けて、圧力を一定に管理するのが好ましい。   In the heat treatment furnace used in the method for producing a flameproof fiber bundle of the present invention, in order to collect dust in the heat treatment furnace over a long period of time, a bypass line is provided in the circulation duct, and a filtration device is provided in the bypass line. It is also preferable to provide a circulation fan. In such a case, in order to make it difficult to receive a change in the wind speed due to the pressure loss, it is preferable to provide a damper capable of adjusting the pressure at the branch portion of the bypass line so as to manage the pressure constant.

本発明の耐炎化繊維束の製造方法で得られた耐炎化繊維束を、不活性雰囲気下で300〜3000℃の範囲で焼成して炭素繊維の製造することができる。このとき、上記温度において、2つの工程または3つの工程に分けて焼成することが好ましい。例えば、3つの工程に分けて焼成する場合、300〜1000℃の不活性雰囲気中で焼成する工程と、1000℃〜2000℃の不活性雰囲気中で焼成する工程と、2000〜3000℃の不活性雰囲気中で焼成する工程の3つに分けて焼成する。2つの工程に分けて焼成する場合は、前記の300〜1000℃の不活性雰囲気中で焼成する工程と、1000℃〜2000℃の不活性雰囲気中で焼成する工程を行う。前記2つの工程、3つの工程のいずれを適用するかは、炭素繊維の要求特性によって選択される。これらの2つないし3つの工程を担う装置を炭素化炉と呼ぶが、炭素化炉は、不活性雰囲気中で熱処理する熱処理室と、該熱処理室前後の入口部および出口部に、前記熱処理室の不活性雰囲気を保つためのシール室を具備する。かかるシール室と熱処理室とを備えた炭素化炉によって耐炎化繊維束の炭素化処理を連続的に行い、炭素繊維束の連続生産を可能にしている。炭素化炉で焼成した後薬液中での通電処理、および/または、樹脂によるサイジング処理を行うことで炭素繊維束が得られる。   The flame-resistant fiber bundle obtained by the method for producing a flame-resistant fiber bundle of the present invention can be baked in the range of 300 to 3000 ° C. under an inert atmosphere to produce carbon fibers. At this time, it is preferable that the baking is performed in two steps or three steps at the above temperature. For example, when firing in three steps, a step of firing in an inert atmosphere of 300 to 1000 ° C, a step of firing in an inert atmosphere of 1000 to 2000 ° C, and an inertness of 2000 to 3000 ° C Firing is divided into three steps of firing in an atmosphere. When firing in two steps, the step of firing in an inert atmosphere of 300 to 1000 ° C. and the step of firing in an inert atmosphere of 1000 to 2000 ° C. are performed. Which of the two steps or the three steps is applied is selected depending on the required characteristics of the carbon fiber. An apparatus responsible for these two to three steps is called a carbonization furnace. The carbonization furnace includes a heat treatment chamber for heat treatment in an inert atmosphere, and an inlet portion and an outlet portion before and after the heat treatment chamber. A seal chamber for maintaining an inert atmosphere is provided. The carbonization treatment of the flame-resistant fiber bundle is continuously performed by the carbonization furnace provided with the seal chamber and the heat treatment chamber, thereby enabling continuous production of the carbon fiber bundle. A carbon fiber bundle can be obtained by performing energization treatment in a chemical solution after firing in a carbonization furnace and / or sizing treatment with a resin.

