JP2010216387A - Hydraulic power generation device and hydraulic power generation method - Google Patents

Hydraulic power generation device and hydraulic power generation method Download PDF

Info

Publication number
JP2010216387A
JP2010216387A JP2009064622A JP2009064622A JP2010216387A JP 2010216387 A JP2010216387 A JP 2010216387A JP 2009064622 A JP2009064622 A JP 2009064622A JP 2009064622 A JP2009064622 A JP 2009064622A JP 2010216387 A JP2010216387 A JP 2010216387A
Authority
JP
Japan
Prior art keywords
water
pipe
fountain
pumping
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009064622A
Other languages
Japanese (ja)
Inventor
Heihachiro Kobayashi
平八郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009064622A priority Critical patent/JP2010216387A/en
Publication of JP2010216387A publication Critical patent/JP2010216387A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic power generation device which solves unstable power generation by staying unaffected by a natural environment, is extremely energy efficient without depending on an orientation of an ocean current or the like with respect to an installation site, and without consuming a huge amount of operating power, and which offers ease of operation. <P>SOLUTION: The hydraulic power generation device 1 to generate hydraulic power by generating a pumped water stream directed from under water toward the water surface by water pressure includes: a lifting pipe 3 with its one end serving as an inlet port 3c and the other end as an injection port 3a; a fountain passage 20 disposed in such a manner as to surround a fountain column injected from the injection port of the lifting pipe; a water storage tank 6 to receive water falling from the top of the fountain column spurting up by water pressure within the fountain passage; a discharge means 8 to discharge water temporarily stored in the water storage tank to the outside of the water storage tank; and a water wheel 5 arranged inside the lifting pipe between the inlet port and the injection port and rotating with the pumped water stream flowing inside the pipe to generate electrical power via a hydraulic power generator 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、湖、沼、河川、ダム等の淡水あるいは海等の海水が人工あるいは自然に所定の深さで貯水されている環境において使用される水力発電装置に関するものである。   The present invention relates to a hydroelectric generator used in an environment where fresh water such as lakes, swamps, rivers, and dams or seawater such as the sea is artificially or naturally stored at a predetermined depth.

一般に、人工のダム等により水力発電を行う水力発電装置や、あるいは、潮流や海流等を利用して発電を行う装置が様々提案されている。例えば、特許文献1には、潮流および海流の流力によって回転する水車と、この水車を支えるサイド艇および中央艇と、このサイド艇および中央艇に設置した水車の回転エネルギーにより駆動する発電機と、を備え、前記水車が、海面に配置される羽板型水車と、海中に配置される潜水型水車である構成の発電システム構造艇が記載されている。   In general, various hydroelectric generators that generate hydroelectric power using an artificial dam or the like, or various apparatuses that generate electric power using tidal currents or ocean currents have been proposed. For example, Patent Document 1 discloses a water wheel that rotates by tidal currents and ocean currents, a side boat and a central boat that support the water wheel, and a generator that is driven by the rotational energy of the water wheel installed in the side boat and the central boat. , And the water turbine is a slat type water turbine disposed on the sea surface and a submersible water turbine disposed in the sea.

また、他の例として、特許文献2には、海中に錨および係留鎖を介して設置する筒型直方体形状の浮体と、この筒型直方体の内部に配置された水車と、この水車の回転を電気に変換する発電機と、この発電機による発電を送電する海底送電線とを備える海流発電潜水艇が記載されている。   As another example, Patent Document 2 discloses a cylindrical cuboid-shaped floating body installed in the sea via a anchor and a mooring chain, a water turbine disposed inside the cylindrical cuboid, and rotation of the water turbine. An ocean current power generation submersible including a generator that converts electricity and a submarine power transmission line that transmits power generated by the generator is described.

さらに、その他の例として、特許文献3には、吸水管を設け、この吸水管の上部を喫水線に対して7〜8m突出させた高さとし、気密にして開閉自在のキャップを有する空気灯を備えた一本または複数本のパスカル管とし、このパスカル管を下方に湾曲させて船底に向かう落水管と接合させて、さらに、接合させた落水管を横に曲げて船尾に向かう噴水管を設ける構成が記載されている。そして、落水管内には水車を設け、この水車に連結する発電機を設けている。さらに、船尾の海中に開口する噴射口に接続されている排水管は、他の管より拡大した状態とされ、内部に排水車を設けてモータで回転できるように構成されている。   Furthermore, as another example, Patent Document 3 includes an air lamp having a water absorption pipe, an upper portion of the water absorption pipe protruding from the water line by 7 to 8 m, and an airtight and openable cap. A configuration is described in which one or a plurality of Pascal pipes are bent, and the Pascal pipe is bent downward and joined to a waterfall pipe directed to the bottom of the ship, and further, a fountain pipe directed to the stern by bending the joined waterfall pipe sideways is described. Has been. A water wheel is provided in the water pipe, and a generator connected to the water wheel is provided. Furthermore, the drainage pipe connected to the injection port that opens into the stern sea is in a state of being larger than the other pipes, and is configured such that a drainage wheel is provided therein and can be rotated by a motor.

特開2000−297737号公報JP 2000-297737 A 特開平07−259064号公報Japanese Patent Application Laid-Open No. 07-259064 特開昭61−215460号公報Japanese Patent Laid-Open No. 61-215460

しかし、従来の水力発電装置あるいは方法では、次の事情を抱えていた。
特許文献1、2に記載の装置では、海流あるいは潮流の流力により水車を回転させることで発電を行っているため、自然環境によって発電効率が大きく左右されることになり、安定的な電力の確保は困難であった。また、船舶に設置される装置は、海流あるいは潮流の流れる方向に合わせて装置自体の向きを固定する必要があり、そのための場所が必要であることから、設置条件に自由度が乏しく、また、装置の向きを固定する構造も自然環境に合わせる必要があることから、装置の向きを固定することが容易ではなかった。
However, the conventional hydroelectric power generation apparatus or method has the following circumstances.
In the devices described in Patent Documents 1 and 2, since power generation is performed by rotating a turbine by the current of ocean current or tidal current, the power generation efficiency is greatly influenced by the natural environment, and stable power generation is possible. It was difficult to secure. In addition, the device installed on the ship needs to fix the direction of the device itself according to the direction of the ocean current or tidal current, and because there is a need for a place for it, the degree of freedom in the installation conditions is low, Since the structure for fixing the orientation of the device also needs to be adapted to the natural environment, it is not easy to fix the orientation of the device.

