JP4113073B2 - Hydrocarbon oil desulfurization agent - Google Patents

Hydrocarbon oil desulfurization agent Download PDF

Info

Publication number
JP4113073B2
JP4113073B2 JP2003290100A JP2003290100A JP4113073B2 JP 4113073 B2 JP4113073 B2 JP 4113073B2 JP 2003290100 A JP2003290100 A JP 2003290100A JP 2003290100 A JP2003290100 A JP 2003290100A JP 4113073 B2 JP4113073 B2 JP 4113073B2
Authority
JP
Japan
Prior art keywords
mass
silver
hydrocarbon oil
boria
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003290100A
Other languages
Japanese (ja)
Other versions
JP2005058856A (en
Inventor
尚則 藤本
弘光 正岡
幸弘 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2003290100A priority Critical patent/JP4113073B2/en
Publication of JP2005058856A publication Critical patent/JP2005058856A/en
Application granted granted Critical
Publication of JP4113073B2 publication Critical patent/JP4113073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、炭化水素油中の硫黄化合物を吸着し、その濃度を低減するために用いられる脱硫剤に関する。   The present invention relates to a desulfurization agent used for adsorbing a sulfur compound in a hydrocarbon oil and reducing its concentration.

原油の蒸留や分解によって得られる各油留分は、一般に、硫黄化合物を含み、これらの油を燃料として使用する場合には、この硫黄化合物に起因する硫黄酸化物等の大気汚染物質が大気中に放出される。
特に、自動車からの排ガスによる大気汚染が深刻化しており、その燃料面からの対策として、ガソリンの硫黄分の低減が強く要望されている。
Each oil fraction obtained by distillation or cracking of crude oil generally contains sulfur compounds, and when these oils are used as fuel, air pollutants such as sulfur oxides resulting from these sulfur compounds are present in the atmosphere. To be released.
In particular, air pollution due to exhaust gas from automobiles has become serious, and there is a strong demand for reducing the sulfur content of gasoline as a countermeasure from the fuel aspect.

通常、ガソリンは、原油を蒸留して得られるブタンやナフサの他、アルキレーション装置、改質装置、流動接触分解装置(FCC)などの生成油を基材とし、これらを配合したものを製品としている。これらの基材のうち、一般に、FCC装置の生成油(FCCガソリン)やナフサは、硫黄分が高いため、ガソリンの硫黄分を低減するためには、FCCガソリンやナフサの硫黄分を低減することが最も重要である。
上記のガソリンの基材となる炭化水素油の硫黄分の低減化技術としては、通常、水素化脱硫法が上げられる。しかし、この方法では、脱硫反応だけでなく、オレフィンの水素化反応も進行するため、オレフィンを多く含むFCCガソリンを水素化脱硫した場合、オクタン価が低下するといった問題点がある。しかも、水素化脱硫は一般に、高温、高圧の条件下、大量の水素を使用するため、精製コストが高いといった欠点を有している。
In general, gasoline uses butane and naphtha obtained by distilling crude oil, as well as product oils such as alkylation equipment, reforming equipment, fluid catalytic cracking equipment (FCC), etc. as a product. Yes. Of these base materials, FCC equipment oil (FCC gasoline) and naphtha are generally high in sulfur content, so to reduce the sulfur content of gasoline, reduce the sulfur content of FCC gasoline and naphtha. Is the most important.
As a technique for reducing the sulfur content of the hydrocarbon oil used as the base material of the gasoline, a hydrodesulfurization method is usually raised. However, in this method, not only a desulfurization reaction but also a hydrogenation reaction of an olefin proceeds. Therefore, when FCC gasoline containing a large amount of olefin is hydrodesulfurized, the octane number is lowered. In addition, hydrodesulfurization generally has a drawback of high purification costs because it uses a large amount of hydrogen under high temperature and high pressure conditions.

これに対し、吸着脱硫による炭化水素油中の硫黄濃度低減方法として、装置内で脱硫剤を再生し、連続的に硫黄分を低減する流動床のプロセスとして、例えば、特許文献1(米国特許第5914292号明細書)に記載の技術もある。しかし、本技術では、上記の水素化脱硫法よりは低いレベルではあるものの、吸着時には水素存在下・高温・高圧の条件を必要とするため、場合によっては生成油のオクタン価が低下することがある。そのため、より常温、常圧に近い穏和な条件で吸着脱硫可能なプロセスとできるよう、さらなる吸着剤の開発が求められている。   On the other hand, as a method for reducing the sulfur concentration in hydrocarbon oil by adsorptive desulfurization, as a fluidized bed process in which the desulfurizing agent is regenerated in the apparatus and the sulfur content is continuously reduced, for example, Patent Document 1 (US Patent No. 1). No. 5914292). However, in this technology, although the level is lower than the hydrodesulfurization method described above, the conditions of the presence of hydrogen, high temperature, and high pressure are required at the time of adsorption, so the octane number of the produced oil may be lowered in some cases. . Therefore, further development of an adsorbent is required so that it can be a process capable of adsorptive desulfurization under mild conditions close to normal temperature and normal pressure.

