JP2010216777A - Refrigerating machine, and refrigerating and air-conditioning system - Google Patents

Refrigerating machine, and refrigerating and air-conditioning system Download PDF

Info

Publication number
JP2010216777A
JP2010216777A JP2009067230A JP2009067230A JP2010216777A JP 2010216777 A JP2010216777 A JP 2010216777A JP 2009067230 A JP2009067230 A JP 2009067230A JP 2009067230 A JP2009067230 A JP 2009067230A JP 2010216777 A JP2010216777 A JP 2010216777A
Authority
JP
Japan
Prior art keywords
cold water
evaporator
cooling
refrigerant
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009067230A
Other languages
Japanese (ja)
Other versions
JP5315102B2 (en
Inventor
Takanori Sekimoto
孝徳 磧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009067230A priority Critical patent/JP5315102B2/en
Publication of JP2010216777A publication Critical patent/JP2010216777A/en
Application granted granted Critical
Publication of JP5315102B2 publication Critical patent/JP5315102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating machine, and a refrigerating and air-conditioning system including the same, capable of being properly operated even when a plurality of evaporators are connected to one compressor and one condenser. <P>SOLUTION: In this refrigerating machine R including the compressor 4, the condenser 2 and an evaporating section 10, the evaporating section 10 has the plurality of evaporators 11, 12 disposed in parallel with each other, and the evaporators 11, 12 are constituted to be communicatable to each other. This refrigerating and air-conditioning system includes the refrigerating machine R, a heat storage tank 7 storing cold of cooled brine, an air conditioner 5 cooling the air by heat exchange between the cooled cold water and the air, a heat exchanger 6 cooling the cold water introduced to the air conditioner by the cold stored in the heat storage tank 7, a first cold water circulation flow channel C1, a second cold water circulation flow channel C2, and a cold water flow channel control mechanism for controlling a circulation state of the cold water to each of the cold water circulation flow channels C1, C2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は冷凍機及び冷凍空調システムに係り、特に複数の蒸発器を有するターボ冷凍機及びこれを用いた冷凍空調システムに関する。   The present invention relates to a refrigerator and a refrigeration air conditioning system, and more particularly, to a turbo chiller having a plurality of evaporators and a refrigeration air conditioning system using the same.

従来、冷凍機の蒸発器に冷水を導入して冷却し、冷却された冷水を空調機に導入して空調を行う冷凍空調システムが存在する。また、図3に示すように、冷凍機R′と空調機5′との間に蓄熱槽7′と熱交換器6′とを配置し、冷凍機R′の蒸発器12′にブラインを導入して冷却し、冷却されたブラインを蓄熱槽7′に導入して蓄熱し、空調時にこの蓄冷熱によって空調を行う冷凍空調システムも存在する。   Conventionally, there is a refrigerating and air-conditioning system in which cold water is introduced into an evaporator of a refrigerator and cooled, and the cooled cold water is introduced into an air conditioner for air conditioning. Further, as shown in FIG. 3, a heat storage tank 7 'and a heat exchanger 6' are arranged between the refrigerator R 'and the air conditioner 5', and brine is introduced into the evaporator 12 'of the refrigerator R'. There is also a refrigerating and air-conditioning system in which the cooled brine is introduced into the heat storage tank 7 'to store heat, and air conditioning is performed by the cold storage heat during air conditioning.

ところで、ブラインは、水と比較して蓄熱効率は高いものの、流体自体の熱伝導率は低いものである。従って、蓄冷熱が無い状態で空調を行う場合、熱伝導率の低いブラインを冷却して間接的に空調を行うこととなるため、運転効率が悪くなる。つまり同じ冷凍熱量を取り出す場合、消費電力も大きくなる。   By the way, although brine has a higher heat storage efficiency than water, the fluid itself has a low thermal conductivity. Therefore, when air conditioning is performed in a state where there is no cold storage heat, a brine having a low thermal conductivity is cooled to indirectly perform air conditioning, resulting in poor operating efficiency. That is, when taking out the same amount of refrigeration heat, the power consumption increases.

ここで、同じ空調機に対して冷水冷却用の冷凍機とブライン冷却用の冷凍機とを一つずつ設け、通常時は蓄冷熱を利用して空調を行い、蓄冷熱が無い場合には冷水によって空調を行えばよいのであるが、これでは空調設備がコストアップするという問題や設置面積を多く必要とするという問題が生じる。   Here, a cold water cooling refrigerator and a brine cooling refrigerator are provided for the same air conditioner one by one, and air conditioning is normally performed using cold storage heat, and cold water is stored when there is no cold storage heat. However, there is a problem that the cost of the air conditioning equipment increases and a problem that a large installation area is required.

このような問題を解決すべく、圧縮機及び凝縮器をそれぞれ一つずつ有するとともに、冷水冷却用の蒸発器とブライン冷却用の蒸発器とが並列に配置された冷凍機が提案されている(例えば、特許文献1)。この冷凍空調システムでは、冷水の冷却を行う場合には冷水冷却用蒸発器を利用し、ブラインの冷却を行う場合にはブライン冷却用の蒸発器を利用することとしている。   In order to solve such problems, there has been proposed a refrigerator having one compressor and one condenser, and an evaporator for cooling cold water and an evaporator for brine cooling arranged in parallel ( For example, Patent Document 1). In this refrigeration air conditioning system, when cooling cold water, an evaporator for cooling cold water is used, and when cooling brine, an evaporator for cooling brine is used.

特開2008−267775号公報JP 2008-267775 A

しかしながら、一つの圧縮機及び凝縮器に対して複数の蒸発器を接続すると、各蒸発器の圧力や冷媒液の液面高さなどが原因となって一方の蒸発器から他方の蒸発器へ冷媒が流入するなどし、冷凍機を良好に運転することができないという問題がある。特許文献1のものは、この点に関する解決策は開示されていない。   However, when a plurality of evaporators are connected to one compressor and condenser, the refrigerant from one evaporator to the other is caused by the pressure of each evaporator or the liquid level of the refrigerant liquid. There is a problem that the refrigerator cannot be operated satisfactorily. The thing of patent document 1 is not disclosing the solution regarding this point.

また、このような問題は、各蒸発器が冷水冷却用及びブライン冷却用といったように異なる種類のものである場合に限られず、同種の蒸発器においても当てはまるものである。   Such a problem is not limited to the case where each evaporator is of a different type, such as for cooling cold water or for cooling brine, but also applies to the same type of evaporator.

そこで、本発明は、一つの圧縮機及び凝縮器に対して複数の蒸発器を接続した場合であっても良好に運転することができる冷凍機、及び、そのような冷凍機を備えた冷凍空調システムを提供することを目的とする。   Accordingly, the present invention provides a refrigerator that can be operated satisfactorily even when a plurality of evaporators are connected to one compressor and a condenser, and a refrigerating air conditioner equipped with such a refrigerator. The purpose is to provide a system.

本発明に係る冷凍機は、圧縮機と凝縮器と蒸発部とを順次配管によって接続して冷凍サイクルが構成される冷凍機において、前記蒸発部は、並列に配置される複数の蒸発器を備えて構成され、各蒸発器は、互いに連通可能に構成されることを特徴とする。   A refrigerator according to the present invention is a refrigerator in which a refrigeration cycle is configured by sequentially connecting a compressor, a condenser, and an evaporator through piping, and the evaporator includes a plurality of evaporators arranged in parallel. Each evaporator is configured to be able to communicate with each other.

このようにすれば、必要に応じて各蒸発器を互いに連通させることにより、冷媒の偏りや各蒸発器内の圧力の違いに起因して冷凍機が良好に運転できなくなることを防止することができる。   In this way, by connecting the evaporators to each other as necessary, it is possible to prevent the refrigerator from being unable to operate satisfactorily due to a refrigerant bias or a difference in pressure in each evaporator. it can.

また、前記冷凍機は、前記各蒸発器を連通させて、各蒸発器内の冷媒液を流通可能に構成されることが好ましい。このようにすれば、例えば特定の蒸発器内の冷媒液が過剰となるか又は不足したとしても、この状態を解消することができる。   Moreover, it is preferable that the said refrigerator is comprised so that the said each evaporator can be connected and the refrigerant | coolant liquid in each evaporator can be distribute | circulated. In this way, even if the refrigerant liquid in a specific evaporator becomes excessive or insufficient, for example, this state can be solved.

また、前記冷凍機は、前記各蒸発器を連通させて、各蒸発器内の気体を流通可能に構成されることが好ましい。このようにすれば、例えば特定の蒸発器内の圧力が高くなり過ぎるか又は低くなり過ぎたとしても、この状態を解消することができる。   Moreover, it is preferable that the said refrigerator is comprised so that the gas in each evaporator can be distribute | circulated by connecting each said evaporator. In this way, even if the pressure in a specific evaporator becomes too high or too low, this state can be eliminated.

