JP2010216399A - Engine - Google Patents

Engine Download PDF

Info

Publication number
JP2010216399A
JP2010216399A JP2009065148A JP2009065148A JP2010216399A JP 2010216399 A JP2010216399 A JP 2010216399A JP 2009065148 A JP2009065148 A JP 2009065148A JP 2009065148 A JP2009065148 A JP 2009065148A JP 2010216399 A JP2010216399 A JP 2010216399A
Authority
JP
Japan
Prior art keywords
fuel ratio
engine
air
map
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009065148A
Other languages
Japanese (ja)
Other versions
JP5512154B2 (en
Inventor
Shiro Tanihara
志郎 谷原
Masato Sugimoto
正人 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2009065148A priority Critical patent/JP5512154B2/en
Publication of JP2010216399A publication Critical patent/JP2010216399A/en
Application granted granted Critical
Publication of JP5512154B2 publication Critical patent/JP5512154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that formation of condensate can not be inhibited when condensate is formed during operation of an engine and activity of a catalyst device is not increased due to the condensate. <P>SOLUTION: This engine includes a control device 16 and an exhaust gas temperature detection sensor 15. The control device 16 stores an ignition timing map 161 and an air fuel ratio map 162, retards ignition timing of the ignition timing map 161 and makes air fuel ratio of the air fuel ratio map 162 leaner until prescribed time tz elapses after the engine 1 starts, makes the air fuel ratio of the air fuel ratio map 162 richer if it is determined that condensate is not formed after the prescribed time tz elapses, and executes control based on the ignition timing map 161 and the air fuel ratio map 162 if it is determined that the catalyst device 13 is activated after that. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気通路内に触媒装置を備えるエンジンに関し、より詳細には、排気通路内に発生する凝縮水対策の技術に関する。   The present invention relates to an engine having a catalyst device in an exhaust passage, and more particularly to a technique for countermeasures against condensed water generated in the exhaust passage.

従来、排気通路内に触媒装置を備えるエンジンにおいて、排気通路内に発生する凝縮水対策の技術は公知となっている(例えば、特許文献1参照)。
特許文献1に記載のエンジンは、凝縮水を排出するドレンを排気マニホールドに備える。
特許文献1に記載のエンジンは、排気マニホールドに貯溜した凝縮水をドレンから排出することができる。
Conventionally, in an engine provided with a catalyst device in an exhaust passage, a technique for countermeasures against condensed water generated in the exhaust passage has been publicly known (see, for example, Patent Document 1).
The engine described in Patent Document 1 includes a drain for discharging condensed water in an exhaust manifold.
The engine described in Patent Document 1 can discharge condensed water stored in the exhaust manifold from the drain.

特開2004−293404号公報JP 2004-293404 A

しかし、特許文献1に記載のエンジンは、エンジンの運転中に凝縮水が発生した場合に凝縮水の発生を抑制できず、凝縮水によって触媒装置の活性が上がらない、という問題があった。   However, the engine described in Patent Document 1 has a problem that when condensed water is generated during operation of the engine, the generation of condensed water cannot be suppressed, and the activity of the catalyst device is not increased by the condensed water.

本発明の解決しようとする課題は以上のとおりであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

すなわち、請求項1においては、排気通路内に触媒装置を備えるエンジンであって、前記排気通路内における凝縮水を検出する凝縮水検出手段と、前記触媒装置の活性を検出する触媒活性検出手段と、前記エンジンの運転状態を制御する制御手段と、を備え、前記制御手段は、前記エンジンの点火時期について規定する点火時期マップと、前記エンジンの空燃比について規定する空燃比マップと、を記憶し、前記エンジンが起動してから所定の時間が経過するまでは、前記点火時期マップの点火時期をリタードするとともに、前記空燃比マップの空燃比をリーン化し、前記所定の時間が経過した後、前記凝縮水検出手段の検出値に基づいて凝縮水が発生していないと判断すると前記空燃比マップの空燃比をリッチ化し、その後、前記触媒活性化検出手段の検出値に基づいて前記触媒装置が活性化している判断すると前記点火時期マップおよび前記空燃比マップに従って制御するものである。   That is, in claim 1, an engine having a catalyst device in an exhaust passage, condensed water detection means for detecting condensed water in the exhaust passage, and catalyst activity detection means for detecting the activity of the catalyst device; Control means for controlling the operating state of the engine, and the control means stores an ignition timing map that defines the ignition timing of the engine and an air-fuel ratio map that defines the air-fuel ratio of the engine. The ignition timing of the ignition timing map is retarded until a predetermined time elapses after the engine is started, the air-fuel ratio of the air-fuel ratio map is made lean, and after the predetermined time has elapsed, When it is determined that no condensed water is generated based on the detected value of the condensed water detection means, the air-fuel ratio of the air-fuel ratio map is enriched, and then the catalytic activity The catalytic converter based on a detected value of the detection means is for controlling according to the ignition timing map and the air-fuel ratio map to determine is activated.

