JP2010217041A - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP2010217041A
JP2010217041A JP2009065092A JP2009065092A JP2010217041A JP 2010217041 A JP2010217041 A JP 2010217041A JP 2009065092 A JP2009065092 A JP 2009065092A JP 2009065092 A JP2009065092 A JP 2009065092A JP 2010217041 A JP2010217041 A JP 2010217041A
Authority
JP
Japan
Prior art keywords
reaction
unit
diameter side
light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009065092A
Other languages
Japanese (ja)
Inventor
Gakuji Uejima
岳二 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beckman Coulter Inc
Original Assignee
Beckman Coulter Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beckman Coulter Inc filed Critical Beckman Coulter Inc
Priority to JP2009065092A priority Critical patent/JP2010217041A/en
Publication of JP2010217041A publication Critical patent/JP2010217041A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic analyzer for simplifying a constitution, and measuring lights on a plurality of reaction lines. <P>SOLUTION: The automatic analyzer is provided with a rotatable reaction table 23, having an annular inside diameter reaction line 231a and an annular outside diameter reaction line 231b for accommodating reaction vessels 20, coaxially disposed and having different diameters; an inside-diameter side irradiation section 271 and an outside-diameter side irradiation section 272, disposed on the outside and inside-diameter sides of the reaction lines, and irradiating the reaction vessels on the inside-diameter and outside-diameter sides with lights; and an optical path generating section 400 provided between the reaction lines, selecting an optical path of the light passing through the reaction vessel 20 to be measured, and making the light enter a light-receiving section. Since the light receiving section receives the light from the optical path selected by the optical path generating section 400, a single light-receiving section can measure the lights on two reaction lines. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反応容器に収容された検体と試薬との反応物の光学的特性を測定して前記検体の分析処理を行う自動分析装置に関するものである。   The present invention relates to an automatic analyzer that performs an analysis process on a specimen by measuring optical characteristics of a reaction product of the specimen and a reagent contained in a reaction container.

従来、血液や体液等の試料を自動的に分析する装置として、試薬が分注された反応容器に試料を加え、反応容器内の試薬と試料の間で生じた反応を光学的に検出する自動分析装置が知られている。このような自動分析装置では、光源と受光系とを備える測光機構を設け、光源が試料を収容した反応容器に光を照射後、受光系が受光した反応容器内の液体の通過光量をもとに試料の分析を行っている。   Conventionally, as a device that automatically analyzes samples such as blood and body fluids, it automatically adds a sample to a reaction container in which a reagent has been dispensed, and optically detects the reaction between the reagent and the sample in the reaction container. Analytical devices are known. In such an automatic analyzer, a photometric mechanism having a light source and a light receiving system is provided, and after the light source irradiates light to the reaction container containing the sample, the light passing through the liquid in the reaction container received by the light receiving system is used. The sample is analyzed.

ところで、反応容器が収容される反応ラインを2つ有する反応テーブルを具備した自動分析装置が用いられ、分析処理の高速化を図っている。反応ラインを二つ以上有する場合、反応ラインに対応して測光部を設ける必要があり、装置の大型化の防止、コスト抑制のため、一つの光源から出射される光を、光ファイバを介して各反応容器に照射する自動分析装置が提案されている(例えば、特許文献1参照)。   By the way, an automatic analyzer equipped with a reaction table having two reaction lines in which reaction vessels are accommodated is used to speed up the analysis process. When there are two or more reaction lines, it is necessary to provide a photometry unit corresponding to the reaction line. In order to prevent an increase in the size of the apparatus and to reduce costs, light emitted from one light source is transmitted via an optical fiber. An automatic analyzer for irradiating each reaction container has been proposed (see, for example, Patent Document 1).

特開平8−146006号公報JP-A-8-146006

しかしながら、特許文献1に示す自動分析装置は、光源または光を反応容器に向けて出射する出射部および反応容器を通過した光を受信する受光部を反応ラインに対応して別個設置する必要があり、装置が複雑化するという問題があった。   However, in the automatic analyzer shown in Patent Document 1, it is necessary to separately install a light source or a light emitting unit that emits light toward the reaction vessel and a light receiving unit that receives light that has passed through the reaction vessel corresponding to the reaction line. There is a problem that the apparatus becomes complicated.

本発明は、上記に鑑みてなされたものであって、簡易な構成で複数の反応ラインの測光を行なうことができる自動分析装置を提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide an automatic analyzer that can perform photometry of a plurality of reaction lines with a simple configuration.

上述した課題を解決し、目的を達成するために、本発明にかかる自動分析装置は、反応容器を収容し、同一軸心上に径の異なる環状の反応ラインを2以上有する回転可能な反応テーブルを具備し、前記反応容器に収容された検体と試薬との反応液の光学的特性を測定して前記検体の分析処理を行う自動分析装置において、前記反応ラインの外径側および内径側に光源が配置され、該光源から出射される光をそれぞれ内径側および外径側の前記反応容器に照射する照射部と、前記照射部から出射された光を受光する受光部と、前記反応ライン間に設けられ、各照射部から前記受光部への光路を形成する光路形成部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, an automatic analyzer according to the present invention is a rotatable reaction table that contains a reaction vessel and has two or more annular reaction lines having different diameters on the same axis. An automatic analyzer for measuring an optical characteristic of a reaction liquid of a sample and a reagent contained in the reaction container and performing an analysis process on the sample, and a light source on the outer diameter side and the inner diameter side of the reaction line Is disposed between the reaction line and an irradiation unit that irradiates the reaction container on the inner diameter side and the outer diameter side with light emitted from the light source, a light receiving unit that receives light emitted from the irradiation unit, and the reaction line, respectively. And an optical path forming unit that forms an optical path from each irradiation unit to the light receiving unit.

また、本発明にかかる自動分析装置は、上記の発明において、反応容器を収容し、同一軸心上に径の異なる環状の反応ラインを2以上有する回転可能な反応テーブルを具備し、前記反応容器に収容された検体と試薬との反応液の光学的特性を測定して前記検体の分析処理を行う自動分析装置において、前記反応ライン間に光源を設け、該光源から光を出射する出射部と、前記出射部から出射され、各反応テーブルの外径側および内径側に設けられた前記反応容器を通過した光を受信する受光部と、前記反応ライン間に設けられ、前記照射部から各受光部への光路を形成する光路形成部と、を備えたことを特徴とする。   In addition, the automatic analyzer according to the present invention includes a rotatable reaction table that accommodates the reaction vessel and has two or more annular reaction lines having different diameters on the same axis, in the above invention, In the automatic analyzer for measuring the optical characteristics of the reaction liquid of the sample and the reagent contained in the sample and analyzing the sample, a light source is provided between the reaction lines, and an emission unit that emits light from the light source; A light receiving portion for receiving light emitted from the emission portion and passing through the reaction vessel provided on the outer diameter side and the inner diameter side of each reaction table; and a light receiving portion provided between the reaction lines and receiving each light from the irradiation portion. And an optical path forming part for forming an optical path to the part.

また、本発明にかかる自動分析装置は、上記の発明において、前記光路形成部は、軸回りに回転可能であって、各照射部から前記反応容器を通過した光を前記受光部に入射させる光路を形成する反射部材が設けられた筒状部材と、前記筒状部材に連結され、該筒状部材を軸回りに回転駆動させる駆動部と、前記駆動部を、前記反応テーブルの回転に連動して回転するよう制御する駆動制御部と、を備えたことを特徴とする。   Further, the automatic analyzer according to the present invention is the above-described invention, wherein the optical path forming unit is rotatable about an axis, and the light path that passes through the reaction container from each irradiation unit enters the light receiving unit. A cylindrical member provided with a reflecting member for forming the cylindrical member, a drive unit connected to the cylindrical member and driving the cylindrical member to rotate about its axis, and the drive unit linked to the rotation of the reaction table. And a drive control unit that controls to rotate.

また、本発明にかかる自動分析装置は、上記の発明において、前記反応容器の検出位置を、各反応ライン毎に高低差を設け、前記光路形成部は、一方の反応容器を通過した光を反射させる反射部材と、前記反射部材と前記受光部との間に設けられ、前記反応テーブルに連動して回転する回転部材とを有し、前記回転部材は、前記反応ラインと歯合する歯合部と、一方の反応容器を通過し、前記反射部材によって前記受光部への光路を形成された光が通過する通過孔と、他方の反応容器を通過した光を前記受光部に向けて反射する反射部と、を備えたことを特徴とする。   In the automatic analyzer according to the present invention, in the above invention, the detection position of the reaction container is provided with a height difference for each reaction line, and the optical path forming unit reflects light that has passed through one reaction container. A reflecting member, and a rotating member that is provided between the reflecting member and the light receiving unit and rotates in conjunction with the reaction table, and the rotating member meshes with the reaction line. And a passage hole through which light passing through one reaction vessel and having a light path formed by the reflecting member to the light receiving portion passes, and reflection that reflects light that has passed through the other reaction vessel toward the light receiving portion. And a section.

また、本発明にかかる自動分析装置は、上記の発明において、前記反応ラインの内径側および外径側の反応容器を周方向にずらして配置するとともに、検出位置に高低差を設け、前記光路形成部は、一方の反応容器を通過した光を前記受光部側に反射する反射部材と、前記反射部材と前記受光部との光路上であって、他方の反応容器を通過した光を反射するとともに、前記反射部材によって反射された光を透過させる半透過型反射部材と、を備えたことを特徴とする。   Further, the automatic analyzer according to the present invention is the above invention, wherein the reaction vessels on the inner diameter side and the outer diameter side of the reaction line are arranged while being shifted in the circumferential direction, and a height difference is provided at a detection position, thereby forming the optical path. And a reflection member that reflects light that has passed through one reaction vessel toward the light receiving portion, and an optical path between the reflection member and the light receiving portion, and that reflects light that has passed through the other reaction vessel. And a transflective reflection member that transmits light reflected by the reflection member.