特許文献3に記載の装置では、船舶に吸水管、パスカル管あるいは落水管等を使用し、かつ管内の排水車を排水車用モータで駆動させて発電を行っているため、発電量が小さく、商業的な発電装置として稼動させることには無理があった。   In the apparatus described in Patent Document 3, a water absorption pipe, a Pascal pipe, a waterfall pipe, or the like is used for a ship, and a drainage vehicle in the pipe is driven by a drainage car motor to generate power. It was impossible to operate as a typical power generator.

そこで、本発明は、前記事情を考慮して創案されたものであり、自然環境に左右されることがなく、不安定な電力の生成を解消し、かつ、設置した場所に対して海流等による影響を最小限にし、また、膨大な運転動力を消費することなしに、極めて省エネルギー化され、かつ運転の容易な水力発電装置および水力発電方法を提供することを課題とする。   Therefore, the present invention was created in consideration of the above circumstances, is not affected by the natural environment, eliminates the generation of unstable power, and depends on the ocean current or the like to the place where it is installed. It is an object of the present invention to provide a hydroelectric power generation apparatus and a hydroelectric power generation method that are extremely energy-saving and easy to operate without minimizing the influence and consuming enormous driving power.

本発明は、前記課題を解決するために、以下に示すような構成とした。すなわち、本発明に係る水力発電装置は、水圧により水中側から水面側に向かう揚水流を発生させて水力発電を行う水力発電装置において、前記水力発電装置は、水中に配置して一端を水中側に向けて水の導入口にすると共に、他端を水面側に向けて水の噴射口にする揚水管と、この揚水管の噴射口を囲む位置から水面側に向けて大気に連通させて配置し、水圧により前記噴射口から噴射する噴水柱の周りを包囲するように設けた噴水通路と、この噴水通路内で水圧により噴き上がる噴水柱の頂上から落下する水を受け取るように、前記噴水通路の上方で、かつ水面より低い位置に設置された貯水槽と、この貯水槽に一旦貯水された水を前記貯水槽外へ排出する排出手段と、前記揚水管の導入口と噴射口との間の管内に配置され当該管内を流れる揚水流により回転し、水力発電機を介して発電を行う水車と、を備える構成とした。   In order to solve the above-mentioned problems, the present invention is configured as follows. That is, the hydraulic power generation apparatus according to the present invention is a hydroelectric power generation apparatus that performs hydroelectric power generation by generating a pumping flow from the underwater side to the water surface side by water pressure. The hydropower generation apparatus is disposed in water and has one end on the underwater side. A water intake pipe with the other end facing the water surface side and a water injection port with the other end facing the water surface, and a position communicating with the atmosphere from the position surrounding the water injection port to the water surface side And a fountain passage provided so as to surround the fountain column ejected from the ejection port by water pressure, and the fountain passage so as to receive water falling from the top of the fountain column spouted by the water pressure in the fountain passage Between a water storage tank installed above and below the water surface, discharge means for discharging the water once stored in the water storage tank to the outside of the water storage tank, and an inlet and an injection port of the pumping pipe Placed in a pipe Rotated by pumping flow that was a water turbine for generating electric power through a hydroelectric generator, configured to include a.

かかる構成により、水力発電装置は、水中に浮遊あるいは水中に固定されるように設置される。例えば、水力発電装置は、水中に位置して水圧を受ける構造体がここでは噴水通路として設置され、その噴水通路の水中側に設置されている揚水管の導入口から水が水圧により導入されると共に噴射口から水面に向かって水が噴射して貯水槽に貯水される。そして、水力発電装置は、水圧により揚水管内を流れる揚水流により水力発電機の水車が回転して電力を得ることができる。また、水力発電装置は、揚水管の噴射口から噴水柱として噴射した水を、水面よりも低い位置にある貯水槽に到達するように水圧により噴き上げられる。そのため、水力発電装置は、貯水槽に一旦貯水された水を、排出手段により貯水槽外である例えば水面上へ汲み上げて排出している。   With this configuration, the hydroelectric generator is installed so as to float or be fixed in water. For example, in a hydroelectric generator, a structure that is located in water and receives water pressure is installed here as a fountain passage, and water is introduced by water pressure from an inlet of a pumping pipe installed on the underwater side of the fountain passage. At the same time, water is ejected from the ejection port toward the water surface and stored in the water storage tank. And a hydraulic power unit can obtain electric power by rotating a water turbine of a hydroelectric generator by a pumping flow which flows in a pumping pipe by water pressure. In addition, the hydroelectric generator is spouted by water pressure so that the water jetted as the fountain column from the outlet of the pumped water pipe reaches the water storage tank at a position lower than the water surface. Therefore, the hydroelectric generator pumps up the water once stored in the water storage tank by, for example, the water surface outside the water storage tank by the discharging means.

また、前記水力発電装置において、前記排出手段は、前記貯水槽から前記水面に向けて設置された排出管と、この排出管を介して前記貯水槽内の水を水面上へと汲み上げる駆動ポンプとを有する構成とした。
かかる構成により、水力発電装置は、水圧により噴射されて貯水槽に一旦貯水された水を、駆動ポンプを駆動させて排出管により水面まで汲み上げて、貯水槽内の水を常に水面側に戻している。
In the hydroelectric generator, the discharge means includes a discharge pipe installed from the water storage tank toward the water surface, and a drive pump that pumps water in the water storage tank onto the water surface through the discharge pipe. It was set as the structure which has.
With this configuration, the hydroelectric generator is configured to always return the water in the water tank to the water surface side by driving the drive pump to pump the water that has been jetted by water pressure and temporarily stored in the water tank to the water surface by the discharge pipe. Yes.

また、前記した構成の水力発電装置において、前記揚水管は、水圧により管内を流れる揚水流を噴射口から噴射したときの噴水柱が、垂直方向から所定角度傾斜するように配置されることが好ましい。
かかる構成により、水力発電装置では、噴射口から噴射した噴水柱が所定角度に傾斜することになり、その噴射水が噴水柱の頂上から落下するときに水の方向が同じ方向に向くので、貯水槽に受け取られやすくなる。
Further, in the hydroelectric generator having the above-described configuration, it is preferable that the pumping pipe is arranged such that a fountain column is inclined at a predetermined angle from a vertical direction when a pumping flow flowing in the pipe by water pressure is injected from an injection port. .
With such a configuration, in the hydroelectric power generation device, the fountain column injected from the injection port is inclined at a predetermined angle, and when the injected water falls from the top of the fountain column, the water direction is the same direction. It becomes easy to be received in the tank.

