JP2010221188A - Method for regenerating adsorbent - Google Patents

Method for regenerating adsorbent Download PDF

Info

Publication number
JP2010221188A
JP2010221188A JP2009073933A JP2009073933A JP2010221188A JP 2010221188 A JP2010221188 A JP 2010221188A JP 2009073933 A JP2009073933 A JP 2009073933A JP 2009073933 A JP2009073933 A JP 2009073933A JP 2010221188 A JP2010221188 A JP 2010221188A
Authority
JP
Japan
Prior art keywords
adsorbent
oxygen
desulfurization
content
sulfur content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009073933A
Other languages
Japanese (ja)
Other versions
JP5049995B2 (en
Inventor
Yukio Otsuka
幸雄 大塚
Yasuhiro Araki
泰博 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association of Refinery Integration for Group Operation
Eneos Corp
Original Assignee
Japan Energy Corp
Research Association of Refinery Integration for Group Operation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp, Research Association of Refinery Integration for Group Operation filed Critical Japan Energy Corp
Priority to JP2009073933A priority Critical patent/JP5049995B2/en
Publication of JP2010221188A publication Critical patent/JP2010221188A/en
Application granted granted Critical
Publication of JP5049995B2 publication Critical patent/JP5049995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating an adsorbent, in which a residual sulfur compound, a carbon compound or the like being a substance for deteriorating the desurfurization activity of the adsorbent is removed efficiently to recover the desurfurization activity of the adsorbent and which does not deteriorate the activity of the adsorbent even when the absorbent is regenerated and used repeatedly. <P>SOLUTION: The method for regenerating the zeolite adsorbent for removing the sulfur content of hydrocarbon oil comprises: the first step of heat-treating the zeolite adsorbent, whose desurfurization activity is deteriorated, in a gas stream containing no oxygen substantially at 300-800°C; and the second step of further heat-treating the zeolite adsorbent heat-treated at the first step in an oxygen-containing air stream at 300-800°C. It is preferable that the oxygen content in the gas stream containing no oxygen substantially at the first step is ≤0.01 vol.% or zero, that in the oxygen-containing air stream is 0.1-21 vol.%, and the sulfur content in the adsorbent after the first step is ≤0.05 wt.%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、硫黄分を含む炭化水素油の脱硫に使用するゼオライトを含有する吸着剤の再生方法に関する。   The present invention relates to a method for regenerating an adsorbent containing zeolite used for desulfurization of hydrocarbon oil containing sulfur.

石油精製の分野において炭化水素は、各種の燃料、溶剤、石油化学品の原料等に供されるため、環境への配慮の観点から硫黄分の低減が行われている。炭化水素油の脱硫方法は種々の方法が知られているが、長期の使用により、使用した触媒、吸着剤上に炭素分や硫黄分が堆積することによりその性能が低下、失活することも知られている。性能が低下、失活した触媒、吸着剤の再生方法も様々な方法が提案されている(特許文献1〜2)。   In the field of petroleum refining, hydrocarbons are used for various fuels, solvents, petrochemical raw materials, and the like, so sulfur content is reduced from the viewpoint of environmental considerations. Various methods are known for desulfurization of hydrocarbon oils, but the carbon and sulfur components deposited on the used catalyst and adsorbent may deteriorate and deactivate due to long-term use. Are known. Various methods have been proposed for regenerating the catalyst and adsorbent whose performance has been reduced or deactivated (Patent Documents 1 and 2).

例えば特許文献1では、炭素分が約5〜30重量%及び硫黄分が約2〜10重量%堆積した触媒を酸素含有ガスを用いて1200°F(648.9℃)以下の温度で再生させる方法が提案されている。しかし、再生触媒の炭素分や硫黄分の除去レベルをみると、低いレベルでも炭素分が約0.3重量%、硫黄分が約0.5重量%残存しており、必ずしも満足できるものではなく、再生触媒の活性の回復も十分とは言い難い状況であった。また、脱硫と再生を繰り返すことにより、吸着剤に硫黄分が徐々に蓄積され、脱硫活性が徐々に低下していくという問題があった。   For example, in Patent Document 1, a catalyst in which about 5 to 30% by weight of carbon and about 2 to 10% by weight of sulfur are deposited is regenerated at a temperature of 1200 ° F. (648.9 ° C.) or less using an oxygen-containing gas. A method has been proposed. However, looking at the carbon and sulfur removal levels of the regenerated catalyst, even at low levels, the carbon content is about 0.3% by weight and the sulfur content is about 0.5% by weight, which is not always satisfactory. It was difficult to say that the recovery of the activity of the regenerated catalyst was sufficient. In addition, by repeating desulfurization and regeneration, there is a problem that sulfur is gradually accumulated in the adsorbent and the desulfurization activity gradually decreases.

特許文献2では、重質油熱分解装置から得られた軽質炭化水素油中の脱硫用吸着剤を300〜600℃の熱処理をして再生し、脱硫と再生を繰り返し行う方法が提案されている。再生方法としては空気を用いたものであり、前述のように脱硫と再生を繰り返すことにより、吸着剤に硫黄分が徐々に蓄積され、脱硫活性が徐々に低下していくという問題があった。   Patent Document 2 proposes a method in which a desulfurization adsorbent in light hydrocarbon oil obtained from a heavy oil pyrolysis apparatus is regenerated by heat treatment at 300 to 600 ° C., and desulfurization and regeneration are repeated. . As a regeneration method, air is used, and there is a problem that sulfur is gradually accumulated in the adsorbent and the desulfurization activity gradually decreases by repeating desulfurization and regeneration as described above.

特表平08−507468号公報JP-T-08-507468 特開2006−335866号公報JP 2006-335866 A

本発明は、繰り返し使用することによる硫黄分の蓄積による活性の低下を回避するため、この脱硫活性の低下原因物質である残存硫黄化合物を効率良く除去し、脱硫活性を回復する吸着剤の再生方法を提供することを課題とする。   The present invention avoids a decrease in activity due to the accumulation of sulfur content due to repeated use, and thus a method for regenerating an adsorbent that efficiently removes residual sulfur compounds that cause a decrease in desulfurization activity and restores the desulfurization activity. It is an issue to provide.