また、前記各蒸発器は、開閉機構を備える配管によって接続されることが好ましい。このようにすれば、通常時は開閉機構を閉として各蒸発器間を遮断しておき、必要に応じて開閉機構を開として各蒸発器間を互いに連通させるといった制御を行うことができる。   Moreover, it is preferable that each said evaporator is connected by piping provided with an opening-closing mechanism. In this way, it is possible to normally perform control such that the opening / closing mechanism is closed and the evaporators are shut off, and the opening / closing mechanism is opened and the evaporators communicate with each other as necessary.

また、前記蒸発器同士は、各蒸発器内の冷媒液を流通可能な冷媒液流通用配管と、各蒸発器内の気体を流通可能な気体流通用配管とによって接続されることが好ましい。このようにすれば、冷媒液の量の異常や各蒸発器内の圧力の異常といった状況に、冷媒液流通用配管や気体流通用配管によって対応することができる。   The evaporators are preferably connected to each other by a refrigerant liquid distribution pipe capable of circulating the refrigerant liquid in each evaporator and a gas distribution pipe capable of flowing a gas in each evaporator. If it does in this way, it can respond to the situation, such as abnormality of the quantity of a refrigerant liquid, and the abnormality of the pressure in each evaporator by the piping for refrigerant liquid distribution, or the pipe for gas distribution.

また、前記冷凍機は、前記冷媒液流通用配管には冷媒液を送るポンプが設けられることが好ましい。このようにすれば、蒸発器間で冷媒液を迅速に輸送することができる。また、例えば蒸発器間の圧力差がポンプの揚程を超えて輸送が行えなくなった場合にも、気体流通用配管が設けられていれば、各蒸発器内の気体を流通させることによって圧力差を小さくし、ポンプを良好に動作させることができる。   Moreover, it is preferable that the said refrigerator is provided with the pump which sends a refrigerant | coolant liquid to the said piping for refrigerant | coolant liquid distribution | circulation. In this way, the refrigerant liquid can be quickly transported between the evaporators. In addition, for example, even if the pressure difference between the evaporators exceeds the pump head and transportation becomes impossible, if the gas distribution pipe is provided, the pressure difference is reduced by circulating the gas in each evaporator. The pump can be operated well by reducing the size.

また、前記蒸発部は、冷水を冷却する冷水冷却用の蒸発器と、ブラインを冷却するブライン冷却用の蒸発器とを備えて構成されることが好ましい。このようにすれば、通常時は蓄冷熱を利用して空調を行い、蓄冷熱が無い場合には冷水によって空調を行うといった冷凍空調システムを一つの冷凍機を用いて実現することができる。   Moreover, it is preferable that the said evaporation part is comprised including the evaporator for cold water cooling which cools cold water, and the evaporator for brine cooling which cools a brine. In this way, it is possible to realize a refrigerating and air conditioning system in which air conditioning is performed using cold storage heat during normal times and air conditioning is performed using cold water when there is no cold storage heat using a single refrigerator.

また、前記冷凍機は、前記各蒸発器に対する冷媒の流通経路を制御する冷媒流路制御機構を備えることが好ましい。このようにすれば、冷凍機を運転する際に用いる蒸発器を選択したり、各蒸発器ごとに運転量を変えるといった制御が可能となる。   Moreover, it is preferable that the said refrigerator is provided with the refrigerant | coolant flow path control mechanism which controls the distribution channel of the refrigerant | coolant with respect to each said evaporator. In this way, it is possible to perform control such as selecting an evaporator to be used when operating the refrigerator or changing the operation amount for each evaporator.

具体的には、前記冷媒流路制御機構は、各蒸発器のうちいずれか一方を冷媒が流通するように冷媒流路を切り換える構成が考えられる。また、この他にも、前記冷媒流路制御機構は、各蒸発器を流通する冷媒の比率を調整する構成が考えられる。   Specifically, the refrigerant channel control mechanism may be configured to switch the refrigerant channel so that the refrigerant flows through one of the evaporators. In addition, the refrigerant flow path control mechanism may be configured to adjust the ratio of refrigerant flowing through each evaporator.

また、本発明に係る冷凍空調システムは、圧縮機と凝縮器と蒸発部とを順次配管によって接続して冷凍サイクルが構成され、前記蒸発部は、冷水を冷却する冷水冷却用の蒸発器及びブラインを冷却するブライン冷却用の蒸発器によって構成されるとともに、各蒸発器が並列に配置され且つ互いに連通可能に構成される冷凍機と、前記冷凍機によって冷却されたブラインの冷熱を蓄熱する蓄熱槽と、冷却された冷水と空気とを熱交換させて空気を冷却する空調機と、前記蓄熱槽に蓄熱された冷熱によって空調機に導入される冷水を冷却する熱交換器と、前記冷水冷却用の蒸発器と空調機との間に形成される第1の冷水循環流路と、前記熱交換器と空調機との間に形成される第2の冷水循環流路と、前記各冷水循環流路に対する冷水の流通状態を制御する冷水流路制御機構とを備えることを特徴とする。   In the refrigeration air conditioning system according to the present invention, a compressor, a condenser, and an evaporation unit are sequentially connected by a pipe to form a refrigeration cycle, and the evaporation unit includes an evaporator and a brine for cooling cold water for cooling cold water. A refrigerating machine configured with a brine cooling evaporator that cools the evaporator, the evaporators being arranged in parallel and capable of communicating with each other, and a heat storage tank that stores the cold heat of the brine cooled by the refrigerating machine An air conditioner that cools the air by heat-exchanging the cooled cold water and air, a heat exchanger that cools the cold water introduced into the air conditioner by the cold heat stored in the heat storage tank, and the cold water cooling A first chilled water circulation passage formed between the evaporator and the air conditioner, a second chilled water circulation passage formed between the heat exchanger and the air conditioner, and the chilled water circulation flows. The flow of cold water to the road Characterized in that it comprises a cold water passage control mechanism Gosuru.

このようにすれば、必要に応じて各蒸発器を互いに連通させることにより、冷媒の偏りや各蒸発器内の圧力の違いに起因して冷凍機が良好に運転できなくなることを防止することができる。また、一つの冷凍機によって、蓄冷熱を利用して空調を行う運転及び冷水によって空調を行う運転の両方を実現することができる。   In this way, by connecting the evaporators to each other as necessary, it is possible to prevent the refrigerator from being unable to operate satisfactorily due to a refrigerant bias or a difference in pressure in each evaporator. it can. Moreover, both the operation | movement which air-conditions using cold storage heat | fever, and the operation | movement which air-conditions by cold water are realizable by one refrigerator.

また、前記冷凍空調システムは、前記冷水冷却用の蒸発器から前記空調機へ向かう配管と、前記熱交換器から前記空調機へ向かう配管とが空調機の前段で合流し、且つ、前記空調機から前記冷水冷却用の蒸発器へ向かう配管と、前記空調機から前記熱交換器へ向かう配管とが空調機の後段で分岐するように設けられることが好ましい。   The refrigerating and air-conditioning system includes a pipe from the evaporator for cooling cold water to the air conditioner and a pipe from the heat exchanger to the air conditioner joined at a front stage of the air conditioner, and the air conditioner It is preferable that a pipe from the air conditioner to the evaporator for cooling the cold water and a pipe from the air conditioner to the heat exchanger are branched at the rear stage of the air conditioner.

このようにすれば、前記第1の冷水循環流路と第2の冷水循環流路とを一部集約することができ、蓄冷熱を利用して空調を行う運転及び冷水によって空調を行う運転が可能な冷凍空調システムをコンパクトな構造で実現することができる。   In this way, the first chilled water circulation channel and the second chilled water circulation channel can be partially integrated, and an operation for performing air conditioning using cold storage heat and an operation for performing air conditioning with cold water can be performed. A possible refrigeration and air conditioning system can be realized with a compact structure.

また、前記冷水流路制御機構は、冷水冷却用の蒸発器からの冷水のみが空調機に導入される状態と、熱交換器からの冷水のみが空調機に導入される状態とを切り換えることが好ましい。このようにすれば、通常時は蓄冷熱を利用して空調を行い、蓄冷熱が無い場合には冷水によって空調を行うことができる。   The cold water flow path control mechanism can switch between a state in which only cold water from the evaporator for cooling cold water is introduced into the air conditioner and a state in which only cold water from the heat exchanger is introduced into the air conditioner. preferable. If it does in this way, air conditioning can be performed normally using cold storage heat, and when there is no cold storage heat, it can air-condition with cold water.

また、前記冷水流路制御機構は、第1の冷水循環流路を流れる冷水と第2の冷水循環流路各蒸発器を流れる冷水の比率を調整するものであってもよい。このようにすれば、蓄冷熱を利用して空調を行う運転と、冷水によって空調を行う運転とを組み合わせて同時に行うことができる。   The cold water flow path control mechanism may adjust a ratio of the cold water flowing through the first cold water circulation flow path and the cold water flowing through each evaporator of the second cold water circulation flow path. If it does in this way, the operation which air-conditions using cold storage heat and the operation which air-conditions with cold water can be combined, and it can carry out simultaneously.