以下に示す実施例により、本発明をさらに具体的に説明する。本実施例では、炭素繊維の前駆体繊維であるポリアクリロニトリル系繊維束(単繊維繊度:1.1dtex、単繊維数:12,000本を20本併走させた。機幅0.5m、長さ3mで耐炎化ローラー段数を4段とした以外は図1に示されるのと同様の、炉外ローラー耐炎化炉を用い、炉内温度250℃で酸化処理を行い耐炎化繊維束を製造した。耐炎化炉内平均風速が1.0m/secになるように設定し、酸化処理時間はトータル60分とした。また、耐炎化炉内に強制的にホコリを飛散させるため、実施例毎に東ソー(株)製のシリカ型式VN3を100g耐炎化炉内に入れて循環させた。尚、実施例が終了する毎に耐炎化炉内をイオン交換水で洗浄してシリカを排出した。得られた耐炎化繊維はその後前炭化炉において最高700℃で焼成した後、炭化炉において最高1400℃で焼成した。その後、希硫酸にて通電処理し、サイジング処理後に乾燥し巻き上げて炭素繊維パッケージとした。該炭素繊維は耐炎化炉内でシリカを循環開始してから5時間後に耐炎化炉を通過した走行糸を用いてストランド引張強度を測定した。尚、ストランド引張強度とは次のようにして測定したものである。ERL4221(ダウケミカル日本(株)製)/三フッ化ホウ素モノエチルアミン(BF3 ・MEA)/アセトン=100/3/4部からなる樹脂を炭素繊維束に含浸し、得られた樹脂含浸ストランドを130℃で30分間加熱して硬化させた後、JIS R 7608(2007)に規定する樹脂含浸ストランド試験法に従って測定した。また、耐炎化炉内で前記シリカを循環開始してから5時間後の耐炎化炉内のホコリ数をモニタリングするために静電容量タイプパーティクルカウンター(関西オートメーション株式会社製型式DT270)を用いた。
(実施例1)
図1に示す通り、耐炎化炉1の循環ダクト2のヒーター3の下流側に図2に示すような厚み200mm、長さ1000mm、角度45°のV字型を組み合わせた形状の濾材ユニットを設置して、濾材ユニットの中に粒径5mmのアルミナの集合体を入れた。集合体の表面積は酸化性気体の流れの方向に直交する断面積の100倍であり、濾材ユニットを酸化性気体が通過するのに要する時間は0.2秒である。循環ダクトを作動させながらポリアクリロニトリル繊維の酸化処理を実施した。その後、上記記載のとおり前炭化処理、炭化処理を実施した。このときの炭素繊維のストランド物性評価結果及び耐炎化炉内のホコリ量を表1に示す。
(実施例2)
図3に示す通り、耐炎化炉1の下部に図2で示したV字型を組み合わせた形状の濾材ユニットを設置して、濾材ユニットの中に直径5mmのアルミナの集合体を入れた。集合体の表面積は酸化性気体の流れの方向に直交する断面積の100倍であり、濾材ユニットの酸化性気体が通過するのに要する時間は1.0秒である。循環ダクトを作動させながらポリアクリロニトリル繊維の酸化処理を行った。このときの炭素繊維のストランド物性評価結果および耐炎化炉内のホコリ量を表1に示す。
(実施例3)
図4に示すとおり、耐炎化炉1の循環ダクト2のヒーター3の下流側および耐炎化炉1の下部に図2に示すような厚み200mm、長さ1000mm、角度45°のV字型を組み合わせた形状の濾材ユニットを設置して、濾材ユニットの中に直径5mmのアルミナの集合体を入れた。尚、耐炎化炉1の酸化性気体の流れの方向に直交する断面の各位置における前記酸化性気体の風速ばらつきが、ダクト部についてはその平均に対し最大で±5%、耐炎化炉内については、その平均に対し最大で±20%であった。また、集合体の表面積は酸化性気体の流れの方向に直交する断面積の100倍であり、濾材ユニットの酸化性気体が通過するのに要する時間はダクト部に設置した濾過装置においては0.2秒、耐炎化炉に設置した濾過装置においては1.0秒である。循環ダクトを作動させながらポリアクリロニトリル繊維の酸化処理を行った。このときの炭素繊維のストランド物性評価結果および耐炎化炉内のホコリ量を表1に示す。
(比較例1)
図5に示す通り、耐炎化炉1に図2に示すような濾材ユニットを有する濾過装置を設置せずに循環ダクトを作動させながらポリアクリロニトリル繊維の酸化処理を実施した。その後、上記記載のとおり前炭化処理、炭化処理を実施した。このときの炭素繊維のストランド物性評価結果および耐炎化炉内のホコリ量を表1に示す。
(比較例2)
図6に示す通り、耐炎化炉1に図7に示すような目開き1μmを有する金属製フィルターを耐炎化炉ダクト部に設置して循環ダクトを作動させながらポリアクリロニトリル繊維の酸化処理を実施した。その後、上記記載のとおり前炭化処理、炭化処理を実施した。しかしながら、フィルター部での詰まりにより、耐炎化炉内平均風速が0.5m/secを下回ったため、防災上危険であり試験を中止した。
(参考例)
強制的にシリカを耐炎化炉内へ投入しない他は、比較例1と同じ条件で、前炭化処理、炭化処理を実施した。炭化処理を開始してから5時間後に、炭素繊維をサンプリングし、ストランド物性評価結果および耐炎化炉内のホコリ量を表1に示す。なお、サンプリングのタイミングの炭化処理を開始してから5時間後は、運転が安定した時点である。
The following examples further illustrate the present invention. In this example, 20 polyacrylonitrile fiber bundles (single fiber fineness: 1.1 dtex, number of single fibers: 12,000) which are carbon fiber precursor fibers. Machine width 0.5 m, length A flame-resistant fiber bundle was produced by performing an oxidation treatment at an in-furnace temperature of 250 ° C. using an outside-roller flame-proofing furnace similar to that shown in FIG. The average wind speed in the flameproofing furnace was set to 1.0 m / sec, and the oxidation treatment time was set to 60 minutes in total.In addition, Tosoh was forcibly scattered in the flameproofing furnace. Silica type VN3 manufactured by Co., Ltd. was placed in