請求項2においては、前記凝縮水検出手段および前記触媒活性検出手段は、排気ガスの温度を検出する排気温度検出手段であり、前記制御手段は、排気ガスの温度にかかる第一の閾値と、前記第一の閾値よりも高い排気ガスの温度にかかる第二の閾値と、を記憶し、前記所定の時間が経過した後、検出された排気ガスの温度が前記第一の閾値以上であると、凝縮水が発生していないと判断して前記空燃比マップの空燃比をリッチ化し、その後、検出された排気ガスの温度が前記第二の閾値以上になると、前記触媒装置が活性化している判断して前記点火時期マップおよび前記空燃比マップに従って制御するものである。   In claim 2, the condensed water detection means and the catalyst activity detection means are exhaust temperature detection means for detecting the temperature of the exhaust gas, and the control means includes a first threshold for the temperature of the exhaust gas, And a second threshold value related to the exhaust gas temperature higher than the first threshold value, and after the predetermined time has elapsed, the detected exhaust gas temperature is equal to or higher than the first threshold value. The catalyst device is activated when it is determined that no condensed water is generated and the air-fuel ratio in the air-fuel ratio map is enriched, and then the detected exhaust gas temperature becomes equal to or higher than the second threshold value. It judges and controls according to the said ignition timing map and the said air-fuel ratio map.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、エンジンの運転中に凝縮水が発生しているか否かを判断して凝縮水が発生した場合に凝縮水の発生を抑制するように制御して、触媒装置を活性化することが可能である。   In claim 1, it is determined whether or not condensed water is generated during the operation of the engine, and when the condensed water is generated, control is performed so as to suppress the generation of condensed water and the catalyst device is activated. It is possible.

請求項2においては、排気ガスの温度を検出して排気ガスの温度にかかる閾値を基準に凝縮水が発生している否かを判断することにより、精度の高い制御が可能である。   According to the second aspect of the present invention, it is possible to perform control with high accuracy by detecting the temperature of the exhaust gas and determining whether or not condensed water is generated based on a threshold value related to the temperature of the exhaust gas.

本発明の一実施例に係るエンジンを模式的に示した図。The figure which showed typically the engine which concerns on one Example of this invention. 触媒装置を示した断面図。Sectional drawing which showed the catalyst apparatus. 点火時期マップ図。Ignition timing map diagram. 空燃比マップ図。Air-fuel ratio map. 制御装置の制御フロー図。The control flowchart of a control apparatus.

次に、発明の実施の形態を説明する。   Next, embodiments of the invention will be described.

先ず、本発明の一実施例に係るエンジン1について、図1により説明する。   First, an engine 1 according to an embodiment of the present invention will be described with reference to FIG.

なお、以下では便宜上、エンジン1において重力が作用する方向を「下方」と定義するとともに重力が作用する方向の逆方向を「上方」と定義することにより「上下方向」を定義し、これら定義された方向を用いて説明を行う。   In the following, for the sake of convenience, the direction in which gravity acts on the engine 1 is defined as “downward”, and the direction opposite to the direction in which gravity acts is defined as “upward”, thereby defining the “vertical direction”. The explanation will be made using the different directions.

図1に示すように、エンジン1は、天然ガス等の気体状の燃料を用いるいわゆるガスエンジンである。エンジン1は、エンジン本体10と、排気通路11と、マフラー12と、触媒装置13と、排気熱交換器14と、排気温度検出センサー15と、制御装置16と、を備える。   As shown in FIG. 1, the engine 1 is a so-called gas engine that uses a gaseous fuel such as natural gas. The engine 1 includes an engine body 10, an exhaust passage 11, a muffler 12, a catalyst device 13, an exhaust heat exchanger 14, an exhaust temperature detection sensor 15, and a control device 16.

エンジン本体10は、シリンダ、シリンダブロック、およびシリンダヘッド等によって構成されエンジン1の本体を成す。エンジン本体10のシリンダヘッドには、シリンダから排出される排気ガスを集める排気マニホールド(図示省略)が設けられ、前記排気マニホールドに排気通路11の一端部が接続される。   The engine main body 10 includes a cylinder, a cylinder block, a cylinder head, and the like, and constitutes a main body of the engine 1. The cylinder head of the engine body 10 is provided with an exhaust manifold (not shown) that collects exhaust gas discharged from the cylinder, and one end of the exhaust passage 11 is connected to the exhaust manifold.

