JP2010222208A - Reformer and fuel cell system using the same - Google Patents

Reformer and fuel cell system using the same Download PDF

Info

Publication number
JP2010222208A
JP2010222208A JP2009073328A JP2009073328A JP2010222208A JP 2010222208 A JP2010222208 A JP 2010222208A JP 2009073328 A JP2009073328 A JP 2009073328A JP 2009073328 A JP2009073328 A JP 2009073328A JP 2010222208 A JP2010222208 A JP 2010222208A
Authority
JP
Japan
Prior art keywords
heater
reformer
heat
supply unit
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009073328A
Other languages
Japanese (ja)
Inventor
Yoichi Kimura
洋一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009073328A priority Critical patent/JP2010222208A/en
Publication of JP2010222208A publication Critical patent/JP2010222208A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer adapted so that the insulation sealing body of the heater is prevented from reaching a high temperature and to provide a fuel cell system using the same. <P>SOLUTION: What is provided is a reformer provided with at least a reaction tube 4 provided with an outer tube 11, an inner tube 8, and a catalyst layer, a fluid feed part 14a which feeds a fluid necessary for a reforming reaction, and a heater 18 windingly fixed to the outer tube 11 of the reaction tube 4, wherein the heater 18 is composed of an open-end metallic sheath and a heat-generating wire with a non-heat-generating wire connected thereto and an insulation material packed in the gap between the heat-generating wire and the metallic sheath both of which are encased in the metallic sheath having an opening at an end and an insulation sealing body 28 fixed in a manner that part of the non-heat-generating wire is exposed to the outside through a through-hole on the opening, and that part of the metallic sheath which locates near the insulation sealing body 28 of the heater 18 is fixed to the fluid supply part 14a in contact therewith through a heat conductor 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池システムにおける改質装置に関する。   The present invention relates to a reformer in a fuel cell system.

従来、改質装置には、触媒部を予熱するためのヒータが設けられている。そして、起動時に、ヒータを通電して加熱することにより、触媒部を短時間で昇温して、触媒部の反応効率を向上させる例が開示されている(例えば、特許文献1参照)。   Conventionally, the reformer is provided with a heater for preheating the catalyst portion. And the example which raises the temperature of a catalyst part for a short time and improves the reaction efficiency of a catalyst part by energizing and heating a heater at the time of starting is disclosed (for example, refer to patent documents 1).

以下に、従来の一般的な構造の改質装置について、図面を用いて説明する。   Hereinafter, a conventional reformer having a general structure will be described with reference to the drawings.

図3は、従来の改質装置の全体構成を示す部分断面図である。   FIG. 3 is a partial cross-sectional view showing the overall configuration of a conventional reformer.

図3に示すように、改質装置は、外管30と内管31とで2重管構造に構成された反応管29と、外管30と内管31との間の環状空間に触媒が充填された触媒層32を備えている。そして、外管30の外周面に電熱線を有するヒータ33をらせん状に巻き付けて配設し、触媒層32を加熱する構成を有している。さらに、反応管29には、触媒層32の温度を計測するための、例えば熱電対やサーミスタからなる温度センサを取り付ける温度検知用ポート34a、34b、34cが設けられている。   As shown in FIG. 3, the reformer has a catalyst in a reaction tube 29 having a double tube structure with an outer tube 30 and an inner tube 31, and an annular space between the outer tube 30 and the inner tube 31. A filled catalyst layer 32 is provided. A heater 33 having a heating wire is spirally wound around the outer peripheral surface of the outer tube 30 to heat the catalyst layer 32. Further, the reaction tube 29 is provided with temperature detection ports 34a, 34b, 34c for attaching a temperature sensor made of, for example, a thermocouple or a thermistor for measuring the temperature of the catalyst layer 32.

そして、温度センサで検出した温度に基づいて、触媒層32の温度が、例えば180℃〜200℃となるように、ヒータ33の加熱量を調整して制御している。
特開2003−192306号公報
And based on the temperature detected with the temperature sensor, the heating amount of the heater 33 is adjusted and controlled so that the temperature of the catalyst layer 32 becomes 180 degreeC-200 degreeC, for example.
JP 2003-192306 A