さらに、前記した構成の水力発電装置は、前記導入口あるいは前記噴射口の一方または両方には、さらに通過する水を整流する整流器が設置されてもよい。
かかる構成により水力発電装置は、導入口に整流器が設置された場合には、揚水管中を流れる揚水流に渦等が発生することなく効率よく水車を回すことができ、また、噴射口に整流器を設置した場合には、噴射される噴水柱がしぶきの少ない状態で噴射され貯水槽に送られる。
Furthermore, in the hydroelectric power generation device having the above-described configuration, a rectifier that rectifies water passing therethrough may be installed at one or both of the introduction port and the injection port.
With this configuration, when a rectifier is installed at the inlet, the hydroelectric generator can efficiently turn the water turbine without generating vortices or the like in the pumped water flowing through the pumping pipe, and the rectifier at the outlet. When is installed, the injected fountain column is injected in a state of little splash and sent to the water storage tank.

そして、前記した構成の水力発電装置は、前記揚水管には、前記導入口から前記噴射口の間に、当該揚水管内の閉鎖あるいは開放を行う開閉手段をさらに設けた構成としてもよい。
かかる構成により、水力発電装置の開閉手段を例えば遠隔操作する構成とすれば、水力発電装置は、操作性が向上する。
The hydroelectric generator having the above-described configuration may be configured such that the pumping pipe is further provided with opening / closing means for closing or opening the pumping pipe between the inlet and the injection port.
With this configuration, if the opening / closing means of the hydroelectric generator is configured to be remotely operated, for example, the operability of the hydroelectric generator is improved.

なお、水力発電装置において、排出管を複数配置する場合には、排出管から排水される水の方向を沖に向けるようにすると都合がよい。
また、水力発電装置において、揚水口の向きを水底に向かわないように形成するかあるいは、屈曲した屈曲管を設置すると、水底が導入口から近い場合には、水底にある固形物等を吸い上げることがないので都合がよい。
In the hydroelectric generator, when a plurality of discharge pipes are arranged, it is convenient to direct the water drained from the discharge pipes to the offing.
Also, in the hydroelectric power generator, when the water outlet is formed so that it does not face the bottom of the water or a bent pipe is installed, if the water bottom is close to the inlet, the solids etc. on the bottom of the water are sucked up. Because there is not, it is convenient.

また、本発明に係る水力発電方法としては、水中に配置した揚水管内に水圧により発生させる揚水流を介して、前記揚水管内に設けた水車を回転させて水力発電を行う水力発電方法であって、前記揚水管の一端側に設けた導入口から水圧により水を導入して、当該揚水管の管路内に配置した前記水車を回転させる第1工程と、前記揚水管の他端に設けた噴射口を囲む位置から、前記水面側に向かって設けた噴水通路内に、前記水車を回転させた水を水圧により噴水として噴射させ、前記噴水通路の上方にかつ前記水面より低い位置で前記噴水柱の頂上からの落下を受けることが可能となる位置に設けた貯水槽に水を受け取る第2工程と、前記貯水槽内に貯水された水を排出手段により前記水面上に汲み上げて排出する第3工程と、を含み、前記第1工程から前記第3工程までを繰り返し連続して行うことで、前記揚水管内を流れる揚水流により回転する前記水車の駆動力を用いて、水力発電機を介して発電を行うこととした。   Further, the hydroelectric power generation method according to the present invention is a hydroelectric power generation method for performing hydroelectric power generation by rotating a water turbine provided in the pumping pipe through a pumping flow generated by water pressure in the pumping pipe arranged in water. The first step of introducing water by water pressure from the inlet provided on one end side of the pumping pipe to rotate the water wheel arranged in the pipe line of the pumping pipe, and the other step of the pumping pipe Water that has rotated the water wheel is injected as a fountain by water pressure into a fountain passage provided toward the water surface from a position surrounding the injection port, and the fountain is located above the fountain passage and at a position lower than the water surface. A second step of receiving water in a water tank provided at a position where it is possible to receive a drop from the top of the column; and a step of pumping water stored in the water tank onto the water surface by a discharging means and discharging the water. Including 3 steps, before By continuously carried out repeatedly until the third step from the first step, by using a driving force of the water turbine which is rotated by a pumping flow through the pumping tube, it was decided that generates power through a hydroelectric generator.

かかる手順により水力発電方法では、水圧により揚水管内を水中側から水面側に向って流れる揚水流を発生させ、揚水管の噴射口から噴水状態として噴射させて貯水槽にまで送り、貯水槽から水面まで排出手段により汲み上げて貯水槽内の水を槽外へ排出する動作を連続的に行い、この連続工程の間に揚水管内の水車を回転させて水力発電機に水車の駆動力を伝達して水力発電を行っている。   According to such a procedure, in the hydroelectric power generation method, a pumping flow that flows in the pumping pipe from the underwater side to the water surface side is generated by water pressure, and is injected as a fountain state from the injection port of the pumping pipe to the water storage tank. The pump is continuously pumped up by the discharge means and the water in the reservoir is discharged out of the tank. During this continuous process, the turbine in the pump is rotated to transmit the driving force of the turbine to the hydroelectric generator. Hydroelectric power generation.

本発明に係る水力発電装置および水力発電方法は、以下に示すような優れた効果を奏するものである。
水力発電装置は、水が貯水されているようなダム、湖沼、貯水池、河川、海洋等において化石燃料を使用することなく、落水とは逆方向である水圧による揚水管内の揚水流を用いて水車を回転駆動させることで水力発電機により発電することができる。
The hydroelectric generator and the hydroelectric power generation method according to the present invention have excellent effects as described below.
Hydroelectric power generation equipment uses a pumping flow in the pumping pipe with water pressure in the opposite direction to falling water without using fossil fuel in dams, lakes, reservoirs, rivers, oceans, etc. where water is stored. Can be generated by a hydroelectric generator.

そのため、本発明に係る水力発電装置は二酸化炭素をほとんど発生させることなく電力を得ることができるので環境保全に適した装置である。さらに、水力発電装置は、水中あるいは水底側の水を揚水管の噴射口までにかかる水圧により噴射口から噴射して貯水槽に貯水し、排出手段により水面側に戻すため、水の循環を強制的に行うことで水中に酸素を供給することになるため、周辺の水質劣化の防止に寄与する。   Therefore, the hydroelectric power generation apparatus according to the present invention is an apparatus suitable for environmental conservation because it can obtain electric power with little generation of carbon dioxide. Furthermore, the hydroelectric generator forces water underwater or bottom water to be injected from the injection port by the water pressure applied to the injection port of the pumped pipe, stored in the water storage tank, and returned to the water surface by the discharge means, forcing water circulation. Since this will supply oxygen into the water, it will contribute to the prevention of water quality deterioration in the surrounding area.