排気通路11は、配管等によって構成され、前記シリンダからの排気ガスを大気中に排出する。排気通路11の他端部には、排気ガスの排出に伴う騒音を低下させるマフラー12が接続される。排気通路11の途中には触媒装置13が設けられるとともに、排気通路11において触媒装置13よりもマフラー12側には、排気熱交換器14が設けられる。   The exhaust passage 11 is constituted by piping or the like, and exhausts exhaust gas from the cylinder into the atmosphere. The other end of the exhaust passage 11 is connected to a muffler 12 that reduces noise accompanying exhaust gas discharge. A catalyst device 13 is provided in the middle of the exhaust passage 11, and an exhaust heat exchanger 14 is provided in the exhaust passage 11 on the muffler 12 side of the catalyst device 13.

なお、以下では便宜上、排気通路11においてエンジン本体10側を「排気上流側」と定義するとともに、排気通路11においてマフラー12側を「排気下流側」と定義し、これら定義された方向を用いて説明を行う。   In the following, for convenience, the engine body 10 side in the exhaust passage 11 is defined as “exhaust upstream side”, and the muffler 12 side in the exhaust passage 11 is defined as “exhaust downstream side”, and these defined directions are used. Give an explanation.

触媒装置13は、排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)等を酸化・消滅させる。触媒装置13は、酸化触媒式等とされる。なお、前記排気マニホールドに触媒装置13の一端部を接続する(前記排気マニホールドに触媒装置13を直接接続する)構成でもよい。
排気熱交換器14は、排気ガスの熱を取得して水等の流体に熱エネルギーを伝達することによって熱交換を行う。
The catalyst device 13 oxidizes and extinguishes carbon monoxide (CO), hydrocarbon (HC), etc. contained in the exhaust gas. The catalyst device 13 is an oxidation catalyst type or the like. In addition, the structure which connects the one end part of the catalyst apparatus 13 to the said exhaust manifold (the catalyst apparatus 13 is directly connected to the said exhaust manifold) may be sufficient.
The exhaust heat exchanger 14 performs heat exchange by acquiring heat of the exhaust gas and transferring thermal energy to a fluid such as water.

次に、触媒装置13について、図2により説明する。
図2に示すように、触媒装置13は、フィルターとなる触媒本体131と、触媒本体131を収容する触媒ケース132と、を有する。
Next, the catalyst device 13 will be described with reference to FIG.
As shown in FIG. 2, the catalyst device 13 includes a catalyst main body 131 that serves as a filter, and a catalyst case 132 that houses the catalyst main body 131.

触媒ケース132は略箱状の長手部材である。触媒ケース132の長手方向両端部は、排気通路11に連通し、触媒ケース132の長手方向は、触媒装置13内を通過する排気ガスの流れ方向に沿う。触媒ケース132には、凝縮水貯溜部132Aが設けられる。   The catalyst case 132 is a substantially box-shaped longitudinal member. Both ends in the longitudinal direction of the catalyst case 132 communicate with the exhaust passage 11, and the longitudinal direction of the catalyst case 132 is along the flow direction of the exhaust gas passing through the catalyst device 13. The catalyst case 132 is provided with a condensed water reservoir 132A.

凝縮水貯溜部132Aは、排気通路11で発生した凝縮水を貯溜する。ここで「凝縮水」とは、排気通路11内の空気に含まれる水分が外気によって冷却されて液化したものをいう。凝縮水貯溜部132Aは、触媒ケース132の下部に設けられる。凝縮水貯溜部132Aは、触媒ケース132の下面が略四角形状に下方に膨出する形状である。   The condensed water storage part 132 </ b> A stores the condensed water generated in the exhaust passage 11. Here, the “condensed water” refers to water that is contained in the air in the exhaust passage 11 and is liquefied by being cooled by the outside air. The condensed water storage part 132 </ b> A is provided below the catalyst case 132. The condensed water reservoir 132A has a shape in which the lower surface of the catalyst case 132 bulges downward in a substantially square shape.

凝縮水貯溜部132Aは、触媒装置13において排気上流側に設けられる。つまり、凝縮水貯溜部132Aは、触媒装置13内を通過する排気ガスの流れ方向に対して直交する方向から見たとき、触媒ケース132の長手方向中心132Bよりも排気上流側に設けられる。凝縮水貯溜部132A内には、排気温度検出センサー15が取り付けられる。   The condensed water reservoir 132A is provided upstream of the exhaust gas in the catalyst device 13. That is, the condensed water reservoir 132A is provided upstream of the longitudinal center 132B of the catalyst case 132 when viewed from a direction orthogonal to the flow direction of the exhaust gas passing through the catalyst device 13. An exhaust temperature detection sensor 15 is attached in the condensed water reservoir 132A.