しかしながら、上記従来の構成では、改質反応時において、外管30の温度がヒータ33に熱伝導により伝わるため、外管30の温度がヒータ33の耐熱温度を超える箇所では使用できないという課題があった。例えば、絶縁封止体を有するヒータにおいては、外管の温度の伝熱によりヒータが高温になるため、絶縁封止体が熱劣化してヒータ内部の発熱線と金属シースや外部との絶縁性能が損なわれ、改質装置の信頼性が低下するという課題があった。その結果、ヒータの絶縁封止体の絶縁耐久性を維持するためには、改質反応において耐熱温度を超えて高温になる箇所にヒータを取付けられないという課題があった。   However, in the above-described conventional configuration, the temperature of the outer tube 30 is transmitted to the heater 33 by heat conduction during the reforming reaction, so that there is a problem that the outer tube 30 cannot be used at a location where the temperature exceeds the heat resistance temperature of the heater 33. It was. For example, in a heater having an insulating sealing body, the heater becomes hot due to the heat transfer of the temperature of the outer tube, so that the insulating sealing body is thermally deteriorated and the insulation performance between the heating wire inside the heater and the metal sheath or the outside There is a problem that the reliability of the reformer is lowered. As a result, in order to maintain the insulation durability of the insulation sealing body of the heater, there has been a problem that the heater cannot be attached at a location where the temperature exceeds the heat resistant temperature in the reforming reaction.

本発明は、上記従来の課題を解決するもので、ヒータの、特に絶縁封止体の温度が高温になることを防止して、高温になる箇所にヒータを取付けることができる改質装置およびそれを用いた燃料電池システムを提供することを目的とする。   The present invention solves the above-described conventional problems, and a reformer capable of preventing the temperature of a heater, particularly an insulating sealing body, from being high, and mounting the heater at a high temperature, and the same It aims at providing the fuel cell system using this.

上記従来の課題を解決するために、本発明の改質装置は、少なくとも外管と内管と触媒層を備えた反応管と、改質反応に必要な流体を供給する流体供給部と、反応管に巻き付けて密着固定されたヒータと、を少なくとも備え、ヒータは、末端部に非発熱線が接続された発熱線と発熱線と金属シースとの空隙に充填された絶縁材とを端部に開口部を有する金属シース内に収納するとともに、開口部に非発熱線の一部が貫通穴を介して外部に露出するように装着された絶縁封止体と、を有し、ヒータの絶縁封止体近傍の金属シースを流体供給部に伝熱体を介して接触固定した構成を有する。   In order to solve the above-described conventional problems, a reformer of the present invention includes a reaction tube including at least an outer tube, an inner tube, and a catalyst layer, a fluid supply unit that supplies a fluid necessary for the reforming reaction, and a reaction A heater wound around a tube and fixed in close contact with the heater. The heater has a heating wire having a non-heating wire connected to a terminal portion and an insulating material filled in a gap between the heating wire and the metal sheath at the end portion. An insulating sealing body that is housed in a metal sheath having an opening, and is attached to the opening so that a portion of the non-heating wire is exposed to the outside through the through hole. The metal sheath in the vicinity of the stationary body is configured to contact and be fixed to the fluid supply unit via a heat transfer body.

この構成により、ヒータの絶縁封止体の温度が高温になることを防止できる。その結果
、高温になる箇所にヒータを取付けることができる信頼性に優れた改質装置を実現できる。
With this configuration, the temperature of the insulating sealing body of the heater can be prevented from becoming high. As a result, it is possible to realize a highly reliable reforming apparatus that can attach a heater to a high temperature location.

また、本発明の燃料電池システムは、上記改質装置と、燃料電池と、を少なくとも備えている。これにより、改質反応を長期間に亘って安定に動作する信頼性に優れた燃料電池システムを実現できる。   The fuel cell system of the present invention includes at least the reformer and a fuel cell. As a result, it is possible to realize a highly reliable fuel cell system that operates the reforming reaction stably over a long period of time.

本発明の改質装置は、ヒータの絶縁封止体の温度が高温になることを防止し、従来取付けが困難であった高温となる箇所にヒータを取付けることができる。   The reforming apparatus of the present invention can prevent the temperature of the insulating sealing body of the heater from becoming high, and can attach the heater to a place where the temperature becomes high, which has been difficult to attach conventionally.