本発明者等は、鋭意検討した結果、酸素を含まない気流下で加熱処理を施した後、酸素含有気流下で吸着剤の再生処理を行うことにより、吸着脱硫と再生を繰り返しても吸着剤に硫黄分の蓄積が見られず、初期の脱硫活性を維持できることを見出し、本発明に想到した。   As a result of intensive studies, the present inventors have conducted heat treatment under an oxygen-free air stream, and then regenerated the adsorbent under an oxygen-containing air stream, so that the adsorbent can be repeated even if adsorption desulfurization and regeneration are repeated. The present inventors have found that no sulfur accumulation is observed and that the initial desulfurization activity can be maintained, and the present invention has been conceived.

すなわち、本発明は、以下のとおりのものである。
(1) 炭化水素油に含まれる硫黄分を除去するゼオライト吸着剤の再生方法であって、脱硫活性が低下した前記ゼオライト吸着剤を、実質的に酸素を含まない気流下に300〜800℃で加熱処理する第1工程、及び該第1工程のあとに酸素含有気流下に300〜800℃で加熱処理する第2工程を含むゼオライト吸着剤の再生方法。
(2) 第1工程の実質的に酸素を含まない気流における酸素含有量が0.01容量%以下又はゼロであり、また第2工程の酸素含有気流における酸素含有量が0.1%〜21%容量%である上記(1)に記載のゼオライト吸着剤の再生方法。
(3) 第1工程後の吸着剤に含まれる硫黄分が0.05重量%以下である上記(1)又は(2)に記載のゼオライト吸着剤の再生方法。
(4) 上記(1)〜(3)のいずれかに記載の吸着剤の再生方法により再生したゼオライト吸着剤を用いて、炭化水素油に含まれる硫黄分を除去する炭化水素油の脱硫方法。
That is, the present invention is as follows.
(1) A method for regenerating a zeolite adsorbent for removing sulfur contained in a hydrocarbon oil, wherein the zeolite adsorbent having a reduced desulfurization activity is heated at 300 to 800 ° C. in an air stream substantially free of oxygen. A method for regenerating a zeolite adsorbent comprising a first step of heat treatment and a second step of heat treatment at 300 to 800 ° C. in an oxygen-containing airflow after the first step.
(2) The oxygen content in the substantially oxygen-free air stream in the first step is 0.01% by volume or less or zero, and the oxygen content in the oxygen-containing air stream in the second step is 0.1% to 21 The method for regenerating a zeolite adsorbent according to the above (1), which is% volume%.
(3) The method for regenerating a zeolite adsorbent according to (1) or (2) above, wherein the sulfur content in the adsorbent after the first step is 0.05% by weight or less.
(4) A hydrocarbon oil desulfurization method for removing sulfur contained in hydrocarbon oil using the zeolite adsorbent regenerated by the adsorbent regeneration method according to any one of (1) to (3) above.

本発明による再生方法によって、脱硫活性の低下原因である残存硫黄化合物を効率良く除去できるため、吸着剤の脱硫活性を回復させることができる。これにより、脱硫−再生のサイクルを繰り返し行なっても初期の脱硫活性の低下が見られないので、吸着剤を繰り返して再生し、長期間に渡って使用することができるという特別の効果を奏する。   By the regeneration method according to the present invention, the residual sulfur compound that is the cause of the decrease in the desulfurization activity can be efficiently removed, so that the desulfurization activity of the adsorbent can be recovered. As a result, even if the desulfurization-regeneration cycle is repeated, the initial desulfurization activity does not decrease, so that the adsorbent can be regenerated repeatedly and used over a long period of time.

本発明のゼオライト吸着剤の再生方法は、炭化水素油に含まれる硫黄分を除去するゼオライト吸着剤の再生方法であって、炭素分及び硫黄分等の不純物が堆積して脱硫活性が低下した吸着剤を、酸素含有量が0.01容量%以下の気流下、300〜800℃で加熱処理する第1工程と、その後、酸素含有気流下、300〜800℃で加熱処理する第2工程を有するゼオライト吸着剤の再生方法である。   The method for regenerating a zeolite adsorbent according to the present invention is a method for regenerating a zeolite adsorbent that removes sulfur contained in a hydrocarbon oil, and adsorbed with desulfurization activity reduced due to accumulation of impurities such as carbon and sulfur. The first step of heat-treating the agent at 300 to 800 ° C. under an air flow with an oxygen content of 0.01% by volume or less, and then the second step of heat-treating at 300 to 800 ° C. under an oxygen-containing air flow. This is a method for regenerating a zeolite adsorbent.

本発明の再生方法が対象とするゼオライト吸着剤は、低分子量のジスルフィド類、メルカプタン類、スルフィド類、チオフェン類などに対し吸着能力を有する吸着剤であれば良い。このようなゼオライト吸着剤として、フォージャサイト型ゼオライトであるX型ゼオライト、Y型ゼオライトが挙げられる。フォージャサイト型ゼオライトの含有量が50重量%以上、好ましくは75重量%以上、より好ましくは95重量%以上の吸着剤が好適である。ゼオライトの含有量が50重量%未満だと脱硫性能が低下するため好ましくない。ゼオライト以外の成分としてはゼオライトを結合させるために用いるバインダーが挙げられる。バインダーとしては、アルミナ、シリカ−アルミナ、チタニア−アルミナ、ジルコニア−アルミナ、ボリア−アルミナなど、多孔質でかつ非晶質のものを好適に用いることができる。なかでも、ゼオライトを結合する力が強く、また比表面積が高いことから、アルミナ、シリカ−アルミナ及びボリア−アルミナが好ましい。これらは触媒の強度を向上させる役割がある。
また、X型又はY型ゼオライトはSi/Al(モル)比が0.6〜4.0のものが好ましく、より好ましくは1.2〜3.0である。さらにゼオライトに含まれるカチオンはナトリウムまたはプロトンが好ましい。
The zeolite adsorbent targeted by the regeneration method of the present invention may be an adsorbent having an adsorption ability for low molecular weight disulfides, mercaptans, sulfides, thiophenes and the like. Examples of such a zeolite adsorbent include X-type zeolite and Y-type zeolite, which are faujasite type zeolites. Adsorbents having a faujasite-type zeolite content of 50% by weight or more, preferably 75% by weight or more, and more preferably 95% by weight or more are suitable. If the zeolite content is less than 50% by weight, the desulfurization performance is lowered, which is not preferable. Examples of components other than zeolite include a binder used for bonding zeolite. As the binder, porous and amorphous ones such as alumina, silica-alumina, titania-alumina, zirconia-alumina, and boria-alumina can be suitably used. Of these, alumina, silica-alumina, and boria-alumina are preferred because they have a strong ability to bind zeolite and have a high specific surface area. These have a role of improving the strength of the catalyst.
The X-type or Y-type zeolite preferably has a Si / Al (molar) ratio of 0.6 to 4.0, more preferably 1.2 to 3.0. Further, the cation contained in the zeolite is preferably sodium or proton.