また、本発明にかかる自動分析装置は、上記の発明において、前記光路形成部は、軸回りに回転可能であって、前記照射部からの光を各受光部に入射させる光路を形成する反射部材が設けられた筒状部材と、前記筒状部材に連結され、該筒状部材を軸回りに回転駆動させる駆動部と、前記駆動部を、前記反応テーブルの回転に連動して回転するよう制御する駆動制御部と、を備えたことを特徴とする。   In the automatic analyzer according to the present invention, in the above invention, the optical path forming unit is rotatable about an axis and forms a light path for allowing light from the irradiation unit to enter each light receiving unit. A cylindrical member provided with a drive member, a drive unit coupled to the cylindrical member and configured to rotate the cylindrical member around an axis, and the drive unit controlled to rotate in conjunction with the rotation of the reaction table. And a drive control unit.

また、本発明にかかる自動分析装置は、上記の発明において、前記反応容器の検出位置を、各反応ライン毎に高低差を設け、前記光路形成部は、前記照射部から出射された光を一方の受光部に反射させる反射部材と、前記反射部材と前記照射部との間に設けられ、前記反応テーブルに連動して回転する回転部材とを有し、前記回転部材は、前記反応ラインと歯合する歯合部と、前記照射部から出射された光を通過させる通過孔と、前記照射部から出射された光を他方の受光部に向けて反射する反射部と、を備えたことを特徴とする。   In the automatic analyzer according to the present invention, in the above invention, the detection position of the reaction container is provided with a height difference for each reaction line, and the optical path forming unit transmits the light emitted from the irradiation unit on one side. A reflecting member that is reflected by the light receiving unit, and a rotating member that is provided between the reflecting member and the irradiation unit and rotates in conjunction with the reaction table. The rotating member includes the reaction line and the teeth. A meshing portion, a passage hole through which the light emitted from the irradiation unit passes, and a reflection unit that reflects the light emitted from the irradiation unit toward the other light receiving unit. And

また、本発明にかかる自動分析装置は、上記の発明において、前記反応容器の検出位置を、各反応ライン毎に高低差を設け、前記光路形成部は、前記照射部からの光を一方の受光部への光路に反射する反射部材と、前記反射部材と前記照射部との光路上であって、他方の受光部への光路に反射するとともに、前記照射部からの光を透過させて、前記反射部材への光路を形成する半透過型反射部材と、を備えたことを特徴とする。   In the automatic analyzer according to the present invention, in the above invention, the detection position of the reaction container is provided with a height difference for each reaction line, and the optical path forming unit receives light from the irradiation unit on one side. A reflecting member that reflects on the optical path to the part, and on the optical path between the reflecting member and the irradiating part, is reflected on the optical path to the other light receiving part, and transmits light from the irradiating part, A transflective reflection member that forms an optical path to the reflection member.

また、本発明にかかる自動分析装置は、上記の発明において、前記反応ラインの内径側および外径側の反応容器は、周方向にずらして配置されることを特徴とする。   The automatic analyzer according to the present invention is characterized in that, in the above invention, the reaction vessels on the inner diameter side and the outer diameter side of the reaction line are shifted in the circumferential direction.

また、本発明にかかる自動分析装置は、上記の発明において、前記反応ラインは、所定間隔で前記反応容器を配置することを特徴とする。   Moreover, the automatic analyzer according to the present invention is characterized in that, in the above invention, the reaction vessel is arranged at predetermined intervals in the reaction line.

本発明によれば、複数の反応ラインに対して、1つの受光部によって測光を行なうようにしたので、簡易な構成で複数の反応ラインの測光を行なうことができるという効果を奏する。   According to the present invention, since photometry is performed with respect to a plurality of reaction lines by a single light receiving unit, it is possible to perform photometry of a plurality of reaction lines with a simple configuration.

以下、図面を参照して、この発明の実施の形態である自動分析装置について、血液や尿等の液体検体を反応容器に分注して検体を分析する自動分析装置を例に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。   Hereinafter, an automatic analyzer that analyzes a sample by dispensing a liquid sample such as blood or urine into a reaction container will be described as an example with reference to the drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.

(実施の形態1)
図1は、実施の形態1にかかる自動分析装置の構成を示す模式図である。図1に示すように、実施の形態1にかかる自動分析装置1は、分析対象である検体および試薬を反応容器20にそれぞれ分注し、分注した反応容器20内で生じる反応を光学的に測定する測定機構2と、測定機構2を含む自動分析装置1全体の制御を行なうとともに測定機構2における測定結果の分析を行なう制御機構3とを備える。自動分析装置1は、これらの二つの機構が連携することによって複数の検体の生化学分析を自動的に行なう。なお、反応容器20は、容量が数μL〜数mLと微量な容器であり、測光部27の光源から出射された分析光に含まれる光の80%以上を透過する透明素材、たとえば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等の合成樹脂が使用される。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating the configuration of the automatic analyzer according to the first embodiment. As shown in FIG. 1, the automatic analyzer 1 according to the first embodiment dispenses a sample and a reagent to be analyzed into a reaction container 20 and optically reacts the reaction generated in the dispensed reaction container 20. A measurement mechanism 2 for measuring and a control mechanism 3 for controlling the entire automatic analyzer 1 including the measurement mechanism 2 and analyzing the measurement result in the measurement mechanism 2 are provided. The automatic analyzer 1 automatically performs biochemical analysis of a plurality of specimens by the cooperation of these two mechanisms. The reaction container 20 is a very small container having a capacity of several μL to several mL, and is a transparent material that transmits at least 80% of the light contained in the analysis light emitted from the light source of the photometry unit 27, such as heat-resistant glass. Synthetic resins such as glass, cyclic olefin and polystyrene are used.

まず、測定機構2について説明する。測定機構2は、大別して検体移送部21、内径側検体分注機構22a、外径側検体分注機構22b、反応テーブル23、内径側第1試薬分注機構24a、外径側第1試薬分注機構24b、内径側第2試薬分注機構24c、外径側第2試薬分注機構24d、第1試薬保冷庫25、第2試薬保冷庫26、測光部27、洗浄部28および攪拌部29を備える。   First, the measurement mechanism 2 will be described. The measurement mechanism 2 is broadly divided into a sample transfer section 21, an inner diameter side sample dispensing mechanism 22a, an outer diameter side sample dispensing mechanism 22b, a reaction table 23, an inner diameter side first reagent dispensing mechanism 24a, and an outer diameter side first reagent distribution. Injection mechanism 24b, inner-diameter side second reagent dispensing mechanism 24c, outer-diameter side second reagent dispensing mechanism 24d, first reagent cold box 25, second reagent cold box 26, photometry unit 27, washing unit 28, and stirring unit 29 Is provided.

検体移送部21は、血液等の液体検体を収容した複数の検体容器21aを保持し、図中の矢印方向に順次移送する複数の検体ラック21bを備える。検体移送部21上の所定位置に移送された検体容器21a内の検体は、内径側検体分注機構22aまたは外径側検体分注機構22bによって、反応テーブル23上に配列して搬送される反応容器20に分注される。   The sample transfer unit 21 includes a plurality of sample racks 21b that hold a plurality of sample containers 21a containing liquid samples such as blood and sequentially transfer them in the direction of the arrows in the figure. The sample in the sample container 21a transferred to the predetermined position on the sample transfer unit 21 is arranged and transported on the reaction table 23 by the inner diameter side sample dispensing mechanism 22a or the outer diameter side sample dispensing mechanism 22b. Dispensed into container 20.

内径側検体分注機構22aおよび外径側検知分注機構22bは、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアームを備える。このアームの先端部には、検体の吸引および吐出を行なう検体プローブが取り付けられている。内径側検体分注機構22aおよび外径側検体分注機構22bは、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備える。内径側検体分注機構22aおよび外径側検体分注機構22bは、上述した検体移送部21上の所定の検体吸引位置に移送された検体容器21aの中から、検体プローブによって検体を吸引し、アームを図中時計回りに旋回させ、反応テーブル23上の所定の検体吐出位置に搬送された反応容器20に検体を吐出して分注を行なう。   The inner diameter side sample dispensing mechanism 22a and the outer diameter side detection dispensing mechanism 22b include an arm that freely moves up and down in the vertical direction and rotates around the vertical line passing through its base end as a central axis. A sample probe for aspirating and discharging the sample is attached to the tip of the arm. The inner diameter side sample dispensing mechanism 22a and the outer diameter side sample dispensing mechanism 22b include an intake / exhaust mechanism using an unillustrated intake / exhaust syringe or piezoelectric element. The inner-diameter side sample dispensing mechanism 22a and the outer-diameter side sample dispensing mechanism 22b aspirate the sample with the sample probe from the sample container 21a transferred to the predetermined sample aspirating position on the sample transfer unit 21 described above, The arm is turned clockwise in the figure, and the sample is discharged into the reaction container 20 transported to a predetermined sample discharge position on the reaction table 23 to perform dispensing.