第1の発明は、少なくとも外管と内管とその間の環状空間に充填された触媒層を備えた反応管と、改質反応に必要な流体を供給する流体供給部と、反応管の外管の外側に巻き付けて密着固定されたヒータと、を少なくとも備え、ヒータは、末端部に非発熱線が接続された発熱線と発熱線と金属シースとの空隙に充填された絶縁材とを端部に開口部を有する金属シース内に収納するとともに、開口部に非発熱線の一部が貫通穴を介して外部に露出するように装着された絶縁封止体と、を有し、ヒータの絶縁封止体近傍の金属シースを流体供給部に伝熱体を介して接触固定した構成の改質装置である。   A first invention includes a reaction tube including a catalyst layer filled in at least an outer tube, an inner tube, and an annular space therebetween, a fluid supply unit that supplies a fluid necessary for a reforming reaction, and an outer tube of the reaction tube A heater that is wound and fixed tightly around the outside of the heater, the heater having an end portion that includes a heating wire having a non-heating wire connected to a terminal portion, and an insulating material filled in a gap between the heating wire and the metal sheath. And an insulating sealing body attached to the opening so that a part of the non-heating wire is exposed to the outside through the through hole. The reforming device has a configuration in which a metal sheath in the vicinity of the sealing body is fixed in contact with the fluid supply unit via a heat transfer body.

この構成により、ヒータの絶縁封止体の温度が高温になることを防止できる。その結果、高温になる箇所にヒータを取付け、改質反応を長期間に亘って安定に動作する信頼性に優れた改質装置を実現できる。   With this configuration, the temperature of the insulating sealing body of the heater can be prevented from becoming high. As a result, it is possible to realize a highly reliable reforming apparatus that attaches a heater at a high temperature location and operates the reforming reaction stably over a long period of time.

第2の発明、第1の発明において、流体供給部が、改質水供給部である。これにより、ヒータからの熱伝導による熱で改質装置に供給される改質水の温度を上げることができる。その結果、改質反応に必要な外部から供給する熱量を減少させて、改質装置の効率を高めることができる。   In the second invention and the first invention, the fluid supply unit is a reformed water supply unit. Thereby, the temperature of the reforming water supplied to the reformer can be increased by the heat generated by the heat conduction from the heater. As a result, it is possible to increase the efficiency of the reformer by reducing the amount of heat supplied from the outside necessary for the reforming reaction.

第3の発明は、第1の発明において、流体供給部が、原料ガス供給部である。これにより、ヒータからの熱伝導による熱で改質装置に供給される原料ガスの温度を上げることができる。その結果、改質反応に必要な外部から供給する熱量を減少させて、改質装置の効率を高めることができる。   In a third aspect based on the first aspect, the fluid supply unit is a source gas supply unit. As a result, the temperature of the raw material gas supplied to the reformer can be increased by heat generated by heat conduction from the heater. As a result, it is possible to increase the efficiency of the reformer by reducing the amount of heat supplied from the outside necessary for the reforming reaction.

第4の発明は、第1から第3のいずれか1つの発明の改質装置と、燃料電池と、を少なくとも備える燃料電池システムである。これにより、改質反応を長期間に亘って安定に動作できる信頼性に優れた燃料電池システムを実現できる。   A fourth invention is a fuel cell system comprising at least the reforming apparatus of any one of the first to third inventions and a fuel cell. Thereby, it is possible to realize a highly reliable fuel cell system capable of stably operating the reforming reaction for a long period of time.

以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した従来の構成と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as the conventional configurations described above, and the detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
以下に、本発明の実施の形態1における改質装置について、詳細に説明する。
(Embodiment 1)
Hereinafter, the reformer according to Embodiment 1 of the present invention will be described in detail.

図1は、本発明の実施の形態1における改質装置の全体構成を示す部分断面図である。   FIG. 1 is a partial cross-sectional view showing the overall configuration of the reforming apparatus according to Embodiment 1 of the present invention.

図1に示すように、改質装置は、燃焼器1と、少なくとも外管11と内管8との2重管構造を有する反応管4と、改質水、原料ガスや空気などの流体を供給する流体供給部14a、14bと、反応管4の外管11に密着して巻かれたヒータ18とから、少なくとも構
成されている。
As shown in FIG. 1, the reformer includes a combustor 1, a reaction tube 4 having a double tube structure of at least an outer tube 11 and an inner tube 8, a fluid such as reforming water, raw material gas, and air. The fluid supply parts 14a and 14b to be supplied and the heater 18 wound in close contact with the outer tube 11 of the reaction tube 4 are configured at least.

ここで、燃焼器1は、ガス弁2から供給される都市ガス(またはLPG)や燃料電池から排出されるオフガス(未反応水素ガス)あるいは都市ガスとオフガスを混合した燃料ガスと、送風機3から供給される燃焼用空気とを燃焼させて、高温の燃焼ガスを反応管4に放出する。   Here, the combustor 1 includes a city gas (or LPG) supplied from the gas valve 2, an off gas (unreacted hydrogen gas) discharged from the fuel cell, a fuel gas in which the city gas and the off gas are mixed, and a blower 3. The supplied combustion air is combusted, and high-temperature combustion gas is discharged into the reaction tube 4.