a 100 g flameproofing furnace and circulated, and each time the examples were completed, the inside of the flameproofing furnace was washed with ion-exchanged water to discharge the silica. The flame-resistant fiber is then heated up to 700 ° C in the previous carbonization furnace. After firing, it was fired in a carbonization furnace at a maximum of 1400 ° C. Then, it was energized with dilute sulfuric acid, dried after sizing treatment and rolled up into a carbon fiber package, which started to circulate silica in a flameproofing furnace. 5 hours later, the strand tensile strength was measured using the running yarn that passed through the flameproofing furnace, and the strand tensile strength was measured as follows: ERL 4221 (Dow Chemical Japan Co., Ltd.) Manufactured) / boron trifluoride monoethylamine (BF 3 · MEA) / acetone = 100/3/4 parts of resin is impregnated into a carbon fiber bundle, and the resulting resin-impregnated strand is heated at 130 ° C. for 30 minutes. After curing, it was measured according to the resin impregnated strand test method specified in JIS R 7608 (2007), and circulation of the silica was started in a flameproofing furnace. Using an electrostatic capacity type particle counter (Kansai Automation Co., Ltd. Model DT270) to monitor the number of dust in the oxidization oven after 5 hours.
Example 1
As shown in FIG. 1, a filter medium unit having a combination of a V shape having a thickness of 200 mm, a length of 1000 mm, and an angle of 45 ° as shown in FIG. 2 is installed on the downstream side of the heater 3 of the circulation duct 2 of the flameproofing furnace 1. Then, an aggregate of alumina having a particle size of 5 mm was placed in the filter medium unit. The surface area of the aggregate is 100 times the cross-sectional area perpendicular to the flow direction of the oxidizing gas, and the time required for the oxidizing gas to pass through the filter medium unit is 0.2 seconds. The polyacrylonitrile fiber was oxidized while operating the circulation duct. Thereafter, pre-carbonization and carbonization were performed as described above. Table 1 shows the strand physical property evaluation results of the carbon fiber and the amount of dust in the flameproofing furnace.
(Example 2)
As shown in FIG. 3, a filter medium unit having a combination of the V shapes shown in FIG. 2 was installed at the bottom of the flameproofing furnace 1, and an aggregate of alumina having a diameter of 5 mm was placed in the filter medium unit. The surface area of the aggregate is 100 times the cross-sectional area perpendicular to the flow direction of the oxidizing gas, and the time required for the oxidizing gas to pass through the filter medium unit is 1.0 second. The polyacrylonitrile fiber was oxidized while operating the circulation duct. Table 1 shows the strand physical property evaluation results of the carbon fiber and the amount of dust in the flameproofing furnace.