反応テーブル23は、反応容器20への検体や試薬の分注、反応容器20の攪拌、測光、洗浄を行なうために反応容器20を所定の位置まで回転移送する回転部材を有する。この回転部材は、駆動制御部37の制御のもと、図示しない駆動機構が駆動することによって、反応テーブル23の中心を通る鉛直線を回転軸として回動自在である。反応テーブル23の上方と下方には、図示しない開閉自在な蓋と恒温槽がそれぞれ設けられている。また、回転部材は、内径側反応ライン231a,外径側反応ライン231bを有する。   The reaction table 23 has a rotating member that rotates and transports the reaction container 20 to a predetermined position in order to dispense a sample or reagent into the reaction container 20, to stir, measure, and wash the reaction container 20. This rotating member is rotatable about a vertical line passing through the center of the reaction table 23 as a rotation axis when driven by a driving mechanism (not shown) under the control of the drive control unit 37. An openable / closable lid and a thermostat (not shown) are provided above and below the reaction table 23, respectively. The rotating member has an inner diameter side reaction line 231a and an outer diameter side reaction line 231b.

内径側第1試薬分注機構24a、外径側第1試薬分注機構24b、内径側第2試薬分注機構24cおよび外径側第2試薬分注機構24dは、内径側検体分注機構22aおよび外径側検体分注機構22bと同様に、試薬の吸引および吐出を行なう試薬プローブが先端部に取り付けられたアームを備える。アームは、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なう。内径側第1試薬分注機構24a、外径側第1試薬分注機構24b、内径側第2試薬分注機構24cおよび外径側第2試薬分注機構24dは、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備える。内径側第1試薬分注機構24a、外径側第1試薬分注機構24b、内径側第2試薬分注機構24cおよび外径側第2試薬分注機構24dは、第1試薬保冷庫25,第2試薬保冷庫26上の所定の試薬吸引位置に移動された試薬容器25a,26a内の試薬をプローブによって吸引し、アームを図中時計回りまたは反時計回りに旋回させ、反応テーブル23上の所定の試薬吐出位置に搬送された反応容器20に試薬を吐出して分注する。   The inner diameter side first reagent dispensing mechanism 24a, the outer diameter side first reagent dispensing mechanism 24b, the inner diameter side second reagent dispensing mechanism 24c, and the outer diameter side second reagent dispensing mechanism 24d are the inner diameter side sample dispensing mechanism 22a. Similarly to the outer diameter side sample dispensing mechanism 22b, a reagent probe for aspirating and discharging the reagent is provided with an arm attached to the tip. The arm freely moves up and down in the vertical direction and rotates around a vertical line passing through its base end as a central axis. The inner diameter side first reagent dispensing mechanism 24a, the outer diameter side first reagent dispensing mechanism 24b, the inner diameter side second reagent dispensing mechanism 24c, and the outer diameter side second reagent dispensing mechanism 24d are an intake / exhaust syringe or a piezoelectric element (not shown). Equipped with a suction and discharge mechanism using The inner diameter side first reagent dispensing mechanism 24a, the outer diameter side first reagent dispensing mechanism 24b, the inner diameter side second reagent dispensing mechanism 24c, and the outer diameter side second reagent dispensing mechanism 24d include a first reagent cold box 25, The reagent in the reagent containers 25a, 26a moved to the predetermined reagent suction position on the second reagent cool box 26 is sucked by the probe, and the arm is turned clockwise or counterclockwise in the figure to The reagent is discharged and dispensed into the reaction container 20 transported to a predetermined reagent discharge position.

試薬庫25,26は、反応容器20内に分注される試薬が収容された試薬容器25a,26aを複数収納できる。試薬庫25,26には、複数の収納室が等間隔で配置されており、各収納室には試薬容器25a,26aが着脱自在に収納される。試薬庫25,26は、制御部31の制御のもと、図示しない駆動機構が駆動することによって、試薬庫25,26の中心を通る鉛直線を回転軸として時計回りまたは反時計回りに回動自在であり、所望の試薬容器25a,26aを試薬分注機構による試薬吸引位置まで移送する。試薬庫25,26の上方には、開閉自在な蓋(図示せず)が設けられている。また、試薬庫25,26の下方には、保冷庫が設けられている。このため、試薬庫25,26内に試薬容器25a,26aが収納され、蓋が閉じられたときに、試薬容器25a,26a内に収容された試薬を冷却し、試薬容器25a,26a内に収容された試薬の蒸発や変性を抑制することができる。   The reagent containers 25 and 26 can store a plurality of reagent containers 25a and 26a in which reagents to be dispensed in the reaction container 20 are stored. A plurality of storage chambers are arranged at equal intervals in the reagent storages 25 and 26, and reagent containers 25a and 26a are detachably stored in the storage chambers. The reagent storages 25 and 26 are rotated clockwise or counterclockwise around a vertical line passing through the centers of the reagent storages 25 and 26 as a driving mechanism (not shown) is driven under the control of the control unit 31. The desired reagent containers 25a and 26a are transferred to the reagent aspirating position by the reagent dispensing mechanism. An openable / closable lid (not shown) is provided above the reagent containers 25 and 26. A cold storage is provided below the reagent containers 25 and 26. Therefore, when the reagent containers 25a and 26a are accommodated in the reagent containers 25 and 26 and the lid is closed, the reagent accommodated in the reagent containers 25a and 26a is cooled and accommodated in the reagent containers 25a and 26a. Evaporation and denaturation of the reagent can be suppressed.

測光部27は、たとえば、所定の測光位置に搬送された反応容器20に光源から分析光(340〜800nm)を照射し、反応容器20内の液体を透過した光を分光し、PDA等の受光素子による各波長光の強度測定を行なうことによって、分析対象である検体と試薬との反応液に特有の波長の吸光度を測定する。また、測光部27は、各反応ラインに対応して内径側照射部271と、外径側照射部272とを有し、内径側照射部271は、内径側反応ライン231aに収容されている反応容器20に向けて光を出射し、外径側照射部272は、外径側反応ライン231bに収容さている反応容器20に向けて光を出射する。各光源から出射された光は、反応容器20を通過して光路作成部400に入射する。なお、測光部27は、測定した各吸光度を制御部31に出力する。   For example, the photometric unit 27 irradiates the reaction vessel 20 transported to a predetermined photometric position with analysis light (340 to 800 nm) from a light source, splits the light transmitted through the liquid in the reaction vessel 20, and receives light from a PDA or the like. By measuring the intensity of each wavelength light by the element, the absorbance at a wavelength peculiar to the reaction solution of the sample to be analyzed and the reagent is measured. The photometry unit 27 includes an inner diameter side irradiation unit 271 and an outer diameter side irradiation unit 272 corresponding to each reaction line, and the inner diameter side irradiation unit 271 is a reaction accommodated in the inner diameter side reaction line 231a. Light is emitted toward the container 20, and the outer diameter side irradiation unit 272 emits light toward the reaction container 20 accommodated in the outer diameter side reaction line 231b. The light emitted from each light source passes through the reaction vessel 20 and enters the optical path creation unit 400. The photometry unit 27 outputs each measured absorbance to the control unit 31.

洗浄部28は、洗浄プローブによって、測光部27による測定が終了した反応容器20内の混合液を吸引して排出するとともに、洗剤や洗浄水等の洗浄液を注入および吸引することで分析処理が終了した反応容器20を洗浄する。攪拌部29は、反応容器20に分注された検体と試薬との攪拌を行ない、反応を促進させる。   The cleaning unit 28 sucks and discharges the liquid mixture in the reaction container 20 that has been measured by the photometric unit 27 with the cleaning probe, and completes the analysis process by injecting and sucking cleaning liquid such as detergent and cleaning water. Wash the reaction vessel 20. The stirring unit 29 stirs the sample dispensed into the reaction container 20 and the reagent to promote the reaction.

つぎに、制御機構3について説明する。制御機構3は、制御部31、入力部32、分析部33、記憶部34、出力部35および送受信部36を備える。測定機構2および制御機構3が備えるこれらの各部は、制御部31に電気的に接続されている。   Next, the control mechanism 3 will be described. The control mechanism 3 includes a control unit 31, an input unit 32, an analysis unit 33, a storage unit 34, an output unit 35, and a transmission / reception unit 36. These units included in the measurement mechanism 2 and the control mechanism 3 are electrically connected to the control unit 31.

制御部31は、CPU等を用いて構成され、自動分析装置1の各部の処理および動作を制御する。制御部31は、これらの各構成部位に入出力される情報について所定の入出力制御を行ない、かつ、この情報に対して所定の情報処理を行なう。また、制御部31は、駆動制御部37を有する。駆動制御部37は、反応テーブル23にかかる回転駆動の制御を行なう。   The control unit 31 is configured using a CPU or the like, and controls processing and operation of each unit of the automatic analyzer 1. The control unit 31 performs predetermined input / output control on information input / output to / from each of these components, and performs predetermined information processing on this information. Further, the control unit 31 includes a drive control unit 37. The drive control unit 37 controls the rotational drive applied to the reaction table 23.

入力部32は、キーボード、マウス等を用いて構成され、検体の分析に必要な諸情報や分析動作の指示情報等を外部から取得する。分析部33は、測光部27によって測定された吸光度に基づいて検体の成分分析等を行なう。   The input unit 32 is configured using a keyboard, a mouse, and the like, and acquires various information necessary for analyzing the sample, instruction information for analysis operation, and the like from the outside. The analysis unit 33 performs component analysis of the specimen based on the absorbance measured by the photometry unit 27.

記憶部34は、情報を磁気的に記憶するハードディスクと、自動分析装置1が処理を実行する際にその処理にかかわる各種プログラムをハードディスクからロードして電気的に記憶するメモリとを用いて構成され、検体の分析結果等を含む諸情報を記憶する。記憶部34は、CD−ROM、DVD−ROM、PCカード等の記憶媒体に記憶された情報を読み取ることができる補助記憶装置を備えてもよい。   The storage unit 34 is configured by using a hard disk that magnetically stores information and a memory that loads various programs related to the process from the hard disk and electrically stores them when the automatic analyzer 1 executes the process. Various information including the analysis result of the specimen is stored. The storage unit 34 may include an auxiliary storage device that can read information stored in a storage medium such as a CD-ROM, a DVD-ROM, or a PC card.