また、反応管4は、複数の同心円状の管形状を有し、内側から順に、燃焼器1からの燃焼ガスが放出される第1筒5と、第2筒6と、内管8および外管11から構成されている。そして、第1筒5と第2筒6との環状空間により燃焼ガス流路7が形成されている。さらに、第2筒6と内管8との環状空間により蒸発部9が形成され、蒸発部9に改質触媒層10が設けられている。また、内管8と外管11との環状空間には、変成触媒層12と選択酸化触媒層13などの触媒層が設けられている。   The reaction tube 4 has a plurality of concentric tube shapes, and in order from the inside, the first tube 5 from which the combustion gas from the combustor 1 is released, the second tube 6, the inner tube 8, and the outer tube It consists of a tube 11. A combustion gas flow path 7 is formed by an annular space between the first cylinder 5 and the second cylinder 6. Further, an evaporation portion 9 is formed by an annular space between the second cylinder 6 and the inner tube 8, and the reforming catalyst layer 10 is provided in the evaporation portion 9. A catalyst layer such as a shift catalyst layer 12 and a selective oxidation catalyst layer 13 is provided in the annular space between the inner tube 8 and the outer tube 11.

そして、外管11の外周面には、改質水供給部である流体供給部14a、14b、温度検知用ポート15、選択酸化空気ポート16と改質ガスパイプ17が設けられている。ここで、流体供給部14aは水蒸気改質反応に必要な改質水を、流体供給部14bは原料ガスを供給し、選択酸化空気ポート16は改質ガスに含まれる一酸化炭素選択酸化反応に必要な空気を供給する。また、温度検知用ポート15は、例えば熱電対やサーミスタからなる温度センサが取り付けられ、改質触媒層10、変成触媒層12や選択酸化触媒層13などの触媒層の温度を検出する。   On the outer peripheral surface of the outer tube 11, fluid supply units 14 a and 14 b that are reforming water supply units, a temperature detection port 15, a selective oxidation air port 16, and a reformed gas pipe 17 are provided. Here, the fluid supply unit 14a supplies the reformed water necessary for the steam reforming reaction, the fluid supply unit 14b supplies the raw material gas, and the selective oxidation air port 16 performs the carbon monoxide selective oxidation reaction included in the reformed gas. Supply the necessary air. The temperature detection port 15 is provided with a temperature sensor such as a thermocouple or a thermistor, and detects the temperature of the catalyst layers such as the reforming catalyst layer 10, the shift catalyst layer 12, and the selective oxidation catalyst layer 13.

さらに、ヒータ18は、外管11に外側から、例えばらせん状に巻き付けて密着固定されている。このとき、外管11に密着固定されていないヒータの端部19近傍が、改質水が供給される流体供給部14aに伝熱体20を介して接触した状態で固定されている。なお、伝熱体20としては、例えば、ステンレスや銅などの金属やカーボンなどを用いることができる。   Further, the heater 18 is tightly fixed to the outer tube 11 by being wound, for example, spirally from the outside. At this time, the vicinity of the end portion 19 of the heater that is not tightly fixed to the outer tube 11 is fixed in a state of being in contact with the fluid supply portion 14a to which the reforming water is supplied via the heat transfer body 20. As the heat transfer body 20, for example, a metal such as stainless steel or copper, carbon, or the like can be used.

以下に、本発明の実施の形態1における改質装置に用いられるヒータの構造について、図面を用いて詳細に説明する。   Below, the structure of the heater used for the reformer in Embodiment 1 of this invention is demonstrated in detail using drawing.

図2は、本発明の実施の形態1における改質装置に用いられるヒータの断面図である。   FIG. 2 is a cross-sectional view of a heater used in the reforming apparatus according to Embodiment 1 of the present invention.

図2に示すように、ヒータ18は、まず、発熱線23の末端部23aが非発熱線22に接続されて金属シース21内に収納されている。このとき、発熱線23を収納した金属シース21の空隙に、例えばマグネシアなどの絶縁材24を充填して発熱部25が構成されている。そして、金属シース21の端部の開口部26から突出した非発熱線22を絶縁封止体28の貫通穴27に挿入した状態で、金属シース21の端部の開口部26に絶縁封止体28を圧入して装着された構成を有する。このとき、非発熱線22の一部は絶縁封止体28から外部に露出し、外部の電源や制御回路などと接続される。   As shown in FIG. 2, the heater 18 is first housed in the metal sheath 21 with the end portion 23 a of the heating wire 23 connected to the non-heating wire 22. At this time, the heat generating portion 25 is configured by filling the gap of the metal sheath 21 containing the heat generating wire 23 with an insulating material 24 such as magnesia. The insulating sealing body is inserted into the opening 26 at the end of the metal sheath 21 in a state where the non-heating line 22 protruding from the opening 26 at the end of the metal sheath 21 is inserted into the through hole 27 of the insulating sealing body 28. 28 is press-fitted and installed. At this time, a part of the non-heating line 22 is exposed to the outside from the insulating sealing body 28 and is connected to an external power source, a control circuit, or the like.

