JP2010216766A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010216766A
JP2010216766A JP2009066767A JP2009066767A JP2010216766A JP 2010216766 A JP2010216766 A JP 2010216766A JP 2009066767 A JP2009066767 A JP 2009066767A JP 2009066767 A JP2009066767 A JP 2009066767A JP 2010216766 A JP2010216766 A JP 2010216766A
Authority
JP
Japan
Prior art keywords
heat exchanger
radiant heat
compressor
way valve
pressure refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009066767A
Other languages
Japanese (ja)
Inventor
Toshihiro Kizawa
敏浩 木澤
Junichi Nakanishi
淳一 中西
Kenjiro Suzuki
健二郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009066767A priority Critical patent/JP2010216766A/en
Priority to PCT/JP2010/001818 priority patent/WO2010106776A1/en
Publication of JP2010216766A publication Critical patent/JP2010216766A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02344Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • F25B2313/02523Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner in which a coolant and compressor oil, etc., do not remain in a radiation heat exchanger after stopping the inflow of the coolant to the radiation heat exchanger and a temperature of the radiation heat exchanger is easy to be lowered. <P>SOLUTION: In the air conditioner 1, a three-way valve 41 is switched between a first state for making a high-pressure coolant flowing from a compressor 11 flow to the radiation heat exchanger 14 and a second state for making the high-pressure coolant flowing from the compressor 11 flow to a convection heat exchanger 13 in stead of making it flow to the radiation heat exchanger 14. When the three-way valve 41 is in the first state, the high-pressure coolant flows to both the radiation heat exchanger 14 and the convection heat exchanger 13. The three-way valve is switched to the second state when the temperature of the radiation heat exchanger 14 needs to be lowered. When the three-way valve 41 is in the second state, as the high-pressure coolant is not pushed into the radiation heat exchanger 14, the coolant and the compressor oil, etc., do not remain in the radiation heat exchanger 14, thus easily lowering the temperature of the radiation heat exchanger 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた空調機に関する。   The present invention relates to an air conditioner including a refrigerant circuit that performs a vapor compression refrigeration cycle.

高圧冷媒を利用して暖房運転を行う空調機として、例えば、高圧冷媒を輻射熱交換器に流す空調機が特許文献1(特開平7−55234号公報)に開示されている。特許文献1(特開平7−55234号公報)に記載の空調機では、暖房運転時に輻射熱交換器への高圧冷媒の流入を調節する弁が、輻射熱交換器の下流側に配置されており、輻射熱交換器の温度が上限値に達したとき、弁は流路を閉じて高圧冷媒が輻射熱交換器に流れないようにする。   As an air conditioner that performs a heating operation using a high-pressure refrigerant, for example, an air conditioner that causes a high-pressure refrigerant to flow through a radiant heat exchanger is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 7-55234). In the air conditioner described in Patent Document 1 (Japanese Patent Laid-Open No. 7-55234), a valve that adjusts the flow of high-pressure refrigerant into the radiant heat exchanger during heating operation is disposed on the downstream side of the radiant heat exchanger. When the exchanger temperature reaches an upper limit, the valve closes the flow path to prevent high pressure refrigerant from flowing into the radiant heat exchanger.

しかしながら、上記の構成では、圧縮機の圧力によって高圧冷媒が輻射熱交換器に押し込まれる状態となり、冷媒および圧縮機油などが輻射熱交換器に滞留する。そのため、冷媒温度が下がり難く、輻射熱交換器の温度が下がって欲しいときに下がらないという状態が発生する。また、圧縮機への油の戻りが減るので、圧縮機の信頼性を損なう可能性が高くなる。   However, in the above configuration, the high-pressure refrigerant is pushed into the radiant heat exchanger due to the pressure of the compressor, and refrigerant, compressor oil, and the like stay in the radiant heat exchanger. For this reason, it is difficult for the refrigerant temperature to decrease, and a state occurs in which the refrigerant temperature does not decrease when the temperature of the radiant heat exchanger is desired to decrease. Further, since the return of oil to the compressor is reduced, the possibility of impairing the reliability of the compressor is increased.

本発明では、輻射熱交換器への冷媒流入が止められた後でも、冷媒および圧縮機油などが輻射熱交換器に滞留せず、輻射熱交換器の温度が低下し易い空調機を提供することにある。   An object of the present invention is to provide an air conditioner in which refrigerant and compressor oil and the like do not stay in the radiant heat exchanger even after the refrigerant inflow to the radiant heat exchanger is stopped, and the temperature of the radiant heat exchanger is likely to decrease.

第1発明に係る空調機は、蒸気圧縮式冷凍サイクルを行う冷媒回路を備え、少なくとも高圧冷媒を利用して暖房運転を行う空調機である。冷媒回路は、圧縮機と、対流熱交換器と、輻射熱交換器と、多方弁とを有している。圧縮機は、高圧冷媒を吐出する。対流熱交換器は、内側を流通する高圧冷媒と外側を対流する空気との間で熱交換を行わせる。輻射熱交換器は、内側を流通する高圧冷媒に所定部材を加熱させてその所定部材から輻射熱を発生させる。多方弁は、圧縮機と輻射熱交換器との間に配置される。また、多方弁は、圧縮機から流れてくる高圧冷媒を輻射熱交換器に流す第1状態と、圧縮機から流れてくる高圧冷媒を輻射熱交換器に流さない第2状態とに切り替えられる。   An air conditioner according to a first aspect of the present invention is an air conditioner that includes a refrigerant circuit that performs a vapor compression refrigeration cycle and performs a heating operation using at least a high-pressure refrigerant. The refrigerant circuit has a compressor, a convection heat exchanger, a radiant heat exchanger, and a multi-way valve. The compressor discharges a high-pressure refrigerant. The convection heat exchanger exchanges heat between the high-pressure refrigerant flowing inside and the air convection outside. A radiant heat exchanger heats a predetermined member to the high-pressure refrigerant circulating inside, and generates radiant heat from the predetermined member. The multi-way valve is disposed between the compressor and the radiant heat exchanger. The multi-way valve is switched between a first state in which the high-pressure refrigerant flowing from the compressor flows to the radiant heat exchanger and a second state in which the high-pressure refrigerant flowing from the compressor does not flow to the radiant heat exchanger.

従来の空調機では、輻射熱交換器が使用されない場合でも、圧縮機の圧力によって高圧冷媒が輻射熱交換器に押し込まれる状態が発生していた。しかし、第1発明に係る空調機では、多方弁が高圧冷媒を輻射熱交換器に流さない状態に切り替えられるので、高圧冷媒が輻射熱交換器に押し込まれる状態がなくなり、冷媒および圧縮機油などが輻射熱交換器に滞留せず、輻射熱交換器の温度が下がり易くなる。   In the conventional air conditioner, even when the radiant heat exchanger is not used, a state in which the high-pressure refrigerant is pushed into the radiant heat exchanger due to the pressure of the compressor occurs. However, in the air conditioner according to the first invention, since the multi-way valve is switched to a state in which the high-pressure refrigerant does not flow into the radiant heat exchanger, the high-pressure refrigerant is not pushed into the radiant heat exchanger, and the refrigerant and the compressor oil are exchanged by radiant heat. The temperature of the radiant heat exchanger tends to decrease without staying in the vessel.

第2発明に係る空調機は、第1発明に係る空調機であって、多方弁が第1状態であるとき、圧縮機から流れてくる高圧冷媒が対流熱交換器および輻射熱交換器へ流れる。また、多方弁が第2状態であるとき、圧縮機から流れてくる高圧冷媒が対流熱交換器にだけ流れる。   The air conditioner according to the second invention is the air conditioner according to the first invention, and when the multi-way valve is in the first state, the high-pressure refrigerant flowing from the compressor flows to the convection heat exchanger and the radiant heat exchanger. Further, when the multi-way valve is in the second state, the high-pressure refrigerant flowing from the compressor flows only to the convection heat exchanger.