本発明によれば、一つの圧縮機及び凝縮器に対して複数の蒸発器を接続した場合であっても良好に運転することができる冷凍機、及び、そのような冷凍機を備えた冷凍空調システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where several evaporators are connected with respect to one compressor and a condenser, the refrigerator which can be drive | operated favorably, and refrigeration air conditioning provided with such a refrigerator A system can be provided.

本発明の一実施形態に係る冷凍機を示す図。The figure which shows the refrigerator which concerns on one Embodiment of this invention. 本発明の一実施形態に係る冷凍機を用いた冷凍空調システムを示す図。The figure which shows the refrigeration air conditioning system using the refrigerator which concerns on one Embodiment of this invention. 従来の冷凍機を用いた冷凍空調システムを示す図。The figure which shows the freezing air-conditioning system using the conventional freezer.

本発明の一実施形態を図1及び図2を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は、本実施形態に係る冷凍機の全体構成を示したものである。図1において、本実施形態に係る冷凍機は、圧縮機(ターボ圧縮機)4と凝縮器2と蒸発部10とを順次配管によって接続して冷凍サイクルが構成される。また、凝縮器2と蒸発部10との間には、圧縮機4へ冷媒ガスを注入する中間冷却器3が設けられている。   FIG. 1 shows the overall configuration of a refrigerator according to this embodiment. In FIG. 1, the refrigerator which concerns on this embodiment connects the compressor (turbo compressor) 4, the condenser 2, and the evaporation part 10 by piping sequentially, and comprises a refrigerating cycle. An intermediate cooler 3 that injects refrigerant gas into the compressor 4 is provided between the condenser 2 and the evaporator 10.

前記凝縮器2は、冷却水が導入される熱交換器2Xを備える。凝縮器2では、冷却水導入配管21から熱交換器2Xに冷却水が導入され、この冷却水によって冷媒ガスが冷却されて冷媒液となる。熱交換器2Xにおいて冷媒を冷却した冷却水は、冷却水導出配管22によって導出される。凝縮器2には、冷媒液の液量を検出する液量検出部としての液面検出用センサ2aが設けられている。   The condenser 2 includes a heat exchanger 2X into which cooling water is introduced. In the condenser 2, cooling water is introduced from the cooling water introduction pipe 21 to the heat exchanger 2 </ b> X, and the refrigerant gas is cooled by this cooling water to become a refrigerant liquid. The cooling water that has cooled the refrigerant in the heat exchanger 2 </ b> X is led out by the cooling water lead-out pipe 22. The condenser 2 is provided with a liquid level detection sensor 2a as a liquid amount detection unit that detects the amount of refrigerant liquid.

中間冷却器3は、冷媒液の液量を検出する液量検出部としての液面検出用センサ3aを備える。また、中間冷却器3から圧縮機4へ向かう配管には、冷媒ガス電動弁3bが設けられる。冷媒ガス電動弁3bは、開閉弁によって構成される。なお、中間冷却器3は必須の構成ではなく、これが設けられないものであってもよい。   The intercooler 3 includes a liquid level detection sensor 3a as a liquid amount detection unit that detects the amount of refrigerant liquid. In addition, a refrigerant gas motor-operated valve 3 b is provided in a pipe from the intermediate cooler 3 to the compressor 4. The refrigerant gas motor-operated valve 3b is constituted by an on-off valve. Note that the intercooler 3 is not an essential component and may not be provided.

また、凝縮器2から中間冷却器3へ向かう配管には、膨張弁2cが設けられる。膨張弁2cは、流量調整弁によって構成される。   In addition, an expansion valve 2 c is provided in the piping from the condenser 2 to the intermediate cooler 3. The expansion valve 2c is configured by a flow rate adjustment valve.

次に、前記蒸発部10について説明する。蒸発部10は、並列に配置される複数の蒸発器(冷水冷却用の蒸発器11及びブライン冷却用の蒸発器12)を備えて構成される。   Next, the evaporation unit 10 will be described. The evaporation unit 10 includes a plurality of evaporators (an evaporator 11 for cooling cold water and an evaporator 12 for cooling brine) arranged in parallel.

冷水冷却用の蒸発器11は、冷水が導入される熱交換器11Xを備える。冷水冷却用の蒸発器11では、冷水導入配管13から熱交換器11Xに冷水が導入され、この冷水によって冷媒液が蒸発して冷媒ガスとなる。熱交換器11Xにおいて冷却された冷水は、冷水導出配管14によって導出される。冷水冷却用の蒸発器11には、冷媒液の液量を検出する液量検出部としての液面検出用センサ1aが設けられている。また、冷水冷却用の蒸発器11には、内部の圧力を検出する圧力検出部としての圧力センサ1hが設けられている。   The evaporator 11 for cooling cold water includes a heat exchanger 11X into which cold water is introduced. In the evaporator 11 for cooling cold water, cold water is introduced into the heat exchanger 11X from the cold water introduction pipe 13, and the refrigerant liquid is evaporated by this cold water to become refrigerant gas. The cold water cooled in the heat exchanger 11X is led out by the cold water lead-out pipe 14. The evaporator 11 for cooling cold water is provided with a liquid level detecting sensor 1a as a liquid amount detecting unit for detecting the liquid amount of the refrigerant liquid. Moreover, the evaporator 11 for cooling cold water is provided with a pressure sensor 1h as a pressure detector for detecting the internal pressure.

ブライン冷却用の蒸発器12は、ブラインが導入される熱交換器12Xを備える。ブライン冷却用の蒸発器12では、ブライン導入配管15から熱交換器12Xにブラインが導入され、このブラインによって冷媒液が蒸発して冷媒ガスとなる。熱交換器12Xにおいて冷却された冷水は、ブライン導出配管16によって導出される。ブライン冷却用の蒸発器12には、冷媒液の液量を検出する液量検出部としての液面検出用センサ1bが設けられている。また、ブライン冷却用の蒸発器12には、内部の圧力を検出する圧力検出部としての蒸発器圧力センサ1iが設けられている。   The evaporator 12 for cooling the brine includes a heat exchanger 12X into which brine is introduced. In the evaporator 12 for cooling the brine, the brine is introduced from the brine introduction pipe 15 to the heat exchanger 12X, and the refrigerant liquid is evaporated by this brine to become refrigerant gas. The cold water cooled in the heat exchanger 12X is led out by the brine lead-out pipe 16. The brine cooling evaporator 12 is provided with a liquid level detection sensor 1b as a liquid amount detection unit for detecting the liquid amount of the refrigerant liquid. Moreover, the evaporator 12 for brine cooling is provided with an evaporator pressure sensor 1i as a pressure detector for detecting the internal pressure.

なお、ブラインとしては、蓄熱効率の高い液体が利用される。また、ブラインとしては、0℃でも凍結しない不凍液が好ましいが、これに限定されるものではない。   As the brine, a liquid having high heat storage efficiency is used. The brine is preferably an antifreeze that does not freeze even at 0 ° C., but is not limited thereto.

ところで、ブライン冷却用の蒸発器12は、冷水冷却用の蒸発器11よりも大きい容積(具体的には、約2倍の容積)を有する。これは、ブラインが水に比べて熱伝導率が小さいために、冷却にはより多くの冷媒を要するからである。従って、ブライン冷却用の蒸発器12には、冷水冷却用の蒸発器11よりも大量(具体的には、約3倍)の冷媒を導入可能に構成される。   By the way, the brine cooling evaporator 12 has a larger volume (specifically, about twice the volume) than the cold water cooling evaporator 11. This is because brine requires less refrigerant for cooling because brine has a lower thermal conductivity than water. Accordingly, the brine cooling evaporator 12 is configured to be able to introduce a larger amount (specifically, about three times) of the refrigerant than the cold water cooling evaporator 11.

また、各蒸発器11,12は、互いに連通可能に構成される。具体的には、冷凍機Rは、各蒸発器11,12を連通させて、各蒸発器11,12内の冷媒液を流通可能に構成される。また、冷凍機Rは、各蒸発器11,12を連通させて、各蒸発器11,12内の気体を流通可能に構成される。より具体的には、各蒸発器11,12は、気体流通用配管1jによって接続されている。気体流通用配管1jには、蒸発器圧力調整用の電動弁1eが設けられている。   The evaporators 11 and 12 are configured to communicate with each other. Specifically, the refrigerator R is configured to allow the refrigerant liquid in the evaporators 11 and 12 to flow by communicating the evaporators 11 and 12. In addition, the refrigerator R is configured to allow the gas in each of the evaporators 11 and 12 to flow by communicating the evaporators 11 and 12. More specifically, the evaporators 11 and 12 are connected by a gas distribution pipe 1j. The gas distribution pipe 1j is provided with an electric valve 1e for adjusting the evaporator pressure.

また、各蒸発器11,12は、開閉機構を備える配管によって接続される。具体的には、各蒸発器11,12は、冷媒液流通用配管1k,1lによって接続されている。冷媒液流通用配管1kには、蒸発器11,12間の仕切弁3f及び冷媒輸送用ポンプ1gが設けられている。また、冷媒液流通用配管1lには、冷媒輸送用ポンプ1f及び蒸発器11,12間の仕切弁3eが設けられている。   Moreover, each evaporator 11 and 12 is connected by piping provided with an opening-and-closing mechanism. Specifically, the evaporators 11 and 12 are connected by refrigerant liquid circulation pipes 1k and 1l. The refrigerant liquid distribution pipe 1k is provided with a gate valve 3f between the evaporators 11 and 12, and a refrigerant transport pump 1g. Further, the refrigerant liquid circulation pipe 1 l is provided with a refrigerant transport pump 1 f and a gate valve 3 e between the evaporators 11 and 12.

なお、冷媒液流通用配管は、一つだけ設けられるものであってもよく、その場合には、この冷媒液流通用配管に冷媒を両方向に輸送可能な冷媒輸送用ポンプが設けられる構成が考えられる。また、冷媒輸送用ポンプを用いないでも冷媒を輸送可能な場合には、冷媒液流通用配管に冷媒輸送用ポンプが設けられないものであってもよい。   Note that only one refrigerant liquid circulation pipe may be provided, and in that case, a configuration in which a refrigerant transport pump capable of transporting the refrigerant in both directions is provided in the refrigerant liquid circulation pipe is considered. It is done. Further, when the refrigerant can be transported without using the refrigerant transport pump, the coolant transport pump may not be provided in the coolant liquid circulation pipe.

また、凝縮器2(具体的には、中間冷却器3)から圧縮機4へ向かう冷媒の流通経路は、蒸発器11,12の上流側で分岐し、且つ蒸発器11,12の下流側で合流する。そして、冷水冷却用の蒸発器11を通る冷媒の流通経路には、中間冷却器3−冷水冷却用の蒸発器11間の切換弁3c及び電動弁1cが設けられ、ブライン冷却用の蒸発器12を通る冷媒の流通経路には、中間冷却器3−ブライン冷却用の蒸発器12間の切換弁3d及び電動弁1dが設けられる。   Further, the refrigerant flow path from the condenser 2 (specifically, the intermediate cooler 3) to the compressor 4 branches on the upstream side of the evaporators 11 and 12, and on the downstream side of the evaporators 11 and 12. Join. A switching valve 3c and an electric valve 1c between the intermediate cooler 3 and the evaporator 11 for cooling cold water are provided in the refrigerant flow path passing through the evaporator 11 for cooling cold water, and the evaporator 12 for cooling brine is provided. A switching valve 3d and an electric valve 1d between the intermediate cooler 3 and the evaporator 12 for cooling the brine are provided in the refrigerant flow path passing through.

また、この冷凍機Rは、前記各蒸発器11,12に対する冷媒の流通経路を制御する冷媒流路制御機構を備える。具体的には、前記冷媒流路制御機構は、各蒸発器11,12のうちいずれか一方を冷媒が流通するように冷媒流路を切り換える。この切り換えにより、冷凍機Rは、冷水冷却の際の冷凍サイクルと、ブライン冷却の際の冷凍サイクルとに切り換えられる。   In addition, the refrigerator R includes a refrigerant flow path control mechanism that controls a refrigerant flow path to each of the evaporators 11 and 12. Specifically, the refrigerant channel control mechanism switches the refrigerant channel so that the refrigerant flows through one of the evaporators 11 and 12. By this switching, the refrigerator R is switched between a refrigeration cycle for cooling with cold water and a refrigeration cycle for cooling with brine.

具体的には、前記冷媒流路制御機構は、前記切換弁3c及び電動弁1cと、切換弁3d及び電動弁1dとで構成され、冷水冷却用の蒸発器11に冷媒を流通させる場合には、切換弁3c及び電動弁1cを開とし切換弁3d及び電動弁1dを閉とする一方、ブライン冷却用の蒸発器12に冷媒を流通させる場合には、切換弁3d及び電動弁1dを開とし切換弁3c及び電動弁1cを閉とする。ただし、分岐する2つの流通経路のうち一方を閉とすることができるものであれば、どの弁を閉とするかはこれに限定されるものではない。また、切換弁3c及び電動弁1cや切換弁3d及び電動弁1dを設ける代わりに、中間冷却器3から各蒸発器11,12への配管の分岐点に三方弁を使用してもよい。   Specifically, the refrigerant flow path control mechanism includes the switching valve 3c and the motor-operated valve 1c, the switching valve 3d and the motor-operated valve 1d, and when the refrigerant is circulated through the evaporator 11 for cooling cold water. When the switching valve 3c and the motor-operated valve 1c are opened and the switching valve 3d and the motor-operated valve 1d are closed, when the refrigerant is circulated through the brine cooling evaporator 12, the switching valve 3d and the motor-operated valve 1d are opened. The switching valve 3c and the motor operated valve 1c are closed. However, the valve to be closed is not limited to this as long as one of the two branched flow paths can be closed. Further, instead of providing the switching valve 3c and the motor-operated valve 1c, the switching valve 3d and the motor-operated valve 1d, a three-way valve may be used at a branch point of the pipe from the intermediate cooler 3 to each of the evaporators 11 and 12.

次に、冷水を用いて冷房運転を行う場合の冷凍サイクルを説明する。冷水冷却用の蒸発器11に冷水を流通させて、冷水冷却用の蒸発器11の冷媒と冷水とを熱交換させることによって冷凍能力が得られる。このとき、ブライン冷却用の蒸発器12に接続する電動弁1d及び切換弁3dとは閉状態とされる。また、仕切弁3eと仕切弁3fと電動弁1eは閉状態とされ、ブライン冷却用の蒸発器12へはブラインが導入されない。   Next, a refrigeration cycle when performing cooling operation using cold water will be described. Refrigerating capacity is obtained by circulating cold water through the evaporator 11 for cooling cold water and exchanging heat between the refrigerant of the evaporator 11 for cooling cold water and the cold water. At this time, the electric valve 1d and the switching valve 3d connected to the evaporator 12 for cooling the brine are closed. Further, the gate valve 3e, the gate valve 3f, and the motor-operated valve 1e are closed, and no brine is introduced into the evaporator 12 for cooling the brine.

圧縮機4で圧縮された冷媒ガスは凝縮器2に送られる。凝縮器2に導入された冷媒ガスは、冷やされて冷媒液となる。凝縮器2の冷媒液面は、凝縮器2に設けられる液面検出用センサ2aにより最適位置となるように膨張弁2cを動作させて制御される。そして、冷媒液は、最適な流量で中間冷却器3に流入する。中間冷却器3の冷媒液面は、液面検出用センサ3aにより最適位置となるように切換弁3cを動作させて制御される。そして、冷媒液は、最適な流量で冷水冷却用の蒸発器11に流入する。また、冷水冷却用の蒸発器11に送られた冷媒は、開状態の電動弁1cを経て圧縮機4に送られる。   The refrigerant gas compressed by the compressor 4 is sent to the condenser 2. The refrigerant gas introduced into the condenser 2 is cooled to become a refrigerant liquid. The refrigerant liquid level of the condenser 2 is controlled by operating the expansion valve 2 c so as to be in an optimum position by a liquid level detection sensor 2 a provided in the condenser 2. Then, the refrigerant liquid flows into the intercooler 3 at an optimum flow rate. The refrigerant liquid level of the intercooler 3 is controlled by operating the switching valve 3c so as to be in the optimum position by the liquid level detection sensor 3a. Then, the refrigerant liquid flows into the cold water cooling evaporator 11 at an optimum flow rate. The refrigerant sent to the evaporator 11 for cooling cold water is sent to the compressor 4 through the open motor-operated valve 1c.

また、ブラインを用いて蓄熱運転を実施する場合の冷凍サイクルでは、ブライン冷却用の蒸発器12へブラインを流通させて、ブライン冷却用の蒸発器12の冷媒とブラインとを熱交換させることによって冷凍能力が得られる。このとき、冷水冷却用の蒸発器11に接続する電動弁1cと切換弁3cとは閉状態とされる。また、仕切弁3eと3fと1eは閉状態とされ、冷水冷却用の蒸発器11へは冷水が導入されない。   Further, in the refrigeration cycle when the heat storage operation is performed using brine, the brine is circulated to the evaporator 12 for cooling the brine, and heat is exchanged between the refrigerant of the evaporator 12 for cooling the brine and the brine, thereby freezing. Ability is gained. At this time, the motor-operated valve 1c and the switching valve 3c connected to the evaporator 11 for cooling cold water are closed. The gate valves 3e, 3f, and 1e are closed, and cold water is not introduced into the evaporator 11 for cooling cold water.

なお、圧縮機4から凝縮器2及び中間冷却器3までの動作は冷水を用いて冷房運転を行う場合と同様である。電動弁1dと切換弁3dとは、開状態とされる。最適な流量でブライン冷却用の蒸発器12に流入した冷媒は、開状態の電動弁1dを経て圧縮機4に送られる。   The operation from the compressor 4 to the condenser 2 and the intercooler 3 is the same as that in the case of performing the cooling operation using cold water. The electric valve 1d and the switching valve 3d are opened. The refrigerant that has flowed into the evaporator 12 for cooling the brine at an optimum flow rate is sent to the compressor 4 through the open motor-operated valve 1d.

上述したように、本冷凍機システムは、冷房運転と蓄熱運転での圧縮機4と凝縮器2と中間冷却器3とが共通のため、冷房運転機と蓄熱運転機をそれぞれ2台設置する場合と比較して省スペースとなる。   As described above, since the compressor 4, the condenser 2 and the intermediate cooler 3 in the cooling operation and the heat storage operation are common in the refrigerator system, two cooling operation units and two heat storage operation units are installed. It saves space compared to.

ところで、起動時や運転中に蒸発器11,12中の冷媒液面が高い場合、冷媒が液の状態で圧縮機4に吸込まれて液圧縮運転となり、冷凍機が故障するおそれがある。一方で、冷媒液面が低い場合、蒸発量が少なくなり所定の冷凍能力が得られない。そこで、冷水冷却用の蒸発器11の液面検出用センサ1aとブライン冷却用の蒸発器12の液面検出用センサ1bを用いて運転中の蒸発器11又は12中の冷媒液面が適正となるように液面制御する。   By the way, when the refrigerant liquid level in the evaporators 11 and 12 is high at the time of start-up or during operation, the refrigerant is sucked into the compressor 4 in a liquid state and the liquid compression operation is performed, and the refrigerator may break down. On the other hand, when the refrigerant liquid level is low, the evaporation amount is reduced and a predetermined refrigerating capacity cannot be obtained. Therefore, the coolant level in the evaporator 11 or 12 during operation using the liquid level detection sensor 1a of the evaporator 11 for cooling cold water and the liquid level detection sensor 1b of the evaporator 12 for cooling brine is appropriate. Control the liquid level so that

例えば、冷水冷却用の蒸発器11の運転中に冷水冷却用の蒸発器11の冷媒液面が高くなると、冷媒液流通用配管1jに設けた冷媒輸送用ポンプ1gを作動させ、冷媒液をブライン冷却用の蒸発器12へ輸送する。一方、冷水冷却用の蒸発器11の冷媒液面が低くなると、冷媒輸送用ポンプ1fを作動させ、冷媒液を冷水冷却用の蒸発器11へ輸送する。   For example, if the refrigerant liquid level of the cold water cooling evaporator 11 becomes higher during the operation of the cold water cooling evaporator 11, the refrigerant transport pump 1g provided in the refrigerant liquid circulation pipe 1j is operated, and the refrigerant liquid is washed with brine. It is transported to the evaporator 12 for cooling. On the other hand, when the refrigerant liquid level of the evaporator 11 for cooling cold water becomes low, the refrigerant transport pump 1f is operated to transport the refrigerant liquid to the evaporator 11 for cooling cold water.

同様に、ブライン冷却用の蒸発器12の運転中にブライン冷却用の蒸発器12の冷媒液面が高くなると、冷媒輸送用ポンプ1fを作動させ、冷媒液を冷水冷却用の蒸発器11へ輸送する。ブライン冷却用の蒸発器12の冷媒液面が低くなると、冷媒輸送用ポンプ1gを動作させ、冷媒液をブライン冷却用の蒸発器12へ輸送する。   Similarly, when the refrigerant liquid level of the brine cooling evaporator 12 becomes high during the operation of the brine cooling evaporator 12, the refrigerant transport pump 1f is operated to transport the refrigerant liquid to the cold water cooling evaporator 11. To do. When the refrigerant liquid level of the evaporator 12 for cooling the brine is lowered, the refrigerant transport pump 1g is operated to transport the refrigerant liquid to the evaporator 12 for cooling the brine.

なお、各冷媒輸送用ポンプ1f,1gを作動させる場合には、その冷媒輸送用ポンプ1f又は1gが設けられる配管1k又は1lの弁は開とされるが、前記冷媒輸送用ポンプを動作させない場合には、液面高さの違い(液ヘッド)による冷媒の移動を防止するため、仕切弁3eや仕切弁3fを閉とする。   When each of the refrigerant transport pumps 1f and 1g is operated, the pipe 1k or 1l provided with the refrigerant transport pump 1f or 1g is opened, but the refrigerant transport pump is not operated. In order to prevent the movement of the refrigerant due to the difference in liquid level (liquid head), the gate valve 3e and the gate valve 3f are closed.

また、各蒸発器11,12間の圧力差が各冷媒輸送用ポンプ1f,1gの揚程を超えた場合、冷媒輸送が行えず運転中の蒸発器11又は12中の冷媒液面を最適に保持することが困難となる。そこで、冷水冷却用の蒸発器11の圧力センサ1hの検知結果と圧力センサ1iの検知結果とから各蒸発器11,12の圧力差を検知し、上述のような液面制御を実施する際に蒸発器11,12間の圧力差が冷媒輸送用ポンプ1g又は1fの揚程を超えた場合、電動弁1eを開として、蒸発器11,12間の圧力の調整を行う。これにより、蒸発器11,12間の圧力差が小さくなるため、スムーズな冷媒輸送を行うことが可能となり冷媒液面制御が達成される。   Further, when the pressure difference between the evaporators 11 and 12 exceeds the lift of the refrigerant transport pumps 1f and 1g, the refrigerant cannot be transported and the liquid level in the evaporator 11 or 12 during operation is optimally maintained. Difficult to do. Therefore, when the pressure difference between the evaporators 11 and 12 is detected from the detection result of the pressure sensor 1h of the evaporator 11 for cooling cold water and the detection result of the pressure sensor 1i, the liquid level control as described above is performed. When the pressure difference between the evaporators 11 and 12 exceeds the head of the refrigerant transporting pump 1g or 1f, the electric valve 1e is opened and the pressure between the evaporators 11 and 12 is adjusted. Thereby, since the pressure difference between the evaporators 11 and 12 becomes small, it becomes possible to perform smooth refrigerant transport and achieve refrigerant level control.

ただし、蒸発器間11,12の圧力差が冷媒輸送用ポンプ1f,1gの揚程以下である場合には、蒸発器間11,12に蒸発器圧力調整用電動弁1eは閉とされる。これは、蒸発器11,12のうち運転中である一方の蒸発器11又は12は内部が低温となっているが、他方の蒸発器12又は11は内部が高温となっているため、気体流通用配管1jを開放すると運転中の蒸発器11,12の温度が温度上昇することとなり、その分の熱量が無駄となって運転効率が低下するためである。   However, when the pressure difference between the evaporators 11 and 12 is equal to or less than the lift of the refrigerant transport pumps 1f and 1g, the evaporator pressure adjusting motor-operated valve 1e is closed between the evaporators 11 and 12. This is because one of the evaporators 11 and 12 that is in operation is at a low temperature inside, but the other evaporator 12 or 11 is at a high temperature inside. This is because when the piping 1j is opened, the temperatures of the evaporators 11 and 12 during operation rise, and the amount of heat is wasted, and the operation efficiency is lowered.

なお、各蒸発器11,12が互いに連通可能に構成されることにより、上記以外にも種々のメリットがある。例えば、冷水冷却用の蒸発器11が運転中でブライン冷却用の蒸発器12が停止である場合に、冷水冷却用の蒸発器11の圧力が低下して、冷水冷却用の蒸発器11を流れる冷水の温度も低下した場合、冷水が凍結して冷水冷却用の蒸発器11中の熱交換器11Xが損傷するおそれがある。このとき、運転中の冷水冷却用の蒸発器11に対して、高圧力、高温度冷媒が存在するブライン冷却用の蒸発器12から(例えば、冷媒輸送用ポンプ1fなどを利用して)冷媒を冷水冷却用の蒸発器11に輸送する。すると、冷水冷却用の蒸発器11の圧力が上昇し、また、冷水の温度も上昇するため、冷水の凍結を防止することができる。   In addition, there are various merits other than the above by being configured so that the evaporators 11 and 12 can communicate with each other. For example, when the cold water cooling evaporator 11 is in operation and the brine cooling evaporator 12 is stopped, the pressure of the cold water cooling evaporator 11 decreases and flows through the cold water cooling evaporator 11. If the temperature of the cold water is also lowered, the cold water may freeze and damage the heat exchanger 11X in the evaporator 11 for cooling the cold water. At this time, the refrigerant is supplied from the brine cooling evaporator 12 in which high-pressure, high-temperature refrigerant exists (for example, using the refrigerant transport pump 1f) to the cold water cooling evaporator 11 in operation. It transports to the evaporator 11 for cold water cooling. Then, the pressure of the evaporator 11 for cooling cold water rises and the temperature of the cold water also rises, so that the cold water can be prevented from freezing.

また、例えば各蒸発器11,12のうちいずれか一方を運転させる間、他方を停止させる場合には、停止中の蒸発器11又は12には冷媒が不要となる。従って、前記各蒸発器11,12を連通させて、各蒸発器11,12内の冷媒液を流通可能に構成することにより、例えば冷凍機Rの起動時に運転させない蒸発器11又は12から運転させる蒸発器12又は11に冷媒を移動させることにより、封入する冷媒量を少なくすることができ、環境にも優しく且つコスト低減にもつながる。   Further, for example, when one of the evaporators 11 and 12 is operated and the other is stopped, no refrigerant is required for the stopped evaporator 11 or 12. Accordingly, the evaporators 11 and 12 are connected to each other so that the refrigerant liquid in the evaporators 11 and 12 can be circulated, so that the evaporators 11 and 12 that are not operated when the refrigerator R is started are operated. By moving the refrigerant to the evaporator 12 or 11, the amount of refrigerant to be sealed can be reduced, which is environmentally friendly and leads to cost reduction.

次に、本実施形態に係る冷凍機Rを用いた冷凍空調システムについて、図2を用いて説明する。   Next, the refrigeration air conditioning system using the refrigerator R according to the present embodiment will be described with reference to FIG.

この冷凍空調システムは、圧縮機4と凝縮器2と蒸発部10とを順次配管によって接続して冷凍サイクルが構成され、前記蒸発部10は、冷水を冷却する冷水冷却用の蒸発器11及びブラインを冷却するブライン冷却用の蒸発器12によって構成されるとともに、各蒸発器11,12が並列に配置され且つ互いに連通可能に構成される冷凍機Rと、前記冷凍機Rによって冷却されたブラインの冷熱を蓄熱する蓄熱槽7と、冷却された冷水と空気とを熱交換させて空気を冷却する空調機5と、前記蓄熱槽7に蓄熱された冷熱によって空調機Rに導入される冷水を冷却する熱交換器6と、前記冷水冷却用の蒸発器11と空調機5との間に形成される第1の冷水循環流路C1と、前記熱交換器6と空調機5との間に形成される第2の冷水循環流路C2と、前記各冷水循環流路C1,C2に対する冷水の流通状態を制御する冷水流路制御機構とを備える。   In this refrigeration / air-conditioning system, a compressor 4, a condenser 2, and an evaporation unit 10 are sequentially connected by a pipe to form a refrigeration cycle. The evaporation unit 10 includes an evaporator 11 for cooling cold water and a brine for cooling cold water. Of the brine R cooled by the refrigerator R, each of which is arranged in parallel and capable of communicating with each other. The heat storage tank 7 for storing cold heat, the air conditioner 5 for cooling the cooled chilled water and air by heat exchange, and the cold water introduced into the air conditioner R by the cold heat stored in the heat storage tank 7 are cooled. Formed between the heat exchanger 6 to be cooled, the cold water cooling evaporator 11 and the air conditioner 5, and the first cold water circulation channel C 1 formed between the heat exchanger 6 and the air conditioner 5. Second cold water circulation channel C When, and a cold water passage control mechanism for controlling the flow state of the cold water the to each cold water circulation passage C1, C2.

具体的には、前記蓄熱槽7は、ブラインを貯留する液槽である。ブラインは、蓄熱槽7からブライン冷却用の蒸発器12に導入されて冷却された後、蓄熱槽7に戻される。また、蓄熱槽7内の冷却されたブラインは、冷却水導入配管21を通って熱交換器6に導入され、冷水を熱交換により冷却した後に、冷却水導出配管22を通って蓄熱槽7に戻される。   Specifically, the heat storage tank 7 is a liquid tank for storing brine. The brine is introduced into the evaporator 12 for cooling the brine from the heat storage tank 7 and cooled, and then returned to the heat storage tank 7. Further, the cooled brine in the heat storage tank 7 is introduced into the heat exchanger 6 through the cooling water introduction pipe 21, cools the cold water by heat exchange, and then passes through the cooling water outlet pipe 22 to the heat storage tank 7. Returned.

前記冷水流路制御機構は、冷水冷却用の蒸発器11からの冷水のみが空調機5に導入される状態と、熱交換器6からの冷水のみが空調機5に導入される状態とを切り換える。   The cold water flow path control mechanism switches between a state where only cold water from the evaporator 11 for cooling cold water is introduced into the air conditioner 5 and a state where only cold water from the heat exchanger 6 is introduced into the air conditioner 5. .

また、この冷凍空調システムは、前記冷水冷却用の蒸発器11から前記空調機5へ向かう配管17と、前記熱交換器6から前記空調機5へ向かう配管18とが空調機5の前段で合流し、且つ、前記空調機5から前記冷水冷却用の蒸発器11へ向かう配管19と、前記空調機5から前記熱交換器6へ向かう配管20とが空調機5の後段で分岐するように設けられる。   Further, in this refrigeration and air conditioning system, a pipe 17 going from the evaporator 11 for cooling cold water to the air conditioner 5 and a pipe 18 going from the heat exchanger 6 to the air conditioner 5 join at the front stage of the air conditioner 5. In addition, a pipe 19 from the air conditioner 5 to the evaporator 11 for cooling the cold water and a pipe 20 from the air conditioner 5 to the heat exchanger 6 are provided so as to branch at a subsequent stage of the air conditioner 5. It is done.

ここで、図3に示す従来の冷凍空調システムでは、冷凍機R′で冷却されたブラインの熱量は蓄熱槽7′において蓄熱される。そして、蓄熱槽7′からのブラインと冷水とは熱交換器6′において熱交換を行い、熱交換器6′からの冷水を用いて空調機5′によって空調が行われる。一般的な冷凍機R′の場合、蒸発器は1個で構成されている。従って、蒸発器12′中を流れる流体系統も1種類である。そのため、蓄熱運転が終了した(即ち、冷熱が無くなった)後に、空調が必要となった際、ブラインを介して冷房運転を実施しなければならない。ところが、ブラインは水と比較して流体自身の熱伝導率が低いため、得られる熱伝達率も低くなり、結果として運転効率も悪くなる。また、熱交換器6′の損失も加わり、さらにシステム全体の効率も低下する。   Here, in the conventional refrigeration air conditioning system shown in FIG. 3, the heat quantity of the brine cooled by the refrigerator R ′ is stored in the heat storage tank 7 ′. The brine and cold water from the heat storage tank 7 'exchange heat in the heat exchanger 6', and air conditioning is performed by the air conditioner 5 'using the cold water from the heat exchanger 6'. In the case of a general refrigerator R ′, the evaporator is composed of one piece. Therefore, there is also one type of fluid system that flows through the evaporator 12 '. For this reason, when the air-conditioning is required after the heat storage operation is completed (that is, the cooling energy is lost), the cooling operation must be performed through the brine. However, since brine has a lower thermal conductivity of the fluid itself than water, the heat transfer coefficient obtained is also lowered, resulting in poor operating efficiency. Further, the loss of the heat exchanger 6 'is added, and the efficiency of the entire system is further reduced.

一方、図2に示す冷凍空調システムによれば、前記配管19と配管20との合流部に冷水還り制御用三方弁6bを設け、前記配管17と配管18との合流部に冷水行き制御用三方弁6cを設ける。なお、冷水還り制御用三方弁6b及び冷水行き制御用三方弁6cは、前記冷水流路制御機構として機能する。   On the other hand, according to the refrigeration and air conditioning system shown in FIG. 2, a chilled water return control three-way valve 6 b is provided at the junction between the pipe 19 and the pipe 20, and a chilled water control three-way is provided at the junction between the pipe 17 and the pipe 18. A valve 6c is provided. The cold water return control three-way valve 6b and the cold water control three-way valve 6c function as the cold water flow path control mechanism.

通常の蓄熱運転時では、冷凍機Rはブライン冷却用の蒸発器12を使用して前述したブラインの蓄熱槽7から空調機5までの系統を用いる。蓄熱運転が終了後に、空調が必要となった場合は、冷水の流れ方向を冷水還り制御用三方弁6bと冷水行き制御用三方弁6cを用いて冷凍機R側へ変更し、冷凍機Rの運転モードも切り換えて冷水冷却用の蒸発器11を使用する。これにより、ブラインより熱交換率が高い冷水が熱交換器6を介さず、直接空調機5へ流入することにより、ブライン1系統のみで蓄熱と冷房運転を実施した場合と比較し高効率な運転が可能となる。   During normal heat storage operation, the refrigerator R uses the brine cooling evaporator 12 and the above-described system from the brine heat storage tank 7 to the air conditioner 5. When air conditioning is required after the heat storage operation is completed, the flow direction of the cold water is changed to the refrigerator R side using the cold water return control three-way valve 6b and the cold water control three-way valve 6c. The operation mode is also switched to use the evaporator 11 for cooling cold water. As a result, chilled water having a higher heat exchange rate than that of the brine flows directly into the air conditioner 5 without passing through the heat exchanger 6, so that the heat storage and cooling operation is performed more efficiently than in the case where only the brine 1 system is used. Is possible.

以上のように、本実施形態に係る冷凍機及び冷凍空調システムによれば、一つの圧縮機及び凝縮器に対して複数の蒸発器を接続した場合であっても良好に運転することができる冷凍機、及び、そのような冷凍機を備えた冷凍空調システムを提供することができる。   As described above, according to the refrigerator and the refrigerating and air-conditioning system according to the present embodiment, a refrigerator that can be satisfactorily operated even when a plurality of evaporators are connected to one compressor and a condenser. And a refrigerating and air-conditioning system including such a refrigerator can be provided.

具体的には、蓄熱時にブラインを循環する蒸発器12を用い、それ以外の冷房運転時には冷水を循環する蒸発器11を用いることができるので、蓄熱運転以外の冷水運転時において効率の高い運転を行うことができる冷凍機、及び冷凍空調システムを提供することができる。また、ブライン用及び冷水用の2台の冷凍機を設置するのに比較して、低コストで設置面積の小さい冷凍機及び冷凍空調システムを提供することができる。   Specifically, since the evaporator 12 that circulates brine during heat storage and the evaporator 11 that circulates cold water during other cooling operations can be used, high-efficiency operation during cold water operation other than heat storage operation can be performed. A refrigerator and a refrigeration / air conditioning system that can be provided can be provided. Further, it is possible to provide a refrigerator and a refrigerating and air-conditioning system that are low in cost and have a small installation area, compared to installing two refrigerators for brine and cold water.

なお、本発明に係る冷凍機及び冷凍空調システムは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。   The refrigerating machine and the refrigerating and air-conditioning system according to the present invention are not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.

例えば、上記実施形態においては、複数の蒸発器として冷水冷却用の蒸発器11とブライン冷却用の蒸発器12とを備えるものとして説明したが、このように異なる種類の蒸発器を備えるものに限定されるものではなく、どちらも冷水冷却用又はブライン冷却用の蒸発器といったように、同種の蒸発器を複数備えるものであってもよい。   For example, in the above-described embodiment, it has been described that the plurality of evaporators includes the evaporator 11 for cooling cold water and the evaporator 12 for cooling brine, but are limited to those having different types of evaporators. However, both of them may be provided with a plurality of the same type of evaporators, such as an evaporator for cooling cold water or for cooling brine.

また、前記蒸発器は、2つのものに限定されず、3つ以上のものであってもよい。   The evaporator is not limited to two, and may be three or more.

また、前記冷媒流路制御機構は、各蒸発器11,12のうちいずれか一方を冷媒が流通するように冷媒流路を切り換えるものとして説明したが、これに限定されるものではなく、各蒸発器11,12を流通する冷媒の比率を調整するものであってもよい。   Moreover, although the said refrigerant | coolant flow path control mechanism demonstrated as what switches a refrigerant | coolant flow path so that a refrigerant | coolant may distribute | circulate through any one of each evaporator 11, 12, it is not limited to this, The ratio of the refrigerant flowing through the vessels 11 and 12 may be adjusted.

また、前記冷水流路制御機構は、冷水冷却用の蒸発器11からの冷水のみが空調機5に導入される状態と、熱交換器からの冷水のみが空調機に導入される状態とを切り換えるものとして説明したが、これに限定されるものではなく、前記第1の冷水循環流路C1を流れる冷水と第2の冷水循環流路C2を流れる冷水の比率を調整するものであってもよい。このようにすれば、蓄冷熱を利用して空調を行う運転(蓄熱利用運転)と、冷水によって空調を行う運転とを組み合わせて同時に行うことができる。   The cold water flow path control mechanism switches between a state where only cold water from the evaporator 11 for cooling cold water is introduced into the air conditioner 5 and a state where only cold water from the heat exchanger is introduced into the air conditioner. Although described as a thing, it is not limited to this, You may adjust the ratio of the cold water which flows through the said 1st cold water circulation flow path C1, and the cold water which flows through the 2nd cold water circulation flow path C2. . If it does in this way, the operation (heat storage utilization operation) which performs air conditioning using cold storage heat and the operation which performs air conditioning with cold water can be performed simultaneously.

この場合には、例えば、蓄冷熱を利用して空調を行って蓄冷熱が無くなった後に冷水によって空調を行うのではなく、蓄冷熱を利用して空調を行う運転と冷水によって空調を行う運転とを併用することにより、蓄冷熱を温存することができる。また、そのような冷水流路制御機構の具体的構造としては、配管19と配管20との合流部及び配管17と配管18との合流部に流量調整弁を設けるものが考えられる。   In this case, for example, air conditioning is performed using cold stored heat and air is not cooled using cold water after the cold stored heat is lost, but air conditioning is performed using cold stored heat and air conditioning is performed using cold water. By using together, cold storage heat can be preserved. In addition, as a specific structure of such a cold water flow path control mechanism, a structure in which a flow rate adjusting valve is provided at a joint portion between the pipe 19 and the pipe 20 and a joint portion between the pipe 17 and the pipe 18 can be considered.

また、熱交換器6において冷水を冷却する方法は、上述したものに限定されるものではなく、例えば、ブライン冷却用の蒸発器12に導入されるブラインとは別の熱媒体が熱交換器6に導入され、冷水を間接的に冷却するものであってもよい。また、熱交換器6と蓄熱槽7とを一体的に構成するものであってもよく、この場合には、例えば、蓄熱槽7内に熱交換器6が設けられ、蓄熱槽7内のブラインと冷水とを熱交換させる構成などが考えられる。   Further, the method of cooling the cold water in the heat exchanger 6 is not limited to the above-described one. For example, a heat medium different from the brine introduced into the evaporator 12 for cooling the brine is the heat exchanger 6. The cooling water may be indirectly cooled. Further, the heat exchanger 6 and the heat storage tank 7 may be configured integrally. In this case, for example, the heat exchanger 6 is provided in the heat storage tank 7, and the brine in the heat storage tank 7 is provided. A configuration for exchanging heat with cold water can be considered.

2 凝縮器
3 中間冷却器
4 圧縮機
5 空調機
6 熱交換器
7 蓄熱槽
10 蒸発部
11 冷水冷却用の蒸発器
12 ブライン冷却用の蒸発器
13 冷水導入配管
14 冷水導出配管
15 ブライン導入配管
16 ブライン導出配管
21 冷却水導入配管
22 冷却水導出配管
2 Condenser 3 Intermediate Cooler 4 Compressor 5 Air Conditioner 6 Heat Exchanger 7 Heat Storage Tank 10 Evaporator 11 Evaporator 11 for Cooling Water Cooling 12 Brine Cooling Evaporator 13 Cold Water Introducing Pipe 14 Cold Water Deriving Pipe 15 Brine Introducing Pipe 16 Brine outlet piping 21 Cooling water inlet piping 22 Cooling water outlet piping

Claims (14)

圧縮機と凝縮器と蒸発部とを順次配管によって接続して冷凍サイクルが構成される冷凍機において、
前記蒸発部は、並列に配置される複数の蒸発器を備えて構成され、
前記各蒸発器は、互いに連通可能に構成されることを特徴とする冷凍機。
In a refrigerator in which a refrigeration cycle is configured by connecting a compressor, a condenser, and an evaporation unit sequentially by piping,
The evaporation unit is configured to include a plurality of evaporators arranged in parallel,
Each said evaporator is comprised so that communication is mutually possible, The refrigerator characterized by the above-mentioned.
前記各蒸発器を連通させて、各蒸発器内の冷媒液を流通可能に構成されることを特徴とする請求項1に記載の冷凍機。   The refrigerator according to claim 1, wherein the evaporators are communicated with each other so that the refrigerant liquid in each evaporator can be circulated. 前記各蒸発器を連通させて、各蒸発器内の気体を流通可能に構成されることを特徴とする請求項1又は2に記載の冷凍機。   The refrigerator according to claim 1 or 2, wherein the evaporators are communicated with each other so that the gas in each evaporator can be circulated. 前記各蒸発器は、開閉機構を備える配管によって接続されることを特徴とする請求項1〜3のいずれか一項に記載の冷凍機。   Each said evaporator is connected by piping provided with an opening-closing mechanism, The refrigerator as described in any one of Claims 1-3 characterized by the above-mentioned. 前記蒸発器同士は、各蒸発器内の冷媒液を流通可能な冷媒液流通用配管と、各蒸発器内の気体を流通可能な気体流通用配管とによって接続されることを特徴とする請求項1〜4のいずれか一項に記載の冷凍機。   The evaporators are connected to each other by a refrigerant liquid distribution pipe capable of flowing a refrigerant liquid in each evaporator and a gas distribution pipe capable of flowing a gas in each evaporator. The refrigerator as described in any one of 1-4. 前記冷媒液流通用配管には冷媒液を送るポンプが設けられることを特徴とする請求項5に記載の冷凍機。   The refrigerating machine according to claim 5, wherein a pump for sending the refrigerant liquid is provided in the refrigerant liquid circulation pipe. 前記蒸発部は、冷水を冷却する冷水冷却用の蒸発器と、ブラインを冷却するブライン冷却用の蒸発器とを備えて構成されることを特徴とする請求項1〜6のいずれか一項に記載の冷凍機。   The said evaporation part is provided with the evaporator for cold water cooling which cools cold water, and the evaporator for brine cooling which cools a brine, It is comprised as described in any one of Claims 1-6 characterized by the above-mentioned. The refrigerator as described. 前記各蒸発器に対する冷媒の流通経路を制御する冷媒流路制御機構を備えることを特徴とする請求項1〜7のいずれか一項に記載の冷凍機。   The refrigerating machine according to any one of claims 1 to 7, further comprising a refrigerant flow path control mechanism that controls a flow path of refrigerant to each of the evaporators. 前記冷媒流路制御機構は、各蒸発器のうちいずれか一方を冷媒が流通するように冷媒流路を切り換えることを特徴とする請求項1〜8のいずれか一項に記載の冷凍機。   The refrigerator according to any one of claims 1 to 8, wherein the refrigerant flow path control mechanism switches the refrigerant flow path so that the refrigerant flows through any one of the evaporators. 前記冷媒流路制御機構は、各蒸発器を流通する冷媒の比率を調整することを特徴とする請求項1〜9のいずれか一項に記載の冷凍機。   The refrigerator according to any one of claims 1 to 9, wherein the refrigerant flow path control mechanism adjusts a ratio of refrigerant flowing through each evaporator. 圧縮機と凝縮器と蒸発部とを順次配管によって接続して冷凍サイクルが構成され、前記蒸発部は、冷水を冷却する冷水冷却用の蒸発器及びブラインを冷却するブライン冷却用の蒸発器によって構成されるとともに、各蒸発器が並列に配置され且つ互いに連通可能に構成される冷凍機と、
前記冷凍機によって冷却されたブラインの冷熱を蓄熱する蓄熱槽と、
冷却された冷水と空気とを熱交換させて空気を冷却する空調機と、
前記蓄熱槽に蓄熱された冷熱によって空調機に導入される冷水を冷却する熱交換器と、
前記冷水冷却用の蒸発器と空調機との間に形成される第1の冷水循環流路と、
前記熱交換器と空調機との間に形成される第2の冷水循環流路と、
前記各冷水循環流路に対する冷水の流通状態を制御する冷水流路制御機構とを備えることを特徴とする冷凍空調システム。
A refrigeration cycle is configured by sequentially connecting a compressor, a condenser, and an evaporator through a pipe, and the evaporator is configured by an evaporator for cooling cold water that cools cold water and an evaporator for cooling brine that cools brine. And a refrigerator configured such that the evaporators are arranged in parallel and can communicate with each other;
A heat storage tank for storing the cold heat of the brine cooled by the refrigerator;
An air conditioner that cools air by exchanging heat between cooled cold water and air;
A heat exchanger for cooling the cold water introduced into the air conditioner by the cold energy stored in the heat storage tank;
A first cold water circulation passage formed between the evaporator for cooling cold water and an air conditioner;
A second cold water circulation passage formed between the heat exchanger and the air conditioner;
A refrigeration and air conditioning system comprising: a cold water flow path control mechanism for controlling a flow state of the cold water with respect to each of the cold water circulation flow paths.
前記冷水冷却用の蒸発器から前記空調機へ向かう配管と、前記熱交換器から前記空調機へ向かう配管とが空調機の前段で合流し、且つ、前記空調機から前記冷水冷却用の蒸発器へ向かう配管と、前記空調機から前記熱交換器へ向かう配管とが空調機の後段で分岐するように設けられることを特徴とする請求項11に記載の冷凍空調システム。   A pipe from the evaporator for cooling the cold water to the air conditioner and a pipe from the heat exchanger to the air conditioner merge at the front stage of the air conditioner, and the evaporator for cooling the cold water from the air conditioner The refrigerating and air-conditioning system according to claim 11, wherein a pipe that goes to the pipe and a pipe that goes from the air conditioner to the heat exchanger branch off in a subsequent stage of the air conditioner. 前記冷水流路制御機構は、冷水冷却用の蒸発器からの冷水のみが空調機に導入される状態と、熱交換器からの冷水のみが空調機に導入される状態とを切り換えることを特徴とする請求項11又は12に記載の冷凍空調システム。   The cold water flow path control mechanism switches between a state where only cold water from an evaporator for cooling cold water is introduced into the air conditioner and a state where only cold water from the heat exchanger is introduced into the air conditioner. The refrigerating and air-conditioning system according to claim 11 or 12. 前記冷水流路制御機構は、第1の冷水循環流路を流れる冷水と第2の冷水循環流路各蒸発器を流れる冷水の比率を調整することを特徴とする請求項11又は12に記載の冷凍機。   The said cold water flow path control mechanism adjusts the ratio of the cold water which flows through a 1st cold water circulation flow path, and the cold water which flows through each evaporator of a 2nd cold water circulation flow path, It is characterized by the above-mentioned. refrigerator.
JP2009067230A 2009-03-19 2009-03-19 Refrigerator and refrigeration air conditioning system Active JP5315102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067230A JP5315102B2 (en) 2009-03-19 2009-03-19 Refrigerator and refrigeration air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067230A JP5315102B2 (en) 2009-03-19 2009-03-19 Refrigerator and refrigeration air conditioning system

Publications (2)

Publication Number Publication Date
JP2010216777A true JP2010216777A (en) 2010-09-30
JP5315102B2 JP5315102B2 (en) 2013-10-16

Family

ID=42975809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067230A Active JP5315102B2 (en) 2009-03-19 2009-03-19 Refrigerator and refrigeration air conditioning system

Country Status (1)

Country Link
JP (1) JP5315102B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150755A (en) * 1975-06-19 1976-12-24 Daikin Ind Ltd A chiller unit
JPH03144236A (en) * 1989-07-19 1991-06-19 Matsushita Refrig Co Ltd Cooling and heating device for multi rooms
JPH08189715A (en) * 1995-01-12 1996-07-23 Aisin Seiki Co Ltd Refrigerant supplying device
JP2005205987A (en) * 2004-01-21 2005-08-04 Honda Motor Co Ltd Refrigerant system for air conditioner
JP2008267775A (en) * 2007-01-30 2008-11-06 Jfe Engineering Kk Refrigerating machine, its operating method, air-conditioning facility and its operating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150755A (en) * 1975-06-19 1976-12-24 Daikin Ind Ltd A chiller unit
JPH03144236A (en) * 1989-07-19 1991-06-19 Matsushita Refrig Co Ltd Cooling and heating device for multi rooms
JPH08189715A (en) * 1995-01-12 1996-07-23 Aisin Seiki Co Ltd Refrigerant supplying device
JP2005205987A (en) * 2004-01-21 2005-08-04 Honda Motor Co Ltd Refrigerant system for air conditioner
JP2008267775A (en) * 2007-01-30 2008-11-06 Jfe Engineering Kk Refrigerating machine, its operating method, air-conditioning facility and its operating method

Also Published As

Publication number Publication date
JP5315102B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
CN102597658A (en) Heat pump
JP5166385B2 (en) Air conditioning and hot water supply system
CN111251809B (en) Thermal management system of vehicle and vehicle
JP2008134045A (en) Heat pump system
JP2013019598A (en) Refrigerator
CN101014818A (en) Refrigerating device
JP2014020735A (en) Air conditioner
JP2007100987A (en) Refrigerating system
JP5527043B2 (en) Air conditioning system
KR101708933B1 (en) Refrigerant circulation system for Refrigerating apparatus
CN111251812A (en) Thermal management system of vehicle and vehicle
CN112033037B (en) Non-azeotropic refrigerant self-overlapping air conditioning system, control method and air conditioning unit
JP5315102B2 (en) Refrigerator and refrigeration air conditioning system
JP2008128587A (en) Heat pump system
JP2009042886A (en) Vending machine
CN111251810B (en) Thermal management system of vehicle and vehicle
JP5843630B2 (en) Cooling system
US20140284024A1 (en) Method for controlling refrigerator
KR101127758B1 (en) Hot and cool water, heating and cooling supply system
US20140284025A1 (en) Refrigerator
JP2009115336A (en) Refrigeration system
JP2013084073A (en) Automatic vending machine
JP6344686B2 (en) Refrigeration system
JP2010076587A (en) Cabin air-conditioner of transport vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5315102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250