水力発電装置は、揚水管から噴射される噴水柱が傾斜するように揚水管を設けているので、噴射した水を効率よく貯水槽へと貯水させることができる。
水力発電装置は、導入口あるいは噴射口の一方または両方に整流器を設けることで、水車を回転させる効率を向上させ、または、噴射する噴水柱がしぶきの少ない整った状態となり貯水槽に効率よく貯水できる。
水力発電装置は、揚水管に開閉手段を設けることで、運転作業するときの操作が容易となり、メンテナンスに好都合である。
Since the hydroelectric generator is provided with the pumping pipe so that the fountain column injected from the pumping pipe is inclined, the injected water can be efficiently stored in the water storage tank.
The hydroelectric power generator is equipped with a rectifier at one or both of the introduction port and / or the injection port to improve the efficiency of rotating the water turbine, or the injected fountain column is in a state where it has less splash and is efficiently stored in the water tank. it can.
The hydroelectric generator is provided with an opening / closing means in the pumping pipe, so that it is easy to perform operations when driving and is convenient for maintenance.

水力発電方法は、水圧を駆動源として揚水管内に揚水流を発生させ、揚水管の噴射口から噴水通路内において水面より低い位置にある貯水槽に向けて水を噴射させて一旦貯水し、排出手段により水面上へ汲み上げる動作を連続して行うことで、発生した揚水流を利用して水車を回転させて発電を行っている。そのため、この水力発電方法は、自然環境からの影響を最小限に抑えて安定的に発電することが可能となる。   The hydroelectric power generation method uses a water pressure as a driving source to generate a pumping flow in the pumping pipe, injecting water from the injection port of the pumping pipe toward the water tank at a position lower than the water surface in the fountain passage, and temporarily storing and discharging the water By continuously performing the pumping operation on the surface of the water by means, the water turbine is rotated using the generated pumping flow to generate electricity. Therefore, this hydroelectric power generation method can stably generate power while minimizing the influence from the natural environment.

本発明に係る水力発電装置の全体を側面方向から模式的に示す断面図である。It is sectional drawing which shows typically the whole hydroelectric power generator which concerns on this invention from a side surface direction. 本発明に係る水力発電装置の全体を正面方向から模式的に示す断面図である。It is sectional drawing which shows typically the whole hydroelectric generator which concerns on this invention from a front direction. 本発明に係る水力発電装置を水面の上方から模式的に示す平面図である。It is a top view showing typically the hydroelectric generator concerning the present invention from the upper part of the water surface. 本発明に係る水力発電装置の貯水槽と噴水柱との位置関係を模式的に示す斜視図である。It is a perspective view which shows typically the positional relationship of the water storage tank and fountain column of the hydroelectric generator which concerns on this invention. 本発明に係る水力発電装置の噴射水の噴射水高距離と、喫水深さの関係を模式的に示す模式図である。It is a schematic diagram which shows typically the relationship between the jet water high distance of the jet water of the hydroelectric generator which concerns on this invention, and draft depth. 本発明に係る水力発電装置を水上基地に設置した一例を模式的に示す断面図である。It is sectional drawing which shows typically an example which installed the hydroelectric generator which concerns on this invention in the water base. 本発明に係る水力発電装置をダムに設置した一例を模式的に示す斜視図である。It is a perspective view showing typically an example which installed a hydroelectric generator concerning the present invention in a dam. 本発明に係る水力発電装置の筐体につての他の構成を模式的に示す斜視図である。It is a perspective view which shows typically the other structure about the housing | casing of the hydraulic power unit which concerns on this invention.

以下、本発明を実施するための形態を、図面を参照して説明する。
なお、水力発電装置1は、図1〜図4の説明では、海岸の水際側に設置された一例として説明する。なお、この水力発電装置は、湖水、河口、ダム等の淡水を対象にした設置位置または海岸などの海水を対象にした設置位置、あるいは、水上(海上)に設置される水上基地(海上基地)、水上(海洋上)に浮遊する水上浮遊構造物(海上浮遊構造物)、あるいは船舶に設置され、そして運転する構成であっても構わないことは勿論である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
In addition, the hydroelectric generator 1 is demonstrated as an example installed in the waterfront side of a shore in description of FIGS. 1-4. In addition, this hydroelectric power generation device is installed at a target location for fresh water such as lake water, estuaries, and dams, or a target location for seawater such as coasts, or a water base (sea base) installed on the water (at sea). Of course, a floating structure floating on the water (on the ocean) (floating structure on the sea) or a structure installed and operated on a ship may be used.

図1および図2に示すように、水力発電装置1は、ここでは、海岸の一部分に形成された基礎設置部(構造体)SBに設けられ、水中に固定(支持)されるように設置されている。水力発電装置1は、筐支持構造体2と、揚水管3と、この揚水管3内に水車5を設けた水力発電機4と、揚水管3から噴水される噴水柱WPの通路となる噴水通路20と、この噴水通路20からの水を受け取る貯水槽6と、この貯水槽6内の水を水面Wsへと排出する排出手段8とを備えている。この水力発電装置1は、ハウジングとなる構造体が、水面Wsから所定深さまでの水圧を受けるように配置された、三層構造の筐支持構造体2から構成されている。つまり、筐支持構造体2は、下部側から中間部側さらに上部側に向かって下部設置部2a、中間設置部2b、上部設置部2cの構成をとっている。   As shown in FIG. 1 and FIG. 2, the hydroelectric generator 1 is installed in a foundation installation part (structure) SB formed in a part of the coast and is fixed (supported) in water. ing. The hydroelectric generator 1 includes a housing support structure 2, a pumping pipe 3, a hydroelectric generator 4 in which a water turbine 5 is provided in the pumping pipe 3, and a fountain serving as a passage for a fountain column WP fountained from the pumping pipe 3. A passage 20, a water storage tank 6 that receives water from the fountain passage 20, and a discharge means 8 that discharges the water in the water storage tank 6 to the water surface Ws are provided. The hydroelectric generator 1 includes a three-layered casing support structure 2 in which a structure serving as a housing is disposed so as to receive water pressure from the water surface Ws to a predetermined depth. That is, the housing support structure 2 has a configuration of a lower installation portion 2a, an intermediate installation portion 2b, and an upper installation portion 2c from the lower side toward the intermediate side and further toward the upper side.