この空調機では、対流熱交換器および輻射熱交換器の両方を用いた暖房運転、または対流熱交換器だけを用いた暖房運転が実行される。そして、対流熱交換器および輻射熱交換器の両方を用いた暖房運転を実行中に、輻射熱交換器の温度が上限値に達したとき、多方弁が高圧冷媒を輻射熱交換器に流さない状態に切り替えられ、対流熱交換器だけを用いた暖房運転が実行される。その結果、輻射熱交換器の温度低下が速まり、空調機は、再び対流熱交換器および輻射熱交換器の両方を用いた暖房運転に復帰することができる。   In this air conditioner, a heating operation using both a convection heat exchanger and a radiant heat exchanger, or a heating operation using only a convection heat exchanger is executed. When the temperature of the radiant heat exchanger reaches the upper limit during the heating operation using both the convective heat exchanger and the radiant heat exchanger, the multi-way valve switches to a state in which the high-pressure refrigerant does not flow to the radiant heat exchanger. The heating operation using only the convection heat exchanger is executed. As a result, the temperature drop of the radiant heat exchanger is accelerated, and the air conditioner can return to the heating operation using both the convective heat exchanger and the radiant heat exchanger.

第3発明に係る空調機は、第1発明に係る空調機であって、多方弁が第1状態であるとき、圧縮機から流れてくる高圧冷媒が輻射熱交換器だけに流れる。また、多方弁が第2状態であるとき、圧縮機から流れてくる高圧冷媒が対流熱交換器にだけ流れる。   An air conditioner according to a third invention is the air conditioner according to the first invention, and when the multi-way valve is in the first state, the high-pressure refrigerant flowing from the compressor flows only to the radiant heat exchanger. Further, when the multi-way valve is in the second state, the high-pressure refrigerant flowing from the compressor flows only to the convection heat exchanger.

この空調機では、輻射熱交換器だけを用いた暖房運転、または対流熱交換器だけを用いた暖房運転が実行される。そして、輻射熱交換器だけを用いた暖房運転を実行中に、輻射熱交換器の温度が上限値に達したとき、多方弁が高圧冷媒を輻射熱交換器に流さない状態に切り替えられ、対流熱交換器だけを用いた暖房運転が実行される。その結果、輻射熱交換器の温度低下が速まり、空調機は、再び輻射熱交換器だけを用いた暖房運転に復帰することができる。   In this air conditioner, a heating operation using only a radiant heat exchanger or a heating operation using only a convective heat exchanger is executed. When the temperature of the radiant heat exchanger reaches the upper limit during the heating operation using only the radiant heat exchanger, the multi-way valve is switched to a state in which the high-pressure refrigerant does not flow to the radiant heat exchanger, and the convection heat exchanger The heating operation using only the is performed. As a result, the temperature drop of the radiant heat exchanger is accelerated, and the air conditioner can return to the heating operation using only the radiant heat exchanger.

第4発明に係る空調機は、第1発明に係る空調機であって、冷媒回路が、輻射熱交換器から出た高圧冷媒を冷却する過冷却熱交換器をさらに有している。多方弁が第1状態であるとき、圧縮機から流れてくる高圧冷媒が輻射熱交換器および過冷却熱交換器へ流れる。また、多方弁が第2状態であるとき、圧縮機から流れてくる高圧冷媒が対流熱交換器にだけ流れる。   An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant circuit further includes a supercooling heat exchanger that cools the high-pressure refrigerant discharged from the radiant heat exchanger. When the multi-way valve is in the first state, the high-pressure refrigerant flowing from the compressor flows to the radiant heat exchanger and the subcooling heat exchanger. Further, when the multi-way valve is in the second state, the high-pressure refrigerant flowing from the compressor flows only to the convection heat exchanger.

この空調機では、輻射熱交換器を用いた暖房運転を実行中に、輻射熱交換器の温度が上限値に達したとき、多方弁が高圧冷媒を輻射熱交換器に流さない状態に切り替えられ、対流熱交換器だけを用いた暖房運転が実行される。輻射熱交換器の下流側には過冷却熱交換器が配置されているので、輻射熱交換器および過冷却熱交換器に滞留する冷媒の温度低下が速まる。その結果、輻射熱交換器の温度低下が速まり、空調機は、再び輻射熱交換器を用いた暖房運転に復帰することができる。   In this air conditioner, when the temperature of the radiant heat exchanger reaches the upper limit during the heating operation using the radiant heat exchanger, the multi-way valve is switched to a state in which the high-pressure refrigerant does not flow to the radiant heat exchanger, and the convection heat Heating operation using only the exchanger is executed. Since the supercooling heat exchanger is disposed downstream of the radiant heat exchanger, the temperature of the refrigerant staying in the radiant heat exchanger and the supercooling heat exchanger is rapidly reduced. As a result, the temperature drop of the radiant heat exchanger is accelerated, and the air conditioner can return to the heating operation using the radiant heat exchanger again.

第1発明に係る空調機では、高圧冷媒が輻射熱交換器に押し込まれる状態がなくなり、冷媒および圧縮機油などが輻射熱交換器に滞留せず、輻射熱交換器の温度が下がり易くなる。   In the air conditioner according to the first aspect of the invention, the state where the high-pressure refrigerant is pushed into the radiant heat exchanger is eliminated, and the refrigerant, compressor oil, and the like do not stay in the radiant heat exchanger, and the temperature of the radiant heat exchanger is likely to decrease.

第2発明から第4発明のいずれか1つに係る空調機では、輻射熱交換器の温度低下が速まり、輻射熱交換器を用いた暖房運転に早く復帰することができる。   In the air conditioner according to any one of the second to fourth inventions, the temperature reduction of the radiant heat exchanger is accelerated, and the heating operation using the radiant heat exchanger can be quickly restored.

本発明の一実施形態に係る空調機の冷媒回路図。The refrigerant circuit diagram of the air conditioner which concerns on one Embodiment of this invention. 室内ユニットの内部構造を示す分解斜視図。The disassembled perspective view which shows the internal structure of an indoor unit. 熱交換器組立体の側面図。The side view of a heat exchanger assembly. 輻射熱交換器のパネルと伝熱管との取付構造を示す断面図。Sectional drawing which shows the attachment structure of the panel of a radiant heat exchanger, and a heat exchanger tube. 暖房運転における第2温度センサの検出温度と三方弁の動作との関係を示すグラフ。The graph which shows the relationship between the detection temperature of the 2nd temperature sensor in heating operation, and operation | movement of a three-way valve. 本実施形態の第1変形例に係る空調機の冷媒回路図。The refrigerant circuit figure of the air conditioner which concerns on the 1st modification of this embodiment. 本実施形態の第2変形例に係る空調機の冷媒回路図。The refrigerant circuit figure of the air conditioner which concerns on the 2nd modification of this embodiment. パネルと伝熱管との第2の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 2nd attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第3の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 3rd attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第4の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 4th attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第5の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 5th attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第6の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 6th attachment structure of a panel and a heat exchanger tube.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

<空調機1の冷媒回路10>
図1は、本発明の一実施形態に係る空調機の冷媒回路図である。図1において、空調機1は、主に室内に配置される室内ユニット2と、主に室外に配置される室外ユニット3とが冷媒連絡配管によって接続され、蒸気圧縮式冷凍サイクルを行う冷媒回路10が形成されている。
<Refrigerant circuit 10 of air conditioner 1>
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. In FIG. 1, an air conditioner 1 includes a refrigerant circuit 10 that performs a vapor compression refrigeration cycle in which an indoor unit 2 that is mainly disposed indoors and an outdoor unit 3 that is primarily disposed outdoor are connected by a refrigerant communication pipe. Is formed.