一方、吸着技術を利用した炭化水素油の脱硫に関する研究は多くなされており、常温、常圧に近い穏和な条件で使用可能な種々の脱硫剤も報告されている。例えば、特許文献2(特開2002−249787号公報)や特許文献3(特開2002−316043号公報)では、担体に銀などの金属成分を担持した脱硫剤が報告されている。しかし、脱硫剤の容量、装置規模を考慮した場合、更に高い吸着能を有することが脱硫剤に要求されると考えられる。また、これらの脱硫剤の多くは、吸着能の再生については考慮されていない。
以上のような状況から、炭化水素油、特にFCCガソリンに含まれるチオフェン類やベンゾチオフェン類などの硫黄分を低減することが可能な、より高い吸着能を有し、かつ再生可能な脱硫剤の開発が求められている。
On the other hand, many studies on desulfurization of hydrocarbon oil using adsorption technology have been made, and various desulfurization agents that can be used under mild conditions close to normal temperature and normal pressure have been reported. For example, Patent Document 2 (Japanese Patent Laid-Open No. 2002-249787) and Patent Document 3 (Japanese Patent Laid-Open No. 2002-316043) report a desulfurization agent in which a metal component such as silver is supported on a carrier. However, when considering the capacity of the desulfurizing agent and the scale of the apparatus, it is considered that the desulfurizing agent is required to have a higher adsorption capacity. Also, many of these desulfurization agents are not considered for regeneration of adsorption capacity.
In view of the above situation, a desulfurizing agent having higher adsorption capacity and capable of reducing sulfur content such as thiophenes and benzothiophenes contained in hydrocarbon oils, particularly FCC gasoline, can be reduced. Development is required.

米国特許第5914292号明細書US Pat. No. 5,914,292 特開2002−249787号公報JP 2002-249787 A 特開2002−316043号公報JP 2002-316043 A

本発明の目的は、炭化水素油中の硫黄分、特にオレフィンを含むガソリンの基材となる炭化水素油中に含まれる硫黄分を低減することが可能で、再生処理により繰り返し使用できる脱硫剤を提供することにある。   An object of the present invention is to provide a desulfurizing agent that can reduce sulfur content in hydrocarbon oil, particularly sulfur content contained in hydrocarbon oil that is a base material for gasoline containing olefin, and can be repeatedly used by regeneration treatment. It is to provide.

本発明者は、上記目的を達成するため検討を重ねた結果、特定組成を持った脱硫剤を用いて炭化水素油と接触させることにより硫黄化合物を吸着除去できることを見出し、本発明を完成するに至った。
即ち、上記目的は、下記の構成の脱硫剤により達成される。
1.ボリア−アルミナ複合酸化物担体上に銀を担持し、還元処理を施すことにより調製された脱硫剤であり、担体中のボリア含有量が3mass%〜30mass%であり、銀の担持量が脱硫剤の5mass%〜30mass%であることを特徴とする炭化水素油の脱硫剤。
2.担体上に担持されている銀が実質的に0価に還元されており、還元後のX線回折法による測定から求められる金属銀の平均結晶子径が100Å以下であることを特徴とする上記1に記載の脱硫剤。
3.炭化水素油が沸点範囲20〜380℃の留分であることを特徴とする上記1または2に記載の脱硫剤。
4.炭化水素油が、流動接触分解装置から生成する沸点範囲20〜250℃の留分であることを特徴とする上記3に記載の脱硫剤。
5.炭化水素油中の硫黄化合物を吸着後に250℃〜500℃の水素気流中で硫黄化合物を脱着させることにより、吸着能の再生が可能であることを特徴とする上記1または2に記載の脱硫剤。
As a result of repeated studies to achieve the above object, the present inventor has found that a sulfur compound can be adsorbed and removed by contacting with hydrocarbon oil using a desulfurization agent having a specific composition, thereby completing the present invention. It came.
That is, the above object is achieved by a desulfurizing agent having the following configuration.
1. A desulfurization agent prepared by supporting silver on a boria-alumina composite oxide support and subjecting it to a reduction treatment, the boria content in the support is 3 mass% to 30 mass%, and the supported amount of silver is the desulfurization agent Hydrocarbon oil desulfurization agent characterized by being 5 mass% to 30 mass%.
2. The silver supported on the carrier is substantially reduced to zero valence, and the average crystallite diameter of metallic silver obtained from measurement by X-ray diffraction after the reduction is 100 mm or less, 1. The desulfurizing agent according to 1.
3. 3. The desulfurization agent according to 1 or 2 above, wherein the hydrocarbon oil is a fraction having a boiling range of 20 to 380 ° C.
4). 4. The desulfurization agent according to 3 above, wherein the hydrocarbon oil is a fraction having a boiling range of 20 to 250 ° C. produced from a fluid catalytic cracking apparatus.
5. 3. The desulfurizing agent according to 1 or 2 above, wherein the adsorption ability can be regenerated by desorbing the sulfur compound in the hydrocarbon oil after adsorption in a hydrogen stream at 250 to 500 ° C. .

本発明の脱硫剤は、炭化水素油中の硫黄分、特にオレフィンを含むガソリンの基材となる炭化水素油中に含まれる硫黄分を低減することが可能であり、しかも再生処理により繰り返し使用できる。   The desulfurizing agent of the present invention can reduce the sulfur content in hydrocarbon oils, particularly the sulfur content contained in hydrocarbon oils that serve as a base material for gasoline containing olefins, and can be used repeatedly by regeneration treatment. .

以下に本発明について詳細に説明する。
本発明の炭化水素油中の硫黄化合物の脱硫剤は、ボリア−アルミナ複合酸化物担体上に銀を担持し、還元処理を施すことにより調製された脱硫剤である。
本発明で使用する脱硫剤のボリア−アルミナ複合酸化物担体中のボリア含有量は3mass%〜30mass%、より好ましくは5mass%〜25mass%である。ボリアの含有量が3mass%より少ない場合、ボリアの添加の効果がなく、硫黄化合物の吸着能は低く、ボリアの含有量が30mass%より多い場合は、担体強度が低く、脱硫剤の担体としては適さない。
銀の担持量は、脱硫剤の5mass%〜30mass%、より好ましくは8mass%〜28mass%、さらに好ましくは8mass%〜25mass%である。銀担持量が少ないと、吸着活性点の数が少なくなるため、硫黄化合物の吸着能が低く、逆に多すぎても担持金属即ち吸着活性点の分散性が低下し、担持した金属が無駄になるばかりでなく、比表面積、細孔直径が低下するなど物性の面へも悪影響を与える。
The present invention is described in detail below.
The sulfur compound desulfurization agent in the hydrocarbon oil of the present invention is a desulfurization agent prepared by supporting silver on a boria-alumina composite oxide carrier and subjecting it to a reduction treatment.
The boria content in the boria-alumina composite oxide carrier of the desulfurization agent used in the present invention is 3 mass% to 30 mass%, more preferably 5 mass% to 25 mass%. When the content of boria is less than 3 mass%, there is no effect of adding boria, the adsorption capacity of the sulfur compound is low, and when the content of boria is more than 30 mass%, the carrier strength is low, Not suitable.
The supported amount of silver is 5 mass% to 30 mass% of the desulfurization agent, more preferably 8 mass% to 28 mass%, and still more preferably 8 mass% to 25 mass%. If the amount of silver supported is small, the number of adsorption active sites decreases, so the adsorption capacity of sulfur compounds is low. In addition to this, it also adversely affects physical properties such as a decrease in specific surface area and pore diameter.