炭化水素油の脱硫は、公知の吸着操作で行なうことができる。例えば、固定層による吸着、移動層や流動層による吸着、擬似移動層による吸着など通常は連続処理の方式で行われるが、炭化水素油中に吸着剤を投入して撹拌する等のバッチ方式で行なうこともできる。炭化水素油量、吸着剤量、炭化水素油の通油速度、吸着剤との接触時間、温度などの吸着条件は適宜設定できる。通常、吸着温度は60℃以下、特に吸着剤の吸着容量が大きくできることから、より低温で処理することが好ましい。経済的な理由から、過度の低温は避けるべきであり、常温付近がより好ましい。また、吸着剤と炭化水素油の接触は、液層で行なうことが好ましいが、気相状態にて接触させても構わない。   Desulfurization of the hydrocarbon oil can be performed by a known adsorption operation. For example, it is usually performed by a continuous processing method such as adsorption by a fixed bed, adsorption by a moving bed or fluidized bed, adsorption by a simulated moving bed, etc., but by a batch method such as adding an adsorbent into hydrocarbon oil and stirring. It can also be done. Adsorption conditions such as the amount of hydrocarbon oil, the amount of adsorbent, the oil feed rate of hydrocarbon oil, the contact time with the adsorbent, and the temperature can be set as appropriate. Usually, the adsorption temperature is 60 ° C. or less, and in particular, since the adsorption capacity of the adsorbent can be increased, it is preferable to perform the treatment at a lower temperature. For economic reasons, excessively low temperatures should be avoided, and near room temperature is more preferred. Further, the adsorbent and the hydrocarbon oil are preferably contacted in a liquid layer, but may be contacted in a gas phase state.

また、前記ゼオライト吸着剤は、ジスルフィドを含む炭化水素油の脱硫に効果があるため、有機硫黄化合物としてジスルフィド類を好ましくは10%以上、より好ましくは50%以上、特に好ましくは80%以上含む炭化水素油の処理に好適である。さらに、前記炭化水素油のオレフィン分は、好ましくは80%以下、より好ましくは50%未満であるものの処理にも効果的である。オレフィンを含む炭化水素油としては、熱分解油及び接触分解油が好ましい。   Further, the zeolite adsorbent is effective for desulfurization of hydrocarbon oil containing disulfide. Therefore, carbonization containing disulfides as an organic sulfur compound is preferably 10% or more, more preferably 50% or more, and particularly preferably 80% or more. Suitable for treatment of hydrogen oil. Furthermore, the olefin content of the hydrocarbon oil is preferably 80% or less, more preferably less than 50%, which is also effective for treatment. As hydrocarbon oil containing an olefin, pyrolysis oil and catalytic cracking oil are preferable.

使用したゼオライト吸着剤上には、炭素分、硫黄分等が堆積して、脱硫性能が低下する。本発明の再生方法の対象となる吸着剤は、この脱硫性能が低下した吸着剤(以下、スペント吸着剤と呼ぶ)であって、炭素分が0.1重量%以上、好ましくは1〜15重量%、より好ましくは6〜9重量%、及び、硫黄分が0.1重量%以上、好ましくは0.5〜5.0重量%、より好ましくは1.0〜3.0重量%堆積したものである。   On the used zeolite adsorbent, carbon, sulfur and the like are deposited, and the desulfurization performance is lowered. The adsorbent that is the target of the regeneration method of the present invention is an adsorbent with reduced desulfurization performance (hereinafter referred to as spent adsorbent), and has a carbon content of 0.1 wt% or more, preferably 1 to 15 wt%. %, More preferably 6 to 9% by weight, and a sulfur content of 0.1% by weight or more, preferably 0.5 to 5.0% by weight, more preferably 1.0 to 3.0% by weight It is.

本発明の再生方法の第1工程は、炭素分及び硫黄分等が堆積して脱硫性能が低下したスペント吸着剤を、実質的に酸素を含まない気流下に300〜800℃で加熱処理する。実質的に酸素を含まない気流中の酸素含有量は0.01容量%以下が好ましく、より好ましくは0.005容量%以下、特に好ましくは1容量ppm以下の気流下で加熱処理を行う。酸素以外の成分としては、窒素、ヘリウム、アルゴン等の不活性ガスが99.99容量%以上であることが好ましく、中でも窒素を好適に用いることができる。酸素含有量が0.01容量%以下で行うのは、この酸素不存在下における熱処理によって吸着剤に堆積した硫黄分の大半を除去することができ、さらに続く第2工程で堆積した硫黄分を徹底的に除去するために行うものである。
また、ゼオライトは、水分により結晶構造が破壊されやすいことから、気流中に水分は含まないことが望ましい。
In the first step of the regeneration method of the present invention, the spent adsorbent in which the carbon content, sulfur content, etc. are deposited and the desulfurization performance is lowered is heat-treated at 300 to 800 ° C. in an air stream substantially free of oxygen. The oxygen content in the air stream containing substantially no oxygen is preferably 0.01% by volume or less, more preferably 0.005% by volume or less, and particularly preferably 1% by volume or less in the air stream. As a component other than oxygen, an inert gas such as nitrogen, helium or argon is preferably 99.99% by volume or more, and nitrogen can be preferably used. When the oxygen content is 0.01% by volume or less, most of the sulfur content deposited on the adsorbent can be removed by the heat treatment in the absence of oxygen, and the sulfur content deposited in the subsequent second step is removed. This is for thorough removal.
In addition, since zeolite has a crystal structure that is easily destroyed by moisture, it is desirable that zeolite does not contain moisture.