排気温度検出センサー15は、本発明に係る凝縮水検出手段、触媒活性検出手段および排気温度検出手段の実施の一形態である。排気温度検出センサー15は、排気ガスの温度(以下「排気温度」という。)Teを検出する。なお、凝縮水検出手段はフロート等により凝縮水を検出する構成でもよい。
排気温度検出センサー15(検出部151)は、触媒装置13において排気上流側に設けられた凝縮水貯溜部132A内に差し込まれる。つまり、排気温度検出センサー15は、触媒装置13において排気上流側で排気温度Teを検出する。
The exhaust temperature detection sensor 15 is an embodiment of the condensed water detection means, catalyst activity detection means, and exhaust temperature detection means according to the present invention. The exhaust temperature detection sensor 15 detects the temperature of exhaust gas (hereinafter referred to as “exhaust temperature”) Te. The condensed water detection means may be configured to detect condensed water using a float or the like.
The exhaust gas temperature detection sensor 15 (detector 151) is inserted into a condensed water reservoir 132A provided on the exhaust gas upstream side in the catalyst device 13. That is, the exhaust temperature detection sensor 15 detects the exhaust temperature Te on the exhaust upstream side in the catalyst device 13.

制御装置16は、本発明に係る制御手段の実施の一形態である。制御装置16は、CPU、ROM、およびRAM等がバスで接続される構成、あるいはワンチップのLSI等からなる構成とされる。制御装置16は、排気ガスの温度にかかる閾値Tzを記憶する。閾値Tzは、例えば凝縮水の沸点(約100度)等とされる。
制御装置16には、排気温度検出センサー15、回転数センサー17、空燃比センサー18、およびエンジン1の点火装置19が接続される(図1参照)。
回転数センサー17は、本実施例ではエンジン1のクランク軸101の回転速度を検出する。
空燃比センサー18は、排気通路11内に設けられ、エンジン1の空燃比を検出する。なお、「空燃比」は、混合気における空気質量を燃料質量で割った比によって表される。
The control device 16 is an embodiment of the control means according to the present invention. The control device 16 has a configuration in which a CPU, a ROM, a RAM, and the like are connected by a bus, or a configuration that includes a one-chip LSI or the like. The control device 16 stores a threshold value Tz relating to the temperature of the exhaust gas. The threshold value Tz is, for example, the boiling point of condensed water (about 100 degrees).
Connected to the control device 16 are an exhaust temperature detection sensor 15, a rotation speed sensor 17, an air-fuel ratio sensor 18, and an ignition device 19 of the engine 1 (see FIG. 1).
The rotation speed sensor 17 detects the rotation speed of the crankshaft 101 of the engine 1 in this embodiment.
The air-fuel ratio sensor 18 is provided in the exhaust passage 11 and detects the air-fuel ratio of the engine 1. The “air-fuel ratio” is represented by a ratio obtained by dividing the air mass in the air-fuel mixture by the fuel mass.

制御装置16は、排気ガスの温度にかかる第一の閾値Tz1と、第一の閾値Tz1よりも高い排気ガスの温度にかかる第二の閾値Tz2と、点火時期マップ161(図3参照)と、空燃比マップ162(図4参照)と、を記憶する。   The control device 16 includes a first threshold value Tz1 related to the exhaust gas temperature, a second threshold value Tz2 related to the exhaust gas temperature higher than the first threshold value Tz1, an ignition timing map 161 (see FIG. 3), The air-fuel ratio map 162 (see FIG. 4) is stored.

第一の閾値Tz1は、第二の閾値Tz2よりも低い温度とされ、エンジン1の起動直後(冷態起動時)における凝縮水の発生を抑制する観点から規定される。
第二の閾値Tz2は、例えば凝縮水の沸点(約100度)等とされる。
The first threshold value Tz1 is a temperature lower than the second threshold value Tz2, and is defined from the viewpoint of suppressing the generation of condensed water immediately after the engine 1 is started (during cold start).
The second threshold value Tz2 is, for example, the boiling point of condensed water (about 100 degrees).