そして、上記構成により、ヒータ18は、絶縁封止体28を圧入装着した時の非発熱線22と貫通穴27との密着度と、金属シース21の端部の開口部26と絶縁封止体28との密着度で、金属シース21との絶縁性や気密性を確保している。   With the above configuration, the heater 18 allows the degree of adhesion between the non-heat generating wire 22 and the through hole 27 when the insulating sealing body 28 is press-fitted and the opening 26 at the end of the metal sheath 21 and the insulating sealing body. The degree of contact with the metal sheath 21 ensures insulation and airtightness with the metal sheath 21.

以下に、上記のように構成されたヒータ18を備えた改質装置の動作について、説明する。   Below, operation | movement of the reformer provided with the heater 18 comprised as mentioned above is demonstrated.

まず、改質装置の起動時において、ヒータ18を通電することにより、燃焼器1から供給される高温(例えば、1000℃)の燃焼ガスとともに、各々の触媒層を加熱する。そ
して、温度センサで検出した変成触媒層12や選択酸化触媒層13の温度が、例えば180℃〜200℃になると、ヒータ18の加熱量を調整して各々の触媒層の温度を維持する。つまり、ヒータ18の加熱により、各々の触媒層の昇温時間が短縮される。
First, when starting the reformer, each catalyst layer is heated together with high-temperature (for example, 1000 ° C.) combustion gas supplied from the combustor 1 by energizing the heater 18. When the temperature of the shift catalyst layer 12 or the selective oxidation catalyst layer 13 detected by the temperature sensor reaches, for example, 180 ° C. to 200 ° C., the heating amount of the heater 18 is adjusted to maintain the temperature of each catalyst layer. That is, the heating time of each catalyst layer is shortened by the heating of the heater 18.

そして、水蒸気改質反応に必要な温度まで、各触媒層が昇温すると、ヒータ18への通電を止めて、加熱を停止する。   And if each catalyst layer heats up to the temperature required for steam reforming reaction, electricity supply to heater 18 will be stopped and heating will be stopped.

つぎに、水蒸気改質反応に必要な温度まで昇温すると、流体供給部14aから水蒸気改質反応に必要な改質水と、流体供給部14bから原料ガスなどの流体が蒸発部9に供給される。このとき、原料ガスや改質水などの流体は、燃焼器1で燃焼した燃焼ガスが蒸発部9の内壁面の燃焼ガス流路7を通過する時に、例えば第2筒6に伝えられた熱により、原料ガスの加熱あるいは改質水を蒸発させて水蒸気にする。そして、加熱された原料ガスと蒸発した改質水などの流体は、改質触媒層10に供給され、改質触媒との水蒸気改質反応により水素含有ガスを生成する。   Next, when the temperature is raised to a temperature necessary for the steam reforming reaction, reforming water necessary for the steam reforming reaction is supplied from the fluid supply unit 14a and a fluid such as a raw material gas is supplied to the evaporation unit 9 from the fluid supply unit 14b. The At this time, the fluid such as the raw material gas and the reformed water is, for example, heat transferred to the second cylinder 6 when the combustion gas combusted in the combustor 1 passes through the combustion gas flow path 7 on the inner wall surface of the evaporator 9. Thus, the raw material gas is heated or the reformed water is evaporated into steam. Then, the heated raw material gas and the fluid such as the evaporated reforming water are supplied to the reforming catalyst layer 10 to generate a hydrogen-containing gas by a steam reforming reaction with the reforming catalyst.

つぎに、生成した水素含有ガスを、さらに変成触媒層12と選択酸化触媒層13を通過させることにより、水性変成反応と選択酸化反応により、改質反応で発生した一酸化炭素を二酸化炭素に変化させる。これにより、一酸化炭素を50ppm程度まで低減させた改質ガスが、改質ガスパイプ17から燃料電池(図示せず)の発電セルに供給される。   Next, the generated hydrogen-containing gas is further passed through the shift catalyst layer 12 and the selective oxidation catalyst layer 13 to change the carbon monoxide generated in the reforming reaction into carbon dioxide by the aqueous shift reaction and the selective oxidation reaction. Let Thereby, the reformed gas in which carbon monoxide is reduced to about 50 ppm is supplied from the reformed gas pipe 17 to a power generation cell of a fuel cell (not shown).