第1工程の処理温度は300〜800℃である。この範囲を外れると硫黄分が十分に除去されなくなるため好ましくない。また、処理温度は吸着剤の種類に依存し、X型ゼオライトの場合は300〜600℃が好ましく、より好ましくは400〜500℃であり、Y型ゼオライトの場合は500〜800℃が好ましく、より好ましくは600〜700℃である。吸着剤の温度は、燃焼のような発熱反応は起こらないので、気流の温度を所定の温度に調整することによってコントロールすることができる。   The treatment temperature in the first step is 300 to 800 ° C. Outside this range, the sulfur content is not sufficiently removed, which is not preferable. Further, the treatment temperature depends on the kind of the adsorbent. In the case of X-type zeolite, 300 to 600 ° C is preferable, more preferably 400 to 500 ° C, and in the case of Y-type zeolite, 500 to 800 ° C is preferable. Preferably it is 600-700 degreeC. Since the temperature of the adsorbent does not cause an exothermic reaction such as combustion, it can be controlled by adjusting the temperature of the airflow to a predetermined temperature.

第1工程及び後述する第2工程は、吸着剤槽(脱硫器)中に吸着剤を収容したままオンサイトで行なっても良いし、吸着剤槽(脱硫器)から吸着剤を取り出してオフサイトで行なってもどちらでも構わない。オンサイトで第1工程の加熱処理を行う場合、ガス空間速度(GHSV)は100〜2000h-1が好ましく、より好ましくは600〜1200h-1である。オフサイトで行う場合、管状炉やマッフル炉を用い、脱硫活性が低下したスペント吸着剤を連続的に移動させながらガス流量を0.5〜10L/分、より好ましくは3〜6L/分で加熱処理するのが好ましい。オフサイトの場合でも、オンサイトの場合と同様に容器に充填したまま、酸素含有量が0.1容量%以下の不活性ガスを吸着剤層を通して加熱処理してもかまわない。また、通常は常圧下で行なわれるが、加圧下または減圧下で行なこともできる。 The first step and the second step described later may be performed on-site while the adsorbent is contained in the adsorbent tank (desulfurizer), or the adsorbent is taken out from the adsorbent tank (desulfurizer) and off-site. You can do either. When the heat treatment of the first step is performed on-site, the gas space velocity (GHSV) is preferably 100 to 2000 h −1 , more preferably 600 to 1200 h −1 . When performed off-site, a tubular furnace or muffle furnace is used, and the gas flow rate is heated at 0.5 to 10 L / min, more preferably 3 to 6 L / min while continuously moving the spent adsorbent with reduced desulfurization activity. It is preferable to process. Even in the case of off-site, an inert gas having an oxygen content of 0.1% by volume or less may be heat-treated through the adsorbent layer while being filled in the container as in the case of on-site. Further, it is usually carried out under normal pressure, but it can be carried out under pressure or under reduced pressure.

加熱処理時間は、特に制限はない。加熱処理温度がより低温でかつ短時間であるほど熱履歴を抑制し、繰り返しのサイクル寿命を長くすることができ、より経済的である。
第1工程において、スペント吸着剤上の硫黄分の80%以上を除去することが好ましく、吸着剤の硫黄分含有量としては0.05重量%以下にすることが好ましい。第1工程で硫黄分の除去が不十分であると、第2工程の加熱処理を施しても硫黄分が残存してしまい、再生した吸着剤の脱硫性能が十分に回復しない。
There is no restriction | limiting in particular in heat processing time. As the heat treatment temperature is lower and shorter, the thermal history can be suppressed and the repeated cycle life can be extended, which is more economical.
In the first step, it is preferable to remove 80% or more of the sulfur content on the spent adsorbent, and the sulfur content of the adsorbent is preferably 0.05% by weight or less. If the removal of the sulfur content in the first step is insufficient, the sulfur content remains even after the heat treatment in the second step, and the desulfurization performance of the regenerated adsorbent is not sufficiently recovered.

本発明の再生方法において、第1工程の加熱処理に加えて、酸素含有気流下に300〜800℃で加熱処理する第2工程を行うことが好ましい。この第2工程で炭素分は酸素と接触して燃焼する。このため、酸素含有ガスは、炭素分の燃焼による過度の温度上昇を避けるために、第1工程の後に酸素(あるいは空気)を徐々に導入して、酸素濃度を徐々に増加させることが好ましい。第2工程の最終の酸素濃度は高濃度であっても構わないが、経済性の面から30容量%以下、好ましくは0.1〜21容量%である。21容量%までであれば空気が使えるのでより経済的である。   In the regeneration method of the present invention, in addition to the heat treatment of the first step, it is preferable to perform a second step of heat treatment at 300 to 800 ° C. in an oxygen-containing air stream. In this second step, the carbon component burns in contact with oxygen. For this reason, it is preferable to gradually introduce oxygen (or air) after the first step to gradually increase the oxygen concentration of the oxygen-containing gas in order to avoid an excessive temperature rise due to combustion of carbon. Although the final oxygen concentration in the second step may be high, it is 30% by volume or less, preferably 0.1 to 21% by volume from the economical aspect. Up to 21% by volume is more economical because air can be used.

酸素以外の成分としては、窒素、ヘリウム、アルゴン等の不活性ガスが好ましい。また、上記の理由で、水分は含まないことが望ましく、特に含酸素ガスとして空気を使用する場合、乾燥空気や脱水処理を施した空気を用いることが好ましい。   As a component other than oxygen, an inert gas such as nitrogen, helium, or argon is preferable. For the above reasons, it is desirable not to contain moisture. In particular, when air is used as the oxygen-containing gas, it is preferable to use dry air or dehydrated air.