そして、下部設置部2aには、揚水管3およびその管内に設けた水車5を含む水力発電機4が設置されている。また、中間設置部2bには、水圧を受けて揚水管3から噴射される水が噴水柱WPを形成する空間を噴水の通路とする噴水通路20が設置されている。さらに、上部設置部2cには、揚水管3から噴射され噴水柱WPを形成した噴射水の落下を受けてそれを貯水する貯水槽6と、この貯水槽6に貯水される水を貯水槽6外へと排出する排出手段8とが併設されている。   And in the lower installation part 2a, the hydroelectric generator 4 containing the pumping pipe 3 and the water wheel 5 provided in the pipe is installed. Moreover, the fountain channel | path 20 which makes the fountain channel | path the space in which the water injected from the pumping pipe 3 receives the water pressure and forms the fountain column WP is installed in the intermediate installation part 2b. Furthermore, in the upper installation part 2c, a water storage tank 6 for receiving and storing the water of the jet water that has been sprayed from the pumping pipe 3 and formed the fountain column WP, and the water stored in the water storage tank 6 are stored in the water storage tank 6 A discharge means 8 for discharging to the outside is also provided.

筐支持構造体2は、その中間部分に中間設置部2bが、水面Wsより上方となる大気に連通するように上部設置部2cから連続して形成されている。ここでは、中間設置部2bの内側となる空間が、大気側に連通しているために、上部設置部2cの上端側が水面より高い位置に配置され、上部設置部2cから連通穴等により大気に連通するように形成されている。また、中間設置部2bは、その下端となる底部分に水面からの喫水深さ位置となり水圧を受けるように底面が設置されている。そして、中間設置部2bは、後記する揚水管3から噴射して形成される噴水柱WPの噴水通路20が上方の大気に向かって障害なく噴きあがるように設置できる空間広さがあればよく、形状等が限定されるものではない。なお、図3および図4に示すように、上部設置部2cおよび噴水通路20の上方では、噴水柱WPが噴き上がるように、仕切りがない状態で設けられている。   The housing support structure 2 is formed continuously from the upper installation portion 2c so that an intermediate installation portion 2b communicates with the atmosphere above the water surface Ws at an intermediate portion thereof. Here, since the space inside the intermediate installation part 2b communicates with the atmosphere side, the upper end side of the upper installation part 2c is arranged at a position higher than the water surface, and the upper installation part 2c communicates with the atmosphere through a communication hole or the like. It is formed so as to communicate. Moreover, the bottom surface of the intermediate installation part 2b is installed so that the bottom part of the intermediate installation part 2b is at a draft depth position from the water surface and receives water pressure. And the intermediate installation part 2b should just have the space width which can be installed so that the fountain channel | path 20 of the fountain pillar WP formed by injecting from the pumping pipe 3 mentioned later sprays upwards without an obstacle, The shape and the like are not limited. As shown in FIGS. 3 and 4, the upper installation portion 2 c and the fountain passage 20 are provided without a partition so that the fountain column WP is ejected.

中間設置部2bの内側には、噴射口3aの周辺となる位置に噴水柱WPを包囲するように設置された噴水通路20が形成されている。この噴水通路20は、噴水柱WPを上方に向かって噴き上げることができる空間広さを備えるような直径を備えている。そして、この噴水通路20の下方には、中間設置部2b側に連通する連通穴21が形成されており、噴水通路20内に滴下した水を連通穴21から中間設置部2b側に流し込んでいる。   Inside the intermediate installation part 2b, a fountain passage 20 is formed so as to surround the fountain column WP at a position around the injection port 3a. The fountain passage 20 has such a diameter as to have a space that allows the fountain column WP to be spouted upward. A communication hole 21 communicating with the intermediate installation portion 2b is formed below the fountain passage 20, and water dropped into the fountain passage 20 is poured into the intermediate installation portion 2b from the communication hole 21. .

なお、中間設置部2bには、噴射口3aから噴射する際に水がその底部に溜まることが考えられるが、例えば、中間設置部2bに連続する排水室(図示せず)を設け、その排出室から外部(水中)に強制的に排出するように構成するようにしてもよい。あるいは、噴水通路20または中間設置部2bの底部に溜まる水は、噴射する水の量に対して少量である。そのため、揚水ポンプ等の駆動手段により溜水の位置から水面Wsまでの中間位置に一旦汲み上げ、さらに、中間位置から水面Wsまで段階的(2段以上でも可、3段、4段等)に汲み上げて、排水路を接続して最終的には水面Wsまで汲み上げて排水するように構成しても構わない。   In addition, in the intermediate installation part 2b, it is conceivable that water is collected at the bottom when jetting from the injection port 3a. For example, a drainage chamber (not shown) continuous to the intermediate installation part 2b is provided and discharged. You may make it comprise so that it may discharge | emit forcedly outside (underwater) from a chamber. Or the water which accumulates in the bottom part of the fountain channel 20 or the intermediate installation part 2b is a small quantity with respect to the quantity of the water to inject. Therefore, it is once pumped up to an intermediate position from the position of the stored water to the water surface Ws by a driving means such as a pump, and further pumped up from the intermediate position to the water surface Ws in stages (two or more stages are possible, three stages, four stages, etc.). Then, the drainage channel may be connected to be finally pumped up to the water surface Ws and drained.

筐支持構造体2の下部設置部2aには、揚水管3と、水力発電機4とが設置されている。揚水管3は、その一端である開口を水底側である下方に向けて水の導入口3cとし、かつ、その他端である開口を水面側である上方に向けて水の噴射口3aとして、ほぼ垂直方向に沿って、あるいは、所定傾斜角度に配置されている。噴射口3aは、下部設置部2aの底から突出するように設置されている。なお、揚水管3は、ここでは、図2に示すように、沖側から見たときに、垂直方向に対して所定角度傾斜させた状態で設置されている。このように揚水管3が傾斜していることで、噴射口3aから噴射される噴水柱WPが垂直より一方向に傾き、噴射して落下してくる水を後記する貯水槽6が受け取りやすくなり、噴射して送られてくる水を貯水槽6外に飛び散らすことを極力防ぐ設計になっている。   A pumping pipe 3 and a hydroelectric generator 4 are installed in the lower installation part 2 a of the housing support structure 2. The pumping pipe 3 has an opening that is one end thereof as a water inlet 3c facing downward on the bottom of the water, and an opening that is the other end facing upward as the water surface side as a water jet 3a. They are arranged along the vertical direction or at a predetermined inclination angle. The injection port 3a is installed so as to protrude from the bottom of the lower installation part 2a. Here, as shown in FIG. 2, the pumping pipe 3 is installed in a state inclined at a predetermined angle with respect to the vertical direction when viewed from the offshore side. As the pumping pipe 3 is inclined in this way, the fountain column WP injected from the injection port 3a is inclined in one direction from the vertical, and the water storage tank 6 which will be described later for the water that is injected and falls becomes easier to receive. The design is such that the sprayed water is prevented from splashing out of the water storage tank 6 as much as possible.