点火時期マップ161は、エンジン1の点火時期について規定する。図3に示すように、点火時期マップ161は、横軸がエンジン回転数N(単位:min−1)によって表され、縦軸が点火時期T(単位:deg)によって表される。
ここで「点火時期」は、エンジン1のピストン(図示省略)上死点を0度とするクランク軸101(図1参照)の回転角度によって表され、「点火時期のリタード」とは、クランク軸101の回転角度が小さくなる方向で点火する(点火時期を遅くらせる)ことを意味する。
The ignition timing map 161 defines the ignition timing of the engine 1. As shown in FIG. 3, in the ignition timing map 161, the horizontal axis is represented by the engine speed N (unit: min −1 ), and the vertical axis is represented by the ignition timing T (unit: deg).
Here, the “ignition timing” is represented by the rotation angle of the crankshaft 101 (see FIG. 1) with the top dead center of the piston (not shown) of the engine 1 being 0 degrees, and the “ignition timing retard” It means that ignition is performed in a direction in which the rotation angle of 101 becomes smaller (ignition timing is delayed).

空燃比マップ162は、エンジン1の空燃比について規定する。図4に示すように、空燃比マップ162は、横軸がエンジン回転数N(単位:min−1)によって表され、縦軸が空燃比A/Fによって表される。
ここで「空燃比のリーン化」とは、空気質量が増加若しくは燃料質量が低減することにより、空燃比が大きくなって混合気が薄くなることを意味し、「空燃比をリッチ化」とは、空気質量が低減若しくは燃料質量が増加することにより、空燃比が小さくなって混合気が濃くなることを意味する。
The air-fuel ratio map 162 defines the air-fuel ratio of the engine 1. As shown in FIG. 4, in the air-fuel ratio map 162, the horizontal axis is represented by the engine speed N (unit: min −1 ), and the vertical axis is represented by the air-fuel ratio A / F.
Here, “lean air-fuel ratio” means that the air mass increases or the fuel mass decreases due to an increase in air mass or a decrease in fuel mass. This means that when the air mass is reduced or the fuel mass is increased, the air-fuel ratio becomes smaller and the air-fuel mixture becomes richer.

次に、制御装置16の制御フローについて、図5により説明する。   Next, the control flow of the control device 16 will be described with reference to FIG.

図5に示すように、制御装置16は、エンジン1が起動してから所定の時間tzが経過するまでは(S1:No)、点火時期マップ161の点火時期Tをリタードする(S2)。
例えば、図3においてエンジン回転数がNxである場合、制御装置16はエンジン回転数Nxに対応する点火時期Txを選択せずに、エンジン回転数N(x−1)に対応する点火時期Tx−1を選択する。
なお、所定の時間tzは、例えばエンジン1の暖機運転に要する時間等とされる。
As shown in FIG. 5, the control device 16 retards the ignition timing T in the ignition timing map 161 until a predetermined time tz elapses after the engine 1 is started (S1: No) (S2).
For example, when the engine speed is Nx in FIG. 3, the control device 16 does not select the ignition timing Tx corresponding to the engine speed Nx, but the ignition timing Tx− corresponding to the engine speed N (x−1). Select 1.
The predetermined time tz is, for example, a time required for warm-up operation of the engine 1.

合わせて、制御装置16は、エンジン1が起動してから所定の時間tzが経過するまでは(S1:No)、空燃比マップ162の空燃比A/Fをリーン化する(S3)。
例えば、図4においてエンジン回転数がNxである場合、制御装置16はエンジン回転数Nxに対応する空燃比A/F(x)を選択せずに、エンジン回転数N(x−1)に対応する空燃比A/F(x−1)を選択する。
At the same time, the control device 16 leans the air-fuel ratio A / F of the air-fuel ratio map 162 until a predetermined time tz elapses after the engine 1 is started (S1: No) (S3).
For example, when the engine speed is Nx in FIG. 4, the control device 16 does not select the air-fuel ratio A / F (x) corresponding to the engine speed Nx, but corresponds to the engine speed N (x−1). The air / fuel ratio A / F (x-1) to be selected is selected.