Example 3
As shown in FIG. 4, a V-shape having a thickness of 200 mm, a length of 1000 mm, and an angle of 45 ° as shown in FIG. 2 is combined on the downstream side of the heater 3 in the circulation duct 2 of the flameproofing furnace 1 and the lower part of the flameproofing furnace 1. A filter medium unit having a shape of the shape was installed, and an aggregate of alumina having a diameter of 5 mm was placed in the filter medium unit. The variation in the wind speed of the oxidizing gas at each position of the cross section perpendicular to the direction of the oxidizing gas flow in the flameproofing furnace 1 is ± 5% at maximum with respect to the average for the duct portion, and in the flameproofing furnace. Was ± 20% at maximum with respect to the average. Further, the surface area of the aggregate is 100 times the cross-sectional area orthogonal to the direction of the flow of the oxidizing gas, and the time required for the oxidizing gas of the filter medium unit to pass is 0. 0 for the filtration device installed in the duct portion. 2 seconds and 1.0 second in the filtration apparatus installed in the flameproofing furnace. The polyacrylonitrile fiber was oxidized while operating the circulation duct. Table 1 shows the strand physical property evaluation results of the carbon fiber and the amount of dust in the flameproofing furnace.
(Comparative Example 1)
As shown in FIG. 5, the oxidation treatment of the polyacrylonitrile fiber was carried out while operating the circulation duct without installing the filtration device having the filter medium unit as shown in FIG. Thereafter, pre-carbonization and carbonization were performed as described above. Table 1 shows the strand physical property evaluation results of the carbon fiber and the amount of dust in the flameproofing furnace.
(Comparative Example 2)
As shown in FIG. 6, a metal filter having an opening of 1 μm as shown in FIG. 7 was installed in the flameproofing furnace 1 in the flameproofing furnace duct, and the polyacrylonitrile fiber was oxidized while operating the circulation duct. . Thereafter, pre-carbonization and carbonization were performed as described above. However, since the average wind speed in the flameproofing furnace fell below 0.5 m / sec due to clogging in the filter part, it was dangerous for disaster prevention and the test was stopped.
(Reference example)
A pre-carbonization treatment and a carbonization treatment were performed under the same conditions as in Comparative Example 1 except that silica was not forcedly introduced into the flameproofing furnace. Five hours after the start of carbonization, the carbon fiber was sampled, and the strand physical property evaluation results and the amount of dust in the flameproofing furnace are shown in Table 1. In addition, five hours after the start of the carbonization process at the sampling timing is a time when the operation is stabilized.

本発明の炭素繊維束の製造方法を適用すれば、生産スタート時に耐炎化炉または/およびダクト内に集塵機を設置して耐炎化炉内のホコリを連続的に除去することにより、走行糸への粉塵付着を抑えることができ、高温炉において粉塵起因の欠陥ができなくなり安定した強度を維持することができる。また、同時に粉塵成分の大部分を占めるSiOを除去することにより、大気に排出するSiOを大幅に削減することができ、環境対策の面からも非常に有効である。 If the method for producing a carbon fiber bundle of the present invention is applied, a dust collector is installed in a flameproofing furnace or / and a duct at the start of production, and dust in the flameproofing furnace is continuously removed, so that Dust adhesion can be suppressed, and defects caused by dust cannot be generated in a high-temperature furnace, and stable strength can be maintained. Further, by removing the SiO 2 occupying most of the dust components at the same time, it is possible to significantly reduce the SiO 2 to be discharged to the atmosphere, is very effective in terms of environmental measures.