このように、本発明の脱硫剤は、ボリア含有量が3mass%〜30mass%のボリア−アルミナ複合酸化物を担体とする要件、これに銀を5mass%〜30mass%坦持する要件、還元処理して調製する要件が結合して構成されており、これら要件が結合した結果、本発明の脱硫剤はオレフィンを含むガソリンの基材となる炭化水素油中に含まれる硫黄分を効率良く低減することができ、しかも再使用のための再生処理を行っても脱硫能は維持される。   As described above, the desulfurization agent of the present invention has a requirement that a boria-alumina composite oxide having a boria content of 3 mass% to 30 mass% is used as a carrier, a requirement that this supports 5 mass% to 30 mass%, and a reduction treatment. As a result of combining these requirements, the desulfurization agent of the present invention can efficiently reduce the sulfur content in the hydrocarbon oil that is the base material of gasoline containing olefins. In addition, the desulfurization ability is maintained even if the recycling treatment for reuse is performed.

担体に銀を担持する方法としては、金属塩を用いる含浸法、混練法など公知の方法を用いることができ、特に含浸法が好ましい。担体に担持させる金属の出発物質としては、金属の硝酸塩、塩化物塩、硫酸塩、炭酸塩、水酸化物塩等の水溶液を用いることが出来るが、溶解度、焼成後の不純物の残留を考慮した場合特に硝酸塩が好ましい。
金属を担持した後、還元操作を行い脱硫剤が形成される。還元操作前に予め、乾燥、焼成等の工程を行うことができる。この操作の内のどちらかを省いても問題はない。乾燥工程は、90〜150℃の温度で行うことが好ましく、焼成工程は、酸素の存在する雰囲気で250〜500℃の温度で3時間以上焼成することが好ましい。
As a method for supporting silver on the carrier, known methods such as an impregnation method using a metal salt and a kneading method can be used, and an impregnation method is particularly preferable. As metal starting materials to be supported on the carrier, aqueous solutions of metal nitrates, chlorides, sulfates, carbonates, hydroxides, etc. can be used, but considering solubility and residual impurities after firing. In particular, nitrate is preferred.
After loading the metal, a reduction operation is performed to form a desulfurizing agent. Prior to the reduction operation, steps such as drying and firing can be performed in advance. There is no problem if either of these operations is omitted. The drying step is preferably performed at a temperature of 90 to 150 ° C., and the baking step is preferably performed at a temperature of 250 to 500 ° C. for 3 hours or more in an oxygen-existing atmosphere.

還元方法は、気相還元、液相還元などの公知の方法を用いることが可能であるが、気相による水素還元が好ましく、水素雰囲気で200〜500℃の温度で行うことが好ましい。還元温度が上記範囲であることにより、脱硫剤の比表面積が適切な範囲に維持され、吸着能が好適に発現し、好ましい結果が得られる。
この還元操作により脱硫剤の担体上に担持されている銀は実質的に0価に還元されており、その時にX線回折法による測定(XRD測定)から求められる金属銀の平均結晶子径が100Å以下、好ましくは80Å以下である。
還元操作により脱硫剤の吸着能が向上する。還元操作後の銀のXRD測定から、酸化銀(Ag2O)に帰属されるピーク(2θ=32.789°)は無く、銀(Ag)に帰属されるピーク(2θ=38.115°,44.276°,64.423°)のみである。従って、銀が0価に還元されることにより、硫黄化合物の脱硫に好適な結果が得られる。
As the reduction method, known methods such as gas phase reduction and liquid phase reduction can be used, but hydrogen reduction by gas phase is preferable, and it is preferably performed at a temperature of 200 to 500 ° C. in a hydrogen atmosphere. When the reduction temperature is in the above range, the specific surface area of the desulfurizing agent is maintained in an appropriate range, the adsorption ability is suitably expressed, and preferable results are obtained.
By this reduction operation, the silver supported on the carrier of the desulfurization agent is substantially reduced to zero valence, and at that time, the average crystallite diameter of metallic silver obtained from the measurement by X-ray diffraction method (XRD measurement) is 100 Å or less, preferably 80 Å or less.
The adsorption capacity of the desulfurizing agent is improved by the reduction operation. From the XRD measurement of silver after the reduction operation, there is no peak (2θ = 32.789 °) attributed to silver oxide (Ag 2 O), but peaks (2θ = 38.115 °, 44.276 °, 64.423) attributed to silver (Ag). °) only. Therefore, a result suitable for desulfurization of a sulfur compound is obtained by reducing silver to zero valence.