続いて、制御装置16は、エンジン1が起動してから所定の時間tzが経過した後(S1:Yes)、排気温度検出センサー15が検出した排気温度Teを読み込み(S4)、排気温度Teが第一の閾値Tz1以上(S5:Yes)であると、凝縮水が発生していないと判断して(S6)空燃比マップ162の空燃比A/Fをリッチ化する(S7)。
例えば、図4においてエンジン回転数がNxである場合、制御装置16はエンジン回転数Nxに対応する空燃比A/F(x)を選択せずに、エンジン回転数N(x+1)に対応する空燃比A/F(x+1)を選択する。
一方、排気温度Teが第一の閾値Tz1未満(S5:No)であると、制御装置16は、凝縮水が発生していると判断して(S8)、再度点火時期Tをリタードするとともに(S2)、空燃比A/Fをリーン化する(S3)。
Subsequently, after a predetermined time tz has elapsed since the engine 1 was started (S1: Yes), the control device 16 reads the exhaust temperature Te detected by the exhaust temperature detection sensor 15 (S4), and the exhaust temperature Te is If it is not less than the first threshold Tz1 (S5: Yes), it is determined that no condensed water is generated (S6), and the air-fuel ratio A / F of the air-fuel ratio map 162 is enriched (S7).
For example, when the engine speed is Nx in FIG. 4, the control device 16 does not select the air-fuel ratio A / F (x) corresponding to the engine speed Nx, but the sky corresponding to the engine speed N (x + 1). The fuel ratio A / F (x + 1) is selected.
On the other hand, if the exhaust gas temperature Te is less than the first threshold value Tz1 (S5: No), the control device 16 determines that condensed water is generated (S8) and retards the ignition timing T again (S8). S2), the air-fuel ratio A / F is made lean (S3).

そして、空燃比A/Fをリッチ化(S7)した後、排気温度Teが第二の閾値Tz2以上になると(S9:Yes)、制御装置16は、触媒装置13が活性化していると判断して(S10)点火時期マップ161および空燃比マップ162に従って制御する(S11)。
例えば、図3および図4においてエンジン回転数がNxである場合、制御装置16はエンジン回転数Nxに対応する点火時期Txを選択するとともに(図3参照)エンジン回転数Nxに対応する空燃比A/F(x)を選択する(図4参照)。
一方、排気温度Teが第二の閾値Tz2未満(S9:No)であると、制御装置16は、触媒装置13が活性化していないと判断して(S12)、再度空燃比A/Fをリッチ化する(S7)。
Then, after enriching the air-fuel ratio A / F (S7), when the exhaust temperature Te becomes equal to or higher than the second threshold Tz2 (S9: Yes), the control device 16 determines that the catalyst device 13 is activated. (S10) Control is performed according to the ignition timing map 161 and the air-fuel ratio map 162 (S11).
For example, when the engine speed is Nx in FIGS. 3 and 4, the control device 16 selects the ignition timing Tx corresponding to the engine speed Nx (see FIG. 3) and the air-fuel ratio A corresponding to the engine speed Nx. / F (x) is selected (see FIG. 4).
On the other hand, if the exhaust gas temperature Te is less than the second threshold Tz2 (S9: No), the control device 16 determines that the catalyst device 13 is not activated (S12), and riches the air-fuel ratio A / F again. (S7).

以上のように本発明の一実施例に係るエンジン1は、排気通路11内に触媒装置13を備えるエンジン1であって、排気通路11内における凝縮水を検出するとともに触媒装置13の活性を検出する排気温度検出センサー15と、エンジン1の運転状態を制御する制御装置16と、備え、制御装置16は、エンジン1の点火時期について規定する点火時期マップ161と、エンジン1の空燃比について規定する空燃比マップ162と、を記憶し、エンジン1が起動してから所定の時間tzが経過するまでは、点火時期マップ161の点火時期をリタードするとともに、空燃比マップ162の空燃比をリーン化し、所定の時間tzが経過した後、排気温度検出センサー15の検出値に基づいて凝縮水が発生していないと判断すると空燃比マップ162の空燃比をリッチ化し、その後、排気温度検出センサー15の検出値に基づいて触媒装置13が活性化していると判断すると点火時期マップ161および空燃比マップ162に従って制御するものである。
このような構成により、エンジン1の運転中に凝縮水が発生しているか否かを判断して凝縮水が発生した場合に凝縮水の発生を抑制するように制御して、触媒装置13を活性化することが可能である。
As described above, the engine 1 according to one embodiment of the present invention is an engine 1 including the catalyst device 13 in the exhaust passage 11, and detects condensed water in the exhaust passage 11 and detects the activity of the catalyst device 13. An exhaust temperature detection sensor 15 for controlling the engine 1 and an operating state of the engine 1. The control device 16 defines an ignition timing map 161 that defines the ignition timing of the engine 1 and an air-fuel ratio of the engine 1. The air-fuel ratio map 162 is stored, and the ignition timing of the ignition timing map 161 is retarded and the air-fuel ratio of the air-fuel ratio map 162 is made lean until a predetermined time tz elapses after the engine 1 is started, If it is determined that condensed water is not generated based on the detection value of the exhaust temperature detection sensor 15 after the predetermined time tz has elapsed, the air-fuel ratio map The air-fuel ratio of 62 to rich, then, is to control according to the catalytic unit 13 the ignition timing and determines that the activation maps 161 and the air-fuel ratio map 162 based on the value detected by the exhaust temperature detecting sensor 15.
With such a configuration, it is determined whether or not condensed water is generated during operation of the engine 1, and control is performed to suppress the generation of condensed water when condensed water is generated, thereby activating the catalyst device 13. It is possible to