なお、噴水柱WPの傾斜角度は、垂直に対して好ましくは3度から45度、より好ましくは15度から30度の範囲である。傾斜角度が前記の範囲内であると、噴水柱WPの頂上から落下する水が一方向に向き易く、噴水通路2bのスペースを狭くすることが可能になり、貯水槽6を噴水通路2bの近くに小スペースで設置可能になる。なお、揚水管3を傾斜させても、噴水通路20の空間が十分広ければ、噴水通路20は垂直に設置しても構わず、もちろん、噴水通路20は、噴水柱WPに沿って傾斜させて設置しても構わない(図2では傾斜させた状態を示している)。   The inclination angle of the fountain column WP is preferably in the range of 3 to 45 degrees, more preferably 15 to 30 degrees with respect to the vertical. When the inclination angle is within the above range, the water falling from the top of the fountain column WP can easily be directed in one direction, and the space of the fountain passage 2b can be narrowed. It can be installed in a small space. Even if the pumping pipe 3 is inclined, if the space of the fountain passage 20 is sufficiently wide, the fountain passage 20 may be installed vertically. Of course, the fountain passage 20 is inclined along the fountain column WP. It may be installed (FIG. 2 shows an inclined state).

また、揚水管3は、導入口3cおよび噴射口3aの中間となる中央部分が二股に分岐した分岐部13を備えている。そして、揚水管3は、ここでは導入口3c、分岐部13(一側分岐管13aおよび他側分岐管13bの合計)および噴射口3aにおける管の断面積がそれぞれ等しくなるように形成されている。さらに、揚水管3には、導入口3cの位置および噴射口3aの位置の少なくとも一方の位置に整流器12が設置されている。この整流器12は、揚水管3内の揚水流の流れ方向を整えることで、後記する水車の回転効率を向上させ、あるいは、噴射口3aから噴射する噴水柱WPの乱流化を防ぎ、貯水槽6に向けての噴射させた水を貯水槽6内に到達させる到達率を向上させることができる。   Moreover, the water pump 3 is provided with the branch part 13 which the center part which becomes the intermediate | middle of the inlet 3c and the injection port 3a branched into two branches. And the pumping pipe 3 is formed so that the cross-sectional area of the pipe | tube in the inlet 3c, the branch part 13 (total of the one side branch pipe 13a and the other side branch pipe 13b), and the injection port 3a may become equal here, respectively. . Furthermore, the rectifier 12 is installed in the pumping pipe 3 at at least one of the position of the inlet 3c and the position of the injection port 3a. This rectifier 12 improves the rotational efficiency of the water turbine described later by adjusting the flow direction of the pumped water flow in the pumped pipe 3, or prevents the fountain column WP injected from the injection port 3a from becoming turbulent, The arrival rate at which the water jetted toward 6 reaches the inside of the water storage tank 6 can be improved.

揚水管3の分岐部13の分岐する下方部分の位置には、回転軸5bが水密に回転自在に設けられ、管内に水車5が設置されている。この水車5は、羽根部分が一側分岐管13aと他側分岐管13bの管路内に亘って配置されるように設けられている。ここで使用される水車は、例えば、プロペラ水車においてランナーコーンの周面に設けた羽根の形状、取付角度等がランナーコーンの正面から回転軸5bに向かって流れるような揚水流(図1の矢印)に対して回転できるように形成されている。また、回転軸5bの他端側には、水車5が揚水流で回転したときに安定した回転運動ができるように軸受部5c等が設置されている。この水車5の回転による駆動力を、揚水管3に隣り合う位置に設置した水力発電機4を介して電力に変換している。   A rotary shaft 5b is rotatably provided in a watertight manner at a position of a lower portion where the branching portion 13 of the pumping pipe 3 branches, and a water turbine 5 is installed in the pipe. The water turbine 5 is provided such that the blade portion is disposed over the pipelines of the one side branch pipe 13a and the other side branch pipe 13b. The water wheel used here is, for example, a pumped water flow in which the shape, mounting angle, etc. of the blades provided on the peripheral surface of the runner cone in the propeller water turbine flow from the front surface of the runner cone toward the rotating shaft 5b (arrow in FIG. 1). ) So that it can rotate with respect to. Further, on the other end side of the rotating shaft 5b, a bearing portion 5c and the like are installed so that a stable rotating motion can be performed when the water turbine 5 is rotated by the pumped water flow. The driving force generated by the rotation of the water turbine 5 is converted into electric power through a hydroelectric generator 4 installed at a position adjacent to the pumping pipe 3.

水力発電機4は、回転軸5bにプーリ等を介して架け渡された環状の伝達ベルト(チェーン等)4aにより伝達される回転駆動力を電力に変換するステータおよびロータを備える発電機本体4bを備えており、発電機本体4bで発電した電力を、送電ケーブル10を介して所定の場所に送電している。また、伝達ベルト4aは、従動歯車を介在させて、水力発電機4の回転軸に伝達できる構成としてもよい。特に、他側分岐管13bを跨いで設置する場合において、他側分岐管13bが回転軸5bより直径が大きな場合には、従動歯車(図示せず)を配置して、他側分岐管13bに伝達ベルト4aが接触しないように構成して設置される。   The hydroelectric generator 4 includes a generator main body 4b having a stator and a rotor for converting rotational driving force transmitted by an annular transmission belt (chain or the like) 4a spanned on a rotating shaft 5b via a pulley or the like into electric power. The power generated by the generator main body 4 b is transmitted to a predetermined place via the power transmission cable 10. Further, the transmission belt 4a may be configured to be able to transmit to the rotating shaft of the hydroelectric generator 4 through a driven gear. In particular, when installing across the other side branch pipe 13b, if the other side branch pipe 13b has a diameter larger than that of the rotating shaft 5b, a driven gear (not shown) is arranged to the other side branch pipe 13b. The transmission belt 4a is configured and installed so as not to contact.

なお、揚水管3に設置した水車5および水力発電機4の構成は、例えば、ダム等に使用される水力発電機と同じ構造のものが使用でき、水車の羽根の形状、取付角度等を対応させるように形成して使用することで実現することができる。ダム等で行われている一般的な水力発電では、水の流れが上から下へと落下することで水車を回転させているが、ここでは、それとは逆に水圧により揚水管3内において水底側から水面側へと上昇する揚水流を用いて水車5を回転させるようにしている。   In addition, the structure of the water turbine 5 and the hydroelectric generator 4 installed in the pumping pipe 3 can use the same structure as the hydroelectric generator used for a dam etc., and respond | corresponds to the shape of a turbine blade, an attachment angle, etc. It can be realized by forming and using it. In general hydroelectric power generation carried out at dams and the like, the water turbine is rotated by dropping the water flow from the top to the bottom. Here, however, the water bottom in the pumping pipe 3 is reversed by water pressure. The water turbine 5 is rotated using a pumping flow rising from the side to the water surface side.

また、揚水管3には、管路内を閉鎖または開放する開閉手段としての開閉バルブ9が導入口3cの直上の位置に設けられている。この開閉バルブ9は、操作室OPからの操作により開閉動作を行うように構成されている。揚水管3の導入口3cから導入されて水車5を回転させる揚水流は、一側分岐管13aおよび他側分岐管13bからの流れが合流した状態で噴射口3aから貯水槽6に向かって噴射する。そして、噴射した水は、貯水槽に一旦貯水される。   Further, the pumping pipe 3 is provided with an opening / closing valve 9 as an opening / closing means for closing or opening the inside of the pipeline at a position immediately above the inlet 3c. The opening / closing valve 9 is configured to perform an opening / closing operation by an operation from the operation chamber OP. The pumping flow that is introduced from the inlet 3c of the pumping pipe 3 and rotates the water turbine 5 is jetted from the jetting port 3a toward the water storage tank 6 in a state where the flows from the one side branch pipe 13a and the other side branch pipe 13b merge. To do. The jetted water is once stored in the water storage tank.

図2ないし図4に示すように、上部設置部2c内には、貯水槽6と、排出手段8とが設置されている。貯水槽6は、上部設置部2cに固定され、噴射口3aから噴射される水を受ける容器状物である。この貯水槽6の位置は、揚水管3の直径や、喫水深さ位置によりその筐支持構造体2の上部設置部2cにおいて設置高さが調整されている。この貯水槽6は、揚水管3の噴射口3aから噴射された水を受けて貯水すると共に、後記する排出手段8により設置場所の水面に貯水された水を戻す(還元する)動作を行ったときに、貯水槽6から水が溢れ出ない容量に設計されている。   As shown in FIGS. 2 to 4, a water storage tank 6 and a discharge means 8 are installed in the upper installation part 2c. The water storage tank 6 is a container-like object that is fixed to the upper installation part 2c and that receives water sprayed from the spray port 3a. The installation height of the water storage tank 6 is adjusted in the upper installation portion 2c of the housing support structure 2 according to the diameter of the pumping pipe 3 and the draft depth position. The water storage tank 6 receives and stores the water injected from the injection port 3a of the pumping pipe 3, and performs the operation of returning (reducing) the water stored on the water surface of the installation place by the discharge means 8 described later. Sometimes, the capacity is designed so that water does not overflow from the water storage tank 6.

なお、貯水槽6の位置を設定するための一例をつぎに示す。
筐支持構造体2の噴水通路20の底部に設置された噴射口3aから噴射する水の噴出速度は、その噴出速度を決定する条件が、水面Wsの高さから噴射口3aの開口高さまでの距離H1(=H=10m(基本設計の値の例))である喫水と、揚水管径Rと、の関係から求めることができる。ここで一例として、速度水頭Hvと、喫水(喫水深さ)および水頭距離に対応した噴水量Q(m/day)とを具体的な数値を用いて算出して示す。なお、図5(a)、(b)に示すように、噴射口3aの位置は、底面または側面の位置で、水面Wsより水中(海底)側にあることで、噴射流を発現させることができる。そして、この水力発電装置1は、噴出高さに対応する位置(H2)から噴きあがる水(海水)の高さ(距離)が、図5(a)で示すような単純なモデルの場合で算出している。
An example for setting the position of the water storage tank 6 is shown below.
The ejection speed of water ejected from the ejection port 3a installed at the bottom of the fountain passage 20 of the housing support structure 2 is determined by the condition that determines the ejection speed from the height of the water surface Ws to the opening height of the ejection port 3a. It can be obtained from the relationship between the draft having a distance H1 (= H = 10 m (an example of a basic design value)) and the pumping pipe diameter R. Here, as an example, the velocity head Hv and the fountain amount Q (m 3 / day) corresponding to the draft (draft depth) and the head distance are calculated using specific numerical values. As shown in FIGS. 5A and 5B, the position of the injection port 3a is the position of the bottom surface or the side surface and is located on the underwater (sea floor) side from the water surface Ws, so that the injection flow can be expressed. it can. The hydroelectric generator 1 calculates the height (distance) of water (seawater) that spouts from the position (H2) corresponding to the ejection height in the case of a simple model as shown in FIG. is doing.

オリフィスとなる噴射口3aより発生する噴出高さの具体的な試算用公式は、噴射口3aの速度係数をCv(=0.98)とし、重力加速度をg(=9.8m/s)とし、空気や落下水の抵抗が存在しないと仮定し、噴水が噴出する高さを(噴射水高距離)H2として、その噴出高さの試算を行う。このとき、噴射口3aから噴出する瞬間の噴出速度をVとし、その速度に相当する速度水頭をHvとすれば、揚水の噴射水高距離H2はHvに等しくなるのが自然法則であるので、Hv=V×V(2g)−1(式1)であり、揚水の噴出の初速度Vはトリチェリーの次の(式2)で示される。V=Cv(2gH)1/2(式2)。 A specific formula for calculating the height of the jet generated from the jet port 3a serving as an orifice is that the velocity coefficient of the jet port 3a is Cv (= 0.98) and the gravitational acceleration is g (= 9.8 m / s 2 ). Assuming that there is no resistance to air or falling water, the height at which the fountain squirts is defined as (jet water high distance) H2, and the squirt height is estimated. At this time, if the ejection velocity at the moment of ejection from the ejection port 3a is V and the velocity head corresponding to that velocity is Hv, the natural distance is that the pumping water high distance H2 is equal to Hv. Hv = V × V (2g) −1 (Formula 1), and the initial velocity V of the pumping of the pumped water is expressed by the following (Formula 2) of Trichery. V = Cv (2 gH) 1/2 (Formula 2).