1:耐炎化炉
2:循環ダクト
3:ヒーター
4:濾過装置
5:循環ファン
6:排気ライン
7:新鮮給気ライン
8:走行糸
9:粒状のアルミナ
10:目開き1μmを有する金属製フィルター
1: Flame-proofing furnace 2: Circulating duct 3: Heater 4: Filtration device 5: Circulating fan 6: Exhaust line 7: Fresh air supply line 8: Traveling yarn 9: Granular alumina 10: Metal filter having an opening of 1 μm

Claims (8)

糸条繊度1000〜30000dtex、フィラメント数500〜70000のポリアクリロニトリル系繊維束を、酸化性気体を循環する熱処理炉内で酸化性雰囲気下で200〜300℃で加熱する耐炎化繊維束の製造方法であって、前記熱処理炉内及び/または前記熱処理炉の循環ダクト部に体積基準で97〜100%が粒径2mm〜80mmであるセラミック粒又は金属粒の集合体をその内部に充填した濾材ユニットを有する濾過装置が設置され、該濾過装置を通して酸化性気体を循環させる耐炎化繊維束の製造方法。   In a method for producing a flame-resistant fiber bundle, a polyacrylonitrile fiber bundle having a yarn fineness of 1000 to 30000 dtex and a filament number of 500 to 70000 is heated at 200 to 300 ° C. in an oxidizing atmosphere in a heat treatment furnace in which an oxidizing gas is circulated. And a filter medium unit in which an aggregate of 97-100% of ceramic particles or metal particles having a particle size of 2 mm to 80 mm on a volume basis is filled in the heat treatment furnace and / or a circulation duct portion of the heat treatment furnace. The manufacturing method of the flame-resistant fiber bundle which installs the filtration apparatus which has and circulates oxidizing gas through this filtration apparatus. 前記濾材ユニットの内部に充填された前記集合体がアルミナ、鉄、アルミニウム、及び、ステンレスからなる群より選ばれる少なくとも1種の材質から形成された請求項1に記載の耐炎化繊維束の製造方法。   The method for producing a flameproof fiber bundle according to claim 1, wherein the aggregate filled in the filter medium unit is formed of at least one material selected from the group consisting of alumina, iron, aluminum, and stainless steel. . 前記濾過装置の濾材ユニット内部に充填された前記集合体の総表面積が、前記熱処理炉の酸化性気体の流れの方向に直交する断面積の7〜600倍である請求項1または2に記載の耐炎化繊維束の製造方法。   The total surface area of the aggregate filled in the filter medium unit of the filtration device is 7 to 600 times the cross-sectional area perpendicular to the direction of the oxidizing gas flow in the heat treatment furnace. A method for producing a flameproof fiber bundle. 前記濾材ユニットを前記酸化性気体が通過するのに要する時間が0.15〜1.0秒である請求項1〜3のいずれかに記載の耐炎化繊維束の製造方法。   The method for producing a flame resistant fiber bundle according to any one of claims 1 to 3, wherein a time required for the oxidizing gas to pass through the filter medium unit is 0.15 to 1.0 seconds. 前記熱処理炉の酸化性気体の流れの方向に直交する断面の各位置における前記酸化性気体の風速のばらつきが、その平均に対し±20%以内である請求項1〜4のいずれかに記載の耐炎化繊維束の製造方法。   The variation in the wind speed of the oxidizing gas at each position of the cross section orthogonal to the direction of the oxidizing gas flow in the heat treatment furnace is within ± 20% of the average thereof. A method for producing a flameproof fiber bundle. 前記循環ダクト内に、前記濾過装置の上流側となる位置にヒーターが設置されている請求項1〜5のいずれかに記載の耐炎化繊維束の製造方法。   The manufacturing method of the flame-resistant fiber bundle in any one of Claims 1-5 in which the heater is installed in the position which becomes the upstream of the said filtration apparatus in the said circulation duct. 前記循環ダクトにバイパスラインが設けられており、そのバイパスラインに濾過装置と循環ファンが設けられている請求項1〜6のいずれかに記載の耐炎化繊維束の製造方法。   The method for producing a flameproof fiber bundle according to any one of claims 1 to 6, wherein a bypass line is provided in the circulation duct, and a filtration device and a circulation fan are provided in the bypass line. 請求項1〜7のいずれかに記載の製造方法で得られた耐炎化繊維束を、不活性雰囲気下300〜3000℃で焼成する炭素繊維の製造方法。   The manufacturing method of the carbon fiber which bakes the flame-resistant fiber bundle obtained by the manufacturing method in any one of Claims 1-7 at 300-3000 degreeC by inert atmosphere.
JP2009069580A 2009-03-23 2009-03-23 Flameproof fiber bundle and method for producing carbon fiber Pending JP2010222723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069580A JP2010222723A (en) 2009-03-23 2009-03-23 Flameproof fiber bundle and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069580A JP2010222723A (en) 2009-03-23 2009-03-23 Flameproof fiber bundle and method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2010222723A true JP2010222723A (en) 2010-10-07

Family

ID=43040215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069580A Pending JP2010222723A (en) 2009-03-23 2009-03-23 Flameproof fiber bundle and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2010222723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094262A (en) * 2010-12-08 2011-06-15 北京化工机械厂 Device for carrying out preoxidation on PAN (polyacrylonitrile) precursor joint
JP2014025167A (en) * 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same
JP2018169066A (en) * 2017-03-29 2018-11-01 東レ株式会社 Hot air circulation-type drying apparatus, drying method, and method for producing carbon fiber bundle
US10940400B2 (en) 2015-02-25 2021-03-09 Mitsubishi Chemical Corporation Heat treatment furnace device and method for producing carbon fiber bundle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094262A (en) * 2010-12-08 2011-06-15 北京化工机械厂 Device for carrying out preoxidation on PAN (polyacrylonitrile) precursor joint
JP2014025167A (en) * 2012-07-27 2014-02-06 Toray Ind Inc Flame-resistant fiber bundle and carbon fiber bundle, and methods for producing the same
US10940400B2 (en) 2015-02-25 2021-03-09 Mitsubishi Chemical Corporation Heat treatment furnace device and method for producing carbon fiber bundle
JP2018169066A (en) * 2017-03-29 2018-11-01 東レ株式会社 Hot air circulation-type drying apparatus, drying method, and method for producing carbon fiber bundle

Similar Documents

Publication Publication Date Title
JP2010222723A (en) Flameproof fiber bundle and method for producing carbon fiber
JP6424932B2 (en) Method of manufacturing oxidized fiber bundle, and method of manufacturing carbon fiber bundle
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
WO2008082210A1 (en) Manufacturing method of filter media available at medium and high temperature exhaust gas using foam coating technology and filter media manufactured thereby
JP2008095221A (en) Method and apparatus for producing carbon fiber bundle
CN114481366A (en) Preparation method of low-defect polyacrylonitrile-based carbon fiber
JP2010133059A (en) Flameproofing furnace, and method for producing carbon fiber using the same
JP3872096B1 (en) Oil mist filter
JP5022073B2 (en) Flameproofing furnace and carbon fiber manufacturing method
JP2012201997A (en) Flameproofing furnace apparatus
WO2018147107A1 (en) Method for cleaning flameproofing furnace, method for manufacturing flameproof fiber, carbon fiber, and graphitized fiber
JP3610659B2 (en) Oxidation furnace and carbon fiber manufacturing method
JP6064409B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2008202158A (en) Heat-treating furnace and heat-treating method
JP2018111891A (en) Method for producing carbon fiber bundle
JP2015030936A (en) Carbonization furnace
JP6354926B1 (en) Method for cleaning flameproofing furnace and method for producing flameproofed fiber, carbon fiber and graphitized fiber
CN115434042B (en) Atmosphere control method for polyacrylonitrile-based carbon fiber pre-oxidized fiber in carbonization process
JP4193283B2 (en) Drying apparatus and drying method
JP2000096353A (en) Production of carbon fiber
CN216986971U (en) System for reducing spent coke escape of active coke adsorption tower
JP4203605B2 (en) Heat-resistant adsorption sheet and method for producing the same
JP5037977B2 (en) Flameproofing furnace and method for producing flameproofed fiber
JP7468343B2 (en) Method for producing flame-retardant fiber bundle and method for producing carbon fiber bundle
CN210874849U (en) Gas purification device