冷媒回路10では、圧縮機11、四路切換弁12、三方弁41、輻射熱交換器14、対流熱交換器13、膨張弁15、室外熱交換器16が順に接続されている。また、アキュームレータ20が四路切換弁12と圧縮機11の吸入口との間に接続されている。   In the refrigerant circuit 10, a compressor 11, a four-way switching valve 12, a three-way valve 41, a radiant heat exchanger 14, a convection heat exchanger 13, an expansion valve 15, and an outdoor heat exchanger 16 are connected in order. An accumulator 20 is connected between the four-way switching valve 12 and the suction port of the compressor 11.

四路切換弁12は、圧縮機11から出た冷媒を輻射熱交換器14側又は室外熱交換器16側のいずれか一方に流す。たとえば、暖房運転時、制御部は四路切換弁12に図1の実線で示した流路を選択させて冷媒を輻射熱交換器14側へ流す。一方、冷房運転時には、制御部は四路切換弁12に図1の点線で示した流路を選択させて冷媒を室外熱交換器16側へ流す。   The four-way switching valve 12 allows the refrigerant that has come out of the compressor 11 to flow to either the radiant heat exchanger 14 side or the outdoor heat exchanger 16 side. For example, during the heating operation, the control unit causes the four-way switching valve 12 to select the flow path shown by the solid line in FIG. 1 and causes the refrigerant to flow to the radiant heat exchanger 14 side. On the other hand, during the cooling operation, the control unit causes the four-way switching valve 12 to select the flow path indicated by the dotted line in FIG. 1 and causes the refrigerant to flow to the outdoor heat exchanger 16 side.

対流熱交換器13は、複数のフィンと、それらフィンと直交する複数の伝熱管とからなる熱交換器であり、伝熱管内を流通する冷媒とフィン表面上を対流する空気との間で熱交換を行わせる。対流熱交換器13の近傍には、フィン表面に送風するファン23が配置されている。   The convection heat exchanger 13 is a heat exchanger including a plurality of fins and a plurality of heat transfer tubes orthogonal to the fins, and heat is generated between the refrigerant circulating in the heat transfer tubes and the air convection on the fin surface. Let the exchange take place. In the vicinity of the convective heat exchanger 13, a fan 23 for blowing air to the fin surface is disposed.

輻射熱交換器14は、アルミ製の板(以下、パネルという)とそのパネルに固定される伝熱管とからなる熱交換器であり、伝熱管内を流通する高圧冷媒にパネルを加熱させてそのパネルから輻射熱を発生させる。   The radiant heat exchanger 14 is a heat exchanger composed of an aluminum plate (hereinafter referred to as a panel) and a heat transfer tube fixed to the panel, and the panel is heated by a high-pressure refrigerant circulating in the heat transfer tube. Generate radiant heat from

膨張弁15は、減圧機構としての電動膨脹弁であり、対流熱交換器13と室外熱交換器16との間に接続され、冷媒の流路を絞って冷媒を減圧する。室外熱交換器16は、複数のフィンと、それらフィンと直交する複数の伝熱管とからなる熱交換器であり、伝熱管内を流通する冷媒とフィン表面上を対流する空気との間で熱交換を行わせる。室外熱交換器16の近傍には、フィン表面に送風する室外ファン33が配置されている。アキュームレータ20は、余分な液冷媒を溜めて圧縮機11にガス冷媒だけを戻す。   The expansion valve 15 is an electric expansion valve as a decompression mechanism, and is connected between the convection heat exchanger 13 and the outdoor heat exchanger 16 and depressurizes the refrigerant by narrowing the refrigerant flow path. The outdoor heat exchanger 16 is a heat exchanger including a plurality of fins and a plurality of heat transfer tubes orthogonal to the fins, and heat is generated between the refrigerant circulating in the heat transfer tubes and the air convection on the fin surface. Let the exchange take place. In the vicinity of the outdoor heat exchanger 16, an outdoor fan 33 for blowing air to the fin surface is disposed. The accumulator 20 accumulates excess liquid refrigerant and returns only the gas refrigerant to the compressor 11.

三方弁41は、第1流通口A、第2流通口B及び第3流通口Cを有し、圧縮機11から流れてくる高圧冷媒を輻射熱交換器14およびバイパス管50のいずれか一方へ流す。説明の便宜上、圧縮機11から出た高圧冷媒が第1流通口Aに入り、第2流通口Bから出て輻射熱交換器14に向う状態を第1状態と呼ぶ。また、圧縮機11から出た高圧冷媒が第1流通口Aに入り、第3流通口Cから出て対流熱交換器13に向う状態を第2状態と呼ぶ。バイパス管50は、三方弁41から出た冷媒を輻射熱交換器14と対流熱交換器13とを接続する配管10aに導く。つまり、圧縮機11から出た高圧冷媒は、三方弁41から輻射熱交換器14を経由して対流熱交換器13に入る経路、および三方弁41からバイパス管50を経由して対流熱交換器13へ入る経路のいずれかを通る。   The three-way valve 41 has a first flow port A, a second flow port B, and a third flow port C, and allows the high-pressure refrigerant flowing from the compressor 11 to flow to either the radiant heat exchanger 14 or the bypass pipe 50. . For convenience of explanation, a state in which the high-pressure refrigerant discharged from the compressor 11 enters the first circulation port A, exits from the second circulation port B, and faces the radiant heat exchanger 14 is referred to as a first state. Moreover, the state where the high-pressure refrigerant discharged from the compressor 11 enters the first circulation port A, exits from the third circulation port C, and faces the convection heat exchanger 13 is referred to as a second state. The bypass pipe 50 guides the refrigerant from the three-way valve 41 to the pipe 10 a that connects the radiant heat exchanger 14 and the convective heat exchanger 13. That is, the high-pressure refrigerant discharged from the compressor 11 enters the convection heat exchanger 13 from the three-way valve 41 via the radiant heat exchanger 14, and the convection heat exchanger 13 from the three-way valve 41 via the bypass pipe 50. Take one of the routes to enter.

説明の便宜上、配管10aとバイパス管50との合流点をD点とする。D点と輻射熱交換器14との間に、逆止弁43が接続されている。逆止弁43は、D点に達した冷媒が輻射熱交換器14へ入ることを防止している。   For convenience of explanation, a junction point between the pipe 10a and the bypass pipe 50 is defined as a point D. A check valve 43 is connected between the point D and the radiant heat exchanger 14. The check valve 43 prevents the refrigerant that has reached point D from entering the radiant heat exchanger 14.

圧縮機11の吐出口と四路切換弁12とを接続する吐出管には、吐出温度センサ111が取り付けられている。吐出温度センサ111は、圧縮機11から吐出される高圧冷媒の温度を検知する。   A discharge temperature sensor 111 is attached to a discharge pipe connecting the discharge port of the compressor 11 and the four-way switching valve 12. The discharge temperature sensor 111 detects the temperature of the high-pressure refrigerant discharged from the compressor 11.

制御部は、輻射熱交換器14のパネルの温度を、吐出温度センサ111が検出する温度に基づいて制御する。しかし、三方弁41と輻射熱交換器14とを接続する配管が長く、圧力損失によって吐出温度センサ111が検出する温度とパネルの温度とが異なる場合は、輻射熱交換器14の高圧冷媒入口の近傍に他の温度センサ(以下、第2温度センサ114という)が取り付けられる。本実施形態では、吐出温度センサ111および第2温度センサ114の両方が採用されている。   The control unit controls the temperature of the panel of the radiant heat exchanger 14 based on the temperature detected by the discharge temperature sensor 111. However, if the pipe connecting the three-way valve 41 and the radiant heat exchanger 14 is long and the temperature detected by the discharge temperature sensor 111 differs from the panel temperature due to pressure loss, it is located near the high-pressure refrigerant inlet of the radiant heat exchanger 14. Another temperature sensor (hereinafter referred to as second temperature sensor 114) is attached. In the present embodiment, both the discharge temperature sensor 111 and the second temperature sensor 114 are employed.