第2工程の処理温度は300〜800℃である。この範囲を外れると炭素分が十分に除去されなくなるため好ましくない。また、処理温度は吸着剤の種類に依存し、X型ゼオライトの場合は300〜600℃が好ましく、より好ましくは400〜500℃であり、Y型ゼオライトの場合は500〜800℃が好ましく、より好ましくは600〜700℃である。特に吸着剤の層(ベッド)に酸素含有気流を通過させて再生する場合、酸素濃度を増加している段階で炭素分が燃焼して吸着剤の温度上昇する。このような場合には、気流の温度、気流の流量、酸素濃度などを適宜調節して吸着剤の温度を制御する。酸素濃度を高くしても吸着剤の温度が導入する気流温度よりも高くならなくなったら、燃焼するもの(炭素、硫黄)が除去されたことを意味する。炭素分、さらには硫黄分が完全に除去されたか、否かは、好ましくは10容量%以上、より好ましくは20容量%以上の酸素濃度を保持して1〜2時間加熱処理しても、吸着剤の温度が上昇しないこと、あるいは排出気流中にCO2やSO2が認められないことを確認することによって判断できる。 The treatment temperature in the second step is 300 to 800 ° C. Outside this range, the carbon content is not sufficiently removed, which is not preferable. Further, the treatment temperature depends on the kind of the adsorbent. In the case of X-type zeolite, 300 to 600 ° C is preferable, more preferably 400 to 500 ° C, and in the case of Y-type zeolite, 500 to 800 ° C is preferable. Preferably it is 600-700 degreeC. In particular, when regenerating by passing an oxygen-containing air stream through the adsorbent layer (bed), the carbon content burns and the temperature of the adsorbent rises while the oxygen concentration is increasing. In such a case, the temperature of the adsorbent is controlled by appropriately adjusting the temperature of the airflow, the flow rate of the airflow, the oxygen concentration, and the like. If the temperature of the adsorbent does not become higher than the air flow temperature to be introduced even if the oxygen concentration is increased, it means that the combustible (carbon, sulfur) has been removed. Whether or not the carbon content and further the sulfur content have been completely removed is preferably absorbed even if heat treatment is performed for 1 to 2 hours while maintaining an oxygen concentration of 10% by volume or more, more preferably 20% by volume or more. This can be determined by confirming that the temperature of the agent does not increase, or that CO 2 and SO 2 are not recognized in the exhaust airflow.

第2工程終了後の再生された吸着剤は、炭素分が0.2重量%以下、好ましくは0.1重量%以下、より好ましくは0.05重量%、また、硫黄分は0.2重量%以下、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、特には0.02重量%以下にまで低下され、脱硫性能を回復する。   The regenerated adsorbent after completion of the second step has a carbon content of 0.2% by weight or less, preferably 0.1% by weight or less, more preferably 0.05% by weight, and a sulfur content of 0.2% by weight. % Or less, preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and particularly 0.02% by weight or less, to recover the desulfurization performance.

このようにして再生された吸着剤は、再び炭化水素油の脱硫に使用することができ、フレッシュな吸着剤と遜色のない脱硫活性を示す。脱硫を続けると炭素分及び硫黄分等の不純物が堆積して脱硫活性が低下するので、また、上記第1工程、第2工程の本発明の再生を行う。この一連の操作を繰り返して、実施例にも示したように5回再生後の吸着剤であっても、フレッシュな吸着剤と同等の脱硫活性を回復することができた。   The adsorbent regenerated in this way can be used again for hydrocarbon oil desulfurization, and exhibits desulfurization activity comparable to that of a fresh adsorbent. If desulfurization is continued, impurities such as carbon and sulfur are deposited and the desulfurization activity is lowered. Therefore, the regeneration of the present invention in the first step and the second step is performed. By repeating this series of operations, the desulfurization activity equivalent to that of a fresh adsorbent could be recovered even when the adsorbent was regenerated five times as shown in the examples.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はそれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

炭化水素油として、重質油熱分解装置由来のジスルフィド類を含有する軽質炭化水素油を模したモデル油を次の通り調製した。
炭化水素成分としてはn−デカン(和光純薬工業製試薬特級、純度99%)を54重量%、1−ヘキセン(東京化成工業製試薬1級、純度95%)を45重量%、1,3−ペンタジエン(東京化成工業製試薬、cis-+trans-=約40%)を1重量%混合した。次いで、この混合油にジメチルジスルフィド(DMDS)(和光純薬工業製試薬1級、純度99%)を硫黄分として1000重量ppm、n−ブチルメルカプタン(n−BuSH)(東京化成工業製試薬1級)を硫黄分として100重量ppm、ジメチルスルフィド(DMS)(純正化学製試薬特級、純度98%)を硫黄分として10重量ppm、プロピオニトリル(CH3CH2CN)(東京化成工業製試薬特級)を窒素分として5重量ppmとなるように混合し、モデル油を調整した。
As the hydrocarbon oil, a model oil imitating a light hydrocarbon oil containing disulfides derived from a heavy oil pyrolysis apparatus was prepared as follows.
As hydrocarbon components, n-decane (special grade manufactured by Wako Pure Chemical Industries, 99% purity) is 54% by weight, 1-hexene (reagent grade 1 manufactured by Tokyo Chemical Industry, purity 95%) is 45% by weight, 1, 3 1% by weight of pentadiene (reagent manufactured by Tokyo Chemical Industry Co., Ltd., cis− + trans− = about 40%) was mixed. Next, dimethyl disulfide (DMDS) (Wako Pure Chemical Industries grade 1 grade, purity 99%) was added to this mixed oil as a sulfur content of 1000 ppm by weight, n-butyl mercaptan (n-BuSH) (Tokyo Chemical Industry grade 1 grade). ) With a sulfur content of 100 ppm by weight, dimethyl sulfide (DMS) (Pure Chemicals reagent grade, purity 98%) with a sulfur content of 10 ppm by weight, propionitrile (CH 3 CH 2 CN) (Tokyo Chemical Industry reagent grade) ) Was mixed to a nitrogen content of 5 ppm by weight to prepare a model oil.

スペント吸着剤の調製
フォージャサイト型ゼオライトであるナトリウム型のNaX(東ソー株式会社製、F-9球状)及びNaY(東ソー株式会社製、TSZ−320NAA粉体)、
またプロトン型のHUSY(東ソー株式会社製、HSZ−330HUD1C柱状)及び

HY(東ソー株式会社製、HSZ−330HSA粉体)の4種類の吸着剤それぞれ10
0gを、モデル油600gずつに25℃で3日間浸漬してモデル油の脱硫を行った。その後、それぞれの吸着剤をモデル油から濾過分離した。分離した吸着剤を30℃にて24時間乾燥して、NaX、HUSY、HY及びNaYの4種類のスペント吸着剤を調製した。
それぞれのフレッシュな吸着剤及びスペント吸着剤の炭素分と硫黄分を定量し、その結果を表1に示す。また、それぞれのフレッシュな吸着剤で、上記のように浸漬脱硫し、濾過回収したモデル油中の硫黄分の測定結果等も併せて表1に示す。
Preparation of spent adsorbent Sodium-type NaX (F-9 sphere manufactured by Tosoh Corporation) and NaY (TSO-320NAA powder manufactured by Tosoh Corporation), which are faujasite type zeolites,
In addition, proton type husy (manufactured by Tosoh Corporation, HSZ-330HUD1C column) and

Four kinds of adsorbents of HY (Tosoh Corporation, HSZ-330HSA powder) 10
0 g was immersed in 600 g of model oil at 25 ° C. for 3 days to desulfurize the model oil. Thereafter, each adsorbent was separated from the model oil by filtration. The separated adsorbent was dried at 30 ° C. for 24 hours to prepare four types of spent adsorbents of NaX, HUSY, HY and NaY.
The carbon content and sulfur content of each fresh adsorbent and spent adsorbent were quantified, and the results are shown in Table 1. Table 1 also shows the measurement results of the sulfur content in the model oil obtained by immersion desulfurization as described above using each fresh adsorbent and collected by filtration.

Figure 2010221188
Figure 2010221188

本発明の再生方法を評価するために、上記のようにして得られた4種類のスペント吸着剤を用いて、以下のとおり実施例及び比較例の試験を実施した。   In order to evaluate the regeneration method of the present invention, tests of Examples and Comparative Examples were performed as follows using the four types of spent adsorbents obtained as described above.

(比較例1)
第1工程のみの再生を行った。すなわち、NaXスペント吸着剤7gを磁性ボート上に載せ、環状炉を用いて4L/分の窒素気流中(窒素純度:99.99容量%、酸素含有量:0.005容量%以下、水分0.005容量%以下)で、室温から400℃まで5℃/分で昇温し、その後400℃にて3時間加熱処理を行った。第1工程後の吸着剤の炭素分と硫黄分を定量し、その結果を表2に示す。また、第1工程のみの再生後の吸着剤を用い、上記フレッシュな吸着剤の場合と全く同じ浸漬による脱硫性能の評価試験を行った。すなわち、再生後の吸着剤1.0gをモデル油10.0g中に25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。その結果も併せて表2に示す。
(Comparative Example 1)
Only the first step was regenerated. That is, 7 g of NaX spent adsorbent was placed on a magnetic boat, and in a nitrogen stream at 4 L / min using a ring furnace (nitrogen purity: 99.99 vol%, oxygen content: 0.005 vol% or less, moisture 0. 005 vol% or less), the temperature was increased from room temperature to 400 ° C. at a rate of 5 ° C./min, and then heat treatment was performed at 400 ° C. for 3 hours. The carbon content and sulfur content of the adsorbent after the first step were quantified, and the results are shown in Table 2. In addition, using the regenerated adsorbent only in the first step, the desulfurization performance evaluation test by the same immersion as in the case of the fresh adsorbent was performed. That is, 1.0 g of the regenerated adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the desulfurized model oil was measured. The results are also shown in Table 2.

Figure 2010221188
Figure 2010221188

(実施例1)
比較例1と同様にしてスペント吸着剤を第1工程の加熱処理を行った後、引き続き、第2工程として、窒素気流中に乾燥空気(酸素濃度21容量%、水分0.2容量%以下)を導入し、徐々に空気導入量の割合を増加して1時間をかけて酸素濃度を21%とし、酸素濃度が21%になった後、2時間400℃で加熱処理をした。
再生(第1工程と第2工程の加熱処理)後に得られた吸着剤の炭素分と硫黄分を実施例1と同様に定量し、さらに再生後の吸着剤1.0gをモデル油10.0g中に25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
Example 1
In the same manner as in Comparative Example 1, the spent adsorbent was heat-treated in the first step, and subsequently, in the second step, dry air (oxygen concentration 21 vol%, moisture 0.2 vol% or less) in a nitrogen stream. The oxygen concentration was gradually increased and the oxygen concentration was adjusted to 21% over 1 hour. After the oxygen concentration reached 21%, heat treatment was performed at 400 ° C. for 2 hours.
The carbon content and sulfur content of the adsorbent obtained after regeneration (heat treatment in the first step and the second step) were quantified in the same manner as in Example 1, and 1.0 g of the adsorbent after regeneration was regenerated as 10.0 g of model oil. It was immersed for 3 days at 25 ° C. for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(実施例2)
実施例1で再生を行った吸着剤3gをモデル油30gに25℃で3日間浸漬させて劣化した吸着剤を実施例1と同様の第1工程、第2工程を行い2回目の再生を行なった。さらに、この浸漬劣化と再生を繰り返し実施例2の再生を含めて、5回の再生を行った。5回の再生後に得られた吸着剤の炭素分と硫黄分を定量した。また、5回の再生後の吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Example 2)
The adsorbent deteriorated by immersing 3 g of the adsorbent regenerated in Example 1 in 30 g of model oil at 25 ° C. for 3 days is subjected to the second regeneration by performing the same first and second steps as in Example 1. It was. Furthermore, this immersion deterioration and regeneration were repeated, and the regeneration was performed 5 times including the regeneration of Example 2. The carbon content and sulfur content of the adsorbent obtained after 5 regenerations were quantified. Further, 1.0 g of the adsorbent after 5 regenerations was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(比較例2)
NaXスペント吸着剤7gを、4L/分の乾燥空気気流(酸素濃度21容量%、水分0.2容量%以下)中で、室温から400℃まで5℃/分で昇温し、その後400℃にて3時間加熱処理を行った。降温後吸着剤の炭素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Comparative Example 2)
7 g of NaX spent adsorbent was heated from room temperature to 400 ° C. at a rate of 5 ° C./min in a dry air stream (oxygen concentration 21 vol%, moisture 0.2 vol% or less) at 4 L / min. For 3 hours. After cooling, the carbon and sulfur contents of the adsorbent were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(比較例3)
比較例2の再生を行った吸着剤3gをモデル油30gに、25℃で3日間浸漬し脱硫試験を行った。比較例2と同様にして、この吸着剤を分離し、2回目の酸素含有気流下に加熱処理を行なった。さらに、この加熱処理と浸漬による脱硫試験を繰り返して、5回目の加熱処理後の吸着剤の炭素分と硫黄分を定量した。また、この5回目の加熱処理後の吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Comparative Example 3)
A desulfurization test was conducted by immersing 3 g of the adsorbent regenerated in Comparative Example 2 in 30 g of model oil at 25 ° C. for 3 days. In the same manner as in Comparative Example 2, the adsorbent was separated and heat-treated in a second oxygen-containing air stream. Furthermore, this heat treatment and desulfurization test by immersion were repeated, and the carbon content and sulfur content of the adsorbent after the fifth heat treatment were quantified. Further, 1.0 g of the adsorbent after the fifth heat treatment was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(比較例4)
NaXスペント吸着剤3gを、実施例1の工程順序を入れ替えて、すなわち、最初に乾燥空気(酸素含有気流)による加熱処理を行い、その後窒素気流による加熱処理を行った。この実施例1とは逆の工程の加熱処理後の吸着剤の炭素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Comparative Example 4)
The NaX spent adsorbent 3g was subjected to a heat treatment with dry air (oxygen-containing air flow) first, followed by heat treatment with a nitrogen air flow, with the process order of Example 1 changed. The carbon content and sulfur content of the adsorbent after the heat treatment in the reverse process of Example 1 were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(実施例3)
HUSYスペント吸着剤を、室温から600℃まで5℃/分で昇温し、第1工程と第2工程のキープ温度をともに600℃とした以外は、実施例1と同様の方法で再生を行った。再生後の吸着剤の炭素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
Example 3
The HUSY spent adsorbent was regenerated in the same manner as in Example 1 except that the temperature was raised from room temperature to 600 ° C. at a rate of 5 ° C./min, and both the first and second steps were maintained at 600 ° C. It was. The carbon content and sulfur content of the adsorbent after regeneration were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(比較例5)
HUSYスペント吸着剤を、加熱処理温度を600℃とした以外は、比較例2と同様の方法で加熱処理を行なった。加熱処理後の吸着剤の窒素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Comparative Example 5)
The heat treatment was performed on the HUSY spent adsorbent in the same manner as in Comparative Example 2 except that the heat treatment temperature was 600 ° C. The nitrogen content and sulfur content of the adsorbent after heat treatment were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(実施例4)
HYスペント吸着剤を、実施例3と同様の方法で再生を行った。再生後の吸着剤の炭素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
Example 4
The HY spent adsorbent was regenerated in the same manner as in Example 3. The carbon content and sulfur content of the adsorbent after regeneration were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(比較例6)
HYスペント吸着剤を、比較例5と同様の加熱処理を行なった。加熱後の吸着剤の窒素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Comparative Example 6)
The same heat treatment as in Comparative Example 5 was performed on the HY spent adsorbent. The nitrogen content and sulfur content of the adsorbent after heating were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(実施例5)
NaYスペント吸着剤を、実施例3と同様の方法で再生を行った。再生後の吸着剤の炭素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Example 5)
The NaY spent adsorbent was regenerated in the same manner as in Example 3. The carbon content and sulfur content of the adsorbent after regeneration were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

(比較例7)
NaYスペント吸着剤を、比較例5と同様の加熱処理を行なった。加熱処理後の吸着剤の窒素分と硫黄分を定量した。また、この吸着剤1.0gをモデル油10.0gに25℃で3日間浸漬して脱硫し、脱硫後のモデル油の硫黄分を測定した。これらの結果を表2に示す。
(Comparative Example 7)
The NaY spent adsorbent was subjected to the same heat treatment as in Comparative Example 5. The nitrogen content and sulfur content of the adsorbent after heat treatment were quantified. Further, 1.0 g of this adsorbent was immersed in 10.0 g of model oil at 25 ° C. for 3 days for desulfurization, and the sulfur content of the model oil after desulfurization was measured. These results are shown in Table 2.

上記の評価試験において、吸着剤に含まれる窒素分と硫黄分、モデル油に含まれる硫黄分は次のようにして測定した。
(1)吸着剤中の炭素分
1%以上は環状炉燃焼赤外線吸収法、1%以下は高周波燃焼赤外線吸収法にて測定。
(2)吸着剤中の硫黄分
1%以上は環状炉燃焼赤外線吸収法、1%以下は高周波燃焼赤外線吸収法にて測定。
(3)モデル油中の硫黄分
紫外蛍光法により測定。
また、回復率は、フレッシュな吸着剤の脱硫率を100%とした値に換算して脱硫回復率である。
In the above evaluation test, the nitrogen content and sulfur content contained in the adsorbent and the sulfur content contained in the model oil were measured as follows.
(1) Carbon content in the adsorbent 1% or more is measured by a ring furnace combustion infrared absorption method, and 1% or less is measured by a high frequency combustion infrared absorption method.
(2) Sulfur content in the adsorbent 1% or more is measured by a ring furnace combustion infrared absorption method, and 1% or less is measured by a high frequency combustion infrared absorption method.
(3) Sulfur content in model oil Measured by ultraviolet fluorescence method.
The recovery rate is a desulfurization recovery rate converted to a value where the desulfurization rate of the fresh adsorbent is 100%.

表2の結果から、スペント吸着剤を第1工程の酸素を含まない気流下のみでの加熱処理では、コーキングにより脱硫活性の回復率が75%と著しく低下した。また、従来技術の酸素含有気流下のみの過熱再生処理では、活性回復率は98%止まりとなり、5回繰返すと92%まで低下した。一方、酸素を含まない気流下で加熱処理を施した後、酸素含有気流下で吸着剤の再生処理を行うことにより、脱硫活性の低下原因物質である残存硫黄化合物を効率良く除去することができ、活性回復率もフレッシュ品と同じ100%となった。同じく、5回繰返しても活性回復率は100%となった。   From the results in Table 2, in the heat treatment of the spent adsorbent only in the air stream containing no oxygen in the first step, the recovery rate of the desulfurization activity was significantly reduced to 75% by coking. Moreover, in the overheating regeneration process only under the oxygen-containing airflow of the prior art, the activity recovery rate stopped at 98%, and decreased to 92% after repeating 5 times. On the other hand, after the heat treatment is performed in an air stream that does not contain oxygen, the adsorbent is regenerated in an oxygen-containing air stream, so that the residual sulfur compound that is a cause of a decrease in desulfurization activity can be efficiently removed. The activity recovery rate was 100%, the same as the fresh product. Similarly, the activity recovery rate was 100% even after repeating 5 times.

本発明により、脱硫剤の加熱再生を繰返し行なっても脱硫活性低下の回避が可能となった。産業上の利用においては、吸着剤コストおよび再生コストの低減を勧めた上でランニングコストを抑制し、適用箇所において経済性メリットがでるようであれば十分可能である。 According to the present invention, it is possible to avoid a decrease in desulfurization activity even if the desulfurization agent is repeatedly heated and regenerated. In industrial use, it is sufficient if the running cost is suppressed after recommending the reduction of the adsorbent cost and the regeneration cost, and an economic merit can be obtained at the application location.

Claims (4)

炭化水素油に含まれる硫黄分を除去するゼオライト吸着剤の再生方法であって、
脱硫活性が低下した前記ゼオライト吸着剤を、実質的に酸素を含まない気流下に300〜800℃で加熱処理する第1工程、及び
該第1工程のあとに酸素含有気流下に300〜800℃で加熱処理する第2工程
を含むゼオライト吸着剤の再生方法。
A method for regenerating a zeolite adsorbent that removes sulfur contained in hydrocarbon oil,
A first step of heat-treating the zeolite adsorbent having a reduced desulfurization activity at 300 to 800 ° C. under an air flow containing substantially no oxygen, and 300 to 800 ° C. under an oxygen-containing air flow after the first step. The regeneration method of the zeolite adsorbent including the 2nd process heat-processed with.
第1工程の実質的に酸素を含まない気流における酸素含有量が0.01容量%以下又はゼロであり、また第2工程の酸素含有気流における酸素含有量が0.1%〜21%容量%である請求項1に記載のゼオライト吸着剤の再生方法。   The oxygen content in the air stream substantially free of oxygen in the first step is 0.01% by volume or less or zero, and the oxygen content in the oxygen-containing air stream in the second step is 0.1% to 21% by volume. The method for regenerating a zeolite adsorbent according to claim 1. 第1工程後の吸着剤に含まれる硫黄分が0.05重量%以下である請求項1又は2に記載のゼオライト吸着剤の再生方法。   The method for regenerating a zeolite adsorbent according to claim 1 or 2, wherein a sulfur content in the adsorbent after the first step is 0.05% by weight or less. 請求項1〜3のいずれかに記載の吸着剤の再生方法により再生したゼオライト吸着剤を用いて、炭化水素油に含まれる硫黄分を除去する炭化水素油の脱硫方法。   A desulfurization method for hydrocarbon oil, which uses the zeolite adsorbent regenerated by the adsorbent regeneration method according to claim 1 to remove sulfur contained in the hydrocarbon oil.
JP2009073933A 2009-03-25 2009-03-25 Adsorbent regeneration method Active JP5049995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073933A JP5049995B2 (en) 2009-03-25 2009-03-25 Adsorbent regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073933A JP5049995B2 (en) 2009-03-25 2009-03-25 Adsorbent regeneration method

Publications (2)

Publication Number Publication Date
JP2010221188A true JP2010221188A (en) 2010-10-07
JP5049995B2 JP5049995B2 (en) 2012-10-17

Family

ID=43038949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073933A Active JP5049995B2 (en) 2009-03-25 2009-03-25 Adsorbent regeneration method

Country Status (1)

Country Link
JP (1) JP5049995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083265A (en) * 2019-12-23 2021-07-09 内蒙古伊泰煤基新材料研究院有限公司 Method and device for regenerating adsorbent for removing oxygen-containing compounds in FT synthetic oil
US20220040673A1 (en) * 2018-09-25 2022-02-10 Sekisui Chemical Co., Ltd. Method for reusing zeolite adsorbent and regenerated adsorbent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335866A (en) * 2005-06-01 2006-12-14 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for producing low-sulfur light hydrocarbon oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335866A (en) * 2005-06-01 2006-12-14 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for producing low-sulfur light hydrocarbon oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220040673A1 (en) * 2018-09-25 2022-02-10 Sekisui Chemical Co., Ltd. Method for reusing zeolite adsorbent and regenerated adsorbent
CN113083265A (en) * 2019-12-23 2021-07-09 内蒙古伊泰煤基新材料研究院有限公司 Method and device for regenerating adsorbent for removing oxygen-containing compounds in FT synthetic oil

Also Published As

Publication number Publication date
JP5049995B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
Dehghan et al. Zeolites for adsorptive desulfurization from fuels: A review
US7842181B2 (en) Composition and process for the removal of sulfur from middle distillate fuels
US2818137A (en) Adsorptive separation process
US5843300A (en) Removal of organic sulfur compounds from FCC gasoline using regenerable adsorbents
CA2421731A1 (en) Process for desulfurizing hydrocarbon fuels and fuel components
JP4530599B2 (en) Desulfurization and new sorbents therefor
US20090148374A1 (en) Process and catalyst for desulfurization of hydrocarbonaceous oil stream
JPH05508432A (en) Method for Adsorbing Sulfur Species from Propylene/Propane Using Renewable Adsorbents
EP2220196A2 (en) Method of producing low sulfur, high octane gasoline
BRPI0802431B1 (en) process of removal of silicon compounds from hydrocarbon streams
JP2004195445A (en) Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus
IN2012DN00751A (en)
WO2010135434A2 (en) Deep desulfurization process
JP2003502477A (en) Adsorption method for producing ultra low sulfur hydrocarbon streams
JP5049995B2 (en) Adsorbent regeneration method
JP2005529212A (en) Method for removing sulfur contaminants from hydrocarbon streams
JP4776985B2 (en) Method for producing low sulfur light hydrocarbon oil
US20060191821A1 (en) Process for deep desulfurization by adsorption of a gas oil-type hydrocarbon fraction
KR102348345B1 (en) Improved adsorption of acid gases
AU2006344366B2 (en) Method for reducing the amount of high molecular weight organic sulfur picked up by hydrocarbon streams transported through a pipeline
JP4113073B2 (en) Hydrocarbon oil desulfurization agent
CN107803192A (en) A kind of oxidized desulfurization double-function catalyzing adsorbent clean regeneration process
JPH07118668A (en) Method for removing sulfur compound in sulfur-containing gas
Dung Competitive adsorption removal of sulphur compounds in gasoline using X zeolite
KR20140006412A (en) Organosulfur adsorbent, its manufacturing method, organosulfur compound adsorption method from petroleum oily, and recycle method of organosulfur adsorbent

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250