そして、凝縮水検出手段は、排気ガスの温度を検出する排気温度検出センサー15であり、制御装置16は、排気ガスの温度にかかる第一の閾値Tz1と、第一の閾値Tz1よりも高い排気ガスの温度にかかる第二の閾値Tz2と、を記憶し、所定の時間tzが経過した後、検出された排気ガスの温度Teが第一の閾値Tz1以上第二の閾値Tz2未満であると、凝縮水が発生していると判断して空燃比マップ162の空燃比をリッチ化し、その後、検出された排気ガスの温度Teが第二の閾値Tz2以上になると、凝縮水が発生していないと判断して点火時期マップ161および空燃比マップ162に従って制御するものである。
このような構成により、排気ガスの温度Teを検出して排気ガスの温度にかかる閾値Tz1・Tz2を基準に凝縮水が発生している否かを判断することにより、精度の高い制御が可能である。
The condensed water detection means is an exhaust temperature detection sensor 15 that detects the temperature of the exhaust gas, and the control device 16 has an exhaust gas that is higher than the first threshold value Tz1 related to the exhaust gas temperature and the first threshold value Tz1. The second threshold value Tz2 relating to the gas temperature is stored, and after a predetermined time tz has elapsed, the detected exhaust gas temperature Te is not less than the first threshold value Tz1 and less than the second threshold value Tz2. If it is determined that condensed water is generated, the air-fuel ratio of the air-fuel ratio map 162 is enriched, and then the detected exhaust gas temperature Te is equal to or higher than the second threshold Tz2, the condensed water is not generated. It is determined and controlled according to the ignition timing map 161 and the air-fuel ratio map 162.
With such a configuration, highly accurate control is possible by detecting the temperature Te of the exhaust gas and determining whether or not condensed water is generated based on the threshold values Tz1 and Tz2 applied to the temperature of the exhaust gas. is there.

1 エンジン
11 排気通路
13 触媒装置
15 排気温度検出センサー(凝縮水検出手段、触媒活性検出手段、排気温度検出手段)
16 制御装置(制御手段)
132A 凝縮水貯溜部
161 点火時期マップ
162 空燃比マップ
Te 排気ガスの温度
Tz1 第一の閾値
Tz2 第二の閾値
tz 所定の時間
DESCRIPTION OF SYMBOLS 1 Engine 11 Exhaust passage 13 Catalytic device 15 Exhaust temperature detection sensor (Condensate detection means, catalyst activity detection means, exhaust temperature detection means)
16 Control device (control means)
132A Condensate storage portion 161 Ignition timing map 162 Air-fuel ratio map Te Exhaust gas temperature Tz1 First threshold Tz2 Second threshold tz Predetermined time

Claims (2)

排気通路内に触媒装置を備えるエンジンであって、前記排気通路内における凝縮水を検出する凝縮水検出手段と、前記触媒装置の活性を検出する触媒活性検出手段と、前記エンジンの運転状態を制御する制御手段と、を備え、前記制御手段は、前記エンジンの点火時期について規定する点火時期マップと、前記エンジンの空燃比について規定する空燃比マップと、を記憶し、前記エンジンが起動してから所定の時間が経過するまでは、前記点火時期マップの点火時期をリタードするとともに、前記空燃比マップの空燃比をリーン化し、前記所定の時間が経過した後、前記凝縮水検出手段の検出値に基づいて凝縮水が発生していないと判断すると前記空燃比マップの空燃比をリッチ化し、その後、前記触媒活性化検出手段の検出値に基づいて前記触媒装置が活性化している判断すると前記点火時期マップおよび前記空燃比マップに従って制御するエンジン。   An engine having a catalyst device in an exhaust passage, the condensed water detection means for detecting condensed water in the exhaust passage, the catalyst activity detection means for detecting the activity of the catalyst device, and the operating state of the engine is controlled And a control means for storing the ignition timing map defining the ignition timing of the engine and an air-fuel ratio map defining the air-fuel ratio of the engine, and after the engine is started Until the predetermined time elapses, the ignition timing of the ignition timing map is retarded, the air-fuel ratio of the air-fuel ratio map is made lean, and after the predetermined time has elapsed, the detected value of the condensed water detection means is obtained. If it is determined that no condensed water is generated, the air-fuel ratio of the air-fuel ratio map is enriched, and thereafter, based on the detected value of the catalyst activation detecting means Engine catalytic converter is controlled according to the ignition timing map and the air-fuel ratio map to determine is activated. 前記凝縮水検出手段および前記触媒活性検出手段は、排気ガスの温度を検出する排気温度検出手段であり、前記制御手段は、排気ガスの温度にかかる第一の閾値と、前記第一の閾値よりも高い排気ガスの温度にかかる第二の閾値と、を記憶し、前記所定の時間が経過した後、検出された排気ガスの温度が前記第一の閾値以上であると、凝縮水が発生していないと判断して前記空燃比マップの空燃比をリッチ化し、その後、検出された排気ガスの温度が前記第二の閾値以上になると、前記触媒装置が活性化している判断して前記点火時期マップおよび前記空燃比マップに従って制御する請求項1に記載のエンジン。   The condensed water detection means and the catalyst activity detection means are exhaust temperature detection means for detecting the temperature of exhaust gas, and the control means includes a first threshold on the temperature of exhaust gas and the first threshold. A second threshold value for a higher exhaust gas temperature, and after the predetermined time has elapsed, if the detected exhaust gas temperature is equal to or higher than the first threshold value, condensed water is generated. If the detected exhaust gas temperature is equal to or higher than the second threshold value, the catalyst device is determined to be activated and the ignition timing is determined. The engine according to claim 1, wherein the engine is controlled according to a map and the air-fuel ratio map.
JP2009065148A 2009-03-17 2009-03-17 engine Expired - Fee Related JP5512154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065148A JP5512154B2 (en) 2009-03-17 2009-03-17 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065148A JP5512154B2 (en) 2009-03-17 2009-03-17 engine