このとき、燃焼ガスの通過や水蒸気改質反応により、反応管4の外管11が加熱される。この場合、外管11の温度は、運転開始時にヒータ18によって昇温した時よりも高温になる。その結果、高温になった外管11の熱が、熱伝導によりヒータ18自体の温度を上昇させる。このとき、ヒータ18自体の耐熱温度(一般に、絶縁封止体の耐熱温度により制限される)以上に加熱される場合がある。   At this time, the outer tube 11 of the reaction tube 4 is heated by the passage of the combustion gas or the steam reforming reaction. In this case, the temperature of the outer tube 11 is higher than when the temperature is raised by the heater 18 at the start of operation. As a result, the heat of the outer tube 11 that has become high increases the temperature of the heater 18 itself by heat conduction. At this time, the heater 18 may be heated to a temperature higher than the heat resistance temperature (generally limited by the heat resistance temperature of the insulating sealing body).

しかし、本実施の形態によれば、ヒータ18の端部19が、改質水供給部である流体供給部14aに伝熱体20を介して接触して密着固定されている。そして、ヒータ18の端部19に伝熱した熱は、改質水供給部である流体供給部14aへ熱伝導により伝熱するため、ヒータ18の端部19の温度が下がる。その結果、ヒータ18の端部19の金属シース21の端部の開口部26や絶縁封止体28の温度が高温にならないため、絶縁耐久性が損なわれない。さらに、ヒータ18の絶縁封止体28の耐熱温度で制限されていた、従来取付けが困難であった高温となる箇所にヒータ18を取付けることができる。   However, according to the present embodiment, the end portion 19 of the heater 18 is in close contact with and fixed to the fluid supply portion 14a that is the reforming water supply portion via the heat transfer body 20. Then, the heat transferred to the end 19 of the heater 18 is transferred by heat conduction to the fluid supply 14a that is the reforming water supply, so that the temperature of the end 19 of the heater 18 is lowered. As a result, the temperature of the opening 26 and the insulating sealing body 28 at the end of the metal sheath 21 at the end 19 of the heater 18 does not become high, so that the insulation durability is not impaired. Furthermore, the heater 18 can be attached to a location where the temperature is limited by the heat-resistant temperature of the insulating sealing body 28 of the heater 18 and which has been difficult to attach conventionally.

上述したように、本実施の形態によれば、ヒータの端部の熱を、伝熱体を介して流体供給部に供給される改質水に吸収させることができる。そのため、ヒータの端部の金属シースの開口部と絶縁封止体の絶縁耐久性が低下しない。その結果、改質反応を長期間に亘って安定に維持できる信頼性に優れた改質装置および燃料電池システムを実現できる。   As described above, according to the present embodiment, the heat at the end of the heater can be absorbed by the reforming water supplied to the fluid supply unit via the heat transfer body. Therefore, the insulation durability of the opening of the metal sheath at the end of the heater and the insulating sealing body does not deteriorate. As a result, it is possible to realize a highly reliable reforming apparatus and fuel cell system that can stably maintain the reforming reaction for a long period of time.

また、本実施の形態によれば、流体供給部を通過する水蒸気改質反応に必要な改質水などの流体の温度が、ヒータから伝熱体を介して供給される熱により上がる。その結果、水蒸気改質反応に必要な外部から供給する熱量を減少できるため、効率の高い改質装置および燃料電池システムを実現できる。   Moreover, according to this Embodiment, the temperature of fluids, such as reforming water required for the steam reforming reaction which passes a fluid supply part, rises with the heat supplied via a heat exchanger from a heater. As a result, since the amount of heat supplied from the outside necessary for the steam reforming reaction can be reduced, a highly efficient reformer and fuel cell system can be realized.

なお、上記実施の形態では、ヒータ18の端部19を改質水供給部である流体供給部14aに接触固定した例で説明したが、これに限られない。例えば、原料ガス供給部である流体供給部14bに、ヒータ18の端部19を接触固定してもよい。これにより、原料ガス供給部を流れる原料ガスの温度が、ヒータ18から伝熱体を介して供給される熱により上昇する。その結果、水蒸気改質反応に必要な外部から供給する熱量を減少できるため、効率の高い改質装置および燃料電池システムを実現できる。   In the above embodiment, the example in which the end portion 19 of the heater 18 is fixed in contact with the fluid supply portion 14a that is the reforming water supply portion has been described, but the present invention is not limited thereto. For example, the end portion 19 of the heater 18 may be fixed in contact with the fluid supply portion 14b which is a source gas supply portion. As a result, the temperature of the source gas flowing through the source gas supply unit rises due to the heat supplied from the heater 18 via the heat transfer body. As a result, since the amount of heat supplied from the outside necessary for the steam reforming reaction can be reduced, a highly efficient reformer and fuel cell system can be realized.

さらに、流体供給部が、選択酸化空気ポートから供給される空気供給部であってもよい。これにより、選択酸化触媒に供給される空気の温度が上昇する。その結果、選択酸化触媒を通過する改質ガスと空気の混合気体の温度が高くなるため、選択酸化触媒の反応効率が上がり改質ガス中のCO除去率の高い改質装置および燃料電池システムを実現できる。   Furthermore, the fluid supply unit may be an air supply unit supplied from a selective oxidation air port. Thereby, the temperature of the air supplied to the selective oxidation catalyst increases. As a result, the temperature of the mixed gas of reformed gas and air that passes through the selective oxidation catalyst becomes high, so that the reaction efficiency of the selective oxidation catalyst is increased and a reformer and a fuel cell system with a high CO removal rate in the reformed gas are provided. realizable.

(実施の形態2)
以下に、本発明の実施の形態2における燃料電池システムについて説明する。
(Embodiment 2)
The fuel cell system according to Embodiment 2 of the present invention will be described below.

本実施の形態の燃料電池システムは、実施の形態1の改質装置と、燃料電池とで少なくとも構成されている。そして、燃料電池は、改質装置から供給される水素含有ガスと、空気との化学反応により発電する。   The fuel cell system according to the present embodiment includes at least the reforming device according to the first embodiment and the fuel cell. The fuel cell generates power by a chemical reaction between the hydrogen-containing gas supplied from the reformer and air.

本実施の形態によれば、熱効率の高い改質装置により、改質反応を長期間に亘って安定に維持するとともに、発電効率の高い燃料電池システムを実現できる。   According to the present embodiment, it is possible to realize a fuel cell system having high power generation efficiency while maintaining a reforming reaction stably over a long period of time by a reformer having high thermal efficiency.

本発明は、長期間に亘って安定な動作が要望される改質装置や燃料電池システムの技術分野において有用である。   The present invention is useful in the technical field of reformers and fuel cell systems that require stable operation over a long period of time.

本発明の実施の形態1における改質装置の全体構成を示す部分断面図The fragmentary sectional view which shows the whole structure of the reformer in Embodiment 1 of this invention 本発明の実施の形態1における改質装置に用いられるヒータの断面図Sectional drawing of the heater used for the reformer in Embodiment 1 of this invention 従来の改質装置の全体構成を示す部分断面図Partial sectional view showing the overall structure of a conventional reformer

1 燃焼器
2 ガス弁
3 送風機
4,29 反応管
5 第1筒
6 第2筒
7 燃焼ガス流路
8,31 内管
9 蒸発部
10 改質触媒層
11,30 外管
12 変成触媒層
13 選択酸化触媒層
14a,14b 流体供給部
15,34a,34b,34c 温度検知用ポート
16 選択酸化空気ポート
17 改質ガスパイプ
18,33 ヒータ
19 端部
20 伝熱体
21 金属シース
22 非発熱線
23 発熱線
23a 末端部
24 絶縁材
25 発熱部
26 開口部
27 貫通穴
28 絶縁封止体
32 触媒層
DESCRIPTION OF SYMBOLS 1 Combustor 2 Gas valve 3 Blower 4,29 Reaction tube 5 1st cylinder 6 2nd cylinder 7 Combustion gas flow path 8,31 Inner tube 9 Evaporating part 10 Reforming catalyst layer 11,30 Outer tube 12 Metamorphic catalyst layer 13 Selection Oxidation catalyst layer 14a, 14b Fluid supply unit 15, 34a, 34b, 34c Temperature detection port 16 Selective oxidation air port 17 Reformed gas pipe 18, 33 Heater 19 End 20 Heat transfer body 21 Metal sheath 22 Non-heating line 23 Heating line 23a Terminal part 24 Insulating material 25 Heat generating part 26 Opening part 27 Through hole 28 Insulating sealing body 32 Catalyst layer

Claims (4)

少なくとも外管と内管とその間の環状空間に充填された触媒層を備えた反応管と、
改質反応に必要な流体を供給する流体供給部と、
前記反応管の前記外管の外側に巻き付けて密着固定されたヒータと、を少なくとも備え、前記ヒータは、末端部に非発熱線が接続された発熱線と前記発熱線と金属シースとの空隙に充填された絶縁材とを端部に開口部を有する金属シース内に収納するとともに、前記開口部に前記非発熱線の一部が貫通穴を介して外部に露出するように装着された絶縁封止体と、を有し、
前記ヒータの前記絶縁封止体近傍の前記金属シースを前記流体供給部に伝熱体を介して接触固定した改質装置。
A reaction tube including a catalyst layer filled in at least an outer tube, an inner tube, and an annular space therebetween;
A fluid supply unit for supplying a fluid necessary for the reforming reaction;
At least a heater wound around and fixed to the outside of the outer tube of the reaction tube, and the heater is disposed in a gap between a heating wire having a non-heating wire connected to a terminal portion and the heating wire and the metal sheath. Insulating seal that is mounted in a metal sheath having an opening at the end and filled with the filled insulating material so that a part of the non-heat generating wire is exposed to the outside through the through hole. A stop body,
A reformer in which the metal sheath in the vicinity of the insulating sealing body of the heater is fixed in contact with the fluid supply unit via a heat transfer body.
前記流体供給部が、改質水供給部である請求項1に記載の改質装置。 The reforming apparatus according to claim 1, wherein the fluid supply unit is a reforming water supply unit. 前記流体供給部が、原料ガス供給部である請求項1に記載の改質装置。 The reformer according to claim 1, wherein the fluid supply unit is a source gas supply unit. 請求項1から3のいずれか1項に記載の改質装置と、燃料電池と、を少なくとも備えた燃料電池システム。 A fuel cell system comprising at least the reforming device according to any one of claims 1 to 3 and a fuel cell.
JP2009073328A 2009-03-25 2009-03-25 Reformer and fuel cell system using the same Pending JP2010222208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073328A JP2010222208A (en) 2009-03-25 2009-03-25 Reformer and fuel cell system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073328A JP2010222208A (en) 2009-03-25 2009-03-25 Reformer and fuel cell system using the same

Publications (1)

Publication Number Publication Date
JP2010222208A true JP2010222208A (en) 2010-10-07

Family

ID=43039813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073328A Pending JP2010222208A (en) 2009-03-25 2009-03-25 Reformer and fuel cell system using the same

Country Status (1)

Country Link
JP (1) JP2010222208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167864A1 (en) * 2013-04-11 2014-10-16 パナソニック株式会社 Hydrogen generating device and fuel cell system provided with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167864A1 (en) * 2013-04-11 2014-10-16 パナソニック株式会社 Hydrogen generating device and fuel cell system provided with same
US9278329B2 (en) 2013-04-11 2016-03-08 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system including same

Similar Documents

Publication Publication Date Title
US8702823B2 (en) Hydrogen generation apparatus, fuel cell system and method of shutting down hydrogen generation apparatus
JP2008192425A (en) Fuel cell system and its operation method
JP2006151803A (en) Reforming device of fuel cell system
JP2010013323A (en) Reforming apparatus and method for manufacturing the same
WO2012132445A1 (en) Power generating system and method for operating same
JP2010222208A (en) Reformer and fuel cell system using the same
JP2011057480A (en) Apparatus for producing hydrogen
JP3780782B2 (en) Reformer
US9212057B2 (en) Method for controlling fuel reformer
JP2007331951A (en) Hydrogen generator and fuel cell system
JP5918593B2 (en) Fuel cell system
JP2012082088A (en) Hydrogen production apparatus, and fuel cell power generation apparatus having hydrogen production apparatus
JP2011102223A (en) Hydrogen production apparatus
JP5198119B2 (en) Fuel cell reformer
JP2010153182A (en) Fuel cell device, conductive member, and control part of the fuel cell device
JP6467591B2 (en) Hydrogen generator
JP4751734B2 (en) Reformer
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP5625441B2 (en) Fuel cell system
JP2007254227A (en) Reforming apparatus
JP2012056805A (en) Hydrogen-generating apparatus
JP5171342B2 (en) Combustion device for reformer
JP2009082810A (en) Insulating device and fuel cell system, and cooling method for insulated container
JP2010235427A (en) Fuel reformer and method for manufacturing the same
JP2012096979A (en) Hydrogen generator and fuel cell system having the same