出力部35は、ディスプレイ、プリンタ、スピーカー等を用いて構成され、検体の分析結果を含む諸情報を出力する。また、出力部35は、図示しない通信ネットワークを介し、外部装置に検体の分析結果を含む諸情報を出力してもよい。送受信部36は、図示しない通信ネットワークを介して所定の形式にしたがった情報の送受信を行なうインターフェースとしての機能を有する。   The output unit 35 is configured using a display, a printer, a speaker, and the like, and outputs various information including the analysis result of the sample. The output unit 35 may output various information including the analysis result of the sample to an external device via a communication network (not shown). The transmission / reception unit 36 has a function as an interface for transmitting / receiving information according to a predetermined format via a communication network (not shown).

以上のように構成された自動分析装置1では、列をなして順次搬送される複数の反応容器20に対して、内径側検体分注機構22aおよび外径側検知分注機構22bが検体容器21a中の検体を分注し、内径側第1試薬分注機構24a、外径側第1試薬分注機構24b、内径側第2試薬分注機構24cおよび外径側第2試薬分注機構24dが試薬容器25a,26a中の試薬を分注した後、測光部27が検体と試薬とを反応させた反応液の分光強度測定を行ない、この測定結果を分析部33が分析することで、検体の成分分析等が自動的に行なわれる。また、洗浄部28が測光部27による測定が終了した後に搬送される反応容器20を搬送させながら洗浄することで、一連の分析動作が連続して繰り返し行なわれる。   In the automatic analyzer 1 configured as described above, the inner-diameter side sample dispensing mechanism 22a and the outer-diameter side detecting / dispensing mechanism 22b are provided for the plurality of reaction containers 20 sequentially conveyed in a row. The inner diameter side first reagent dispensing mechanism 24a, the outer diameter side first reagent dispensing mechanism 24b, the inner diameter side second reagent dispensing mechanism 24c, and the outer diameter side second reagent dispensing mechanism 24d. After dispensing the reagents in the reagent containers 25a and 26a, the photometric unit 27 measures the spectral intensity of the reaction solution obtained by reacting the sample and the reagent, and the analysis unit 33 analyzes the measurement result, Component analysis and the like are automatically performed. In addition, the cleaning unit 28 performs cleaning while transporting the reaction container 20 transported after the measurement by the photometry unit 27 is completed, so that a series of analysis operations are continuously repeated.

ここで、本発明の実施の形態1にかかる反応テーブル23の反応容器20の配置の一例について、図2を参照して説明する。図2は、本発明の実施の形態1にかかる反応テーブル23の反応容器配置例を示す模式図である。図2に示す反応テーブル23は、図1の測光部27付近の構成を示している。反応テーブル23は、反応容器20を収容する回転部材を備え、回転部材は、反応容器20を収容する収容溝である内径側反応ライン231aと外径側反応ライン231bとを有し、各反応ラインには、各反応容器20の検出位置に対応した内径側測光窓231c,外径側測光窓231dが設けられている。また、反応テーブル23は、回転部材を支持し、回転部材に収容される反応容器20の温度管理を行なう筐体232を有し、筐体232は、回転部材とベアリング等を介して接続し、回転部材による回転動力が伝達しないようになっている。温度管理は、図示しない温度制御機構によって所定温度に調節される。筐体232は、内径側照射部271,外径側照射部272に対応して内径側照射孔232a,外径側照射孔232bが設けられ、光源L1,L2から出射された光がレンズ271a,272aによって集光され、内径側測光窓231c,外径側測光窓231dを通過して反応容器20に光を照射する。   Here, an example of arrangement | positioning of the reaction container 20 of the reaction table 23 concerning Embodiment 1 of this invention is demonstrated with reference to FIG. FIG. 2 is a schematic diagram showing an example of the arrangement of reaction vessels in the reaction table 23 according to the first embodiment of the present invention. The reaction table 23 shown in FIG. 2 shows a configuration in the vicinity of the photometry unit 27 in FIG. The reaction table 23 includes a rotating member that accommodates the reaction vessel 20, and the rotating member includes an inner diameter side reaction line 231 a and an outer diameter side reaction line 231 b that are accommodation grooves that accommodate the reaction vessel 20. Are provided with an inner diameter side photometric window 231c and an outer diameter side photometric window 231d corresponding to the detection position of each reaction vessel 20. Further, the reaction table 23 includes a casing 232 that supports the rotating member and performs temperature management of the reaction container 20 accommodated in the rotating member. The casing 232 is connected to the rotating member via a bearing or the like. The rotational power by the rotating member is not transmitted. The temperature management is adjusted to a predetermined temperature by a temperature control mechanism (not shown). The housing 232 is provided with an inner diameter side irradiation hole 232a and an outer diameter side irradiation hole 232b corresponding to the inner diameter side irradiation section 271 and the outer diameter side irradiation section 272, and the light emitted from the light sources L1 and L2 is converted into the lens 271a, The light is condensed by 272a, passes through the inner diameter side photometry window 231c and the outer diameter side photometry window 231d, and irradiates the reaction container 20 with light.

なお、筐体232に設けられ、内径側反応ライン231aと外径側反応ライン231bとの間であって、内径側照射部271と外径側照射部272とを結ぶ線上に、光路作成部400が設けられ、光路作成部400の下部に位置する受光部に入射させる光路を選択する。各反応容器20は、内径側反応ライン231aと外径側反応ライン232bとに収容される反応容器20の検出位置が重ならないように配置される。図2に示す配置例では、反応ラインが回転することで光路作成部400に配置される反応容器20は、内径側反応ライン231aの反応容器20と外径側反応ライン231bの反応容器20とが交互になるように各反応ラインに配列される。反応テーブル23の径に対して、内径側反応ライン231aに設けられる内径側測光窓231cと外径側反応ライン231bに設けられる外径側測光窓231dとが、反応テーブル23の同一半径上に設置されないよう設けられる。同一半径上に配置されなければ、各反応ラインの反応容器20は所定の間隔で配置されてもよく、間隔が不均等であってもよい。   It is to be noted that the optical path creation unit 400 is provided on the housing 232 and between the inner diameter side reaction line 231a and the outer diameter side reaction line 231b and on a line connecting the inner diameter side irradiation unit 271 and the outer diameter side irradiation unit 272. Is selected, and an optical path to be incident on the light receiving unit located below the optical path creating unit 400 is selected. Each reaction container 20 is arranged so that the detection positions of the reaction containers 20 accommodated in the inner diameter side reaction line 231a and the outer diameter side reaction line 232b do not overlap. In the arrangement example shown in FIG. 2, the reaction vessel 20 arranged in the optical path creation unit 400 by rotating the reaction line includes the reaction vessel 20 of the inner diameter side reaction line 231a and the reaction vessel 20 of the outer diameter side reaction line 231b. The reaction lines are arranged alternately. The inner diameter side photometric window 231c provided in the inner diameter side reaction line 231a and the outer diameter side photometric window 231d provided in the outer diameter side reaction line 231b are installed on the same radius of the reaction table 23 with respect to the diameter of the reaction table 23. It is provided not to be done. If not arranged on the same radius, the reaction vessels 20 of each reaction line may be arranged at a predetermined interval, or the intervals may be uneven.

つぎに、測光処理にかかる光路作成部400の動作について、図3,4を参照して説明する。図3,4は、本発明の実施の形態1にかかる測光部27のX−X線断面を示す断面図である。まず、図3に示す断面図は、外径側反応ライン231bを測光する場合を示しており、筐体232に設けられ、外径側照射部272からの光を反応容器20の検出位置に照射させる外径側照射孔232bと、外径側測光窓231dと、筐体232に設けられ、反応容器20に収容された反応液Aを通過した光を光路作成部400に入射させる外径側入射孔232dとによって、外径側照射部272と光路作成部400とを結ぶ一つの空間を形成している。   Next, the operation of the optical path creation unit 400 for the photometric process will be described with reference to FIGS. 3 and 4 are cross-sectional views showing a cross section taken along the line XX of the photometry unit 27 according to the first embodiment of the present invention. First, the cross-sectional view shown in FIG. 3 shows a case where photometry is performed on the outer diameter side reaction line 231b, and the detection position of the reaction vessel 20 is irradiated with light from the outer diameter side irradiation unit 272 provided in the housing 232. The outer diameter side incident hole 232b, the outer diameter side photometric window 231d, and the outer diameter side incident light that is provided in the housing 232 and enters the optical path creating unit 400 with the light that has passed through the reaction solution A accommodated in the reaction vessel 20 A single space connecting the outer diameter side irradiation unit 272 and the optical path creation unit 400 is formed by the hole 232d.

筐体232は、内径側反応ライン231aと外径側反応ライン231bとの間に光路作成部400を有する。光路作成部400は、モータ405に連結され、モータ405の回転駆動に連動して回転する筒状部材401を有し、筒状部材401は、上部に内径側入射孔232cまたは外径側入射孔232dから入射する光を鉛直下方に反射させる反射部材402と、反射部材402によって反射された光を集光して受光部273に入射させるレンズ403とを備える。また、内径側照射部271の光源L1から出射された光は、レンズ271aによって集光されて内径側照射孔232aを通過するが、内径側反応ライン231aの側壁によって光が遮断され、受光部273に到達しない。外径側反応ライン231bの反応容器20の測光が終了した後、内径側反応ライン23aの反応容器20の測光を行なう場合は、駆動制御部37は、回転部材231を回転させて反応容器20を回転移動させるとともに、モータ405を駆動して筒状部材401を、反射部材402が内径側反応ライン231aの反応容器20を通過した光を反射する位置まで回転させる。   The housing 232 includes an optical path creation unit 400 between the inner diameter side reaction line 231a and the outer diameter side reaction line 231b. The optical path creation unit 400 includes a cylindrical member 401 that is connected to the motor 405 and rotates in conjunction with the rotational drive of the motor 405. The cylindrical member 401 has an inner diameter side incident hole 232c or an outer diameter side incident hole at the top. A reflection member 402 that reflects light incident from 232d vertically downward and a lens 403 that collects the light reflected by the reflection member 402 and causes the light to enter the light receiving unit 273 are provided. The light emitted from the light source L1 of the inner diameter side irradiation unit 271 is collected by the lens 271a and passes through the inner diameter side irradiation hole 232a, but the light is blocked by the side wall of the inner diameter side reaction line 231a, and the light receiving unit 273. Not reach. When the photometry of the reaction vessel 20 of the inner diameter side reaction line 23a is performed after the photometry of the reaction vessel 20 of the outer diameter side reaction line 231b is completed, the drive control unit 37 rotates the rotating member 231 to move the reaction vessel 20 While rotating, the motor 405 is driven to rotate the tubular member 401 to a position where the reflecting member 402 reflects the light that has passed through the reaction vessel 20 of the inner diameter side reaction line 231a.

図4に示す断面図は、内径側反応ライン231aを測光する場合を示しており、筐体232に設けられた内径側照射部271からの光を反応容器20の検出位置に照射させる内径側照射孔232aと、内径側測光窓231cと、筐体232に設けられ、反応容器20に収容された反応液Aを通過した光を光路作成部400に入射させる入射孔232cとが、内径側照射部271と光路作成部400とを結ぶ一つの空間を形成している。図3と同様に、内径側照射部271の光源L1から出射された光をレンズ271aが集光し、内径側照射孔232aに入射する。その後、内径側測光窓231cを介して反応液Aを通過した光は、内径側入射孔232cを通過し、反射部材402によって受光部273に入射する。   The cross-sectional view shown in FIG. 4 shows a case where photometry is performed on the inner diameter side reaction line 231a, and inner diameter side irradiation for irradiating the detection position of the reaction vessel 20 with light from the inner diameter side irradiation section 271 provided in the housing 232 is performed. A hole 232a, an inner diameter side photometric window 231c, and an incident hole 232c that is provided in the housing 232 and allows the light that has passed through the reaction solution A contained in the reaction vessel 20 to enter the optical path creation unit 400, are provided on the inner diameter side irradiation unit. One space connecting 271 and the optical path creation unit 400 is formed. Similarly to FIG. 3, the lens 271a collects the light emitted from the light source L1 of the inner diameter side irradiation unit 271 and enters the inner diameter side irradiation hole 232a. Thereafter, the light that has passed through the reaction solution A through the inner diameter side photometric window 231 c passes through the inner diameter side incident hole 232 c and is incident on the light receiving unit 273 by the reflecting member 402.

上述した実施の形態1は、各反応ラインに設けられた測光窓と、照射孔および入射孔が形成した空間を光が通過し、駆動制御部の制御によって、回転部材と連動して回転する筒状部材の反射部材が、受光部に入射させる光路を選択することで、2つの反応ラインを一つの受光部によって測光を行なうことが可能となる。また、受光部を1つにすることによって、装置にかかるコストを削減するとともに、装置の設置容積を縮小させることができる。   In the first embodiment described above, the light passes through the space formed by the photometric window and the irradiation hole and the incident hole provided in each reaction line, and the cylinder rotates in conjunction with the rotating member under the control of the drive control unit. When the reflecting member of the shaped member selects an optical path to be incident on the light receiving portion, it is possible to perform photometry of the two reaction lines with one light receiving portion. Further, by using one light receiving unit, it is possible to reduce the cost of the apparatus and reduce the installation volume of the apparatus.

なお、図2に示す反応容器20の配置は、一つの反応ライン中に複数の列で配列させてもよい。図5は、図2に示す反応テーブル23の反応容器配置例の変形例を示す模式図である。図5に示す外径側反応ライン231bのように、反応容器20を2列に配列し、反応ラインの周方向に対する反応容器間距離を縮めてもよい。反応容器間距離を短縮することによって、分析処理能力を向上させることが可能となる。ここで、各測光窓は、反応テーブル23の径方向に対して同一径上に配置されないように設置する。   The arrangement of the reaction vessels 20 shown in FIG. 2 may be arranged in a plurality of rows in one reaction line. FIG. 5 is a schematic diagram showing a modification of the reaction container arrangement example of the reaction table 23 shown in FIG. Like the outer diameter side reaction line 231b shown in FIG. 5, the reaction vessels 20 may be arranged in two rows, and the distance between the reaction vessels in the circumferential direction of the reaction line may be reduced. By shortening the distance between the reaction vessels, it is possible to improve the analysis processing capacity. Here, the photometric windows are installed so as not to be arranged on the same diameter with respect to the radial direction of the reaction table 23.

また、筒状部材401は、円筒状であっても角筒状であってもよい。特に、回転による空間の形成を抑制するため、円筒状であることが好ましい。   Further, the tubular member 401 may be cylindrical or rectangular. In particular, in order to suppress the formation of a space due to rotation, a cylindrical shape is preferable.

(実施の形態2)
つぎに、本発明の実施の形態2について図6〜8を参照して説明する。図6,7は、本発明の実施の形態2にかかる測光部27を示す断面図である。実施の形態2にかかる光路作成部410は、反応容器20の保持位置に差異を設けた内径側反応ライン233aと外径側反応ライン233bとの間に、筒状部材411を設け、筒状部材411は、筐体234に連通し、外径側反応ライン233bの反応液Aの検出位置に対応した位置に外径側入射孔234dと、反射部材412とが配置される。また、筒状部材411は、内径側反応ライン233aの反応液Aの検出位置に対応した位置に内径側入射孔234cと、内径側の入射光を反射させ、支持部材234eを軸として回転可能な反射板415と、受光部に入射させる光を集光するレンズ413とが配置される。反射板415は、側面部に形成された図8に示す歯合部415cが、外径側反応ライン233bの底部に設けられ、歯合部415cと歯合可能なガイド部233eと歯合し、回転部材233に連動して回転する。また、反射板415は、光を透過させる透過孔415aを有する。なお、筐体234は、内径側測光窓233c、外径側測光窓233dに対応する内径側出射孔234a、外径側出射孔234bを有する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIGS. 6 and 7 are cross-sectional views showing the photometric unit 27 according to the second embodiment of the present invention. The optical path creation unit 410 according to the second embodiment is provided with a cylindrical member 411 between an inner diameter side reaction line 233a and an outer diameter side reaction line 233b that are different in the holding position of the reaction vessel 20, and the cylindrical member 411 communicates with the housing 234, and an outer diameter side incident hole 234d and a reflecting member 412 are disposed at a position corresponding to the detection position of the reaction liquid A in the outer diameter side reaction line 233b. The cylindrical member 411 reflects the inner diameter side incident hole 234c and the inner diameter side incident light at a position corresponding to the detection position of the reaction liquid A in the inner diameter side reaction line 233a, and is rotatable about the support member 234e. A reflecting plate 415 and a lens 413 that condenses the light incident on the light receiving unit are disposed. The reflecting plate 415 has a meshing portion 415c formed on the side surface portion shown in FIG. 8 provided at the bottom of the outer diameter side reaction line 233b and meshes with a guide portion 233e that can mesh with the meshing portion 415c. It rotates in conjunction with the rotating member 233. The reflection plate 415 has a transmission hole 415a that transmits light. Note that the housing 234 includes an inner diameter side emission hole 234a and an outer diameter side emission hole 234b corresponding to the inner diameter side photometry window 233c and the outer diameter side photometry window 233d.

図6は、外径側反応ライン233bの反応容器20の測光を行なう場合を示す断面図である。外径側反応ライン231bの反応容器20の測光を行なう場合、反射板415の透過孔415aが、筒状部材411内部に位置し、反射部材412によって反射された光が透過するように配置される。透過孔415aによって、外径側照射部275から照射された光は、外径側反応ライン233bの反応容器20内に収容される反応液Aを通過し、反射部材412によって、受光部273側に反射された後、透過孔415aを透過させることで受光部273に受光させることができる。内径側照射部274の光源L3から出射され、レンズ274aによって集光された光は、内径側反応ライン233aの側壁によって反応容器20を通過せず、受光部273には到達しない。   FIG. 6 is a cross-sectional view showing a case where photometry of the reaction vessel 20 in the outer diameter side reaction line 233b is performed. When photometry of the reaction vessel 20 of the outer diameter side reaction line 231b is performed, the transmission hole 415a of the reflection plate 415 is located inside the cylindrical member 411 and is arranged so that the light reflected by the reflection member 412 is transmitted. . The light emitted from the outer diameter side irradiation unit 275 by the transmission hole 415a passes through the reaction solution A accommodated in the reaction vessel 20 of the outer diameter side reaction line 233b, and is reflected to the light receiving unit 273 side by the reflecting member 412. After being reflected, the light receiving portion 273 can receive light by transmitting through the transmission hole 415a. The light emitted from the light source L3 of the inner diameter side irradiation unit 274 and collected by the lens 274a does not pass through the reaction vessel 20 by the side wall of the inner diameter side reaction line 233a and does not reach the light receiving unit 273.

また、図7は、内径側反応ライン233aの反応容器20の測光を行なう場合を示す断面図である。図6に示す外径側反応ライン233bの反応容器20の測光後、内径側反応ライン233aの反応容器20の測光を行なう場合、回転部材233に連動して回転した反射板415が、筒状部材411内部に位置し、反応液Aを通過した光を受光部273側に反射させることによって内径側反応ライン233aの反応容器20の測光を行なうことができる。このとき、外径側照射部275の光源L4から出射され、レンズ275aによって集光された光は、外径側反応ライン233bの側壁によって遮断され、受光部273に到達しない。   FIG. 7 is a cross-sectional view showing a case where photometry of the reaction vessel 20 in the inner diameter side reaction line 233a is performed. After the photometry of the reaction vessel 20 of the outer diameter side reaction line 233b shown in FIG. 6, when the photometry of the reaction vessel 20 of the inner diameter side reaction line 233a is performed, the reflecting plate 415 rotated in conjunction with the rotating member 233 is a cylindrical member. It is possible to perform photometry of the reaction vessel 20 of the inner diameter side reaction line 233a by reflecting the light passing through the reaction solution A and reflected to the light receiving unit 273 side. At this time, the light emitted from the light source L4 of the outer diameter side irradiation unit 275 and collected by the lens 275a is blocked by the side wall of the outer diameter side reaction line 233b and does not reach the light receiving unit 273.

ここで、図6,7に示す反射板415について、図8を参照して説明する。図8は、図6,7に示す反射板415の一例を模式的に示す模式図である。図8に示す反射板415は、円筒形であって、筒状部材411を通過する光径に対応する面積で形成される透過孔415aおよび反射部415bと、ガイド部233eと歯合する歯合部415cとを有する。また、反射板415は、中央にベアリング415dを介して支持部材234eと連結する連結孔を有し、反射板415の回転が筐体234への伝達を防ぐ。なお、回転部材233に連動して反射板415が回転する際に、内径側反応ライン233a、外径側反応ライン233bに対応して、筒状部材411内に透過孔415a、反射部415bが配置されるように、反射板415の径または透過部415aおよび反射部415bの面積または間隔が調整される。   Here, the reflecting plate 415 shown in FIGS. 6 and 7 will be described with reference to FIG. FIG. 8 is a schematic diagram schematically showing an example of the reflector 415 shown in FIGS. The reflecting plate 415 shown in FIG. 8 has a cylindrical shape, and meshes with the transmission hole 415a and the reflecting portion 415b formed with an area corresponding to the diameter of light passing through the tubular member 411, and the guide portion 233e. Part 415c. Further, the reflection plate 415 has a connection hole connected to the support member 234e via the bearing 415d in the center, and the rotation of the reflection plate 415 prevents transmission to the housing 234. In addition, when the reflecting plate 415 rotates in conjunction with the rotating member 233, the transmission hole 415a and the reflecting portion 415b are disposed in the cylindrical member 411 corresponding to the inner diameter side reaction line 233a and the outer diameter side reaction line 233b. As described above, the diameter of the reflecting plate 415 or the area or interval of the transmitting portion 415a and the reflecting portion 415b is adjusted.

また、実施の形態2にかかる測光部27の変形例について、図9,10を参照して説明する。図9,10は、図6,7に示す測光部27の変形例を示す断面図である。図9,10に示す光路作成部420は、筒状部材421内部の内径側反応ライン233aの反応容器20の検出位置に対応してハーフミラー425が設けられている。ハーフミラー425は、外径側反応ライン233bの反応容器20に収容された反応液Aを通過し、反射部材422によって受光部273側に反射された筒状部材421の軸方向の光を透過させ、内側反応ライン233aの反応容器20を通過した筒状部材421の軸に対して鉛直方向の光を受光部273側に反射する。ハーフミラー425によって、内径側、外径側から入射される光に対して、レンズ423で集光し、受光部273に入射させることが可能となり、順次回転して得られる各反応容器20の測光を行なうことができる。   A modification of the photometry unit 27 according to the second embodiment will be described with reference to FIGS. 9 and 10 are cross-sectional views showing modifications of the photometry unit 27 shown in FIGS. 9 and 10 is provided with a half mirror 425 corresponding to the detection position of the reaction vessel 20 in the inner diameter side reaction line 233a inside the cylindrical member 421. The half mirror 425 transmits the axial light of the cylindrical member 421 that passes through the reaction solution A stored in the reaction vessel 20 of the outer diameter side reaction line 233b and is reflected by the reflecting member 422 toward the light receiving unit 273. The light in the vertical direction with respect to the axis of the cylindrical member 421 that has passed through the reaction vessel 20 of the inner reaction line 233a is reflected to the light receiving unit 273 side. With the half mirror 425, the light incident from the inner diameter side and the outer diameter side can be condensed by the lens 423 and incident on the light receiving unit 273, and the photometry of each reaction vessel 20 obtained by sequential rotation is obtained. Can be performed.

上述した実施の形態2にかかる光路作成部によって、光路作成部に駆動機構を設けずに2つの反応ラインの測光を一つの受光部によって行なうことが可能となる。   The optical path creation unit according to the second embodiment described above makes it possible to perform photometry of two reaction lines with a single light receiving unit without providing a drive mechanism in the optical path creation unit.

(実施の形態3)
つぎに、本発明の実施の形態3について、図11〜13を参照して説明する。図11は、本発明の実施の形態3にかかる自動分析装置5を示す模式図である。上述した実施の形態1,2では、反応テーブル23の内径側反応ライン231a,233aと外径側反応ライン231b,233bとの間に受光部を有したが、この実施の形態3では、内径側反応ライン235aと外径側反応ライン235bとの間に光源を有する光路作成部430を備え、反応テーブルの内径側および外径側にそれぞれ内径側受光部276、外径側受光部277が設けられる。また、駆動制御部38は、反応テーブル23にかかる回転制御を行なう。その他の構成は、実施の形態1,2と同様であり、同一構成部分には同一符号を付している。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a schematic diagram showing the automatic analyzer 5 according to the third embodiment of the present invention. In the first and second embodiments described above, the light receiving portion is provided between the inner diameter side reaction lines 231a and 233a of the reaction table 23 and the outer diameter side reaction lines 231b and 233b. An optical path creation unit 430 having a light source is provided between the reaction line 235a and the outer diameter side reaction line 235b, and an inner diameter side light receiving portion 276 and an outer diameter side light receiving portion 277 are provided on the inner diameter side and the outer diameter side of the reaction table, respectively. . In addition, the drive control unit 38 performs rotation control on the reaction table 23. Other configurations are the same as those of the first and second embodiments, and the same components are denoted by the same reference numerals.

ここで、測光処理にかかる光路作成部430の動作について、図12,13を参照して説明する。図12,13は、本発明の実施の形態3にかかる測光部27のY−Y線断面を示す断面図である。まず、図12に示す断面図は、外径側反応ライン235bに収容される反応容器20を測光する場合を示しており、筐体236に設けられ、光路作成部430からの光を反応容器20の検出位置に照射させる内径側照射孔236dと、外径側測光窓235dと、筐体236に設けられ、反応容器20に収容された反応液Aを通過した光を外径側受光部277に入射させる外径側入射孔236bとによって、外径側受光部277と光路作成部430とを結ぶ一つの空間を形成している。   Here, the operation of the optical path creation unit 430 for the photometric process will be described with reference to FIGS. 12 and 13 are cross-sectional views showing a YY line cross section of the photometry unit 27 according to the third embodiment of the present invention. First, the cross-sectional view shown in FIG. 12 shows a case where photometry is performed on the reaction container 20 accommodated in the outer diameter side reaction line 235b. The light is supplied from the optical path creation unit 430 to the reaction container 20 provided in the housing 236. The inner diameter side irradiation hole 236d for irradiating the detection position, the outer diameter side photometric window 235d, and the housing 236, the light that has passed through the reaction solution A contained in the reaction vessel 20 is supplied to the outer diameter side light receiving unit 277. A single space connecting the outer diameter side light receiving portion 277 and the optical path creating portion 430 is formed by the outer diameter side incident hole 236b to be incident.

筐体236は、内径側反応ライン235aと外径側反応ライン235bとの間に光路作成部430を有する。光路作成部430は、モータ433に連結され、モータ433の回転駆動に連動して回転する筒状部材431を有し、筒状部材431は、上部に照射部278の光源L5から出射され、レンズ278aによって集光された光を内径側反応ライン235aまたは外径側反応ライン235bに反射させる反射部材432と、反射部材432によって反射され、反応容器20の反応液Aを通過した光を集光して、外径側受光部277に入射させるレンズ236fとを備える。外径側反応ライン235bの反応容器20の測光が終了した後、内径側反応ライン235aの反応容器20の測光を行なう場合、駆動制御部38は、回転部材235を回転させて反応容器20を回転移動させるとともに、モータ433を駆動して筒状部材431を、反射部材432が内径側反応ライン235aの反応容器20に向けて光を反射する位置まで回転させる。   The housing 236 includes an optical path creation unit 430 between the inner diameter side reaction line 235a and the outer diameter side reaction line 235b. The optical path creation unit 430 is connected to the motor 433 and includes a cylindrical member 431 that rotates in conjunction with the rotational drive of the motor 433. The cylindrical member 431 is emitted from the light source L5 of the irradiation unit 278 at the upper portion, and is a lens. The light collected by 278a is reflected to the inner diameter side reaction line 235a or the outer diameter side reaction line 235b, and the light reflected by the reflecting member 432 and passed through the reaction liquid A in the reaction vessel 20 is collected. And a lens 236 f that is incident on the outer diameter side light receiving portion 277. When the photometry of the reaction vessel 20 of the inner diameter side reaction line 235a is performed after the photometry of the reaction vessel 20 of the outer diameter side reaction line 235b is completed, the drive control unit 38 rotates the rotation member 235 to rotate the reaction vessel 20. While moving, the motor 433 is driven to rotate the cylindrical member 431 to a position where the reflecting member 432 reflects light toward the reaction vessel 20 of the inner diameter side reaction line 235a.

図13に示す断面図は、内側径反応ライン235aを測光する場合を示しており、筐体236に設けられ、照射部278からの光を反応容器20の検出位置に照射させる内径側照射孔236cと、内径側測光窓235cと、筐体236に設けられ、反応容器20に収容された反応液Aを通過した光を内径側受光部276に入射させる内径側入射孔236aとが、内径側受光部276と光路作成部430とを結ぶ一つの空間を形成している。図12と同様に、照射部278の光源L5から出射された光をレンズ278aが集光し、光路作成部430に入射する。その後、反射部材432によって内径側反応ライン235a側に反射された光は、内径側測光窓235c、反応液A、内径側入射孔236aを通過してレンズ236eによって集光され、内径側受光部276に入射することで測光を行なう。   The cross-sectional view shown in FIG. 13 shows a case where photometry is performed on the inner diameter reaction line 235a. The inner diameter side irradiation hole 236c is provided in the housing 236 and irradiates the detection position of the reaction vessel 20 with light from the irradiation unit 278. And an inner diameter side photometric window 235c and an inner diameter side incident hole 236a that is provided in the housing 236 and enters the inner diameter side light receiving portion 276 through the reaction solution A accommodated in the reaction vessel 20, are received on the inner diameter side. A single space connecting the part 276 and the optical path creation part 430 is formed. Similarly to FIG. 12, the lens 278 a condenses the light emitted from the light source L <b> 5 of the irradiation unit 278 and enters the optical path creation unit 430. Thereafter, the light reflected by the reflecting member 432 toward the inner diameter side reaction line 235a passes through the inner diameter side photometric window 235c, the reaction solution A, the inner diameter side incident hole 236a, and is collected by the lens 236e. Measures light by entering the lens.

上述した実施の形態3は、各反応ラインに設けられた測光窓と、照射孔および入射孔が形成した空間を光が通過し、駆動制御部の制御によって、回転部材と連動して回転する筒状部材の反射部材が、受光部に入射させる光路を切り替えることで、2つの反応ラインを一つの照射部によって測光を行なうことが可能となる。   In the third embodiment described above, the light passes through the space formed by the photometric window provided in each reaction line, the irradiation hole and the incident hole, and rotates in conjunction with the rotating member under the control of the drive control unit. The reflecting member of the shaped member switches the optical path to be incident on the light receiving unit, so that the two reaction lines can be measured by one irradiation unit.

なお、上述した実施の形態3に示す照射部と受光部との置換は、実施の形態2における光路作成部410,420の構成においても適用できる。特に、図9,10に示す光路作成部420は、内径側反応ライン233aおよび外径側反応ライン233bに収容される反応容器20が反応テーブル23の同一半径上に配置されてもよく、内径側反応ライン232aおよび外径側反応ライン233bの各反応容器20が同時に検出位置に配置された場合でも、ハーフミラー425によって同時に測光を行なうことが可能である。   The replacement of the irradiation unit and the light receiving unit described in the third embodiment can also be applied to the configuration of the optical path creation units 410 and 420 in the second embodiment. In particular, in the optical path creation unit 420 shown in FIGS. 9 and 10, the reaction vessels 20 accommodated in the inner diameter side reaction line 233a and the outer diameter side reaction line 233b may be arranged on the same radius of the reaction table 23. Even when the reaction vessels 20 of the reaction line 232a and the outer diameter side reaction line 233b are simultaneously arranged at the detection position, photometry can be performed simultaneously by the half mirror 425.

また、検体および試薬の分注は、図1,11中の内径側検体分注機構22a、内径側第1試薬分注機構24aおよび内径側第2試薬分注機構24cのみの構成として、各分注機構が外径側の反応容器20に検体または試薬を分注するようにしてもよい。   In addition, the sample and reagent are dispensed by using only the inner diameter side sample dispensing mechanism 22a, the inner diameter side first reagent dispensing mechanism 24a, and the inner diameter side second reagent dispensing mechanism 24c in FIGS. The injection mechanism may dispense the specimen or reagent into the reaction vessel 20 on the outer diameter side.

本発明の実施の形態1にかかる自動分析装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the automatic analyzer concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる反応テーブルの反応容器配置例を示す模式図である。It is a schematic diagram which shows the reaction container arrangement example of the reaction table concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる測光部のX−X線断面を示す断面図である。It is sectional drawing which shows the XX line cross section of the photometry part concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる測光部のX−X線断面を示す断面図である。It is sectional drawing which shows the XX line cross section of the photometry part concerning Embodiment 1 of this invention. 図2に示す反応テーブルの反応容器配置例の変形例を示す模式図である。It is a schematic diagram which shows the modification of the example of reaction container arrangement | positioning of the reaction table shown in FIG. 本発明の実施の形態2にかかる測光部を示す断面図である。It is sectional drawing which shows the photometry part concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる測光部を示す断面図である。It is sectional drawing which shows the photometry part concerning Embodiment 2 of this invention. 図6,7に示す反射板の一例を模式的に示す模式図である。It is a schematic diagram which shows typically an example of the reflecting plate shown to FIG. 図6,7に示す測光部の変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a modification of the photometry unit shown in FIGS. 図6,7に示す測光部の変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a modification of the photometry unit shown in FIGS. 本発明の実施の形態3にかかる自動分析装置を示す模式図である。It is a schematic diagram which shows the automatic analyzer concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる測光部のY−Y線断面を示す断面図である。It is sectional drawing which shows the YY sectional view of the photometry part concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる測光部のY−Y線断面を示す断面図である。It is sectional drawing which shows the YY sectional view of the photometry part concerning Embodiment 3 of this invention.

1,5 自動分析装置
2 測定機構
3 制御機構
20 反応容器
21 検体移送部
22a 内径側検体分注機構
22b 外径側検体分注機構
23 反応テーブル
24a 内径側第1試薬分注機構
24b 外径側第1試薬分注機構
24c 内径側第2試薬分注機構
24d 外径側第2試薬分注機構
25 第1試薬保冷庫
26 第2試薬保冷庫
27 測光部
28 洗浄部
29 攪拌部
31 制御部
32 入力部
33 分析部
34 記憶部
35 出力部
36 送受信部
400,410,420,430 光路作成部
DESCRIPTION OF SYMBOLS 1,5 Automatic analyzer 2 Measuring mechanism 3 Control mechanism 20 Reaction container 21 Specimen transfer part 22a Inner diameter side sample dispensing mechanism 22b Outer diameter side sample dispensing mechanism 23 Reaction table 24a Inner diameter side first reagent dispensing mechanism 24b Outer diameter side First reagent dispensing mechanism 24c Inner diameter side second reagent dispensing mechanism 24d Outer diameter side second reagent dispensing mechanism 25 First reagent cold storage 26 Second reagent cold storage 27 Photometry section 28 Washing section 29 Stirring section 31 Control section 32 Input unit 33 Analysis unit 34 Storage unit 35 Output unit 36 Transmission / reception unit 400, 410, 420, 430 Optical path creation unit

Claims (10)

反応容器を収容し、同一軸心上に径の異なる環状の反応ラインを2以上有する回転可能な反応テーブルを具備し、前記反応容器に収容された検体と試薬との反応液の光学的特性を測定して前記検体の分析処理を行う自動分析装置において、
前記反応ラインの外径側および内径側に光源が配置され、該光源から出射される光をそれぞれ内径側および外径側の前記反応容器に照射する照射部と、
前記照射部から出射された光を受光する受光部と、
前記反応ライン間に設けられ、各照射部から前記受光部への光路を形成する光路形成部と、
を備えたことを特徴とする自動分析装置。
A reaction container is accommodated, and a rotatable reaction table having two or more annular reaction lines having different diameters on the same axis is provided, and optical characteristics of the reaction liquid of the specimen and the reagent accommodated in the reaction container are determined. In an automatic analyzer for measuring and analyzing the sample,
A light source is disposed on the outer diameter side and the inner diameter side of the reaction line, and an irradiation unit that irradiates the reaction vessel on the inner diameter side and the outer diameter side with light emitted from the light source, respectively.
A light receiving unit that receives light emitted from the irradiation unit;
An optical path forming unit provided between the reaction lines and forming an optical path from each irradiation unit to the light receiving unit;
An automatic analyzer characterized by comprising:
反応容器を収容し、同一軸心上に径の異なる環状の反応ラインを2以上有する回転可能な反応テーブルを具備し、前記反応容器に収容された検体と試薬との反応液の光学的特性を測定して前記検体の分析処理を行う自動分析装置において、
前記反応ライン間に光源を設け、該光源から光を出射する出射部と、
前記出射部から出射され、各反応テーブルの外径側および内径側に設けられた前記反応容器を通過した光を受信する受光部と、
前記反応ライン間に設けられ、前記照射部から各受光部への光路を形成する光路形成部と、
を備えたことを特徴とする自動分析装置。
A reaction vessel is accommodated, and a rotatable reaction table having two or more annular reaction lines having different diameters on the same axis is provided, and the optical characteristics of the reaction liquid of the specimen and the reagent contained in the reaction vessel are determined. In an automatic analyzer for measuring and analyzing the sample,
A light source is provided between the reaction lines, and an emission unit that emits light from the light source;
A light receiving unit that receives the light emitted from the emission unit and passed through the reaction vessel provided on the outer diameter side and the inner diameter side of each reaction table;
An optical path forming unit provided between the reaction lines and forming an optical path from the irradiation unit to each light receiving unit;
An automatic analyzer characterized by comprising:
前記光路形成部は、
軸回りに回転可能であって、各照射部から前記反応容器を通過した光を前記受光部に入射させる光路を形成する反射部材が設けられた筒状部材と、
前記筒状部材に連結され、該筒状部材を軸回りに回転駆動させる駆動部と、
前記駆動部を、前記反応テーブルの回転に連動して回転するよう制御する駆動制御部と、
を備えたことを特徴とする請求項1に記載の自動分析装置。
The optical path forming unit is
A cylindrical member provided with a reflecting member that is rotatable about an axis and that forms an optical path for allowing light that has passed through the reaction vessel from each irradiation unit to enter the light receiving unit;
A drive unit coupled to the tubular member and configured to rotationally drive the tubular member around an axis;
A drive control unit for controlling the drive unit to rotate in conjunction with the rotation of the reaction table;
The automatic analyzer according to claim 1, further comprising:
前記反応容器の検出位置を、各反応ライン毎に高低差を設け、
前記光路形成部は、一方の反応容器を通過した光を反射させる反射部材と、前記反射部材と前記受光部との間に設けられ、前記反応テーブルに連動して回転する回転部材とを有し、
前記回転部材は、
前記反応ラインと歯合する歯合部と、
一方の反応容器を通過し、前記反射部材によって前記受光部への光路を形成された光が通過する通過孔と、
他方の反応容器を通過した光を前記受光部に向けて反射する反射部と、
を備えたことを特徴とする請求項1に記載の自動分析装置。
The detection position of the reaction vessel is provided with a height difference for each reaction line,
The optical path forming unit includes a reflecting member that reflects light that has passed through one reaction vessel, and a rotating member that is provided between the reflecting member and the light receiving unit and rotates in conjunction with the reaction table. ,
The rotating member is
A toothed portion that meshes with the reaction line;
A passage hole through which light passing through one reaction vessel and having an optical path to the light receiving portion formed by the reflecting member passes;
A reflection part that reflects the light that has passed through the other reaction container toward the light receiving part;
The automatic analyzer according to claim 1, further comprising:
前記反応ラインの内径側および外径側の反応容器を周方向にずらして配置するとともに、検出位置に高低差を設け、
前記光路形成部は、
一方の反応容器を通過した光を前記受光部側に反射する反射部材と、
前記反射部材と前記受光部との光路上であって、他方の反応容器を通過した光を反射するとともに、前記反射部材によって反射された光を透過させる半透過型反射部材と、
を備えたことを特徴とする請求項1に記載の自動分析装置。
The reaction vessel on the inner diameter side and the outer diameter side of the reaction line is arranged in the circumferential direction, and a difference in height is provided at the detection position,
The optical path forming unit is
A reflecting member that reflects the light that has passed through one reaction vessel toward the light receiving unit;
A transflective reflective member that is on the optical path between the reflective member and the light receiving unit, reflects the light that has passed through the other reaction vessel, and transmits the light reflected by the reflective member;
The automatic analyzer according to claim 1, further comprising:
前記光路形成部は、
軸回りに回転可能であって、前記照射部からの光を各受光部に入射させる光路を形成する反射部材が設けられた筒状部材と、
前記筒状部材に連結され、該筒状部材を軸回りに回転駆動させる駆動部と、
前記駆動部を、前記反応テーブルの回転に連動して回転するよう制御する駆動制御部と、
を備えたことを特徴とする請求項2に記載の自動分析装置。
The optical path forming unit is
A cylindrical member provided with a reflecting member that is rotatable about an axis and that forms an optical path for allowing light from the irradiation unit to enter each light receiving unit;
A drive unit coupled to the tubular member and configured to rotationally drive the tubular member around an axis;
A drive control unit for controlling the drive unit to rotate in conjunction with the rotation of the reaction table;
The automatic analyzer according to claim 2, further comprising:
前記反応容器の検出位置を、各反応ライン毎に高低差を設け、
前記光路形成部は、前記照射部から出射された光を一方の受光部に反射させる反射部材と、前記反射部材と前記照射部との間に設けられ、前記反応テーブルに連動して回転する回転部材とを有し、
前記回転部材は、
前記反応ラインと歯合する歯合部と、
前記照射部から出射された光を通過させる通過孔と、
前記照射部から出射された光を他方の受光部に向けて反射する反射部と、
を備えたことを特徴とする請求項2に記載の自動分析装置。
The detection position of the reaction vessel is provided with a height difference for each reaction line,
The optical path forming unit is provided between a reflection member that reflects light emitted from the irradiation unit to one light receiving unit, and between the reflection member and the irradiation unit, and rotates in conjunction with the reaction table. And having a member
The rotating member is
A toothed portion that meshes with the reaction line;
A passage hole through which the light emitted from the irradiation unit passes,
A reflection unit that reflects the light emitted from the irradiation unit toward the other light receiving unit;
The automatic analyzer according to claim 2, further comprising:
前記反応容器の検出位置を、各反応ライン毎に高低差を設け、
前記光路形成部は、
前記照射部からの光を一方の受光部への光路に反射する反射部材と、
前記反射部材と前記照射部との光路上であって、他方の受光部への光路に反射するとともに、前記照射部からの光を透過させて、前記反射部材への光路を形成する半透過型反射部材と、
を備えたことを特徴とする請求項2に記載の自動分析装置。
The detection position of the reaction vessel is provided with a height difference for each reaction line,
The optical path forming unit is
A reflection member that reflects light from the irradiation unit to an optical path to one light receiving unit;
A semi-transmissive type that is on the optical path between the reflecting member and the irradiating unit, reflects to the optical path to the other light receiving unit, and transmits the light from the irradiating unit to form the optical path to the reflecting member. A reflective member;
The automatic analyzer according to claim 2, further comprising:
前記反応ラインの内径側および外径側の反応容器は、周方向にずらして配置されることを特徴とする請求項1〜4,6〜8のいずれか一つに記載の自動分析装置。   The automatic analyzer according to any one of claims 1 to 4, wherein the reaction vessels on the inner diameter side and the outer diameter side of the reaction line are arranged to be shifted in the circumferential direction. 前記反応ラインは、所定間隔で前記反応容器を配置することを特徴とする請求項1〜9のいずれか一つに記載の自動分析装置。   The automatic analyzer according to any one of claims 1 to 9, wherein the reaction line arranges the reaction containers at predetermined intervals.
JP2009065092A 2009-03-17 2009-03-17 Automatic analyzer Withdrawn JP2010217041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065092A JP2010217041A (en) 2009-03-17 2009-03-17 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065092A JP2010217041A (en) 2009-03-17 2009-03-17 Automatic analyzer

Publications (1)

Publication Number Publication Date
JP2010217041A true JP2010217041A (en) 2010-09-30

Family

ID=42976041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065092A Withdrawn JP2010217041A (en) 2009-03-17 2009-03-17 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP2010217041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134541A (en) * 2013-01-09 2014-07-24 Siemens Healthcare Diagnostics Products Gmbh Device for transporting reaction vessels
CN104459175A (en) * 2014-12-10 2015-03-25 上海科新生物技术股份有限公司 Full-automatic high-flux sample multi-project parallel analyzing system
JP2015175667A (en) * 2014-03-13 2015-10-05 株式会社東芝 Automatic analysis apparatus
JP2016533491A (en) * 2013-10-17 2016-10-27 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Compact, high-capacity analytical instrument basic structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134541A (en) * 2013-01-09 2014-07-24 Siemens Healthcare Diagnostics Products Gmbh Device for transporting reaction vessels
JP2016533491A (en) * 2013-10-17 2016-10-27 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Compact, high-capacity analytical instrument basic structure
JP2015175667A (en) * 2014-03-13 2015-10-05 株式会社東芝 Automatic analysis apparatus
CN104459175A (en) * 2014-12-10 2015-03-25 上海科新生物技术股份有限公司 Full-automatic high-flux sample multi-project parallel analyzing system

Similar Documents

Publication Publication Date Title
JP5300447B2 (en) Automatic analyzer and sample dispensing method in automatic analyzer
US4325910A (en) Automated multiple-purpose chemical-analysis apparatus
US20100000588A1 (en) Cleaning device and automatic analyzer
JP2010217041A (en) Automatic analyzer
JP2009115752A (en) Separating apparatus
JP2011163909A (en) Automatic analyzer and washing method for dispensing means
JP2010122188A (en) Method for carrying reagent bottle in reagent refrigerator and automatic analyzer
JP2010071897A (en) Automatic analysis device
JP2008224244A (en) Washer and autoanalyzer
CN108027375A (en) Shone measurement using the biological sample of double reagent
WO2009148013A1 (en) Method for cleaning probe in analyte dispensing device, analyte dispensing device and automatic analyzer
JP2022133528A (en) automatic analyzer
JP2009288094A (en) Automatic analyzer
JP2008224538A (en) Washer and autoanalyzer
JP4871152B2 (en) Automatic analyzer
JP2012063179A (en) Automatic analyzer
JP7123548B2 (en) automatic analyzer
JP2007322245A (en) Autoanalyzer
JP2010156611A (en) Reaction vessel holder and autoanalyzer
JP2007047004A (en) Reactor and analyzer using it
JP2009042117A (en) Thermostatic chamber and automatic analyzer
JP2008058250A (en) Analyzer
JP4864743B2 (en) Fluorescence measuring device
JP2009210275A (en) Autoanalyzer
JP2010276547A (en) Dispensing device, analyzer, and dispensation control method of the dispensing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924