Publications (2)

Publication Number Publication Date
JP2010216399A true JP2010216399A (en) 2010-09-30
JP5512154B2 JP5512154B2 (en) 2014-06-04

Family

ID=42975487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065148A Expired - Fee Related JP5512154B2 (en) 2009-03-17 2009-03-17 engine

Country Status (1)

Country Link
JP (1) JP5512154B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150218995A1 (en) * 2012-10-23 2015-08-06 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicular control method
US9157350B2 (en) 2012-09-21 2015-10-13 Yanmar Co., Ltd. Engine system
JP2016211393A (en) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 Vehicle control device
CN111946526A (en) * 2020-07-24 2020-11-17 东风汽车集团有限公司 Exhaust temperature protection method based on air-fuel ratio and time delay response

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157350B2 (en) 2012-09-21 2015-10-13 Yanmar Co., Ltd. Engine system
US20150218995A1 (en) * 2012-10-23 2015-08-06 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicular control method
US9771848B2 (en) * 2012-10-23 2017-09-26 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicular control method
JP2016211393A (en) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 Vehicle control device
CN111946526A (en) * 2020-07-24 2020-11-17 东风汽车集团有限公司 Exhaust temperature protection method based on air-fuel ratio and time delay response
CN111946526B (en) * 2020-07-24 2021-07-06 东风汽车集团有限公司 Exhaust temperature protection method based on air-fuel ratio and time delay response

Also Published As

Publication number Publication date
JP5512154B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP6350444B2 (en) Exhaust gas purification device for internal combustion engine
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
JP2007032357A (en) Catalyst diagnosis device for internal combustion engine and automobile equipped with internal combustion engine including catalyst diagnosis device
JP6123822B2 (en) Exhaust purification device deterioration diagnosis device
JP2009299638A (en) Catalyst warming-up control device
JP5664884B2 (en) Air-fuel ratio control device for internal combustion engine
JP5512154B2 (en) engine
JP2008240704A (en) Control device for internal combustion engine
JP6729542B2 (en) Exhaust purification device abnormality diagnosis system
JP4403156B2 (en) Oxygen sensor diagnostic device for internal combustion engine
JP2008208765A (en) Control system of internal combustion engine
JP2005214098A (en) Exhaust emission control device of internal combustion engine
JP2010071134A (en) Fuel injection timing control device for engine
JP2007046515A (en) Exhaust emission control device of internal combustion engine
JP5880592B2 (en) Abnormality detection device for exhaust purification system
JP4987354B2 (en) Catalyst early warm-up control device for internal combustion engine
JP2010261369A (en) Engine
JP2005299587A (en) Air fuel ratio control device for internal combustion engine
JP2009091921A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4788632B2 (en) Internal combustion engine control system
JP2000337130A (en) Exhaust emission control system for internal combustion engine
JP2010156309A (en) Fuel injection controller for internal combustion engine
JP4914875B2 (en) Exhaust gas purification device for internal combustion engine
JP2010216390A (en) Engine
JP2009019558A (en) Catalytic deterioration diagnostic system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees