JP2010216781A - Waste disposal device - Google Patents

Waste disposal device Download PDF

Info

Publication number
JP2010216781A
JP2010216781A JP2009067260A JP2009067260A JP2010216781A JP 2010216781 A JP2010216781 A JP 2010216781A JP 2009067260 A JP2009067260 A JP 2009067260A JP 2009067260 A JP2009067260 A JP 2009067260A JP 2010216781 A JP2010216781 A JP 2010216781A
Authority
JP
Japan
Prior art keywords
gas
furnace
reforming furnace
oxygen
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067260A
Other languages
Japanese (ja)
Inventor
Takeshi Nakayama
剛 中山
Katsuhiro Iwasaki
克博 岩崎
Takeshi Uchiyama
武 内山
Fumihiro Miyoshi
史洋 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009067260A priority Critical patent/JP2010216781A/en
Publication of JP2010216781A publication Critical patent/JP2010216781A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste disposal device capable of elongating a useful life of a furnace wall of a gas reforming furnace. <P>SOLUTION: In this waste disposal device having a gasification melting furnace 5 for partially oxidizing-gasifying, and melting the waste, and the cylindrical gas reforming furnace 5b having an oxygen-containing gas supply opening 44 disposed in a state of being connected with an upper section of the gasification melting furnace, and reforming the gas produced in the gasification melting furnace, a gas duct 40 for discharging the gas from the gas reforming furnace is disposed on a top peripheral wall of the gas reforming furnace, one of conditions that the direction of the gas duct on a horizontal cross-section of the gas reforming furnace is (A) the tangential direction and is (B) the direction deflecting at a prescribed angle to the direction toward a position of the top peripheral wall disposed in the gas duct, from a center of the gas reforming furnace, and swirl flow is formed in the gas reforming furnace. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、廃棄物をガス化、溶融処理する廃棄物処理装置に関し、ガス改質炉の炉壁の耐用寿命を長期化することが可能な廃棄物処理装置に関する。   The present invention relates to a waste treatment apparatus that gasifies and melts waste, and relates to a waste treatment apparatus that can extend the useful life of a furnace wall of a gas reforming furnace.

現在、廃棄物処理場の不足が顕著化しており、産業廃棄物あるいは一般廃棄物の多くは、発生したままの姿で、あるいは何らかの事前処理の上、焼却処理し減容化した後に、埋立などの最終処分が行われる場合が多い。上記した焼却処理の方法として種々の方法が挙げられるが、近年、焼却場における発生ガス中のダイオキシン類など有害物質の管理が問題となっており、高温酸化雰囲気で有害物を分解することが可能な処理方法が求められている。   Currently, the shortage of waste disposal sites is becoming prominent, and most of industrial waste and general waste are in landfills after being incinerated or reduced in volume as they are generated or after some pretreatment. Often, final disposal is performed. There are various methods for the incineration treatment described above. In recent years, management of harmful substances such as dioxins in the gas generated in incineration has become a problem, and it is possible to decompose harmful substances in a high-temperature oxidizing atmosphere. Is required.

このような高温処理が可能な廃棄物処理方法として、特許文献1〜4に開示された廃棄物処理プロセスが挙げられる。上記したプロセスは、廃棄物を圧縮成形後、乾燥、熱分解、炭化し、生成した炭化生成物を燃焼し、不燃分を溶融して、燃料ガスおよびスラグ、金属を得る廃棄物処理プロセスである。   Examples of the waste treatment method capable of such high-temperature treatment include the waste treatment processes disclosed in Patent Documents 1 to 4. The above-mentioned process is a waste treatment process in which waste is compression-molded, dried, pyrolyzed, carbonized, the produced carbonized product is burned, and the incombustible component is melted to obtain fuel gas, slag, and metal. .

図5は従来の廃棄物処理設備の一例を側断面図によって示したものである。
図5において、1は廃棄物を回分的(バッチ的)に加圧、圧縮する圧縮装置、2は圧縮用ピストン、3は圧縮支持盤、4は圧縮された廃棄物(圧縮廃棄物)(以下圧縮成形物とも記す)を乾燥、熱分解するための水平型トンネル式加熱炉(以下、トンネル式加熱炉とも記す)、4aは圧縮成形物の乾燥領域、4bは圧縮成形物の熱分解領域、4eはトンネル式加熱炉4の入口、4fは高温反応炉5の側壁に設けられた圧縮成形物入口(:トンネル式加熱炉4の出口)、5は竪型の高温反応炉(上部はガス改質炉5a、下部はガス化溶融炉5b)、6a、6bはそれぞれトンネル式加熱炉4の側壁内に配設された加熱用高温ガスの流通パイプ、10a、10iは圧縮成形物、11i、11nは乾燥された圧縮成形物、12は乾燥、熱分解された廃棄物11の堆積層(以下、廃棄物堆積層とも記す)、14は溶融物、14Hは溶融物排出口、15はガス化溶融炉5bの下部へ酸素含有ガスを供給する酸素含有ガス供給管、15aは酸素含有ガス供給口、16は高温反応炉5の下部側壁に接続された水平型筒状加熱炉である溶融物加熱・保温炉、16eは溶融物加熱・保温炉の入口、17は溶融物加熱・保温炉内に高温燃焼ガスを供給する燃焼ガス供給装置(バーナ)、18はガス改質炉5aへ酸素含有ガスを供給する酸素含有ガス供給管、19はガス改質炉5aから改質ガスを排出するガスダクト、20は廃棄物投入口、21は廃棄物投入口の蓋、30は高温反応炉5から排出される高温反応炉発生ガスの急冷装置、31はガス精製装置、32はガス改質炉5aの改質ガス排出口、33は精製ガス、fは圧縮成形物10a、10iの移動方向、fは乾燥された圧縮成形物11i、11nの移動方向、fはトンネル式加熱炉4内で生成した熱分解ガスの流れ方向、fは高温反応炉5内への酸素含有ガスの吹き込み方向、fは圧縮用ピストン2の移動方向、fは圧縮支持盤3の移動方向、fは廃棄物投入口20の蓋21の回転方向を示す。
FIG. 5 is a side sectional view showing an example of a conventional waste treatment facility.
In FIG. 5, 1 is a compression device that pressurizes and compresses waste batchwise (batch), 2 is a compression piston, 3 is a compression support board, 4 is compressed waste (compressed waste) (hereinafter referred to as “compressed waste”). Horizontal tunnel heating furnace (hereinafter also referred to as tunnel-type heating furnace) for drying and pyrolyzing the compression molded product), 4a is a drying region of the compression molded product, 4b is a thermal decomposition region of the compression molded product, 4e is an inlet of the tunnel-type heating furnace 4, 4f is an inlet of a compression molding provided on the side wall of the high-temperature reactor 5 (: outlet of the tunnel-type heating furnace 4), and 5 is a vertical high-temperature reactor (the upper part is a gas reformer). The material furnace 5a, the lower part is a gasification and melting furnace 5b), 6a and 6b are heating high-temperature gas flow pipes disposed in the side walls of the tunnel heating furnace 4, 10a and 10i are compression moldings, 11i and 11n, respectively. Is a dried compression molding, 12 is dried and pyrolyzed Deposited layer of waste 11 (hereinafter also referred to as a waste deposited layer), 14 is a melt, 14H is a melt outlet, and 15 is an oxygen-containing gas supply pipe for supplying an oxygen-containing gas to the lower part of the gasification melting furnace 5b. 15a is an oxygen-containing gas supply port, 16 is a horizontal cylindrical heating furnace connected to the lower side wall of the high-temperature reactor 5, a melt heating / warming furnace, 16e is an inlet of the melt heating / warming furnace, 17 is Combustion gas supply device (burner) for supplying high-temperature combustion gas into the melt heating / heat-retaining furnace, 18 is an oxygen-containing gas supply pipe for supplying oxygen-containing gas to the gas reforming furnace 5a, and 19 is from the gas reforming furnace 5a. A gas duct for discharging the reformed gas, 20 is a waste inlet, 21 is a lid of the waste inlet, 30 is a quenching device for the high-temperature reactor generated gas discharged from the high-temperature reactor 5, 31 is a gas purifier, 32 Is the reformed gas outlet of the gas reforming furnace 5a, 33 The purified gas, f 1 is compression molded product 10a, 10i moving direction of, f 2 is dried compression molded product 11i, 11n moving direction of, f 3 is the flow direction of the pyrolysis gas produced in a tunnel type heating furnace 4 , F 4 is the direction in which the oxygen-containing gas is blown into the high temperature reactor 5, f 5 is the direction of movement of the compression piston 2, f 6 is the direction of movement of the compression support board 3, and f 7 is the lid of the waste inlet 20. 21 shows the direction of rotation.

図5に示す廃棄物処理設備においては、先ず、廃棄物投入口20から圧縮装置1内へ所定量供給した廃棄物を、回分的(バッチ的)に圧縮し、ち密な圧縮成形物10aとする。次に、この圧縮成形物10aを、外部から加熱された細長いトンネル式加熱炉4内へ押し込む。   In the waste treatment facility shown in FIG. 5, first, a predetermined amount of waste supplied from the waste inlet 20 into the compression apparatus 1 is compressed batchwise to form a compact compression molded product 10a. . Next, the compression molded product 10a is pushed into the elongated tunnel type heating furnace 4 heated from the outside.

圧縮成形物10aの断面形状は、トンネル式加熱炉4の入口4eの内壁断面と同形、同一寸法であり、圧縮成形物10aはトンネル式加熱炉4の内壁と接触状態を保ったまま押し込まれるため、トンネル式加熱炉入口で加熱炉内雰囲気をシールできる。圧縮成形物10iは、順次新しい圧縮成形物が押し込まれる毎に、トンネル式加熱炉4内を滑りながら移動する。   The cross-sectional shape of the compression molded product 10a is the same shape and the same size as the cross section of the inner wall of the inlet 4e of the tunnel-type heating furnace 4, and the compression molded product 10a is pushed in while being kept in contact with the inner wall of the tunnel-type heating furnace 4. The atmosphere inside the heating furnace can be sealed at the entrance of the tunnel-type heating furnace. The compression molded product 10i moves while sliding in the tunnel-type heating furnace 4 each time a new compression molded product is sequentially pushed.

トンネル式加熱炉4は前記したように外部から加熱されており、内部は600℃程度まで昇温され、圧縮成形物10iの移動、昇温過程において、圧縮成形物10i中の水分と揮発分が蒸発、揮発され乾燥、熱分解される。乾燥、熱分解された圧縮成形物11nおよび熱分解により発生した熱分解ガスは、高温反応炉5の側壁に設けられた圧縮成形物入口4fから1000℃以上に維持された高温反応炉5内へ装入、供給される。   As described above, the tunnel-type heating furnace 4 is heated from the outside, and the temperature inside is increased to about 600 ° C. In the process of moving and raising the temperature of the compression molded product 10 i, moisture and volatile matter in the compression molded product 10 i are increased. Evaporated, volatilized, dried and pyrolyzed. The dried and pyrolyzed compression molded product 11n and the pyrolysis gas generated by the thermal decomposition enter the high temperature reaction furnace 5 maintained at 1000 ° C. or higher from the compression molded product inlet 4f provided on the side wall of the high temperature reaction furnace 5. Charged and supplied.

高温反応炉5内へ供給された乾燥、熱分解された圧縮成形物11nは、高温反応炉5の下部(ガス化溶融炉5b)に乾燥、熱分解された廃棄物11の堆積層(廃棄物堆積層12)を形成する。ガス化溶融炉5bの下部に設けられた酸素含有ガス供給口15aから廃棄物堆積層12中へ酸素含有ガスが供給され、廃棄物11の熱分解炭素などの可燃物を燃焼させ、その熱エネルギーで廃棄物11の部分酸化・ガス化をさらに行うとともに、廃棄物11中の不燃分(金属、灰分など)を溶融し溶融物14を生成する。高温反応炉5の下部側壁に接続された溶融物加熱・保温炉16において、溶融物14を、バーナなどの燃焼ガス供給装置17から供給される高温燃焼ガスで加熱し、溶融物に含まれる微量の炭素などをガス化、除去し、溶融物14は溶融物排出口14Hから溶融スラグ、溶融金属として排出される。   The dried and pyrolyzed compression molding 11n supplied into the high-temperature reactor 5 is dried and pyrolyzed in the lower layer (gasification melting furnace 5b) of the high-temperature reactor 5 (deposited waste). A deposited layer 12) is formed. The oxygen-containing gas is supplied into the waste accumulation layer 12 from the oxygen-containing gas supply port 15a provided in the lower part of the gasification melting furnace 5b, and combustible materials such as pyrolytic carbon of the waste 11 are burned, and the thermal energy thereof. Then, the waste 11 is further partially oxidized and gasified, and the incombustible components (metal, ash, etc.) in the waste 11 are melted to produce a melt 14. In the melt heating / insulating furnace 16 connected to the lower side wall of the high-temperature reactor 5, the melt 14 is heated with a high-temperature combustion gas supplied from a combustion gas supply device 17 such as a burner, and a trace amount contained in the melt. The carbon 14 and the like are gasified and removed, and the melt 14 is discharged as molten slag and molten metal from the melt outlet 14H.

トンネル式加熱炉4から高温反応炉5に装入された熱分解ガスと、ガス化溶融炉5bの廃棄物堆積層12から発生したガスとは、高温反応炉5の上部(ガス改質炉5a)において、酸素含有ガス供給口18から酸素含有ガスが供給され一部が燃焼されて、ガス温度を1200℃以上にした領域で2秒以上滞留されて、タール分のクラッキング等が行われ、一酸化炭素と水素、水蒸気、二酸化炭素を主に含むガスに改質され、炉頂部の改質ガス排出口32からガスダクト19に排出され急冷装置30での冷却、ガス精製装置31での精製の後、燃料用の精製ガス33として回収される。   The pyrolysis gas charged into the high-temperature reactor 5 from the tunnel heating furnace 4 and the gas generated from the waste deposition layer 12 of the gasification melting furnace 5b are the upper part of the high-temperature reactor 5 (gas reforming furnace 5a). ), An oxygen-containing gas is supplied from the oxygen-containing gas supply port 18 and a part thereof is combusted, and is retained for 2 seconds or more in a region where the gas temperature is set to 1200 ° C. or higher, and cracking of tar is performed. After reforming to a gas mainly containing carbon oxide, hydrogen, water vapor, and carbon dioxide, it is discharged from the reformed gas discharge port 32 at the top of the furnace to the gas duct 19, cooled in the quenching device 30, and purified in the gas purifying device 31. Then, it is recovered as purified gas 33 for fuel.

ガス化溶融炉及びガス改質炉では炉内温度が高温となるため、炉本体は外側の鉄皮を耐火物で内張する構造となっている。ガス改質炉においては炉壁の耐火物は高温ガスと接しているため溶損等による消耗が激しく、耐火物が消耗すれば操業を停止して耐火物の張替え等の補修を行う必要があるが、補修を頻繁に行う必要があると処理設備の稼動効率が低下し処理コストの上昇を招くので、補修の頻度を低下させるべく、ガス改質炉壁の耐火物の耐用寿命を長期化することが必要である。   In the gasification melting furnace and gas reforming furnace, the furnace temperature becomes high, so the furnace body has a structure in which the outer iron skin is lined with a refractory. In a gas reforming furnace, the refractory on the furnace wall is in contact with high-temperature gas, so consumption due to erosion is severe. If the refractory is consumed, it is necessary to stop the operation and repair the refractory. However, if frequent repairs are required, the operating efficiency of the processing equipment will decrease and processing costs will increase, so the service life of the refractories on the gas reforming furnace wall will be extended to reduce the frequency of repairs. It is necessary.

特許文献5には、熱分解ガスを改質炉頂部から吹き込み、酸素を改質炉側壁部の高さ方向に複数段に分割して吹き込み、水蒸気を上から第一段目の酸素と共に改質炉内に斜め下向きの旋回流を形成するように導入することによって、従来のバーナー方式に比べて炉壁から離れた位置に燃焼フレームを形成し、加えて改質反応促進のガス化剤である水蒸気を第一段目の酸素ノズルから集中して吹き込むことによって、熱分解ガスの酸素燃焼による急激な温度上昇を緩和して、ノズル損耗や炉壁損耗を抑制することが記載されている。
また、特許文献6には、縦型改質炉において、中心向きから水平方向に30度以下偏心させた酸素供給ノズルによって炉内に酸素ガスを供給して炉内で旋回流を発生させ、これによって被改質ガスと酸素とを均一に混合させて改質部温度を均一にし、改質部耐火物の損傷を小さくすることが記載されている。
しかしながら、前記のような方法によってもなお耐火物の損傷は避けるには十分ではなかった。
In Patent Document 5, pyrolysis gas is blown from the top of the reforming furnace, oxygen is blown into a plurality of stages in the height direction of the reforming furnace side wall, and steam is reformed together with the first stage oxygen from above. It is a gasifying agent that promotes the reforming reaction by introducing a combustion flame at a position farther from the furnace wall than the conventional burner system by introducing it so as to form an oblique downward swirling flow in the furnace. It is described that water vapor is concentrated and blown from the first stage oxygen nozzle to mitigate a rapid temperature rise due to oxygen combustion of the pyrolysis gas and suppress nozzle wear and furnace wall wear.
Further, in Patent Document 6, in a vertical reforming furnace, oxygen gas is supplied into the furnace by an oxygen supply nozzle that is eccentric by 30 degrees or less from the center to the horizontal direction, and a swirling flow is generated in the furnace. Describes that the gas to be reformed and oxygen are mixed uniformly to make the temperature of the reforming section uniform and to reduce the damage to the refractory of the reforming section.
However, the above-described method is still not sufficient to avoid damage to the refractory.

特開平6−26626号公報JP-A-6-26626 特開平6−79252号公報JP-A-6-79252 特開平7−323270号公報JP-A-7-323270 特開平11−218313号公報Japanese Patent Laid-Open No. 11-218313 特開2004−277647号公報JP 2004-277647 A 特開2006−112714号公報JP 2006-112714 A

本発明は、前記した問題点を解決するため、廃棄物を部分酸化・ガス化、溶融する廃棄物処理装置において、ガス改質炉の炉壁の耐用寿命を長期化することが可能な廃棄物処理装置を提供することを目的とする。   In order to solve the above-described problems, the present invention is a waste treatment apparatus that partially oxidizes, gasifies, and melts waste, and is capable of extending the useful life of a furnace wall of a gas reforming furnace. An object is to provide a processing apparatus.

本発明者等は、ガス改質炉の炉壁の耐用寿命を長期化するべく鋭意検討を進めた結果、ガス改質炉から改質ガスを抜き出す方向を特定の方向とすることにより炉壁の耐火物表面に過剰に高温のガスが接触することがなく耐火物の耐用寿命を長期化することができること、これと併せて、ガス改質炉への酸素含有ガス供給口の先端位置と方向を適切にすることにより耐火物の耐用寿命の更に長期化することができることを見出して本発明を完成した。
すなわち、本発明は以下に記載するとおりの廃棄物処理装置である。
As a result of diligent investigation to extend the useful life of the furnace wall of the gas reforming furnace, the present inventors have determined that the direction of extracting the reformed gas from the gas reforming furnace is a specific direction. It is possible to prolong the service life of the refractory without excessively high temperature gas coming into contact with the refractory surface, and at the same time, the tip position and direction of the oxygen-containing gas supply port to the gas reforming furnace The present invention has been completed by finding that the service life of the refractory can be further prolonged by making it appropriate.
That is, the present invention is a waste treatment apparatus as described below.

(1)廃棄物を部分酸化・ガス化、溶融するガス化溶融炉と、ガス化溶融炉の上部に接続して設けられ酸素含有ガス供給口を有しガス化溶融炉で生成したガスを改質する円筒形状のガス改質炉とを有する廃棄物処理装置において、ガス改質炉からガスを排出するガスダクトがガス改質炉の頂部周壁に設けられており、ガス改質炉の水平断面におけるガスダクトの方向が、下記(A)及び(B)のいずれかの条件を満たしており、ガス改質炉内に旋回流を形成するようになっていることを特徴とする廃棄物処理装置。
(A)接線方向であること、
(B)ガス改質炉の中心からガスダクトの設けられた頂部周壁の位置に向かう方向に対して所定角度偏向した方向であること
(2)前記酸素含有ガス供給口の先端位置がガス改質炉内壁からガス改質炉半径の10%以上30%以下の距離だけ中心側であることを特徴とする(1)に記載の廃棄物処理装置。
(3)前記酸素含有ガス供給口は、酸素含有ガス供給口が設けられた炉周壁の位置からガス改質炉中心に向かう方向に対して1度以上7度以下の角度だけ偏向した方向で設けられていることを特徴とする(2)に記載の廃棄物処理装置。
(1) A gasification and melting furnace that partially oxidizes, gasifies and melts waste, and an oxygen-containing gas supply port that is connected to the upper part of the gasification and melting furnace. In a waste treatment apparatus having a cylindrical gas reforming furnace, a gas duct for discharging gas from the gas reforming furnace is provided on the top peripheral wall of the gas reforming furnace, and in a horizontal section of the gas reforming furnace A waste treatment apparatus characterized in that the direction of the gas duct satisfies any of the following conditions (A) and (B), and forms a swirling flow in the gas reforming furnace.
(A) being tangential,
(B) A direction deflected by a predetermined angle with respect to the direction from the center of the gas reforming furnace toward the position of the top peripheral wall where the gas duct is provided. (2) The tip position of the oxygen-containing gas supply port is the gas reforming furnace. The waste treatment apparatus according to (1), characterized in that the distance from the inner wall to the center is a distance of 10% to 30% of the radius of the gas reforming furnace.
(3) The oxygen-containing gas supply port is provided in a direction deflected by an angle of not less than 1 degree and not more than 7 degrees with respect to the direction toward the center of the gas reforming furnace from the position of the peripheral wall of the furnace where the oxygen-containing gas supply port is provided. (2) The waste treatment apparatus according to (2).

本発明によれば、廃棄物を部分酸化・ガス化、溶融する廃棄物処理装置、廃棄物処理方法において、ガス改質炉の炉壁の耐用寿命を長期化することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to lengthen the useful life of the furnace wall of a gas reforming furnace in the waste processing apparatus and waste processing method which partially oxidize and gasify and melt waste.

本発明の廃棄物処理設備の一例を示す側断面図である。It is a sectional side view which shows an example of the waste disposal facility of this invention. 本発明のガス改質炉のガスダクトの設置状態を示す水平断面図である。It is a horizontal sectional view which shows the installation state of the gas duct of the gas reforming furnace of this invention. 本発明のガス改質炉の酸素含有ガス供給口の設置状態を示す水平断面図である。It is a horizontal sectional view which shows the installation state of the oxygen containing gas supply port of the gas reforming furnace of this invention. 本発明のガス改質炉の酸素含有ガス供給口の設置状態を示す水平断面図である。It is a horizontal sectional view which shows the installation state of the oxygen containing gas supply port of the gas reforming furnace of this invention. 従来の廃棄物処理設備を示す側断面図である。It is a sectional side view which shows the conventional waste disposal equipment.

以下、本発明を図1〜4に基づいてさらに詳細に説明する。
図1は、本発明の廃棄物処理設備の一例を側断面図によって示したものである。
なお、図1において、40はガス改質炉5aから改質ガスを排出するガスダクト、41は改質ガスの排出口、42は旋回流、44はガス改質炉5aの下部に酸素含有ガスを供給する酸素含有ガス供給管、44aは酸素含有ガス供給口の先端部を示し、その他の符号は図5と同一の内容を示す。
Hereinafter, the present invention will be described in more detail with reference to FIGS.
FIG. 1 is a sectional side view showing an example of the waste treatment facility of the present invention.
In FIG. 1, 40 is a gas duct for discharging the reformed gas from the gas reforming furnace 5a, 41 is an outlet for the reformed gas, 42 is a swirling flow, and 44 is an oxygen-containing gas in the lower part of the gas reforming furnace 5a. The oxygen-containing gas supply pipe 44a to be supplied indicates the tip of the oxygen-containing gas supply port, and the other symbols indicate the same contents as in FIG.

ガスダクト40は、円筒形状のガス改質炉5aの頂部周壁に設けられた改質ガスの排出口41に接続されており、ガス改質炉の水平断面におけるガスダクトの方向が、図2a、bに示すような方向となるように設けられる。
図2(a)に示したものにおいては、ガスダクトの接続方向がガス改質炉に対して接線方向となるように設けられている。
図2(b)に示したものにおいては、ガスダクトの接続方向がガス改質炉の中心から改質ガスの排出口41に向かう方向に対して所定角度偏向した方向となるように設けられている。
なお、ここで、ガス改質炉の中心とは円形の炉断面の中心をいう。また、方向を偏向させる所定角度としては、10度以上90度未満が好ましい。偏向させる角度が10度より小さいと、ガス改質炉からガスが排出される方向がガス改質炉の中心からの半径方向とほぼ同じ方向となり、旋回流を形成することが困難であり、偏向させる角度が90度より大きいと、ガスダクトをガス改質炉の頂部周壁に接続することができない。
ガス改質炉内で改質されたガスは、改質ガスの排出口41から抜き出される方向が上記のように設定されているため、ガス改質炉内で旋回流42を形成する。
The gas duct 40 is connected to a reformed gas discharge port 41 provided on the top peripheral wall of the cylindrical gas reforming furnace 5a, and the direction of the gas duct in the horizontal cross section of the gas reforming furnace is shown in FIGS. It is provided in the direction as shown.
In the case shown in FIG. 2A, the connection direction of the gas duct is provided so as to be tangential to the gas reforming furnace.
In the case shown in FIG. 2B, the connecting direction of the gas duct is provided so as to be deflected by a predetermined angle with respect to the direction from the center of the gas reforming furnace toward the reformed gas discharge port 41. .
Here, the center of the gas reforming furnace means the center of a circular furnace cross section. Further, the predetermined angle for deflecting the direction is preferably 10 degrees or more and less than 90 degrees. If the deflection angle is smaller than 10 degrees, the direction in which the gas is discharged from the gas reforming furnace is almost the same as the radial direction from the center of the gas reforming furnace, and it is difficult to form a swirl flow. If the angle is 90 degrees, the gas duct cannot be connected to the top peripheral wall of the gas reforming furnace.
Since the gas that has been reformed in the gas reforming furnace is set in the direction in which the gas is extracted from the reformed gas discharge port 41 as described above, a swirl flow 42 is formed in the gas reforming furnace.

トンネル式加熱炉から高温反応炉に装入された熱分解ガスと、ガス化溶融炉の廃棄物堆積層から発生したガスとは、ガス改質炉において、酸素含有ガス供給口から酸素含有ガスが供給され一部が燃焼されて温度が上昇し、ガス温度を1200℃以上にした領域で2秒以上滞留されて、タール分のクラッキング等が行われ、一酸化炭素と水素、水蒸気、二酸化炭素を主に含むガスに改質される。
そして、ガス改質炉内のガスは、一部が燃焼されて温度が上昇し、さらに前記したように旋回流が形成されるため、図1に示すようにガス改質炉の下部から上部へ向かって螺旋状の軌跡で旋回しながら上昇する。
ここで温度が比較的低いガスは高密度であり、温度が比較的高いガスは低密度であるので、旋回するガス改質炉内ガスは遠心力の影響を受けて、高密度の温度が比較的低いガスは炉壁側に、低密度の温度が比較的高いガスは炉中心側に流れる。そのため、炉壁の耐火物表面には温度が比較的低いガスが接するようにすることができるため、耐火物は過剰に高温のガスと接触することがなく耐火物の耐用寿命を長期化することができる。
The pyrolysis gas charged into the high-temperature reactor from the tunnel-type heating furnace and the gas generated from the waste deposition layer of the gasification melting furnace are produced by the oxygen-containing gas from the oxygen-containing gas supply port in the gas reforming furnace. The gas is supplied and partly combusted and the temperature rises. The gas is kept at a temperature of 1200 ° C. or higher for 2 seconds or longer, and tar is cracked. Carbon monoxide and hydrogen, water vapor and carbon dioxide are removed. The gas is mainly reformed.
The gas in the gas reforming furnace is partially combusted and the temperature rises, and a swirl flow is formed as described above. Therefore, as shown in FIG. 1, from the lower part to the upper part of the gas reforming furnace. Ascending while turning in a spiral trajectory.
Here, gas with a relatively low temperature has a high density, and a gas with a relatively high temperature has a low density. Therefore, the gas in the revolving gas reforming furnace is affected by centrifugal force, and the high-density temperature is compared. A relatively low gas flows to the furnace wall side, and a relatively low temperature gas flows to the furnace center side. Therefore, the surface of the refractory on the furnace wall can be brought into contact with a relatively low temperature gas, so that the refractory does not come into contact with excessively high temperature gas and prolongs the service life of the refractory. Can do.

また、本発明は酸素ガス供給口による酸素ガスの供給の仕方にも特徴がある。
図4(a)は従来法における酸素含有ガス供給口付近の燃焼状況を示したものであるが、ガス改質炉の下部に設けられた酸素含有ガス供給口の先端では、ガス改質炉に導かれた熱分解ガスが酸素含有ガスにより燃焼し高温火点が形成され、熱分解ガスを高温に加熱している。従来のものでは、酸素含有ガス供給口の先端がガス改質炉の炉壁に開口しており、前記の高温火点45が炉壁近傍に形成されるため炉壁が消耗しやすくなる。
In addition, the present invention is also characterized in how oxygen gas is supplied through the oxygen gas supply port.
FIG. 4 (a) shows the combustion state in the vicinity of the oxygen-containing gas supply port in the conventional method. At the tip of the oxygen-containing gas supply port provided at the lower part of the gas reforming furnace, The introduced pyrolysis gas burns with the oxygen-containing gas to form a high-temperature fire point, and heats the pyrolysis gas to a high temperature. In the prior art, the tip of the oxygen-containing gas supply port is open to the furnace wall of the gas reforming furnace, and the high-temperature fire point 45 is formed in the vicinity of the furnace wall, so that the furnace wall is easily consumed.

これに対し、本発明ではガス改質炉に酸素含有ガスを供給する酸素含有ガス供給管を図3に示すような配置とする。
すなわち、図3に示すように酸素含有ガス供給口の先端部44aの位置を、先端部44aとガス改質炉内壁との距離(L)が、ガス改質炉半径(R)の10%以上30%以下の距離だけ中心側であるように設ける。このようにすることにより、酸素含有ガス供給口先端の高温火点を炉内の中心側に形成することができ、炉壁から離れた位置に高温火点を存在させるため、炉壁耐火物が過剰に高温となることを防ぎ、耐火物の耐用寿命を長期化することができる。
In contrast, in the present invention, the oxygen-containing gas supply pipe for supplying the oxygen-containing gas to the gas reforming furnace is arranged as shown in FIG.
That is, as shown in FIG. 3, the position of the front end portion 44a of the oxygen-containing gas supply port is such that the distance (L) between the front end portion 44a and the gas reforming furnace inner wall is 10% or more of the gas reforming furnace radius (R). Provide a distance of 30% or less on the center side. By doing in this way, the high temperature hot spot at the front end of the oxygen-containing gas supply port can be formed on the center side in the furnace, and the high temperature hot spot exists at a position away from the furnace wall. An excessively high temperature can be prevented, and the useful life of the refractory can be extended.

酸素含有ガス供給管を図3に示すように配置した場合には、図4(b)に示すように、ガス改質炉の下部の酸素含有ガス供給口付近で炉内の中心側に高温火点45を形成することにより、ガス化溶融炉から上昇してくる比較的温度の低い熱分解ガスは炉壁近傍に多く流れることになり、この点でも炉壁耐火物が過剰に高温となることを防ぎ、耐火物の耐用寿命を長期化することができる。   When the oxygen-containing gas supply pipe is arranged as shown in FIG. 3, as shown in FIG. 4 (b), a high-temperature fire is placed near the oxygen-containing gas supply port at the bottom of the gas reforming furnace in the center of the furnace. By forming the point 45, a relatively low temperature pyrolysis gas rising from the gasification melting furnace flows in the vicinity of the furnace wall, and the furnace wall refractory becomes excessively hot at this point as well. And the service life of the refractory can be extended.

酸素含有ガス供給口の先端部44aの位置を、先端部44aとガス改質炉内壁との距離(L)が、ガス改質炉半径(R)の10%より短くなるように設けると、酸素含有ガス供給口先端に形成される高温火点がガス化改質炉の内壁に近いため、耐火物が過剰に高温に加熱され耐用寿命が短くなるため好ましくない。
また、酸素含有ガス供給口の先端部44aの位置を、先端部44aとガス改質炉内壁との距離(L)が、ガス改質炉半径(R)の30%より長くなるように設けると、酸素含有ガス供給口先端の高温火点が炉内の中心に近づき過ぎて形成されるため、高温領域が小さくなり炉内のガスを加熱する効率が低くなるので好ましくない。
When the position of the front end portion 44a of the oxygen-containing gas supply port is provided such that the distance (L) between the front end portion 44a and the inner wall of the gas reforming furnace is shorter than 10% of the gas reforming furnace radius (R), Since the high-temperature fire point formed at the front end of the contained gas supply port is close to the inner wall of the gasification reforming furnace, the refractory is excessively heated to shorten the service life.
Further, when the position of the front end portion 44a of the oxygen-containing gas supply port is provided such that the distance (L) between the front end portion 44a and the inner wall of the gas reforming furnace is longer than 30% of the gas reforming furnace radius (R). Since the high-temperature fire point at the tip of the oxygen-containing gas supply port is formed too close to the center of the furnace, the high-temperature region is reduced, and the efficiency of heating the gas in the furnace is reduced, which is not preferable.

さらに、本発明の別の態様としては、図4(c)に示すように、ガス改質炉の下部の酸素含有ガス供給口の先端部44aの位置をガス改質炉内壁からガス改質炉半径の10%以上30%以下の距離だけ中心側であるように設けるとともに、酸素含有ガス供給口を、酸素含有ガス供給口が設けられた炉周壁の位置からガス改質炉中心に向かう方向に対して1度以上7度以下の角度だけ偏向した方向に設ける。これにより、ガス改質炉の下部でも旋回流を形成することができ、高密度の温度が比較的低いガスは遠心力の影響を受け炉壁側に、低密度の温度が比較的高いガスは炉中心側に流れることとなる。そのため、炉壁の耐火物表面には温度が比較的低いガスが接するようにすることができるため、耐火物の耐用寿命を長期化することができる。   Furthermore, as another aspect of the present invention, as shown in FIG. 4C, the position of the tip 44a of the oxygen-containing gas supply port at the lower part of the gas reforming furnace is changed from the inner wall of the gas reforming furnace to the gas reforming furnace. The oxygen-containing gas supply port is provided so as to be on the center side by a distance of 10% to 30% of the radius, and the oxygen-containing gas supply port is directed from the position of the furnace peripheral wall where the oxygen-containing gas supply port is provided toward the center of the gas reformer. On the other hand, it is provided in a direction deflected by an angle of 1 to 7 degrees. As a result, a swirling flow can be formed even in the lower part of the gas reforming furnace, and the gas having a relatively low density and high temperature is affected by the centrifugal force, and the gas having a relatively low density and low temperature is placed on the furnace wall side. It will flow to the furnace center side. Therefore, since the gas having a relatively low temperature can be in contact with the refractory surface of the furnace wall, the useful life of the refractory can be extended.

ガス改質炉の下部の酸素含有ガス供給口を酸素含有ガス供給口が設けられた炉周壁の位置からガス改質炉中心に向かう方向に対して7度より大きい角度で偏向した方向に設けると、酸素含有ガス供給口先端に形成される高温火点がガス化改質炉の内壁に接触するか近くなるため、耐火物が過剰に高温に加熱され耐用寿命が短くなるため好ましくない。また、酸素含有ガス供給口を酸素含有ガス供給口が設けられた炉周壁の位置からガス改質炉中心に向かう方向に対して1度より小さい角度で偏向した方向に設けても、ガス改質炉の下部で旋回流を形成することが困難であるため、好ましくない。   If the oxygen-containing gas supply port at the lower part of the gas reforming furnace is provided in a direction deflected at an angle greater than 7 degrees with respect to the direction toward the center of the gas reforming furnace from the position of the peripheral wall of the furnace where the oxygen-containing gas supply port is provided Since the high-temperature fire point formed at the front end of the oxygen-containing gas supply port is in contact with or close to the inner wall of the gasification reforming furnace, the refractory is excessively heated to shorten the service life. Even if the oxygen-containing gas supply port is provided in a direction deflected at an angle smaller than 1 degree with respect to the direction toward the center of the gas reforming furnace from the position of the peripheral wall of the furnace where the oxygen-containing gas supply port is provided, Since it is difficult to form a swirling flow in the lower part of the furnace, it is not preferable.

本発明の廃棄物処理装置による廃棄物処理の工程を以下に説明する
図1に示す廃棄物処理設備においては、圧縮成形した廃棄物(圧縮成形物10i)を乾燥、熱分解し、乾燥された圧縮成形物11nを、高温反応炉5の側壁に設けられた廃棄物入口4fから高温反応炉5内に装入し、高温反応炉5のガス化溶融炉5b内に廃棄物11の廃棄物堆積層12が形成される。
The waste treatment process by the waste treatment apparatus of the present invention will be described below. In the waste treatment facility shown in FIG. 1, the compression-molded waste (compression molded product 10i) was dried, pyrolyzed, and dried. The compression molded product 11n is charged into the high temperature reactor 5 through the waste inlet 4f provided on the side wall of the high temperature reactor 5, and the waste deposit of the waste 11 is placed in the gasification melting furnace 5b of the high temperature reactor 5. Layer 12 is formed.

ガス化溶融炉5bの下部に設けられた酸素含有ガス下部供給口15aから廃棄物堆積層12の下部へ酸素含有ガスが供給され、廃棄物堆積層12の上部から降下した廃棄物11の熱分解炭素などの可燃物を燃焼させ、その熱エネルギーで廃棄物11の部分酸化・ガス化をさらに行うとともに、廃棄物11中の不燃分(金属、灰分など)を溶融し溶融物14を生成する。高温反応炉5の下部側壁に接続された溶融物加熱・保温炉16において、溶融物14を、バーナなどの燃焼ガス供給装置17から供給される高温燃焼ガスで加熱し、溶融物に含まれる微量の炭素などをガス化、除去し、溶融物14は溶融物排出口14Hから溶融スラグ、溶融金属として排出される。   The oxygen-containing gas is supplied to the lower part of the waste accumulation layer 12 from the oxygen-containing gas lower supply port 15a provided at the lower part of the gasification melting furnace 5b, and the thermal decomposition of the waste 11 dropped from the upper part of the waste accumulation layer 12 A combustible material such as carbon is combusted, and the waste energy 11 is further partially oxidized and gasified by the thermal energy, and incombustible components (metal, ash, etc.) in the waste material 11 are melted to generate a melt 14. In the melt heating / insulating furnace 16 connected to the lower side wall of the high-temperature reactor 5, the melt 14 is heated with a high-temperature combustion gas supplied from a combustion gas supply device 17 such as a burner, and a trace amount contained in the melt. The carbon 14 and the like are gasified and removed, and the melt 14 is discharged as molten slag and molten metal from the melt outlet 14H.

トンネル式加熱炉4から高温反応炉5に装入された熱分解ガスと、ガス化溶融炉5bの廃棄物堆積層12から発生したガスとは、高温反応炉5の上部(ガス改質炉5a)で一部が燃焼されて、ガス温度を1200℃以上にした領域で2秒以上滞留されて、一酸化炭素と水素、水蒸気、二酸化炭素を主に含むガスに改質され、改質ガスは旋回流42となり、過度に改質炉の炉壁を加熱することなく、発生ガス排出口41からガスダクト40に排出され急冷装置30での冷却、ガス精製装置31での精製の後、燃料用の精製ガス33として回収される。
このようにして、廃棄物11を部分酸化・ガス化、溶融することによって、ガス改質炉の炉壁の消耗を抑制しながら廃棄物の処理を行う。
The pyrolysis gas charged into the high-temperature reactor 5 from the tunnel heating furnace 4 and the gas generated from the waste deposition layer 12 of the gasification melting furnace 5b are the upper part of the high-temperature reactor 5 (gas reforming furnace 5a). ) Is partly combusted and is retained for 2 seconds or more in the region where the gas temperature is 1200 ° C. or higher, and is reformed into a gas mainly containing carbon monoxide, hydrogen, water vapor, and carbon dioxide. It becomes a swirl flow 42 and is discharged to the gas duct 40 from the generated gas discharge port 41 without excessively heating the furnace wall of the reforming furnace. After cooling in the quenching device 30 and purification in the gas purification device 31, it is used for fuel. It is recovered as purified gas 33.
In this way, the waste 11 is treated by partially oxidizing, gasifying and melting the waste 11 while suppressing the consumption of the furnace wall of the gas reforming furnace.

本発明によれば、炉壁耐火物の損傷を防ぐことができ、ガス化改質炉等を長期にわたって安定して操業することができるので廃棄物ガス化装置において好適に使用することができる。   According to the present invention, damage to the furnace wall refractory can be prevented, and the gasification reforming furnace and the like can be stably operated over a long period of time, so that it can be suitably used in a waste gasifier.

1 圧縮装置
2 圧縮用ピストン
3 圧縮支持盤
4 トンネル式加熱炉
4a 圧縮成形物の乾燥領域
4b 圧縮成形物の熱分解領域
4e トンネル式加熱炉の入口(圧縮成形物の入口)
4f トンネル式加熱炉の出口(乾燥された圧縮生成物の出口)
5 高温反応炉
5a ガス化溶融炉
5b ガス改質炉
6a、6b 加熱用高温ガスの流通パイプ
10a、10i 圧縮成形物
11 廃棄物
11i、11n 乾燥された圧縮生成物
12 廃棄物堆積層
14 溶融物
14H 溶融物排出口
15 ガス化溶融炉酸素含有ガス供給管
15a ガス化溶融炉酸素含有ガス供給口
16 溶融物加熱・保温炉
16e 溶融物加熱・保温炉の入口(溶融物の入口)
17 燃焼ガス供給装置(バーナ)
17a 燃焼ガス供給口
18 改質ガス排出口
19 ガスダクト
20 廃棄物投入口
21 廃棄物投入口の蓋
30 高温反応炉改質ガスの急冷装置
31 ガス精製装置
32 改質ガス排出口
33 精製ガス
40 ガスダクト
41 改質ガス排出口
42 旋回流
44 ガス改質炉酸素含有ガス供給管
44a ガス改質炉酸素含有ガス供給口
45 高温火点
圧縮成形物の移動方向
乾燥された圧縮成形物の移動方向
トンネル式加熱炉内で生成した熱分解ガスの流れ方向
ガス化溶融炉下部への酸素含有ガスの吹き込み方向
圧縮用ピストンの移動方向
圧縮支持盤の移動方向
廃棄物投入口の蓋の回転方向
DESCRIPTION OF SYMBOLS 1 Compression apparatus 2 Piston for compression 3 Compression support board 4 Tunnel-type heating furnace 4a Drying area | region 4b of a compression molding product Thermal decomposition area | region 4e of a compression molding object Inlet of a tunnel type heating furnace (inlet of a compression molding object)
4f Tunnel heating furnace outlet (extruded dried product outlet)
DESCRIPTION OF SYMBOLS 5 High temperature reaction furnace 5a Gasification melting furnace 5b Gas reforming furnace 6a, 6b Flow pipe 10a, 10i for heating High temperature gas Compression molding 11 Waste 11i, 11n Dried compressed product 12 Waste deposition layer 14 Melt 14H Melt discharge port 15 Gasification melting furnace oxygen-containing gas supply pipe 15a Gasification melting furnace oxygen-containing gas supply port 16 Melt heating / warming furnace 16e Melt heating / warming furnace inlet (melt inlet)
17 Combustion gas supply device (burner)
17a Combustion gas supply port 18 Reformed gas discharge port 19 Gas duct 20 Waste input port 21 Waste input port cover 30 High-temperature reactor reformed gas quenching device 31 Gas purification device 32 Reformed gas discharge port 33 Purified gas 40 Gas duct 41 Reformed gas outlet 42 Swivel flow 44 Gas reforming furnace oxygen-containing gas supply pipe 44a Gas reforming furnace oxygen-containing gas supply port 45 High-temperature fire point f 1 Direction of movement of compression molding f 2 of dried compression molding Movement direction f 3 Flow direction of pyrolysis gas generated in the tunnel type heating furnace f 4 Direction of blowing oxygen-containing gas into the lower part of the gasification melting furnace f 5 Direction of movement of compression piston f 6 Direction of movement of compression support plate f 7 Rotation direction of lid of waste input port

Claims (3)

廃棄物を部分酸化・ガス化、溶融するガス化溶融炉と、ガス化溶融炉の上部に接続して設けられ酸素含有ガス供給口を有しガス化溶融炉で生成したガスを改質する円筒形状のガス改質炉とを有する廃棄物処理装置において、ガス改質炉からガスを排出するガスダクトがガス改質炉の頂部周壁に設けられており、ガス改質炉の水平断面におけるガスダクトの方向が、下記(A)及び(B)のいずれかの条件を満たしており、ガス改質炉内に旋回流を形成するようになっていることを特徴とする廃棄物処理装置。
(A)接線方向であること、
(B)ガス改質炉の中心からガスダクトの設けられた頂部周壁の位置に向かう方向に対して所定角度偏向した方向であること
A gasification melting furnace that partially oxidizes, gasifies and melts waste, and a cylinder that is connected to the upper part of the gasification melting furnace and has an oxygen-containing gas supply port to reform the gas generated in the gasification melting furnace In a waste treatment apparatus having a gas reforming furnace having a shape, a gas duct for discharging gas from the gas reforming furnace is provided on the top peripheral wall of the gas reforming furnace, and the direction of the gas duct in the horizontal section of the gas reforming furnace Satisfies the following conditions (A) and (B), and forms a swirl flow in the gas reforming furnace.
(A) being tangential,
(B) The direction is a predetermined angle with respect to the direction from the center of the gas reforming furnace toward the position of the top peripheral wall where the gas duct is provided.
前記酸素含有ガス供給口の先端位置がガス改質炉内壁からガス改質炉半径の10%以上30%以下の距離だけ中心側であることを特徴とする請求項1に記載の廃棄物処理装置。   2. The waste treatment apparatus according to claim 1, wherein the front end position of the oxygen-containing gas supply port is a center side from the inner wall of the gas reforming furnace by a distance of 10% to 30% of the radius of the gas reforming furnace. . 前記酸素含有ガス供給口は、酸素含有ガス供給口が設けられた炉周壁の位置からガス改質炉中心に向かう方向に対して1度以上7度以下の角度だけ偏向した方向で設けられていることを特徴とする請求項2に記載の廃棄物処理装置。

The oxygen-containing gas supply port is provided in a direction deflected by an angle of not less than 1 degree and not more than 7 degrees with respect to the direction from the position of the peripheral wall of the furnace where the oxygen-containing gas supply port is provided toward the center of the gas reforming furnace. The waste treatment apparatus according to claim 2, wherein

JP2009067260A 2009-03-19 2009-03-19 Waste disposal device Pending JP2010216781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067260A JP2010216781A (en) 2009-03-19 2009-03-19 Waste disposal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067260A JP2010216781A (en) 2009-03-19 2009-03-19 Waste disposal device

Publications (1)

Publication Number Publication Date
JP2010216781A true JP2010216781A (en) 2010-09-30

Family

ID=42975813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067260A Pending JP2010216781A (en) 2009-03-19 2009-03-19 Waste disposal device

Country Status (1)

Country Link
JP (1) JP2010216781A (en)

Similar Documents

Publication Publication Date Title
JP5458219B2 (en) Waste melting treatment method and coal coke usage reduction method for waste melting furnace
SK288020B6 (en) Reactor and method for gasifying and/or melting materials
AU2019387395B2 (en) Reactor and process for gasifying and/or melting of feed materials
JP2013234835A (en) Gasification melting furnace and method for treating combustible material using the same
US11788021B2 (en) Reactor and process for gasifying and/or melting of feed materials
JP3733831B2 (en) Waste treatment facility
JP2010216781A (en) Waste disposal device
JP2004277647A (en) Process for gasification of waste product and installation therefor
EP3660132A1 (en) Reactor and process for gasifying and/or melting of feed materials
JP5391770B2 (en) Waste treatment apparatus and waste treatment method
JP2003262319A (en) Gasification melting system and gasification melting method
JP5569666B2 (en) Fuel gas reforming method
KR102641684B1 (en) A slag discharge device
EP4026885A1 (en) Reactor and process for gasifying and/or melting of feed materials and for the production of hydrogen
JP2001205244A (en) Waste treatment method
US20230012258A1 (en) Waste processing system
JP2009298909A (en) Utilizing method of pyrolysis char as carbonaceous material for sintering
JP6100097B2 (en) Waste melting treatment method
JP2006112714A (en) Waste gasifying reforming furnace
JP2008264689A (en) Treatment method of waste
JPH0979532A (en) Melting furnace
OA20314A (en) Reactor and process for gasifying and/or melting of feed materials.
EA042311B1 (en) REACTOR AND METHOD FOR GASIFICATION AND/OR MELTING OF RAW MATERIALS
JP2012145272A (en) Waste gasification melting treatment method
JP2005226027A (en) Waste treating method and waste treating apparatus