金属銀の平均結晶子径はCuKα1線を用いたX線回折法(XRD法)から求められ、下記のScherrerの式から算出される値である。
Scherrerの式
The average crystallite diameter of metallic silver is a value calculated from an X-ray diffraction method (XRD method) using CuKα 1 line and calculated from the following Scherrer equation.
Scherrer's formula

Figure 0004113073
Figure 0004113073

上記式中;
hkl:面指数(hkl)の結晶子径(Å)
K:定数(0.9)
λ:測定に用いたX線の波長(Å)(CuKα1線の波長:1.540562Å)
B:試料と装置の光学系によるピークの半値幅2θ(ラジアン)
b:装置の光学系によるピークの半値幅2θ(ラジアン)
θ:回折線のブラッグ角(ラジアン)
In the above formula;
D hkl : crystallite diameter (Å) of plane index (hkl)
K: Constant (0.9)
λ: X-ray wavelength (Å) used for measurement (CuKα 1- ray wavelength: 1.54056240)
B: Half width of peak 2θ (radian) by optical system of sample and apparatus
b: Peak half-value width 2θ (radian) by the optical system of the apparatus
θ: Bragg angle of the diffraction line (radians)

金属銀の平均結晶子径が100Å以下であることは、銀の分散度が高く、硫黄化合物が吸着する銀表面の表面積が大きくなり、担持に用いた銀が有効に用いられることを意味し、好ましい結果が得られる。
このような、ボリア−アルミナ担体上に担持されている銀は実質的に0価に還元されており、その時にXRD測定から求められる金属銀の平均結晶子径が100Å以下である脱硫剤の調製は、含浸法、混練法等の手段により調製が可能であり、銀の担持量(mass%)をボリア−アルミナ担体の比表面積(m2/g)で割った数値が0.1以下となるようにすることが好ましく、より好ましくは0.08以下である。
That the average crystallite diameter of metallic silver is 100 mm or less means that the degree of dispersion of silver is high, the surface area of the silver surface to which the sulfur compound is adsorbed increases, and the silver used for supporting is effectively used, Favorable results are obtained.
Preparation of such a desulfurizing agent in which the silver supported on the boria-alumina support is substantially reduced to zero valence, and the average crystallite diameter of metallic silver determined by XRD measurement at that time is 100 mm or less. Can be prepared by means of an impregnation method, a kneading method, etc., and the numerical value obtained by dividing the supported amount of silver (mass%) by the specific surface area (m 2 / g) of the boria-alumina carrier is 0.1 or less. Preferably, it is 0.08 or less.

金属を担持した後の脱硫剤の比表面積は200m2/g以上、より好ましくは230m2/g以上が良い。比表面積が200m2/g以上であれば、硫黄化合物を吸着する活性点の数が多くなり十分な吸着能力が得られ、好ましい。
また、脱硫剤の平均細孔直径は、特に限定されないが、硫黄化合物の細孔内への拡散が阻害されて吸着能力が低下するのを防ぐ観点から、1nm以上が好ましい。脱硫剤の細孔容積は、特に限定されないが、通常0.2〜1.0cm3/gの範囲にある。
脱硫剤形状は、特に限定されず、通常、この種の脱硫剤に用いられている種々の形状、例えば、球形、円柱状、四葉型等を採用することができる。
脱硫剤の大きさは、通常、直径あるいは長さが0.1〜5mm程度のものが好ましい。
The specific surface area of the desulfurizing agent after supporting the metal is 200 m 2 / g or more, more preferably 230 m 2 / g or more. If the specific surface area is 200 m 2 / g or more, the number of active sites that adsorb sulfur compounds increases, and a sufficient adsorption capacity is obtained, which is preferable.
Further, the average pore diameter of the desulfurizing agent is not particularly limited, but is preferably 1 nm or more from the viewpoint of preventing the diffusion of the sulfur compound into the pores to prevent the adsorption ability from being lowered. The pore volume of the desulfurizing agent is not particularly limited, but is usually in the range of 0.2 to 1.0 cm 3 / g.
The shape of the desulfurizing agent is not particularly limited, and various shapes generally used for this type of desulfurizing agent, for example, a spherical shape, a cylindrical shape, a four-leaf type, and the like can be adopted.
The size of the desulfurizing agent is usually preferably about 0.1 to 5 mm in diameter or length.

本発明の脱硫剤を用いて炭化水素油の脱硫を行うには、通常、吸着槽に脱硫剤を充填し、吸着槽で炭化水素油を脱硫剤と接触することにより脱硫が行われる。
本発明で用いる吸着槽の形状は特に問わないが、円筒型を有する塔状のものが好ましい。なお、以下の記載では説明の便宜上「吸着槽」に代え適宜「吸着塔」の語を用いることとする。
炭化水素油と脱硫剤を接触させる方法としては、一般的には、固定床式脱硫剤床を吸着塔内に形成し、原料油を吸着塔の下部に導入し、固定床の下から上に通過させ、吸着塔の上部から生成油を流出させることが好ましい。
In order to desulfurize hydrocarbon oil using the desulfurizing agent of the present invention, desulfurization is usually performed by filling the adsorption tank with a desulfurizing agent and contacting the hydrocarbon oil with the desulfurizing agent in the adsorption tank.
The shape of the adsorption tank used in the present invention is not particularly limited, but a tower-like one having a cylindrical shape is preferable. In the following description, for convenience of explanation, the term “adsorption tower” will be used as appropriate instead of “adsorption tank”.
In general, the hydrocarbon oil and the desulfurizing agent are brought into contact with each other by forming a fixed bed type desulfurizing agent bed in the adsorption tower, introducing the raw material oil into the lower part of the adsorption tower, and moving from the bottom to the top of the fixed bed. It is preferable to let the product oil flow out from the upper part of the adsorption tower.

脱硫剤と炭化水素油を接触させる際、炭化水素油の線速度が大きすぎると、脱硫剤床をすり抜けて除去されない硫黄化合物が増加し、吸着塔から流出する炭化水素油の硫黄化合物濃度を低く保つことができなくなる。また、線速度が小さいと吸着塔のサイズが大きくなるため、設備の建設コストが高くなるなどで不利となる。従って、炭化水素油は、線速度が50cm/min以下、より好ましくは0.5〜40cm/min、更に好ましくは1〜30cm/minとなるように導入されるのが好ましい。尚、線速度は以下の式により計算される。
線速度(cm/min)=原料油の導入量(cm3/min)÷脱硫剤床の断面積(cm2
When contacting the desulfurizing agent with hydrocarbon oil, if the linear velocity of the hydrocarbon oil is too high, the sulfur compound that passes through the desulfurizing agent bed and is not removed increases, and the concentration of sulfur compound in the hydrocarbon oil flowing out from the adsorption tower decreases. I can't keep it. In addition, if the linear velocity is low, the size of the adsorption tower is increased, which is disadvantageous in that the construction cost of the equipment is increased. Accordingly, the hydrocarbon oil is preferably introduced so that the linear velocity is 50 cm / min or less, more preferably 0.5 to 40 cm / min, and still more preferably 1 to 30 cm / min. The linear velocity is calculated by the following formula.
Linear velocity (cm / min) = introduction amount of raw material oil (cm 3 / min) ÷ sectional area of desulfurizing agent bed (cm 2 )

脱硫剤と炭化水素油を接触させる際、吸着能が低下したり、炭化水素の分解などの不要な反応を引き起こすことを避ける観点から、好ましくは0〜150℃、より好ましくは0〜100℃の温度範囲で接触させる。
吸着工程の圧力は、特に制限しないが、一般的には0〜5MPa、好ましくは0〜3MPaの範囲である。
When contacting the desulfurization agent and the hydrocarbon oil, preferably from 0 to 150 ° C., more preferably from 0 to 100 ° C., from the viewpoint of avoiding a decrease in adsorption capacity or causing unnecessary reactions such as hydrocarbon decomposition. Contact in the temperature range.
The pressure in the adsorption step is not particularly limited, but is generally in the range of 0 to 5 MPa, preferably 0 to 3 MPa.

脱硫の対象となる炭化水素油としては、ガソリンやナフサ、灯油、軽油などが挙げられるが、炭化水素油が沸点範囲20〜380℃の留分に適しており、特に適しているものは、流動接触分解装置から留出する生成油(FCCガソリン)で、沸点範囲が20〜250℃のものである。
これらの炭化水素油は、一般に、数十ppm〜数百ppmの硫黄を含んでいる。また、含まれる硫黄化合物としては、チオフェン類、ベンゾチオフェン類が主である。ここで、チオフェン類とは、チオフェンと、メチルチオフェン、ジメチルチオフェン、エチルチオフェンなどのようなチオフェンにアルキル基が置換したアルキルチオフェン類のことである。また、ベンゾチオフェン類とは、ベンゾチオフェンと、メチルベンゾチオフェン、ジメチルベンゾチオフェン、エチルベンゾチオフェンなどのようなベンゾチオフェンにアルキル基が置換したアルキルベンゾチオフェン類のことである。
本発明の脱硫剤を用いれば、生成油の硫黄濃度は、30ppm以下、より好ましくは10ppm以下に低減することができる。
尚、濃度の単位ppmは、炭化水素油中に含まれる硫黄原子の質量を表しており、1ppmとは炭化水素油1g中に硫黄原子が1×10-6g含まれていることを意味する。
脱硫剤に吸着した硫黄化合物は、250℃〜500℃、好ましくは280℃〜450℃の水素気流中で操作することにより、適度な脱着速度で、しかも脱硫剤の比表面積が低下して吸着能が低下することなく、脱着させることが可能である。
Examples of the hydrocarbon oil to be desulfurized include gasoline, naphtha, kerosene, and light oil. The hydrocarbon oil is suitable for a fraction having a boiling point range of 20 to 380 ° C. The product oil (FCC gasoline) distilled from the catalytic cracker has a boiling range of 20 to 250 ° C.
These hydrocarbon oils generally contain tens to hundreds of ppm of sulfur. The sulfur compounds contained are mainly thiophenes and benzothiophenes. Here, the thiophenes are thiophenes and alkylthiophenes in which an alkyl group is substituted for thiophene such as methylthiophene, dimethylthiophene, and ethylthiophene. The benzothiophenes are benzothiophenes and alkylbenzothiophenes in which an alkyl group is substituted for benzothiophene such as methylbenzothiophene, dimethylbenzothiophene, and ethylbenzothiophene.
If the desulfurization agent of this invention is used, the sulfur concentration of produced | generated oil can be reduced to 30 ppm or less, More preferably, it is 10 ppm or less.
The unit ppm of concentration represents the mass of sulfur atoms contained in the hydrocarbon oil, and 1 ppm means that 1 × 10 −6 g of sulfur atoms are contained in 1 g of hydrocarbon oil. .
The sulfur compound adsorbed on the desulfurizing agent is operated in a hydrogen stream at 250 ° C. to 500 ° C., preferably 280 ° C. to 450 ° C., thereby reducing the specific surface area of the desulfurizing agent and reducing the adsorption capacity. Can be desorbed without lowering.

以下に、本発明を実施例に基づき、具体的に説明するが、これは例示であって、本発明を制限するものではない。   Hereinafter, the present invention will be specifically described based on examples, but this is an exemplification and does not limit the present invention.

実施例1
ボリアを10mass%含有するボリア−アルミナ担体80gに、硝酸銀31.5gを溶解した64mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を20mass%担持している脱硫剤Aを得た。
脱硫剤AについてXRD測定を行い、担持されている銀は0価になっており、その時の金属銀の平均結晶子径は約40Åであった。また、この時の銀の担持量(mass%)をボリア−アルミナ担体の比表面積(m2/g)で割った数値は0.06である。
Example 1
Silver was supported by impregnating 80 g of a boria-alumina carrier containing 10 mass% of boria with 64 ml of an aqueous solution in which 31.5 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent A carrying 20 mass% of silver.
The XRD measurement was performed on the desulfurizing agent A, and the supported silver was zero-valent, and the average crystallite size of the metallic silver at that time was about 40 mm. The value obtained by dividing the silver loading (mass%) at this time by the specific surface area (m 2 / g) of the boria-alumina carrier is 0.06.

実施例2
ボリアを10mass%含有するボリア−アルミナ担体90gに、硝酸銀15.8gを溶解した72mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を10mass%担持している脱硫剤Bを得た。
Example 2
Silver was supported by impregnating 90 g of a boria-alumina carrier containing 10 mass% of boria with 72 ml of an aqueous solution in which 15.8 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurizing agent B carrying 10 mass% of silver.

実施例3
ボリアを20mass%含有するボリア−アルミナ担体80gに、硝酸銀31.5gを溶解した64mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を20mass%担持している脱硫剤Cを得た。
Example 3
Silver was supported by impregnating 80 g of a boria-alumina carrier containing 20 mass% of boria with 64 ml of an aqueous solution in which 31.5 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent C carrying 20 mass% of silver.

比較例1
アルミナ担体80gに、硝酸銀31.5gを溶解した64mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を20mass%担持している脱硫剤Dを得た。
Comparative Example 1
Silver was supported by impregnating 80 g of an alumina carrier with 64 ml of an aqueous solution in which 31.5 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent D carrying 20 mass% of silver.

比較例2
アルミナ担体90gに、硝酸銀15.8gを溶解した72mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を10mass%担持している脱硫剤Eを得た。
Comparative Example 2
Silver was supported by impregnating 90 g of an alumina carrier with 72 ml of an aqueous solution in which 15.8 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent E carrying 10 mass% of silver.

比較例3
ボリアを2mass%含有するボリア−アルミナ担体80gに、硝酸銀31.5gを溶解した64mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を20mass%担持している脱硫剤Fを得た。
Comparative Example 3
Silver was supported by impregnating 80 g of a boria-alumina carrier containing 2 mass% of boria with 64 ml of an aqueous solution in which 31.5 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled into a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurizing agent F carrying 20 mass% of silver.

比較例4
実施例1に使用しているボリアを10mass%含有するボリア−アルミナ担体をステンレス管に充填し、水素気流中450℃、3時間還元することにより、金属無坦持の脱硫剤Gを得た。
Comparative Example 4
A stainless steel tube was filled with a boria-alumina carrier containing 10 mass% of boria used in Example 1, and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a metal-free desulfurization agent G.

比較例5
ボリアを10mass%含有するボリア−アルミナ担体96gに、硝酸銀63.0gを溶解した48mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物をステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を4mass%担持している脱硫剤Hを得た。
Comparative Example 5
Silver was supported by impregnating 96 g of a boria-alumina carrier containing 10 mass% of boria with 48 ml of an aqueous solution in which 63.0 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurizing agent H carrying 4 mass% of silver.

比較例6
ボリアを10mass%含有するボリア−アルミナ担体60gに、硝酸銀63.0gを溶解した48mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を40mass%担持している脱硫剤Iを得た。
脱硫剤IについてXRD測定を行い、担持されている銀は0価になっており、金属銀の平均結晶子径は約400Åであった。また、この時の銀の担持量(mass%)をボリア−アルミナ担体の比表面積(m2/g)で割った数値は0.11である。
Comparative Example 6
Silver was supported by impregnating 60 g of a boria-alumina carrier containing 10 mass% of boria with 48 ml of an aqueous solution in which 63.0 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled into a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent I carrying 40 mass% of silver.
XRD measurement was performed on desulfurization agent I, and the supported silver was zero-valent, and the average crystallite diameter of metallic silver was about 400 mm. Further, the numerical value obtained by dividing the silver loading (mass%) at this time by the specific surface area (m 2 / g) of the boria-alumina carrier is 0.11.

比較例7
ボリアを10mass%含有するボリア−アルミナ担体90gに、硝酸銅3水和物38.0gを溶解した72mlの水溶液を含浸させて銅を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銅を10mass%担持している脱硫剤Jを得た。
Comparative Example 7
Copper was supported by impregnating 90 g of a boria-alumina carrier containing 10 mass% of boria with 72 ml of an aqueous solution in which 38.0 g of copper nitrate trihydrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent J carrying 10 mass% of copper.

比較例8
ボリアを10mass%含有するボリア−アルミナ担体90gに、硝酸亜鉛6水和物45.5gを溶解した72mlの水溶液を含浸させて亜鉛を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、亜鉛を10mass%担持している脱硫剤Kを得た。
Comparative Example 8
Zinc was supported by impregnating 90 g of boria-alumina carrier containing 10 mass% of boria with 72 ml of an aqueous solution in which 45.5 g of zinc nitrate hexahydrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurizing agent K carrying 10 mass% of zinc.

比較例9
ボリアを10mass%含有するボリア−アルミナ担体90gに、硝酸コバルト6水和物49.4gを溶解した72mlの水溶液を含浸させてコバルトを担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、コバルトを10mass%担持している脱硫剤Lを得た。
Comparative Example 9
Cobalt was supported by impregnating 90 g of a boria-alumina carrier containing 10 mass% of boria with 72 ml of an aqueous solution in which 49.4 g of cobalt nitrate hexahydrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent L carrying 10 mass% of cobalt.

比較例10
実施例1記載の脱硫剤Aの調製時に、還元を行っていないものを脱硫剤Mとした。
Comparative Example 10
When the desulfurizing agent A described in Example 1 was prepared, the desulfurizing agent M was not reduced.

比較例11
チタニアを10mass%含有するチタニア−アルミナ担体80gに、硝酸銀31.5gを溶解した64mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を20mass%担持している脱硫剤Nを得た。
Comparative Example 11
Silver was supported by impregnating 80 g of a titania-alumina carrier containing 10 mass% of titania with 64 ml of an aqueous solution in which 31.5 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent N carrying 20 mass% of silver.

比較例12
シリカを10mass%含有するシリカ−アルミナ担体80gに、硝酸銀31.5gを溶解した64mlの水溶液を含浸させて銀を担持した。その後、真空乾燥により水分を除去した後、マッフル炉で450℃、3時間焼成した。得られた焼成物を、ステンレス管に充填し、水素気流中450℃、3時間還元することにより、銀を20mass%担持している脱硫剤Oを得た。
Comparative Example 12
Silver was supported by impregnating 80 g of a silica-alumina carrier containing 10 mass% of silica with 64 ml of an aqueous solution in which 31.5 g of silver nitrate was dissolved. Thereafter, moisture was removed by vacuum drying, followed by baking at 450 ° C. for 3 hours in a muffle furnace. The obtained fired product was filled in a stainless steel tube and reduced in a hydrogen stream at 450 ° C. for 3 hours to obtain a desulfurization agent O carrying 20 mass% of silver.

〔脱硫剤性能評価方法〕
実施例1〜3、比較例1〜12で得られた脱硫剤2.0gを硫黄濃度42ppmのFCCガソリンに入れ、35℃で3時間撹拌し、硫黄化合物を脱硫剤に平衡吸着させる。平衡吸着後のFCCガソリンの硫黄濃度を測定して脱硫率を求めた。結果を表1に示す。
脱硫率(%)=(42ppm−平衡吸着後濃度)×100/42ppm
[Desulfurization agent performance evaluation method]
2.0 g of the desulfurization agent obtained in Examples 1 to 3 and Comparative Examples 1 to 12 is put into FCC gasoline having a sulfur concentration of 42 ppm, and stirred at 35 ° C. for 3 hours to allow the sulfur compound to be adsorbed to the desulfurization agent in an equilibrium manner. The sulfur concentration of FCC gasoline after equilibrium adsorption was measured to determine the desulfurization rate. The results are shown in Table 1.
Desulfurization rate (%) = (42 ppm-concentration after equilibrium adsorption) x 100/42 ppm

Figure 0004113073
Figure 0004113073

表1に示される結果より、ボリア含有量が3mass%〜30mass%のボリア−アルミナ複合酸化物を担体とする要件、これに銀を5mass%〜30mass%坦持する要件、還元処理して調製する要件が結合して構成された本発明の脱硫剤は、FCCガソリン含まれる硫黄分を効率良く低減することができることが分かる。   From the results shown in Table 1, the requirement is that the boria-alumina composite oxide having a boria content of 3 mass% to 30 mass% is used as a carrier, the requirement to support 5 mass% to 30 mass% of silver, and the reduction treatment. It can be seen that the desulfurization agent of the present invention configured by combining requirements can efficiently reduce the sulfur content contained in FCC gasoline.

実施例4
炭化水素中に存在する代表的な硫黄化合物であるチオフェンを500volppm含有する窒素ガスを調製し、実施例1で調製した脱硫剤Aを0.2g充填したガラス管に50℃、常圧、GHSV(ガス空間速度)=15000h-1で、1時間流通させて吸着反応を行った。その際、脱硫剤に吸着されずに出てくるガラス管出口のチオフェンを質量分析計で測定した。吸着反応後は、チオフェン含有ガスから水素気流に切り替え、350℃に昇温して、常圧、GHSV(ガス空間速度)=15000h-1で、1時間吸着剤の再生を行った。その後、再度、上記の条件でチオフェンの吸着反応を実施したところ、初めの吸着量とほぼ同じ吸着量であった。
上記条件で吸着・再生の操作を4回繰り返した結果を図1に示す。この結果から、本発明の吸着剤(脱硫剤)は、繰り返し吸着・再生を行ってもチオフェンの吸着量の変化は非常に小さく、水素気流中で昇温処理することにより吸着能再生が可能であることがわかる。
なお、質量分析計のマスナンバー84のイオン強度はチオフェン濃度と比例することから、吸着反応の出口ガスのチオフェン濃度は、チオフェン濃度500volppmのガスのイオン強度測定値を基準にして、イオン強度測定値から算出した。
Example 4
A nitrogen gas containing 500 volppm of thiophene, which is a typical sulfur compound present in hydrocarbons, was prepared, and the glass tube filled with 0.2 g of the desulfurizing agent A prepared in Example 1 was subjected to 50 ° C., normal pressure, GHSV ( Gas space velocity) = 15000 h −1 was allowed to flow for 1 hour for the adsorption reaction. At that time, thiophene at the exit of the glass tube that was not adsorbed by the desulfurizing agent was measured with a mass spectrometer. After the adsorption reaction, the thiophene-containing gas was switched to a hydrogen stream, heated to 350 ° C., and the adsorbent was regenerated for 1 hour at normal pressure and GHSV (gas space velocity) = 15000 h −1 . After that, when the adsorption reaction of thiophene was performed again under the above conditions, the adsorption amount was almost the same as the initial adsorption amount.
The result of repeating the adsorption / regeneration operation four times under the above conditions is shown in FIG. From these results, the adsorbent (desulfurization agent) of the present invention has very little change in the amount of thiophene adsorbed even after repeated adsorption and regeneration, and the adsorption capacity can be regenerated by heating in a hydrogen stream. I know that there is.
In addition, since the ionic strength of the mass number 84 of the mass spectrometer is proportional to the thiophene concentration, the thiophene concentration of the exit gas of the adsorption reaction is the measured ionic strength based on the measured ionic strength of the gas having a thiophene concentration of 500 volppm. Calculated from

比較例13
比較例7で調製した脱硫剤Jを用いて実施例4と同様に評価を実施したが、図2に示されるように、初期に比較して吸着量は低下し、吸着能の再生率は低かった。
Comparative Example 13
Evaluation was carried out in the same manner as in Example 4 using the desulfurizing agent J prepared in Comparative Example 7. However, as shown in FIG. 2, the amount of adsorption decreased compared to the initial stage, and the regeneration rate of the adsorption capacity was low. It was.

実施例4で行われた脱硫剤Aの再生試験の結果を示すグラフである。6 is a graph showing the results of a regeneration test for a desulfurizing agent A performed in Example 4. 比較例13で行われた脱硫剤Jの再生試験の結果を示すグラフである。14 is a graph showing the results of a regeneration test for a desulfurizing agent J performed in Comparative Example 13.

Claims (5)

ボリア−アルミナ複合酸化物担体上に銀を担持し、還元処理を施すことにより調製された脱硫剤であり、担体中のボリア含有量が3mass%〜30mass%であり、銀の担持量が脱硫剤の5mass%〜30mass%であることを特徴とする炭化水素油の脱硫剤。 A desulfurization agent prepared by supporting silver on a boria-alumina composite oxide support and subjecting it to a reduction treatment, the boria content in the support is 3 mass% to 30 mass%, and the supported amount of silver is the desulfurization agent 5 mass% to 30 mass% of hydrocarbon oil desulfurizing agent. 担体上に担持されている銀が実質的に0価に還元されており、還元後のX線回折法による測定から求められる金属銀の平均結晶子径が100Å以下であることを特徴とする請求項1に記載の脱硫剤。 The silver supported on the carrier is substantially reduced to zero valence, and the average crystallite diameter of metallic silver determined by measurement by X-ray diffraction after reduction is 100 mm or less. Item 2. A desulfurizing agent according to Item 1. 炭化水素油が沸点範囲20〜380℃の留分であることを特徴とする請求項1または2に記載の脱硫剤。 The desulfurizing agent according to claim 1 or 2, wherein the hydrocarbon oil is a fraction having a boiling point range of 20 to 380 ° C. 炭化水素油が、流動接触分解装置から生成する沸点範囲20〜250℃の留分であることを特徴とする請求項3に記載の脱硫剤。 The desulfurization agent according to claim 3, wherein the hydrocarbon oil is a fraction having a boiling range of 20 to 250 ° C generated from a fluid catalytic cracking apparatus. 炭化水素油中の硫黄化合物を吸着後に250℃〜500℃の水素気流中で硫黄化合物を脱着させることにより、吸着能の再生が可能であることを特徴とする請求項1または2に記載の脱硫剤。 3. The desulfurization according to claim 1, wherein the adsorption ability can be regenerated by desorbing the sulfur compound in the hydrocarbon oil in a hydrogen stream at 250 to 500 ° C. after the adsorption of the sulfur compound in the hydrocarbon oil. Agent.
JP2003290100A 2003-08-08 2003-08-08 Hydrocarbon oil desulfurization agent Expired - Lifetime JP4113073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290100A JP4113073B2 (en) 2003-08-08 2003-08-08 Hydrocarbon oil desulfurization agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290100A JP4113073B2 (en) 2003-08-08 2003-08-08 Hydrocarbon oil desulfurization agent

Publications (2)

Publication Number Publication Date
JP2005058856A JP2005058856A (en) 2005-03-10
JP4113073B2 true JP4113073B2 (en) 2008-07-02

Family

ID=34368230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290100A Expired - Lifetime JP4113073B2 (en) 2003-08-08 2003-08-08 Hydrocarbon oil desulfurization agent

Country Status (1)

Country Link
JP (1) JP4113073B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113445A1 (en) * 2008-03-10 2009-09-17 独立行政法人産業技術総合研究所 Adsorbent desulfurizer for liquid phases
JP2011158888A (en) * 2010-01-08 2011-08-18 Central Glass Co Ltd Reflector and visible light reflection member using the reflector
JP5421857B2 (en) * 2010-05-19 2014-02-19 Jx日鉱日石エネルギー株式会社 Adsorbent, production method thereof, and fuel desulfurization method
JPWO2022195734A1 (en) * 2021-03-16 2022-09-22

Also Published As

Publication number Publication date
JP2005058856A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
CA2421731C (en) Process for desulfurizing hydrocarbon fuels and fuel components
Nair et al. Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels
RU2242277C2 (en) Sulfur removal method and sorbent
US8426336B2 (en) Composition and process for the removal of sulfur from middle distillate fuels
US20100155303A1 (en) Method for desulfurization of hydrocarbon oil
JP2004533492A (en) Removal of sulfur compounds from hydrocarbon feed streams using a cobalt-containing adsorbent in a substantially hydrogen-free atmosphere
RU2336126C2 (en) Desulfurization and new method of desulfurisation
JP2003513772A (en) Desulfurization and new sorbents therefor
EA007581B1 (en) Process for the catalytic selective oxidation of sulphur compounds
RU2498849C2 (en) Desulfurising adsorbent, method of its preparation and application
US9926495B2 (en) Method for desulfurizing diesel fuel
JP5328655B2 (en) Solid acid, method for producing the same, and method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
JP5337036B2 (en) Hydrocarbon oil desulfurization method
JP4113073B2 (en) Hydrocarbon oil desulfurization agent
AU2001273567A1 (en) Regeneration of iron-based hydrogen sulfide sorbents
US20030111389A1 (en) Desulfurization of middle distillates
JP2008291146A (en) Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
JP2005270855A (en) Adsorbent of sulfur compound in hydrocarbon oil and method for removing sulfur compound in hydrocarbon oil
JP2003277768A (en) Method for reducing content of sulfur compound in hydrocarbon oil
JP2002294256A (en) Adsorbent for sulfur compound in hydrocarbon oil and method for removing sulfur compound from hydrocarbon oil
CN112742369B (en) Catalyst composition, use thereof and process for selective sweetening
Alrasheed Carbon-Based Nanomaterials for Adsorptive Desulfurization of Selected Sulfur Compounds from Liquid Fuels
JPH11193385A (en) Arsenic adsorbent for arsenic-containing liquid hydrocarbon and method for removing arsenic from arsenic-containing liquid hydrocarbon
AU2002231203A1 (en) Removal of sulfur compounds from hydrocarbon feedstreams using cobalt containing adsorbents in the substantial absence of hydrogen
JPH0633070A (en) Method for removing mercury in liquid hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Ref document number: 4113073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term