<室内ユニット2の内部構造>
図2は、室内ユニットの内部構造を示す分解斜視図である。図2において、室内ユニット2は、フレーム210とグリル240とによって外殻が形成されている。フレーム210は、四角形の開口部211の左端に左板212、右端に右板213、上端に上板214が固定される。フレーム210は、ファン室210aと電装品室210bとを有している。
<Internal structure of indoor unit 2>
FIG. 2 is an exploded perspective view showing the internal structure of the indoor unit. In FIG. 2, the indoor unit 2 has an outer shell formed by a frame 210 and a grill 240. In the frame 210, a left plate 212 is fixed to the left end of the rectangular opening 211, a right plate 213 is fixed to the right end, and an upper plate 214 is fixed to the upper end. The frame 210 has a fan chamber 210a and an electrical component chamber 210b.

グリル240は、上吹出口240a、下吹出口240b、開口部240c、左側吸込口240d、および右側吸込口240eを有している。上吹出口240aはグリル240の上部に位置し、下吹出口240bはグリル240の下部に位置する。開口部240cは、パネル14aを室内空間に露出させる。左側吸込口240dはグリル240の左側面に位置し、右側吸込口240eはグリル240の右側面に位置する。   The grill 240 has an upper outlet 240a, a lower outlet 240b, an opening 240c, a left inlet 240d, and a right inlet 240e. The upper air outlet 240 a is located at the upper part of the grill 240, and the lower air outlet 240 b is located at the lower part of the grill 240. The opening 240c exposes the panel 14a to the indoor space. The left suction port 240 d is located on the left side surface of the grill 240, and the right suction port 240 e is located on the right side surface of the grill 240.

空気は、ファン23の稼動によって左側吸込口240d及び右側吸込口240eから吸い込まれ、パネル14aの断熱された背面と吸込通路形成板115,116の間を通り、対流熱交換器13の上流に配置されたフィルタ218を通過する。フィルタ218を通過した空気は、対流熱交換器13に導かれ対流熱交換器13で熱交換をした後、ベルマウス216の円穴216aを通過してファン23に入る。ファン23から吹き出された空気は、上吹出口240aおよび下吹出口240bに向ってファン室210a内に進み、上吹出口240aおよび下吹出口240bから吹き出される。   The air is sucked in from the left suction port 240d and the right suction port 240e by the operation of the fan 23, passes between the heat-insulated back surface of the panel 14a and the suction passage forming plates 115 and 116, and is arranged upstream of the convection heat exchanger 13. Pass through the filtered filter 218. The air that has passed through the filter 218 is guided to the convection heat exchanger 13, exchanges heat with the convection heat exchanger 13, passes through the circular hole 216 a of the bell mouth 216, and enters the fan 23. The air blown out from the fan 23 proceeds into the fan chamber 210a toward the upper blower outlet 240a and the lower blower outlet 240b, and is blown out from the upper blower outlet 240a and the lower blower outlet 240b.

ベルマウス216の円穴216aは、ファン23の羽根内径より少し小さめで、円穴216aを通過した空気はファン23の羽根の内側に入り、羽根で昇圧されてファン23の外周方向に吹き出される。   The circular hole 216 a of the bell mouth 216 is slightly smaller than the inner diameter of the fan 23, and the air that has passed through the circular hole 216 a enters the inside of the fan 23, is pressurized by the vane, and is blown out toward the outer periphery of the fan 23. .

モータ支持板215は、ファン室210aの上部と下部との間に固定され、ファン23の駆動モータ23aを支える。駆動モータ23aは、ネジ23bによってモータ支持板215にネジ止めされる。そして、ベルマウス216がファン室210aを閉じる。電装品箱24は、電装品室210bに保持される。電装品箱24の中には、CPUやメモリなどが搭載された制御部が収納されている。   The motor support plate 215 is fixed between the upper part and the lower part of the fan chamber 210 a and supports the drive motor 23 a of the fan 23. The drive motor 23a is screwed to the motor support plate 215 by screws 23b. Then, the bell mouth 216 closes the fan chamber 210a. The electrical component box 24 is held in the electrical component chamber 210b. In the electrical component box 24, a control unit on which a CPU, a memory, and the like are mounted is accommodated.

熱交換器組立体220は、対流熱交換器13と輻射熱交換器14とが合体した構造である。対流熱交換器13の下方には、ドレンパン組立体217が配置されている。例えば、冷房運転時に、空気が対流熱交換器13を通過するとき、空気中に含まれる水分が対流熱交換器13表面で結露する。ドレンパン組立体217は、対流熱交換器13から落下してくる結露水を受ける。   The heat exchanger assembly 220 has a structure in which the convective heat exchanger 13 and the radiant heat exchanger 14 are combined. A drain pan assembly 217 is disposed below the convection heat exchanger 13. For example, when air passes through the convection heat exchanger 13 during cooling operation, moisture contained in the air is condensed on the surface of the convection heat exchanger 13. The drain pan assembly 217 receives condensed water falling from the convection heat exchanger 13.

なお、上吹出口240aには、吹出口組立体250が取り付けられている。吹出口組立体250は、空気の吹出方向を変えるルーバーを有している。グリル240の開口部240cの左端、右端および上端それぞれには、左枠241、右枠242および上枠243が取り付けられる。   A blower outlet assembly 250 is attached to the upper blower outlet 240a. The blower outlet assembly 250 has a louver that changes the blowing direction of air. A left frame 241, a right frame 242, and an upper frame 243 are attached to the left end, the right end, and the upper end of the opening 240c of the grill 240, respectively.

図3は、熱交換器組立体の側面図である。図3において、熱交換器組立体220では、対流熱交換器13と輻射熱交換器14とが取付板221によって固定されている。取付板221は、輻射熱交換器14の枠14cからパネル14aと反対の方向に延びる板金部材であり、貫通穴221aが形成されている。   FIG. 3 is a side view of the heat exchanger assembly. In FIG. 3, in the heat exchanger assembly 220, the convection heat exchanger 13 and the radiant heat exchanger 14 are fixed by a mounting plate 221. The mounting plate 221 is a sheet metal member that extends in a direction opposite to the panel 14a from the frame 14c of the radiant heat exchanger 14, and has a through hole 221a.

対流熱交換器13は、各伝熱管13bの両端近傍に管板13cを有している。管板13cには、取付板221の貫通穴221aに対応するネジ穴が形成されている。対流熱交換器13と取付板221とは、貫通穴221aを介してネジ止めされる。   The convective heat exchanger 13 has tube plates 13c in the vicinity of both ends of each heat transfer tube 13b. A screw hole corresponding to the through hole 221a of the mounting plate 221 is formed in the tube plate 13c. The convective heat exchanger 13 and the mounting plate 221 are screwed through the through hole 221a.

図4は、輻射熱交換器のパネルと伝熱管との取付構造を示す断面図である。図4において、取付金具14eは、伝熱管14bを挟んでパネル14aと対向し、予めパネル14aに固定されている取付部14dに、取付ネジ14fによってネジ止めされる。取付部14dは、取付ネジ14fが螺合するネジ穴14daを有している。取付金具14eは、平板部14eaと隆起部14ebとフランジ部14ecとを有している。平板部14eaは、パネル14aの輻射面の裏面に密着する。隆起部14ebは、平板部14eaから隆起し、伝熱管14bが嵌まり込むU字溝が形成されている。フランジ部14ecは、平板部14eaの端から隆起し取付部14dに固定される。フランジ部14ecには、取付部14dのネジ穴14daに対応する貫通穴14edが形成されている。   FIG. 4 is a cross-sectional view showing a mounting structure between a panel of a radiant heat exchanger and a heat transfer tube. In FIG. 4, the mounting bracket 14e faces the panel 14a with the heat transfer tube 14b interposed therebetween, and is screwed to the mounting portion 14d fixed to the panel 14a in advance by mounting screws 14f. The attachment portion 14d has a screw hole 14da into which the attachment screw 14f is screwed. The mounting bracket 14e has a flat plate portion 14ea, a raised portion 14eb, and a flange portion 14ec. The flat plate portion 14ea is in close contact with the rear surface of the radiation surface of the panel 14a. The raised portion 14eb is raised from the flat plate portion 14ea, and a U-shaped groove into which the heat transfer tube 14b is fitted is formed. The flange portion 14ec rises from the end of the flat plate portion 14ea and is fixed to the attachment portion 14d. A through hole 14ed corresponding to the screw hole 14da of the mounting portion 14d is formed in the flange portion 14ec.

伝熱管14bがパネル14aの裏面に配置されたのち、取付金具14eの貫通穴14edが取付部14dのネジ穴14daに対向するように配置され、取付ネジ14fによってフランジ部14ecが取付部14dにネジ止めされる。その結果、取付金具14eと伝熱管14bとはパネル14aに押付けられ、取付金具14eと伝熱管14bとからパネル14aへの伝熱性が確保される。   After the heat transfer tube 14b is disposed on the back surface of the panel 14a, the through hole 14ed of the mounting bracket 14e is disposed so as to face the screw hole 14da of the mounting portion 14d, and the flange portion 14ec is screwed to the mounting portion 14d by the mounting screw 14f. Stopped. As a result, the mounting bracket 14e and the heat transfer tube 14b are pressed against the panel 14a, and heat transfer from the mounting bracket 14e and the heat transfer tube 14b to the panel 14a is ensured.

<空調機1の動作>
空調機1は、四路切換弁12で冷媒の流路を変更し、冷房運転と暖房運転とを切り替える。先ず、冷媒回路が暖房運転用の回路になっている場合について説明する。
<Operation of air conditioner 1>
The air conditioner 1 changes the refrigerant flow path with the four-way switching valve 12 to switch between the cooling operation and the heating operation. First, the case where the refrigerant circuit is a circuit for heating operation will be described.

(暖房運転)
暖房運転時、四路切換弁12では図1の実線で示す流路が選択され、圧縮機11から吐出された高圧のガス冷媒が三方弁41の第1流通口Aへ向う。三方弁41が第1状態のとき、ガス冷媒は第1流通口Aに入り、第2流通口Bから出て輻射熱交換器14の伝熱管14b(図3及び図4参照)に入る。
(Heating operation)
During the heating operation, the four-way switching valve 12 selects the flow path indicated by the solid line in FIG. When the three-way valve 41 is in the first state, the gas refrigerant enters the first circulation port A, exits from the second circulation port B, and enters the heat transfer tube 14b of the radiant heat exchanger 14 (see FIGS. 3 and 4).

取付金具14eと伝熱管14bとはパネル14aに密着しているので(図4参照)、ガス冷媒の熱が伝熱管14bを介してパネル14aに伝導し、パネル14aの温度が上昇する。温度上昇したパネル14aからは輻射熱が発せられるので、パネル14a前方の空気や物体が暖められる。   Since the mounting bracket 14e and the heat transfer tube 14b are in close contact with the panel 14a (see FIG. 4), the heat of the gas refrigerant is conducted to the panel 14a through the heat transfer tube 14b, and the temperature of the panel 14a rises. Since the radiant heat is emitted from the panel 14a whose temperature has increased, the air and objects in front of the panel 14a are warmed.

輻射熱交換器14を出たガス冷媒は、逆止弁43を通って対流熱交換器13に入る。ガス冷媒は、対流熱交換器13の外側を対流する空気と熱交換して凝縮する。対流熱交換器13で温度上昇した空気は、室内へ吹き出され室内を暖める。   The gas refrigerant exiting the radiant heat exchanger 14 enters the convection heat exchanger 13 through the check valve 43. The gas refrigerant exchanges heat with the convection air outside the convection heat exchanger 13 and condenses. The air whose temperature has increased in the convection heat exchanger 13 is blown out into the room and warms the room.

対流熱交換器13を出た液冷媒は、室外熱交換器16に向う途中、膨張弁15で減圧され室外熱交換器16に入る。液冷媒は、室外熱交換器16の外側を対流する空気と熱交換して蒸発しガス冷媒となる。   The liquid refrigerant exiting the convection heat exchanger 13 is depressurized by the expansion valve 15 and enters the outdoor heat exchanger 16 on the way to the outdoor heat exchanger 16. The liquid refrigerant exchanges heat with convection air outside the outdoor heat exchanger 16 and evaporates to become a gas refrigerant.

室外熱交換器16を出たガス冷媒は、四路切換弁12、アキュームレータ20を通って圧縮機11に戻る。以上のように、空調機1では、輻射熱交換器14と対流熱交換器13とによる暖房運転が行われる。   The gas refrigerant exiting the outdoor heat exchanger 16 returns to the compressor 11 through the four-way switching valve 12 and the accumulator 20. As described above, in the air conditioner 1, the heating operation by the radiant heat exchanger 14 and the convective heat exchanger 13 is performed.

図5は、暖房運転における第2温度センサの検出温度と三方弁の動作との関係を示すグラフである。図5において、第2温度センサ114の検出温度が所定温度(この場合は70℃)を超えた時点で、三方弁41は、第1流通口Aから第2流通口Bへの冷媒の流れを、第1流通口Aから第3流通口Cへの冷媒の流れに切り換える。つまり、三方弁41は、輻射熱交換器14に冷媒が流れている状態から、冷媒が輻射熱交換器14に流れず対流熱交換器14のみに流れる状態に切り換える。   FIG. 5 is a graph showing the relationship between the temperature detected by the second temperature sensor and the operation of the three-way valve in the heating operation. In FIG. 5, when the temperature detected by the second temperature sensor 114 exceeds a predetermined temperature (70 ° C. in this case), the three-way valve 41 allows the refrigerant flow from the first flow port A to the second flow port B. The refrigerant flow from the first circulation port A to the third circulation port C is switched. That is, the three-way valve 41 switches from a state in which the refrigerant flows to the radiant heat exchanger 14 to a state in which the refrigerant flows only to the convective heat exchanger 14 without flowing to the radiant heat exchanger 14.

そして、予め設定されている切り換え時間T1が経過したとき、三方弁41は冷媒の流れを再び第1流通口Aから第2流通口Bへの方向へ切り換え、それによって、輻射熱交換器14による暖房運転が復帰する。   When the preset switching time T1 has elapsed, the three-way valve 41 switches the refrigerant flow from the first flow port A to the second flow port B again, thereby heating by the radiant heat exchanger 14. Operation returns.

(冷房運転)
次に、冷媒回路が冷房運転用の回路になった場合について説明する。冷房運転時、四路切換弁12では図1の点線で示す流路が選択され、圧縮機11から吐出された高圧のガス冷媒が室外熱交換器16に向う。ガス冷媒は、室外熱交換器16の外側を対流する空気と熱交換して凝縮する。室外熱交換器16から出た液冷媒は、対流熱交換器13へ向う途中、膨張弁15で減圧され対流熱交換器13に入る。液ガス冷媒は、対流熱交換器13の外側を対流する空気と熱交換して蒸発する。対流熱交換器13で温度低下した空気は、室内へ吹き出され室内を冷却する。
(Cooling operation)
Next, the case where the refrigerant circuit is a circuit for cooling operation will be described. During the cooling operation, the flow path indicated by the dotted line in FIG. 1 is selected in the four-way switching valve 12, and the high-pressure gas refrigerant discharged from the compressor 11 goes to the outdoor heat exchanger 16. The gas refrigerant is condensed by exchanging heat with air that convects outside the outdoor heat exchanger 16. The liquid refrigerant from the outdoor heat exchanger 16 is depressurized by the expansion valve 15 and enters the convection heat exchanger 13 on the way to the convection heat exchanger 13. The liquid gas refrigerant evaporates by exchanging heat with the convection air outside the convection heat exchanger 13. The air whose temperature has decreased in the convection heat exchanger 13 is blown out into the room and cools the room.

対流熱交換器13から出たガス冷媒は、バイパス管50を通って三方弁41の第3流通口Cに入る。なお、ガス冷媒は、バイパス管50に入る前にD点で輻射熱交換器14側へ流れようとするが、逆止弁43に阻まれる。第3流通口Cに入ったガス冷媒は第1流通口Aから出て四路切換弁12に向う。四路切換弁12を出たガス冷媒は、アキュームレータ20を通って圧縮機11に戻る。   The gas refrigerant discharged from the convection heat exchanger 13 passes through the bypass pipe 50 and enters the third circulation port C of the three-way valve 41. The gas refrigerant tends to flow toward the radiant heat exchanger 14 at the point D before entering the bypass pipe 50, but is blocked by the check valve 43. The gas refrigerant that has entered the third flow port C exits from the first flow port A and travels toward the four-way switching valve 12. The gas refrigerant that has exited the four-way switching valve 12 returns to the compressor 11 through the accumulator 20.

<特徴>
以上のように、空調機1では、三方弁41が、圧縮機11から流れてくる高圧冷媒を輻射熱交換器14に流す第1状態と、圧縮機11から流れてくる高圧冷媒を輻射熱交換器14に流さず対流熱交換器13へ流す第2状態とに切り替えられる。三方弁41が第1状態にあるとき、高圧冷媒は輻射熱交換器14及び対流熱交換器13の両方に流れる。そして、輻射熱交換器14の温度を低下させる必要があるときは第2状態に切り替えられる。三方弁41が第2状態にあるとき、高圧冷媒が輻射熱交換器14に押し込まれないので、冷媒および圧縮機油などが輻射熱交換器14に滞留せず、輻射熱交換器14の温度が下がり易くなる。
<Features>
As described above, in the air conditioner 1, the three-way valve 41 has the first state in which the high-pressure refrigerant flowing from the compressor 11 flows to the radiant heat exchanger 14, and the high-pressure refrigerant flowing from the compressor 11 to the radiant heat exchanger 14. The second state is switched to the convection heat exchanger 13 without flowing into the convection heat exchanger 13. When the three-way valve 41 is in the first state, the high-pressure refrigerant flows through both the radiant heat exchanger 14 and the convective heat exchanger 13. And when it is necessary to lower the temperature of the radiant heat exchanger 14, it is switched to the second state. When the three-way valve 41 is in the second state, since the high-pressure refrigerant is not pushed into the radiant heat exchanger 14, refrigerant, compressor oil and the like do not stay in the radiant heat exchanger 14, and the temperature of the radiant heat exchanger 14 is likely to decrease.

<第1変形例>
上記実施形態では、輻射熱交換器14と対流熱交換器13とが直列に接続されているが、それに限定されるのではなく、輻射熱交換器14と対流熱交換器13とが並列に接続されてもよい。図6は、本実施形態の第1変形例に係る空調機の冷媒回路図である。図6において、三方弁41の第1流通口Aと第2流通口Bとが連通している第1状態のとき、圧縮機11から吐出された高圧のガス冷媒は輻射熱交換器14に流れる。また、三方弁41の第1流通口Aと第3流通口Cとが連通している第2状態のとき、圧縮機11から吐出された高圧のガス冷媒は対流輻射熱交換器14に流れる。
<First Modification>
In the said embodiment, although the radiant heat exchanger 14 and the convective heat exchanger 13 are connected in series, it is not limited to it, The radiant heat exchanger 14 and the convective heat exchanger 13 are connected in parallel. Also good. FIG. 6 is a refrigerant circuit diagram of an air conditioner according to a first modification of the present embodiment. In FIG. 6, when the first flow port A and the second flow port B of the three-way valve 41 are in the first state, the high-pressure gas refrigerant discharged from the compressor 11 flows to the radiant heat exchanger 14. When the first flow port A and the third flow port C of the three-way valve 41 are in the second state, the high-pressure gas refrigerant discharged from the compressor 11 flows to the convection radiant heat exchanger 14.

第1変形例では、輻射熱交換器14だけを用いた暖房運転を実行中に、輻射熱交換器14のパネル14aの温度が上限値に達したとき、三方弁41が高圧冷媒を輻射熱交換器14に流さない状態に切り替えられ、対流熱交換器13だけを用いた暖房運転が実行される。その結果、パネル14aの温度低下が速まり、空調機1は、早期に、輻射熱交換器14を用いた暖房運転に復帰することができる。   In the first modified example, when the temperature of the panel 14a of the radiant heat exchanger 14 reaches the upper limit during the heating operation using only the radiant heat exchanger 14, the three-way valve 41 supplies the high-pressure refrigerant to the radiant heat exchanger 14. It is switched to a state where it does not flow, and the heating operation using only the convection heat exchanger 13 is executed. As a result, the temperature drop of the panel 14a is accelerated, and the air conditioner 1 can return to the heating operation using the radiant heat exchanger 14 at an early stage.

<第2変形例>
図7は、本実施形態の第2変形例に係る空調機の冷媒回路図である。図7において、輻射熱交換器14の下流側に過冷却熱交換器44が接続されている。過冷却熱交換器44では、内部のガス冷媒がファン23から送風によって冷却され凝縮する。仮に、輻射熱交換器14を出たガス冷媒が凝縮することなく直に対流熱交換器13から出た液冷媒と合流した場合、沸騰音が発生するので冷媒の合流音が大きくなる。しかし、輻射熱交換器14を出たガス冷媒は過冷却熱交換器44で凝縮するので、対流熱交換器13で凝縮した冷媒と合流したときに沸騰音は発生しない。その結果、冷媒の合流音が低減される。
<Second Modification>
FIG. 7 is a refrigerant circuit diagram of an air conditioner according to a second modification of the present embodiment. In FIG. 7, a subcooling heat exchanger 44 is connected to the downstream side of the radiant heat exchanger 14. In the supercooling heat exchanger 44, the internal gas refrigerant is cooled and condensed by blowing air from the fan 23. If the gas refrigerant exiting the radiant heat exchanger 14 is directly condensed with the liquid refrigerant exiting the convection heat exchanger 13 without condensing, a boiling sound is generated and the refrigerant confluence increases. However, since the gas refrigerant exiting the radiant heat exchanger 14 is condensed in the supercooling heat exchanger 44, no boiling sound is generated when it joins with the refrigerant condensed in the convection heat exchanger 13. As a result, the combined noise of the refrigerant is reduced.

第2変形例では、輻射熱交換器14だけを用いた暖房運転を実行中に、輻射熱交換器14のパネル14aの温度が上限値に達したとき、三方弁41が高圧冷媒を輻射熱交換器14に流さない状態に切り替えられ、対流熱交換器13だけを用いた暖房運転が実行される。輻射熱交換器14の下流側には過冷却熱交換器44が配置されているので、輻射熱交換器14および過冷却熱交換器44に滞留する冷媒の温度低下は、第1変形例よりも速まる。その結果、パネル14aの温度低下が速まり、空調機1は、早期に、輻射熱交換器14を用いた暖房運転に復帰することができる。   In the second modified example, when the temperature of the panel 14a of the radiant heat exchanger 14 reaches the upper limit during the heating operation using only the radiant heat exchanger 14, the three-way valve 41 causes the high-pressure refrigerant to be transferred to the radiant heat exchanger 14. It is switched to a state where it does not flow, and the heating operation using only the convection heat exchanger 13 is executed. Since the subcooling heat exchanger 44 is arranged on the downstream side of the radiant heat exchanger 14, the temperature drop of the refrigerant staying in the radiant heat exchanger 14 and the supercooling heat exchanger 44 is faster than that in the first modification. As a result, the temperature drop of the panel 14a is accelerated, and the air conditioner 1 can return to the heating operation using the radiant heat exchanger 14 at an early stage.

<その他の変形例>
輻射熱交換器14のパネル14aと伝熱管14bとの取付構造は、図4に示す形態に限定されるものではない。以下、図8から図12を用いて他の取付構造について説明する。なお、説明の便宜上、パネル14aの輻射面と反対側の面を裏面という。
<Other variations>
The attachment structure of the panel 14a and the heat transfer tube 14b of the radiant heat exchanger 14 is not limited to the form shown in FIG. Hereinafter, another mounting structure will be described with reference to FIGS. For convenience of explanation, the surface opposite to the radiation surface of the panel 14a is referred to as the back surface.

図8は、パネルと伝熱管との第2の取付構造を示す輻射熱交換器の断面図である。図8において、取付パネル141は、パネル14aの裏面に接合される平板部141aと、平板部141aから隆起する隆起部141bとを有している。隆起部141bは、伝熱管14bの直径より高く隆起し、伝熱管14bが嵌まり込むU字溝141cが形成されている。伝熱管14bがU字溝141cに嵌め込まれた後、U字溝141cの開口端が伝熱管14bの外周面を押えるようにカシメ加工される。   FIG. 8 is a cross-sectional view of the radiant heat exchanger showing a second mounting structure between the panel and the heat transfer tube. In FIG. 8, the mounting panel 141 has a flat plate portion 141a joined to the back surface of the panel 14a and a raised portion 141b raised from the flat plate portion 141a. The raised portion 141b is raised higher than the diameter of the heat transfer tube 14b, and a U-shaped groove 141c into which the heat transfer tube 14b is fitted is formed. After the heat transfer tube 14b is fitted into the U-shaped groove 141c, crimping is performed so that the open end of the U-shaped groove 141c presses the outer peripheral surface of the heat transfer tube 14b.

図9は、パネルと伝熱管との第3の取付構造を示す輻射熱交換器の断面図である。図9において、パネル14aと伝熱管14bとがロウ付けによって接合される。パネル14aと伝熱管14bとの接触部に形成されるコーナーにロウ140が行き渡るので、伝熱管14bからパネル14aへの熱伝導性が高い。   FIG. 9 is a cross-sectional view of the radiant heat exchanger showing a third mounting structure of the panel and the heat transfer tube. In FIG. 9, the panel 14a and the heat transfer tube 14b are joined by brazing. Since the solder 140 spreads around the corner formed at the contact portion between the panel 14a and the heat transfer tube 14b, the thermal conductivity from the heat transfer tube 14b to the panel 14a is high.

図10は、パネルと伝熱管との第4の取付構造を示す輻射熱交換器の断面図である。図10において、第1取付金具341は、パネル14aの裏面に接合される平板部341aと、平板部341aから隆起する隆起部341bとを有している。平板部341aは、スポット溶接あるいはロウ付け溶接によってパネル14aの裏面に密着するように接合される。隆起部341bは、伝熱管14bの直径寸法程度に隆起し、伝熱管14bが嵌まり込むU字溝341cが形成されている。また、U字溝341cの両側にネジ穴341dが形成されている。   FIG. 10 is a cross-sectional view of a radiant heat exchanger showing a fourth mounting structure of the panel and the heat transfer tube. In FIG. 10, the first mounting bracket 341 has a flat plate portion 341a joined to the back surface of the panel 14a and a raised portion 341b raised from the flat plate portion 341a. The flat plate portion 341a is joined so as to be in close contact with the back surface of the panel 14a by spot welding or brazing welding. The raised portion 341b is raised to a diameter of the heat transfer tube 14b, and a U-shaped groove 341c into which the heat transfer tube 14b is fitted is formed. Further, screw holes 341d are formed on both sides of the U-shaped groove 341c.

第2取付金具342は、第1取付金具341のネジ穴341dに対応する貫通穴342aを有している。第2取付金具342は、U字溝341cに嵌め込まれた伝熱管14bを覆うように、第1取付金具341にネジ343によってネジ止めされる。伝熱管14bはU字溝341cから僅かに突出しているので、第2取付金具342が第1取付金具341にネジ止めされたとき、伝熱管14bは圧迫されU字溝341cに密着する。   The second mounting bracket 342 has a through hole 342 a corresponding to the screw hole 341 d of the first mounting bracket 341. The second mounting bracket 342 is screwed to the first mounting bracket 341 with a screw 343 so as to cover the heat transfer tube 14b fitted in the U-shaped groove 341c. Since the heat transfer tube 14b slightly protrudes from the U-shaped groove 341c, when the second mounting bracket 342 is screwed to the first mounting bracket 341, the heat transfer tube 14b is compressed and closely contacts the U-shaped groove 341c.

図11は、パネルと伝熱管との第5の取付構造を示す輻射熱交換器の断面図である。図11において、押え金具441は、パネル14aの裏面に接合される平板部441aと、パネル14aの裏面とによって伝熱管14bを挟み込むU字溝441bとを有している。伝熱管14bがパネル14aの裏面に配置された後、押え金具441のU字溝441bが伝熱管14bを覆う。その状態で、平板部441aとパネル14aの裏面とがスポット溶接、或はロウ付け溶接によって接合される。   FIG. 11 is a cross-sectional view of a radiant heat exchanger showing a fifth mounting structure of the panel and the heat transfer tube. In FIG. 11, the presser fitting 441 has a flat plate portion 441a joined to the back surface of the panel 14a and a U-shaped groove 441b that sandwiches the heat transfer tube 14b by the back surface of the panel 14a. After the heat transfer tube 14b is disposed on the back surface of the panel 14a, the U-shaped groove 441b of the presser fitting 441 covers the heat transfer tube 14b. In this state, the flat plate portion 441a and the back surface of the panel 14a are joined by spot welding or brazing welding.

図12は、パネルと伝熱管との第6の取付構造を示す輻射熱交換器の断面図である。図12において、パネル14aは、裏面の伝熱管14bの配置位置と対応する部分に隆起部541を有している。隆起部541には、伝熱管14bが嵌まり込むU字溝541aが形成されている。U字溝541aは、伝熱管14bが嵌まり込んだとき、伝熱管14bの外周面が僅かに突出する程度の深さである。U字溝541aの両側にはネジ穴541bが形成されている。   FIG. 12 is a cross-sectional view of a radiant heat exchanger showing a sixth mounting structure of the panel and the heat transfer tube. In FIG. 12, the panel 14a has a raised portion 541 at a portion corresponding to the arrangement position of the heat transfer tube 14b on the back surface. The raised portion 541 is formed with a U-shaped groove 541 a into which the heat transfer tube 14 b is fitted. The U-shaped groove 541a has such a depth that the outer peripheral surface of the heat transfer tube 14b slightly protrudes when the heat transfer tube 14b is fitted. Screw holes 541b are formed on both sides of the U-shaped groove 541a.

押え金具542は、隆起部541のネジ穴541bに対応する貫通穴542aを有している。押え金具542は、隆起部541から僅かに突出した伝熱管14bの外周面を覆うように、ネジ543によって隆起部541にネジ止めされる。   The presser fitting 542 has a through hole 542 a corresponding to the screw hole 541 b of the raised portion 541. The presser fitting 542 is screwed to the raised portion 541 with a screw 543 so as to cover the outer peripheral surface of the heat transfer tube 14 b slightly protruding from the raised portion 541.

以上のように、本発明によれば、輻射熱交換器を用いた暖房機器に有用である。   As mentioned above, according to this invention, it is useful for the heating equipment using a radiant heat exchanger.

1 空調機
10 冷媒回路
11 圧縮機
13 対流熱交換器
14 輻射熱交換器
41 三方弁
44 過冷却熱交換器
DESCRIPTION OF SYMBOLS 1 Air conditioner 10 Refrigerant circuit 11 Compressor 13 Convection heat exchanger 14 Radiation heat exchanger 41 Three-way valve 44 Supercooling heat exchanger

特開平7−55234号公報JP-A-7-55234

Claims (4)

蒸気圧縮式冷凍サイクルを行う冷媒回路(10)を備え、少なくとも高圧冷媒を利用して暖房運転を行う空調機であって、
前記冷媒回路(10)が、
前記高圧冷媒を吐出する圧縮機(11)と、
内側を流通する前記高圧冷媒と外側を対流する空気との間で熱交換を行わせる対流熱交換器(13)と、
内側を流通する前記高圧冷媒に所定部材を加熱させて前記所定部材から輻射熱を発生させる輻射熱交換器(14)と、
前記圧縮機(11)と前記輻射熱交換器(14)との間に配置される多方弁(41)と、
を有し、
前記多方弁(41)は、前記圧縮機(11)から流れてくる前記高圧冷媒を前記輻射熱交換器(14)に流す第1状態と、前記圧縮機(11)から流れてくる前記高圧冷媒を前記輻射熱交換器(14)に流さない第2状態とに切り替えられる、
空調機(1)。
An air conditioner comprising a refrigerant circuit (10) for performing a vapor compression refrigeration cycle and performing a heating operation using at least a high-pressure refrigerant,
The refrigerant circuit (10)
A compressor (11) for discharging the high-pressure refrigerant;
A convection heat exchanger (13) for exchanging heat between the high-pressure refrigerant circulating inside and the air convection outside;
A radiant heat exchanger (14) for generating a radiant heat from the predetermined member by heating the predetermined member to the high-pressure refrigerant circulating inside;
A multi-way valve (41) disposed between the compressor (11) and the radiant heat exchanger (14);
Have
The multi-way valve (41) has a first state in which the high-pressure refrigerant flowing from the compressor (11) flows to the radiant heat exchanger (14), and the high-pressure refrigerant flowing from the compressor (11). Switched to the second state not to flow through the radiant heat exchanger (14),
Air conditioner (1).
前記多方弁(41)が前記第1状態であるとき、前記圧縮機(11)から流れてくる前記高圧冷媒が前記対流熱交換器(13)および前記輻射熱交換器(14)へ流れ、
前記多方弁(41)が前記第2状態であるとき、前記圧縮機(11)から流れてくる前記高圧冷媒が前記対流熱交換器(13)にだけ流れる、
請求項1に記載の空調機(1)。
When the multi-way valve (41) is in the first state, the high-pressure refrigerant flowing from the compressor (11) flows to the convection heat exchanger (13) and the radiant heat exchanger (14),
When the multi-way valve (41) is in the second state, the high-pressure refrigerant flowing from the compressor (11) flows only to the convection heat exchanger (13).
The air conditioner (1) according to claim 1.
前記多方弁(41)が前記第1状態であるとき、前記圧縮機(11)から流れてくる前記高圧冷媒が前記輻射熱交換器(14)だけに流れ、
前記多方弁(41)が前記第2状態であるとき、前記圧縮機(11)から流れてくる前記高圧冷媒が前記対流熱交換器(13)にだけ流れる、
請求項1に記載の空調機。
When the multi-way valve (41) is in the first state, the high-pressure refrigerant flowing from the compressor (11) flows only to the radiant heat exchanger (14),
When the multi-way valve (41) is in the second state, the high-pressure refrigerant flowing from the compressor (11) flows only to the convection heat exchanger (13).
The air conditioner according to claim 1.
前記冷媒回路(10)は、前記輻射熱交換器(14)から出た前記高圧冷媒を冷却する過冷却熱交換器(44)をさらに有し、
前記多方弁(41)が前記第1状態であるとき、前記圧縮機(11)から流れてくる前記高圧冷媒が前記輻射熱交換器(14)および前記過冷却熱交換器(44)へ流れ、
前記多方弁(41)が前記第2状態であるとき、前記圧縮機(11)から流れてくる前記高圧冷媒が前記対流熱交換器(13)にだけ流れる、
請求項1に記載の空調機。
The refrigerant circuit (10) further includes a supercooling heat exchanger (44) for cooling the high-pressure refrigerant that has exited from the radiant heat exchanger (14),
When the multi-way valve (41) is in the first state, the high-pressure refrigerant flowing from the compressor (11) flows to the radiant heat exchanger (14) and the supercooling heat exchanger (44),
When the multi-way valve (41) is in the second state, the high-pressure refrigerant flowing from the compressor (11) flows only to the convection heat exchanger (13).
The air conditioner according to claim 1.
JP2009066767A 2009-03-18 2009-03-18 Air conditioner Pending JP2010216766A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009066767A JP2010216766A (en) 2009-03-18 2009-03-18 Air conditioner
PCT/JP2010/001818 WO2010106776A1 (en) 2009-03-18 2010-03-15 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066767A JP2010216766A (en) 2009-03-18 2009-03-18 Air conditioner

Publications (1)

Publication Number Publication Date
JP2010216766A true JP2010216766A (en) 2010-09-30

Family

ID=42739444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066767A Pending JP2010216766A (en) 2009-03-18 2009-03-18 Air conditioner

Country Status (2)

Country Link
JP (1) JP2010216766A (en)
WO (1) WO2010106776A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099062A1 (en) * 2011-01-18 2012-07-26 ダイキン工業株式会社 Air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083011A (en) * 2010-10-08 2012-04-26 Daikin Industries Ltd Air conditioner
EP2878468B1 (en) * 2012-07-24 2018-06-06 Japan Climate Systems Corporation Air conditioning device for vehicle
CN105758044A (en) * 2016-03-01 2016-07-13 珠海格力节能环保制冷技术研究中心有限公司 Refrigeration system
CN110260387B (en) * 2019-05-10 2021-01-01 珠海格力电器股份有限公司 Heating system, heating control method, and heating control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438653A (en) * 1977-08-31 1979-03-23 Mitsubishi Electric Corp Heating device
JPS63210547A (en) * 1987-02-27 1988-09-01 Toshiba Corp Air conditioner
JPH0533968A (en) * 1991-07-26 1993-02-09 Sharp Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099062A1 (en) * 2011-01-18 2012-07-26 ダイキン工業株式会社 Air conditioner
JP2012149803A (en) * 2011-01-18 2012-08-09 Daikin Industries Ltd Air conditioner

Also Published As

Publication number Publication date
WO2010106776A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
JP5229031B2 (en) air conditioner
JP6008046B2 (en) Constant temperature liquid circulation device
CN104272888B (en) Cooler, electric components unit and refrigerating plant
JP5974960B2 (en) Battery temperature control device
JP6254349B2 (en) Heat pump equipment outdoor unit
JP5869955B2 (en) Radiant air conditioner
WO2010106776A1 (en) Air conditioning device
JP2014202398A (en) Cooling system for air conditioner control box and air conditioner incorporating cooling system therein
JP2013245832A (en) Radiant type air conditioner
JP5898568B2 (en) Radiant air conditioner
JP2007271212A (en) Outdoor unit of heat pump water heater
JP2013044515A (en) Heat pump water heater
JP2011112254A (en) Refrigeration device
JP2008304115A (en) Heat pump unit and heat pump type water heater
JP6310077B2 (en) Heat source system
KR100930762B1 (en) air conditioner
JP5641612B2 (en) Air conditioner
JP4605725B2 (en) Additional condensing device and refrigeration cycle device with additional condensing system using the same
JP5937421B2 (en) Radiant air conditioner
JP2011047600A (en) Heat exchanger and air conditioner mounted with the same
JP2010139202A (en) Hot water supply-air conditioner
JP5481824B2 (en) vending machine
JP2010144948A (en) Water heat exchange device
JP2013122334A (en) Heat exchanger
JP2011112253A (en) Refrigeration device