JP2010221247A - Joint of zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion - Google Patents

Joint of zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion Download PDF

Info

Publication number
JP2010221247A
JP2010221247A JP2009070518A JP2009070518A JP2010221247A JP 2010221247 A JP2010221247 A JP 2010221247A JP 2009070518 A JP2009070518 A JP 2009070518A JP 2009070518 A JP2009070518 A JP 2009070518A JP 2010221247 A JP2010221247 A JP 2010221247A
Authority
JP
Japan
Prior art keywords
zinc
joint
based alloy
plated steel
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009070518A
Other languages
Japanese (ja)
Inventor
Shinji Kodama
真二 児玉
Kinya Ishida
欽也 石田
Hideki Hamaya
秀樹 濱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009070518A priority Critical patent/JP2010221247A/en
Publication of JP2010221247A publication Critical patent/JP2010221247A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint for obtaining a welding joint of zinc-based alloy plated steel plates having excellent corrosion resistance of a joined portion while securing the joining strength by solving a problem raised during the welding of the zinc-based alloy plated steel plates. <P>SOLUTION: In the joint of the zinc-based alloy plated steel plates, the zinc-based alloy plated steel plates wherein the Al content in the zinc-based alloy plating component is ≥6 mass%, and the plating deposit for single side is ≥50 g/m<SP>2</SP>are joined by using an Al-based joining material containing Si of 5-11 mass%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主に、建材として使用される亜鉛系合金めっき鋼板の接合方法に関し、特に、耐食性に優れた接合部を得るためのAl系溶接材料を用いた亜鉛系合金めっき鋼板の接合継手に関する。   The present invention mainly relates to a method for joining zinc-based alloy-plated steel sheets used as building materials, and particularly relates to a joint joint of zinc-based alloy-plated steel sheets using an Al-based welding material for obtaining a joint having excellent corrosion resistance. .

亜鉛系合金めっき鋼板は、建築や自動車など構造部材の耐食性向上の観点から幅広く用いられている。しかしながら、亜鉛系合金めっき鋼板を溶接構造物として使用する場合、溶接時に溶融または加熱された溶接金属および溶接熱影響部(HAZ)で、亜鉛系合金めっき鋼板の表面に施されためっき層が消失または損傷するため耐食性が劣化する。このため、従来から溶接部の耐食性を確保するために溶接部にジンクリッチペイント等の塗料を後塗装することが一般的に行なわれている。   Zinc-based alloy-plated steel sheets are widely used from the viewpoint of improving the corrosion resistance of structural members such as buildings and automobiles. However, when zinc-based alloy-plated steel sheets are used as welded structures, the plating layer applied to the surface of the zinc-based alloy-plated steel sheets disappears in the weld metal and weld heat affected zone (HAZ) that are melted or heated during welding. Or corrosion resistance deteriorates due to damage. For this reason, conventionally, in order to ensure the corrosion resistance of the welded portion, post-coating such as zinc rich paint is generally performed on the welded portion.

しかしながらこの方法も、溶接の後、塗装作業が必要となるため、手間がかかり、生産効率上問題がある。   However, this method also requires a painting operation after welding, which is troublesome and has a problem in production efficiency.

また、塗料による防食は、使用環境にもよるが、比較的短時間で剥離したり、狭隘な個所への塗装が困難であったりなどの問題がある。その上、耐食性が十分であるとは言い難い。   In addition, the anticorrosion by the paint has problems such as peeling off in a relatively short time and difficulty in painting in a narrow area, depending on the use environment. Moreover, it is difficult to say that the corrosion resistance is sufficient.

一方で、近年、高耐食亜鉛系合金めっき鋼板として、Zn−Al−Mg−Si系合金めっきを鋼板(例えば、特許文献1、参照。)が実用化されるなど、めっき鋼板そのものの耐食性は飛躍的に向上している。それに伴い、溶接部の耐食性も更に向上させる必要が生じており、従来の塗装による防食に代わり、新たな耐食性向上技術が求められていた。   On the other hand, as a highly corrosion-resistant zinc-based alloy-plated steel sheet, in recent years, a steel sheet (for example, see Patent Document 1) has been put to practical use with a Zn-Al-Mg-Si-based alloy plating. Has improved. Accordingly, it is necessary to further improve the corrosion resistance of the welded portion, and a new technique for improving the corrosion resistance has been demanded in place of the conventional anticorrosion by painting.

これらの問題を解決するため、特許文献2では、亜鉛系合金めっき鋼板の接合材料にステンレス系溶接材料、および銅合金溶接材料を適用することを提案している。しかしながら、ステンレス系溶接材料、および銅合金溶接材料はともに融点が亜鉛の沸点(約900℃)を超えるため、接合時の加熱で亜鉛めっきが蒸発し、接合部にブローホール等の欠陥を発生する問題がある。また、接合時の入熱による亜鉛めっき層の損傷も大きくなる。   In order to solve these problems, Patent Document 2 proposes to apply a stainless steel welding material and a copper alloy welding material to the bonding material of the zinc-based alloy-plated steel sheet. However, since both the stainless steel welding material and the copper alloy welding material have a melting point exceeding the boiling point of zinc (about 900 ° C.), the galvanization is evaporated by heating during joining, and defects such as blowholes are generated in the joint. There's a problem. In addition, damage to the galvanized layer due to heat input during bonding is increased.

特に、板厚2mm以下程度の薄い亜鉛系合金めっき鋼板の接合においては、溶接部裏面のめっき成分が蒸発してしまうため、耐食性劣化要因となっていた。   In particular, in the joining of thin zinc-based alloy-plated steel sheets with a thickness of about 2 mm or less, the plating component on the back surface of the welded portion evaporates, which has been a cause of corrosion resistance deterioration.

特開2000−064061号公報JP 2000-064061 A 特開2006−35294号公報JP 2006-35294 A

本発明は、亜鉛系合金めっき鋼板同士の溶接接合の際に生じる、前記問題点を解決し、接合強度を確保し、溶接接合部の耐食性の良好な亜鉛系合金めっき鋼板の溶接継手を得るための接合継手を提供することを目的とする。   The present invention is to solve the above-mentioned problems that occur during welding joining of zinc-based alloy plated steel sheets, to secure joint strength, and to obtain a welded joint of zinc-based alloy plated steel sheets with good corrosion resistance at the welded joints. An object of the present invention is to provide a joint joint.

前述したように、ステンレス系溶接材料及び銅合金溶接材料とも、融点が亜鉛の沸点を超えていることが、問題の原因である。そこで、本発明者らは、亜鉛の沸点よりも融点の低い接合材料としてAl(アルミニウム)系接合材料に着目し、その適用による接合部の耐食性向上を試みることとした。   As described above, both the stainless steel welding material and the copper alloy welding material have a problem that the melting point exceeds the boiling point of zinc. Accordingly, the present inventors have focused on an Al (aluminum) -based bonding material as a bonding material having a melting point lower than the boiling point of zinc, and decided to try to improve the corrosion resistance of the bonded portion by application thereof.

通常、鋼板とアルミニウムを接合すると、異種金属間接合となり、金属材料間の電位差により接合部分の腐食が進行する。Al系接合材料による鋼材同士の接合でも、同じ現象が生じ、腐食が進行する。このため、鋼材の接合において、耐食性が必要な部位へのAl系接合材料の適用は向かないと考えることが一般的であった。また、本発明者らが確認しうる限り、亜鉛系合金めっき鋼板同士の接合にAl系接合材料を適用したという従来技術はない。   Usually, when a steel plate and aluminum are joined, it becomes joining between dissimilar metals, and corrosion of a joined part advances by a potential difference between metallic materials. The same phenomenon occurs even when steel materials are joined with an Al-based joining material, and corrosion progresses. For this reason, in joining steel materials, it has been generally considered that the application of an Al-based joining material to a site that requires corrosion resistance is not suitable. In addition, as long as the present inventors can confirm, there is no prior art in which an Al-based bonding material is applied to bonding between zinc-based alloy plated steel sheets.

本発明者らは、こうした概念を打破すべく鋭意検討した結果、Al系接合材料を用いた亜鉛系合金めっき鋼板同士を接合した継手の強度を確保するために、Al系接合材料の合金成分、および亜鉛系合金めっきのめっき組成およびめっき付着量を厳密に管理することにより、異種金属間電位差を抑え、腐食の進行を抑制できることが知見された。本発明は、この知見を基になされたものである。その要旨とするところは以下の通りである。   As a result of intensive studies to break down such a concept, the inventors of the present invention, in order to ensure the strength of a joint obtained by joining zinc-based alloy plated steel sheets using an Al-based bonding material, It was also found that by strictly controlling the plating composition and the amount of plating deposited in zinc-based alloy plating, the potential difference between different metals can be suppressed and the progress of corrosion can be suppressed. The present invention has been made based on this finding. The gist is as follows.

(1)亜鉛系合金めっき鋼板同士の接合継手において、亜鉛系合金めっき成分中のAl含有量が6質量%以上であり、かつ片面当たりのめっき付着量が50g/m以上である亜鉛系合金めっき鋼板を、Siを5〜11質量%含有するAl系接合材料を用いて接合することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板同士の接合継手。 (1) In a joint joint between zinc-based alloy-plated steel sheets, a zinc-based alloy in which the Al content in the zinc-based alloy plating component is 6% by mass or more and the plating adhesion amount per side is 50 g / m 2 or more A bonded joint between zinc-based alloy-plated steel sheets having excellent corrosion resistance at a joint, wherein the plated steel sheet is bonded using an Al-based bonding material containing 5 to 11% by mass of Si.

(2)前記亜鉛系合金めっきがZn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきの何れかであることを特徴とする(1)に記載の接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合継手。   (2) The corrosion resistance of the joint according to (1), wherein the zinc-based alloy plating is any one of a Zn-Al-Mg-based alloy plating and a Zn-Al-Mg-Si-based alloy plating. Bonded joints of zinc-based alloy-plated steel sheets with excellent resistance.

(3)亜鉛系合金めっき鋼板同士の接合継手において、接合部長さが、当該亜鉛系合金めっき鋼板の板厚の3倍以上であることを特徴とする(1)又は(2)に記載の接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合継手。   (3) The joint according to (1) or (2), wherein the joint length between the zinc-based alloy plated steel sheets is at least three times the thickness of the zinc-based alloy plated steel sheet. Bonded joint of zinc-based alloy-plated steel sheet with excellent corrosion resistance.

本発明のAl系接合材料を用いた亜鉛系合金めっき鋼板の接合方法によれば、接合の後、接合部に防食塗装処理を行わなくても接合部の耐食性を飛躍的に向上させることが可能となる。反面、接合金属にAl系接合材料を用いるため、接合継手強度は、鋼板母材の強度より低くなるが、厳しい腐食環境で、かつ接合部の密閉性が要求される容器など、その必要機能、必要特性を適正化すれば、顕著な効果が得られる。   According to the method for joining zinc-based alloy-plated steel sheets using the Al-based joining material of the present invention, it is possible to dramatically improve the corrosion resistance of the joined portion without performing anticorrosion coating treatment on the joined portion after joining. It becomes. On the other hand, since an Al-based bonding material is used for the bonding metal, the bonding joint strength is lower than the strength of the steel plate base metal, but its necessary functions, such as a container that is required in a severe corrosive environment and the sealing of the bonded portion, If the necessary characteristics are optimized, a remarkable effect can be obtained.

重ね隅肉継手の試験片を示す図である。It is a figure which shows the test piece of a lap fillet joint. 引張せん断試験方法を示す図である。It is a figure which shows the tensile shear test method. 鋼板のめっき成分組成におけるAl含有量とめっき付着量と接合継手強度の関係を示す図である。It is a figure which shows the relationship between Al content in the plating component composition of a steel plate, the amount of plating adhesion, and joint strength.

本発明の詳細について、実施例に基づき説明する。
まず、Al系接合材料による溶接を亜鉛系合金めっき鋼板にて適用したときの耐食性について、当該めっき鋼板のめっき種類、Al系接合材料の種類を変えて、耐食実験により確認した。
Details of the present invention will be described based on examples.
First, the corrosion resistance when welding with an Al-based bonding material was applied to a zinc-based alloy-plated steel sheet was confirmed by a corrosion resistance experiment by changing the plating type of the plated steel sheet and the type of the Al-based bonding material.

表1に、試験に用いた亜鉛系合金めっき鋼板を示す。めっき成分、特にめっき中のAl含有量、鋼板の片面めっき付着量、板厚とから9種類(A〜I)の亜鉛系合金めっき鋼板を準備した。なお、亜鉛系合金めっき鋼板はSPCC(JIS G3131熱間圧延軟鋼板)を母材とした。   Table 1 shows the zinc-based alloy plated steel sheets used in the test. Nine types (A to I) of zinc-based alloy-plated steel sheets were prepared based on the plating components, particularly the Al content during plating, the single-sided plating adhesion amount of the steel sheet, and the plate thickness. The zinc-based alloy-plated steel sheet was based on SPCC (JIS G3131 hot rolled mild steel sheet).

表2に、試験に用いた接合材料5種類を示す。Al系接合材料は、4種類(純Al(JIS Z 3232 A1100−WY)、5%Mg−95%Al(JIS Z3232 A5356−WY)、5%Si−95%Al(JIS Z3232 A4040−WY),11%Si−89%Al(JIS規格なし))と比較のために従来技術である309系ステンレス系接合材料(Ni:12%、Cr:24%を含有する309系フラックス入りステンレスワイヤ)を準備した。   Table 2 shows five types of bonding materials used in the test. There are four types of Al-based bonding materials (pure Al (JIS Z 3232 A1100-WY), 5% Mg-95% Al (JIS Z3232 A5356-WY), 5% Si-95% Al (JIS Z3232 A4040-WY), For comparison with 11% Si-89% Al (without JIS standard)) 309 series stainless steel joining material (309 series flux-cored stainless wire containing Ni: 12%, Cr: 24%) is prepared for comparison did.

これら亜鉛系合金めっき鋼板と接合材料を用いて、図1に示すような重ね隅肉溶接継手を作成し、これを試験片とした。継手作成時の溶接条件を、表3に示す。   A lap fillet welded joint as shown in FIG. 1 was prepared using these zinc-based alloy-plated steel sheet and bonding material, and this was used as a test piece. Table 3 shows the welding conditions when creating the joint.

実際の腐食環境では時間の経過とともに継手強度も変化することが予想される。そこで、複合サイクル腐食試験を実施し、接合部を腐食環境に曝した後の継手強度を評価した。複合サイクル腐食試験として、塩水噴霧(5%NaCl)を35℃で2時間、乾燥(湿度30%)を60℃で4時間、湿潤(湿度95%)を50℃で2時間を1サイクルとする複合サイクル腐食試験を150サイクル繰り返した。   In an actual corrosive environment, joint strength is expected to change with time. Therefore, a combined cycle corrosion test was performed to evaluate the joint strength after the joint was exposed to a corrosive environment. As a combined cycle corrosion test, salt spray (5% NaCl) is 2 hours at 35 ° C., drying (humidity 30%) is 4 hours at 60 ° C., and humidity (humidity 95%) is 50 ° C. for 2 hours as one cycle. The combined cycle corrosion test was repeated 150 cycles.

複合サイクル腐食試験後に、図2に示すように引張試験を行い、接合部の引張せん断強度を測定した。なお、接合部の強度は、破断強度/母材断面積(MPa)で示した。   After the combined cycle corrosion test, a tensile test was performed as shown in FIG. 2, and the tensile shear strength of the joint was measured. In addition, the strength of the joint portion was represented by breaking strength / base material cross-sectional area (MPa).

表3に各接合継手を作製する際の接合条件および溶接部の耐食性および強度の評価結果を示す。なお耐食試験は前述の複合サイクル腐食試験とし150サイクル試験後の接合部の赤錆発生状態を評価した。顕著な赤錆が発生したものを(×)とし、白さび及びめっき金属光沢そのままのものを(○)と標記した。引張せん断強度は、母材の引張強さ規格270MPaの1/√3程度である150MPaを基準せん断強度とし、それより強ければ○、悪ければ×として、表3に示した。   Table 3 shows the joining conditions when producing each joint and the evaluation results of the corrosion resistance and strength of the welds. The corrosion resistance test was the above-mentioned combined cycle corrosion test, and the red rust occurrence state of the joint after the 150 cycle test was evaluated. Those with significant red rust occurred were marked with (X), and those with white rust and plated metallic luster were marked with (O). The tensile shear strength is shown in Table 3 as a reference shear strength of 150 MPa, which is about 1 / √3 of the tensile strength standard of 270 MPa of the base material.

鋼板Hは、耐食性を向上させたZn−Al−Mg系めっきを採用しているが、溶接材料にSiが添加されていないものは、腐食試験後の継手強度が低かった。破断形態を観察するとAl系接合金属が母材との接合界面で剥離していた。接合界面にFe−Al金属間化合物が生成したために、接合界面が極めて脆い組織となり、剥離が生じたと考えられる。   The steel sheet H employs Zn—Al—Mg based plating with improved corrosion resistance, but the joint strength after the corrosion test was low when no Si was added to the welding material. When the fracture mode was observed, the Al-based bonding metal was peeled off at the bonding interface with the base material. It is considered that since the Fe—Al intermetallic compound was formed at the bonding interface, the bonding interface became a very brittle structure and peeling occurred.

これに対し、Si系Al接合材料を使用したものは、良好な耐食性を示すと共に腐食試験後の継手強度も良好であった。破断形態はAl系接合金属部分での延性破壊であった。Al系接合材料へのSi添加により、接合界面でのFe−Al金属間化合物の生成が抑制されたと考えられる。   On the other hand, the one using the Si-based Al bonding material showed good corrosion resistance and good joint strength after the corrosion test. The fracture mode was ductile fracture at the Al-based joint metal part. It is thought that the addition of Si to the Al-based bonding material suppressed the formation of Fe-Al intermetallic compounds at the bonding interface.

一方、5%Si系Al接合材料を使用しても、めっき成分のAl含有量や、めっき付着量により、複合サイクル腐食試験後の引張せん断強度に差が生じた。すなわち、めっき成分中のAl量を増加させることによって接合部の耐食性向上が可能となった。Al系接合材料の融点は660℃程度であるが、熱源であるアークプラズマは数千℃に達するため、アークプラズマ直下の亜鉛めっきは蒸発し、熱影響部の亜鉛めっきは損傷する。   On the other hand, even when a 5% Si-based Al bonding material was used, there was a difference in the tensile shear strength after the combined cycle corrosion test depending on the Al content of the plating component and the plating adhesion amount. That is, the corrosion resistance of the joint can be improved by increasing the amount of Al in the plating component. Although the melting point of the Al-based bonding material is about 660 ° C., the arc plasma that is a heat source reaches several thousand ° C., so that the galvanization directly under the arc plasma evaporates and the galvanization in the heat affected zone is damaged.

同様に、めっき成分中のAlもアークプラズマの熱によって蒸発するが、亜鉛の沸点900℃程度に比べるとAlの沸点は2000℃程度と高く、蒸発は少なくなる。その結果、めっき成分中にAlを6%以上含有させることによって、熱影響部がAl成分によって保護されるため、耐食性が良好であったと考えられる。   Similarly, Al in the plating component is also evaporated by the heat of the arc plasma, but the boiling point of Al is as high as about 2000 ° C. compared to the boiling point of zinc at about 900 ° C., and evaporation is reduced. As a result, since the heat-affected zone is protected by the Al component by containing 6% or more of Al in the plating component, it is considered that the corrosion resistance was good.

この結果から、Si添加Al接合材料と、6%以上のAl成分をめっき中に含む亜鉛系合金めっき鋼板の組み合わせであれば、溶接後も良好な耐食性が得られ、引張せん断強度も150MPaを確保できることがわかった。   From this result, if the combination of Si-added Al bonding material and zinc-based alloy-plated steel sheet containing 6% or more Al component during plating, good corrosion resistance is obtained even after welding, and tensile shear strength of 150 MPa is secured. I knew it was possible.

Figure 2010221247
Figure 2010221247

Figure 2010221247
Figure 2010221247

Figure 2010221247
Figure 2010221247

次に、基材となる亜鉛系合金めっき鋼板のめっき成分組成におけるAl含有量と、該鋼板片面のめっき付着量により、継手強度がどのように影響を受けるか実験した。   Next, an experiment was conducted on how the joint strength is affected by the Al content in the plating component composition of the zinc-based alloy-plated steel sheet to be the base material and the plating adhesion amount on one surface of the steel sheet.

亜鉛系合金めっき鋼板のめっき成分組成におけるAl含有量は、0.1%、4%、6%、11%、15%、18%であり、片面のめっき付着量がそれぞれ30g/m、50g/m、100g/m、150g/mとなる試験材をそれぞれ準備した。これら試験材を5%Si系接合材料にて溶接し、上記と同様な重ね隅肉継手試験片を作成した。 The Al content in the plating component composition of the zinc-based alloy-plated steel sheet is 0.1%, 4%, 6%, 11%, 15%, and 18%, and the plating adhesion on one side is 30 g / m 2 and 50 g, respectively. Test materials to be / m 2 , 100 g / m 2 , and 150 g / m 2 were prepared. These test materials were welded with a 5% Si-based bonding material to prepare a lap fillet joint test piece similar to the above.

これら継手試験片を、上記耐食試験と同様の複合サイクル腐食試験を行った後、引張試験を行い、継手の引張せん断強度を求めた。
その結果を、図3に示す。めっき成分組成におけるAl含有量が4%以下、またはめっき付着量が30g/m以下の場合は、接合部の破断強度が低く(150MPa未満)、破断位置も接合界面から剥離する不安定な破断形態となった。これらの腐食試験片は接合部の腐食が進行しており、母材熱影響部からは赤錆が発生するとともに、Al接合金属部は腐食による減肉が発生していた。
These joint test pieces were subjected to a combined cycle corrosion test similar to the above corrosion resistance test, and then a tensile test was performed to determine the tensile shear strength of the joint.
The result is shown in FIG. When the Al content in the plating component composition is 4% or less, or when the plating adhesion amount is 30 g / m 2 or less, the fracture strength at the joint is low (less than 150 MPa), and the fracture position is also unstable at the fracture interface. It became a form. In these corrosion test pieces, corrosion of the joint progressed, red rust was generated from the heat affected zone of the base metal, and thinning due to corrosion occurred in the Al bonded metal part.

一方、Al含有量が6%以上、かつめっき付着量が50g/m2以上の場合は、破断強度が150MPa以上の比較的良好な接合部強度示し、腐食前と150サイクルの腐食試験後の継手強度はほとんど変化しなかった。腐食試験後の接合部には赤錆やAl接合金属の減肉はほとんど観察されず、良好な継手耐食性を示していた。めっき成分組成におけるAl含有量が増加したことで、上述のように溶接中のAl成分の蒸発が少ないため、母材表面の熱影響部にAlの保護膜が形成された結果、良好な耐食性の確保が可能になったと考えられる。   On the other hand, when the Al content is 6% or more and the plating adhesion amount is 50 g / m 2 or more, a relatively good joint strength with a breaking strength of 150 MPa or more is exhibited, and the joint strength before corrosion and after 150 cycles of corrosion test Changed little. Almost no thinning of red rust or Al bonding metal was observed at the joint after the corrosion test, indicating good joint corrosion resistance. Since the Al content in the plating component composition has increased, the evaporation of the Al component during welding is small as described above, and as a result of the formation of an Al protective film on the heat-affected zone on the surface of the base material, good corrosion resistance is achieved. It is thought that it was possible to secure.

このように、めっき成分におけるAl含有量は腐食試験後の継手強度に影響を及ぼす。図4に示す結果からめっき成分におけるAl含有量の下限は6%とした。上限は特に規定しないが、めっき成分におけるAl含有量が19%を超えると、めっき鋼板そのものの犠牲防食効果が不十分となり曲げ加工部の耐食性が低下するため、上限値は19%とすることが望ましい。   Thus, the Al content in the plating component affects the joint strength after the corrosion test. From the results shown in FIG. 4, the lower limit of the Al content in the plating component was 6%. The upper limit is not particularly specified, but if the Al content in the plating component exceeds 19%, the sacrificial anticorrosive effect of the plated steel sheet itself is insufficient and the corrosion resistance of the bent portion is lowered, so the upper limit may be 19%. desirable.

また、めっき付着量については、適正な接合部の耐食性を確保するため下限値を50g/m2とした。上限値は特に規定しないが、一般的な建材用の亜鉛系合金めっき鋼板のめっき付着量を参考にすると、上限は150g/mとすることが望ましい。 Moreover, about the plating adhesion amount, in order to ensure the corrosion resistance of a suitable junction part, the lower limit was set to 50 g / m2. Although an upper limit is not specified in particular, the upper limit is preferably set to 150 g / m 2 with reference to the amount of coating on a general zinc-based alloy-plated steel sheet for building materials.

次に、Si添加Al系接合材料のSi添加範囲について検討した。
5%Si系接合材料を用いた場合は、引張せん断試験した試験片は、溶接金属内で破断しており、その破断強度(引張せん断強度)は、150MPa以上を示した。
Next, the Si addition range of the Si-added Al-based bonding material was examined.
When a 5% Si-based bonding material was used, the test piece subjected to the tensile shear test was broken in the weld metal, and the breaking strength (tensile shear strength) was 150 MPa or more.

これは、Al系接合金属中のSi濃度が高まることによって、母材の鉄成分が接合金属中に拡散することを抑制し、その結果、接合界面のFe−Al合金層の成長を抑制することが可能になったためと考えられる。また、接合金属中のSi量増加によってAl接合金属の強度が高まったため、比較的良好な継手強度が得られたと考えられる。   This suppresses the diffusion of the iron component of the base metal into the bonding metal by increasing the Si concentration in the Al-based bonding metal, and consequently suppresses the growth of the Fe—Al alloy layer at the bonding interface. This is considered to be possible. In addition, it is considered that relatively good joint strength was obtained because the strength of the Al-bonded metal increased due to an increase in the amount of Si in the bonded metal.

以上の検討から、Al系接合材料の合金成分としてSiの添加が有効であることが明らかとなった。Siの添加量が5%以下の場合はFe−Al金属間化合物の生成抑制効果、ならびにAl接合金属の強度向上の効果が十分でなく、またSiの添加量が11%を超える場合はAl接合金属が脆くなるため、適正なSi添加量は5〜11%とした。   From the above examination, it has become clear that addition of Si is effective as an alloy component of the Al-based bonding material. When the addition amount of Si is 5% or less, the effect of suppressing the formation of Fe-Al intermetallic compounds and the effect of improving the strength of the Al bonding metal are not sufficient, and when the addition amount of Si exceeds 11%, Al bonding is performed. Since the metal becomes brittle, the appropriate Si addition amount is set to 5 to 11%.

本発明ではめっき成分組成として、Al以外にMgやSiを含有しても問題ないことを確認している。特に、近年耐食性に優れた建材としてZn−Al−Mg系合金めっき鋼材が脚光を浴びており、本発明を適用することにより、当該Zn−Al−Mg系合金めっき鋼材での構築物の適用範囲が格段に広がり、その効果は大きい。   In the present invention, it is confirmed that there is no problem even if Mg or Si is contained in addition to Al as the plating component composition. In particular, Zn-Al-Mg alloy-plated steel materials have attracted attention as building materials having excellent corrosion resistance in recent years. By applying the present invention, the scope of application of the structures in the Zn-Al-Mg-based alloy plated steel materials can be increased. It is much more widespread and the effect is great.

Zn−Al−Mg系合金めっき鋼材では、Al:6〜19%、Mg:0.5〜10%、残部Znからなるめっきからなり、Zn−Al−Mg−Si系合金めっきでは、Al:6〜19%、Mg:0.5〜10%、Si:0.01〜2%、残部Znからなるめっきが一般に用いられる。   In the Zn—Al—Mg-based alloy plated steel material, Al: 6 to 19%, Mg: 0.5 to 10%, and the remaining Zn is plated. In the Zn—Al—Mg—Si-based alloy plating, Al: 6 A plating composed of ˜19%, Mg: 0.5 to 10%, Si: 0.01 to 2%, and the balance Zn is generally used.

例えば、Alを11%、Mgを3%、Siを0.2%含み残部を主にZnとする新日本製鐵株式会社製「スーパーダイマ(登録商標)」鋼板あるいはAlを7%、Mgを3%含み残部を主にZnとする日新製鋼株式会社製「ZAM(登録商標)」鋼板等がある。しかし、本発明ではこれらの鋼材やめっき成分組成に限定されるものではない。   For example, a “Superdimer (registered trademark)” steel plate manufactured by Nippon Steel Corp. with 11% Al, 3% Mg, 0.2% Si, and the balance mainly Zn or 7% Al and 3% Mg There are “ZAM (registered trademark)” steel plates manufactured by Nisshin Steel Co., Ltd., mainly containing Zn in the balance. However, the present invention is not limited to these steel materials and plating component compositions.

次ぎに、継手の強度について検討する。
本発明では、Si系Al接合材料を、鋼板の接合に使用しているため、溶接継手強度の観点では、鋼板の母材強度に劣る。そのため、耐食性では母材の亜鉛系合金めっき鋼板と同等であっても、構造体としての強度は、継手がネックとなる。
Next, the strength of the joint will be examined.
In this invention, since Si system Al joining material is used for the joining of a steel plate, it is inferior to the base material strength of a steel plate from a viewpoint of welded joint strength. Therefore, even if the corrosion resistance is equivalent to the base zinc-based alloy-plated steel sheet, the joint becomes a neck in the strength as a structure.

このネックを解消するため、継手における接合金属の接触部長さ(図1のLu、Ld)及び、余盛高さ(Lh)を長くすることが効果的である。例えば、鋼板同士の重ね隅肉溶接の場合、接触部長さは、板厚程度であるが、アルミニウムは鉄の1/3程度の強度のため、接触部長さを板厚の3倍以上とすればよい。接触面積が増加するため、異種金属間の腐食リスクは高まるが、本発明の範囲内の接合材料と鋼板を選択すれば、特段問題ない。   In order to eliminate this neck, it is effective to lengthen the contact portion length (Lu, Ld in FIG. 1) and the surfacing height (Lh) of the joint metal in the joint. For example, in the case of lap fillet welding between steel plates, the contact length is about the plate thickness, but aluminum is about 1/3 the strength of iron, so if the contact length is at least three times the plate thickness Good. Since the contact area increases, the risk of corrosion between dissimilar metals increases, but there is no particular problem if a joining material and a steel plate within the scope of the present invention are selected.

本発明者らは、Zn+11%Al+3%Mg+0.2%Siめっきを施し、めっき付着量90g/m2、板厚1.2mmの鋼板同士を、5%Si添加Al接合材料にて接合する試験を行った。このとき、接合部長さ(図1のLu、Ld、Lh)をそれぞれ2mm、3mm、4mm、6mmとなるようにした試験片各を複合サイクル腐食試験後に引張せん断試験を実施した。その結果、接合部長さ2mmと3mmのものは、接合金属中で破断しているが、4mmの試験片は接合金属部か鋼板母材で破断しており、6mmの試験片は鋼板母材で破断していた。   The present inventors performed a test in which Zn + 11% Al + 3% Mg + 0.2% Si plating was applied, and steel plates having a coating adhesion amount of 90 g / m 2 and a plate thickness of 1.2 mm were bonded together with a 5% Si-added Al bonding material. It was. At this time, each of the test pieces whose joint lengths (Lu, Ld, and Lh in FIG. 1) were 2 mm, 3 mm, 4 mm, and 6 mm, respectively, was subjected to a tensile shear test after the combined cycle corrosion test. As a result, the joint lengths of 2 mm and 3 mm are broken in the joining metal, but the 4 mm test piece is broken at the joining metal portion or the steel plate base material, and the 6 mm test piece is made of the steel plate base material. It was broken.

この結果からも、接合部長さは、板厚の3倍以上にすれば、母材引張強さと同等程度の引張せん断強度を有することができる。接合部長さは安定した溶接を行うために板厚の10倍以上あれることが望ましい。ただし、構造物の力のかかり方は、複雑であるため、この引張せん断力以外の力がかかる場合は、さらにそれに適した対応策が必要となるが、基本的な考え方は同じと考える。   Also from this result, if the joint length is 3 times or more the plate thickness, it can have a tensile shear strength equivalent to the base material tensile strength. It is desirable that the joint length is 10 times or more the plate thickness in order to perform stable welding. However, since the method of applying the force of the structure is complicated, when a force other than the tensile shear force is applied, a countermeasure suitable for it is necessary, but the basic idea is the same.

本発明のAl系接合材料を用いた亜鉛系合金めっき鋼板の接合方法によれば、接合の後、接合部に防食塗装処理を行わなくても接合部の耐食性を飛躍的に向上させることが可能となる。そのため、耐食機能を強化した亜鉛系合金めっき鋼板の適用範囲を格段に広げる技術であることは、言うまでもなく、広く産業分野の発展に貢献するものと考える。   According to the method for joining zinc-based alloy-plated steel sheets using the Al-based joining material of the present invention, it is possible to dramatically improve the corrosion resistance of the joined portion without performing anticorrosion coating treatment on the joined portion after joining. It becomes. Therefore, it is needless to say that it is a technology that dramatically expands the application range of zinc-based alloy-plated steel sheets with enhanced corrosion resistance function, and it is considered that it will contribute widely to the development of the industrial field.

1 亜鉛系合金めっき
2 亜鉛系合金めっき鋼板の母材
3 Al系接合金属
Lu、Ld 接合部長さ
Lh 接合部余盛高さ
DESCRIPTION OF SYMBOLS 1 Zinc type alloy plating 2 Base material of zinc type alloy plating steel plate 3 Al type joining metal Lu, Ld Junction length Lh Junction surplus height

Claims (3)

亜鉛系合金めっき鋼板同士の接合継手において、
亜鉛系合金めっき成分中のAl含有量が6質量%以上であり、かつ片面当たりのめっき付着量が50g/m以上である亜鉛系合金めっき鋼板を、Siを5〜11質量%含有するAl系接合材料を用いて接合することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板同士の接合継手。
In joints between zinc-based alloy plated steel plates,
A zinc-based alloy-plated steel sheet having an Al content in a zinc-based alloy plating component of 6% by mass or more and a plating adhesion amount per side of 50 g / m 2 or more is 5 to 11% by mass of Si. A bonded joint between zinc-based alloy-plated steel sheets excellent in corrosion resistance of the joint, characterized by bonding using a copper-based bonding material.
前記亜鉛系合金めっきがZn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきの何れかであることを特徴とする請求項1に記載の接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合継手。   The said zinc-type alloy plating is either Zn-Al-Mg-type alloy plating and Zn-Al-Mg-Si type alloy plating, It was excellent in the corrosion resistance of the junction part of Claim 1 characterized by the above-mentioned. Joined joint of zinc-based alloy plated steel sheet. 亜鉛系合金めっき鋼板同士の接合継手において、接合部長さおよび余盛高さが、当該亜鉛系合金めっき鋼板の板厚の3倍以上であることを特徴とする請求項1又は2に記載の接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合継手。   The joint according to claim 1 or 2, wherein, in a joint joint between zinc-based alloy plated steel sheets, the length of the joint and the surplus height are three times or more the plate thickness of the zinc-based alloy plated steel sheet. Bonded joint of zinc-based alloy-plated steel sheet with excellent corrosion resistance.
JP2009070518A 2009-03-23 2009-03-23 Joint of zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion Withdrawn JP2010221247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070518A JP2010221247A (en) 2009-03-23 2009-03-23 Joint of zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070518A JP2010221247A (en) 2009-03-23 2009-03-23 Joint of zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion

Publications (1)

Publication Number Publication Date
JP2010221247A true JP2010221247A (en) 2010-10-07

Family

ID=43038996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070518A Withdrawn JP2010221247A (en) 2009-03-23 2009-03-23 Joint of zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion

Country Status (1)

Country Link
JP (1) JP2010221247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198935A (en) * 2012-02-24 2013-10-03 Nisshin Steel Co Ltd Method for producing arc welded structural member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198935A (en) * 2012-02-24 2013-10-03 Nisshin Steel Co Ltd Method for producing arc welded structural member
WO2013187197A1 (en) * 2012-06-14 2013-12-19 日新製鋼株式会社 Process for producing arc-welded structural member
CN104334308A (en) * 2012-06-14 2015-02-04 日新制钢株式会社 Process for producing arc-welded structural member
AU2013275476B2 (en) * 2012-06-14 2017-07-06 Nisshin Steel Co., Ltd. Method for Producing Arc-Welded Structural Member
AU2017204060B2 (en) * 2012-06-14 2018-07-05 Nisshin Steel Co., Ltd. Method for producing arc-welded structural member

Similar Documents

Publication Publication Date Title
JP2003277992A (en) Automobile fuel tank or oil feeding pipe made of stainless steel having excellent corrosion resistance
JP2007118077A (en) Weld joint of galvanized steel plate having excellent corrosion resistance and excellent zinc embrittlement cracking resistance of weld part
JP2006219716A (en) HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET AND ITS PRODUCTION METHOD
CN108526692B (en) Laser filler welding process for magnesium/aluminum dissimilar metal
JP6658412B2 (en) Structural steel materials and structures with excellent coating durability
JP2020143370A (en) HOT-DIP Al-Zn-Mg-Si BASED PLATING STEEL SHEET AND MANUFACTURING METHOD THEREOF, AND COATED STEEL SHEET AND MANUFACTURING METHOD THEREOF
JP2006035293A (en) Welding method of galvanized steel plate having excellent corrosion resistance and zinc embrittlement cracking resistance of weld
JP4980294B2 (en) Coated arc welding rod for galvanized steel sheet
KR102272173B1 (en) Manufacturing method of flux-encapsulated wire, manufacturing method of flux-laden wire and welded joint
JP5727346B2 (en) Method of repairing welded portion of welded zinc-aluminum alloy plated steel and welded structure
JP6658423B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding of corrosion resistant steel
JP6658424B2 (en) Flux-cored wire for gas shielded arc welding of corrosion resistant steel
JP2006035294A (en) Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
JP6398196B2 (en) Manufacturing method of welded lightweight H-section steel
JP5059455B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP4452204B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP2010221247A (en) Joint of zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
JP4640995B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP6315153B1 (en) Fused Al-Zn plated steel sheet
JP5833950B2 (en) Welded joints using steel with excellent corrosion resistance against dissimilar metals
JP2008149374A (en) Joint product of two different materials between steel product and aluminum material and its spot welding method
JP6432715B1 (en) Flux-cored wire manufacturing method, flux-cored wire, and welded joint manufacturing method
JP4452205B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP2009120943A (en) Aluminum-based alloy plated steel sheet having excellent oxidation resistance and spot weldability
JP2001300769A (en) Low hydrogen coated electrode for seashore high- weather resistant steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605