この(式2)においてVの値を(式1)のHvに代入すれば、Cv(2gH)1/2×Cv(2gH)1/2/(2g)=Cv×Cv×H(式3)となる。したがって、噴出高さHv(H2)は、次の(式4)により算出することができる。Hv=Cv×Cv×H(式4)。なお、具体的な数値を代入した場合、例えば、H(H1)=10m、Cv=0.97を(式4)に代入すると噴射口3aから海水の噴出高さはほぼ9.6mとなり、また、噴射口3aにおける噴射速度は13.7(m/s)となる。したがって、噴射した水を確実に貯水するように、貯水槽6の開口する位置を計算した値よりも下方に設定して設置位置を特定することができる。 In this (Expression 2), if the value of V is substituted for Hv in (Expression 1), Cv (2gH) 1/2 × Cv (2gH) 1/2 / (2g) = Cv × Cv × H (Expression 3) It becomes. Therefore, the ejection height Hv (H2) can be calculated by the following (Equation 4). Hv = Cv × Cv × H (Formula 4). When specific numerical values are substituted, for example, if H (H1) = 10 m and Cv = 0.97 are substituted into (Expression 4), the seawater ejection height from the injection port 3a is approximately 9.6 m, The injection speed at the injection port 3a is 13.7 (m / s). Accordingly, the installation position can be specified by setting the opening position of the water storage tank 6 below the calculated value so as to reliably store the injected water.

貯水槽6内の水は、貯水槽6が設置されているより上方に位置する水面Wsへと排出手段8により排出している。排出手段8は、例えば、揚水ポンプ8aおよび排出管7が使用され、複数の揚水ポンプ8aと、複数の排出管7とにより貯水槽6内の水を汲み上げて水面Wsとなる貯水槽6外へと排出している。   The water in the water storage tank 6 is discharged by the discharge means 8 to the water surface Ws located above the water storage tank 6 is installed. For example, the pumping pump 8a and the discharge pipe 7 are used as the discharge means 8, and the water in the water storage tank 6 is pumped up by the plurality of pumps 8a and the plurality of discharge pipes 7 to become the water surface Ws. And discharged.

排出管7は、所定間隔で配置されて沖側に向かって貯水槽6内の水を排出するように設置されている。排出管7の排出口側には、筐支持構造体2の上部設置部2cの水面Wsに突出して対面している部分にカバーが設けられており、波が発生することによる上部設置部2cから筐支持構造体2内への水の浸入を防いでいる。また、排出管7は、その排出側の先端には、網目状のカバーを取り付けていることが好ましい。なお、排出手段8が揚水ポンプ8aおよび排出管7である場合には、後記するように噴射口3aから噴射される時間当たりの水量と、貯水槽6の貯水体積から、その揚水ポンプ8aの能力(馬力)および設置数ならびに排出管7の長さが設定される。   The discharge pipes 7 are disposed at predetermined intervals and are installed so as to discharge the water in the water storage tank 6 toward the offshore side. On the discharge port side of the discharge pipe 7, a cover is provided at a portion that protrudes and faces the water surface Ws of the upper installation portion 2 c of the housing support structure 2, and from the upper installation portion 2 c due to the generation of waves. Water intrusion into the housing support structure 2 is prevented. Moreover, it is preferable that the discharge pipe 7 has a mesh-like cover attached to the tip on the discharge side. When the discharge means 8 is the pump 8a and the discharge pipe 7, the capacity of the pump 8a is calculated from the amount of water injected from the injection port 3a and the storage volume of the storage tank 6 as described later. The (horsepower) and the number of installations and the length of the discharge pipe 7 are set.

なお、海岸等の陸地側に水力発電装置1を設置する場合には、筐支持構造体2の下部設置部2aに設置される水力発電機4側に作業者が立ち入ることができるように、作業用の作業空間およびその作業空間までの通路が形成されることが望ましい。
また、揚水管3には、導入口3cの直上に開閉手段としての開閉バルブ9が設置されることが望ましい。この開閉バルブ9は、地上側に設置される操作室OPからの操作で動作するように構成されている。なお、開閉バルブ9は、貯水槽6の上部側に設置した水位検出センサ11の検知信号が送られてくることでも、閉鎖するように設定されることが好ましい。
When the hydroelectric generator 1 is installed on the land side such as the coast, work is performed so that an operator can enter the hydroelectric generator 4 side installed in the lower installation part 2a of the housing support structure 2. It is desirable to form a working space and a passage to the working space.
In addition, it is desirable that an opening / closing valve 9 as an opening / closing means is installed in the pumping pipe 3 immediately above the inlet 3c. The on-off valve 9 is configured to operate by an operation from an operation room OP installed on the ground side. The opening / closing valve 9 is preferably set so as to close even when a detection signal from a water level detection sensor 11 installed on the upper side of the water storage tank 6 is sent.

貯水槽6に水位検出センサ11を設置する場合には、検知信号は、操作室OPにも送られ、操作室OP内で操作している作業者のモニタ画面(図示せず)に点滅あるいは音声により今から開閉バルブ9を閉鎖することを知らされるように構成されていることが好ましい。また、筐支持構造体2の下部設置部2a、中間設置部2b、上部設置部2cには、それぞれ監視カメラが設置され、各エリアの状態がどのようになっているのかを操作室OPで把握できるように構成されていることが好ましい。なお、水位検出センサ11は、光センサ等の水と非接触型センサであることや、また、水に接触して水位を検出する接触型センサであっても構わない。   When the water level detection sensor 11 is installed in the water storage tank 6, the detection signal is also sent to the operation room OP and flashes or sounds on the monitor screen (not shown) of the operator operating in the operation room OP. Therefore, it is preferable to be configured to be informed that the on-off valve 9 will be closed from now on. In addition, a monitoring camera is installed in each of the lower installation part 2a, the intermediate installation part 2b, and the upper installation part 2c of the housing support structure 2, and the operation room OP grasps the state of each area. It is preferable to be configured to be able to. The water level detection sensor 11 may be a non-contact type sensor such as an optical sensor, or may be a contact type sensor that detects the water level in contact with water.

つぎに、水力発電装置1の動作状態について説明する。
水力発電装置1は、はじめに、操作室OPからの操作により開閉バルブ9を開放する。開閉バルブ9が開放されると、導入口3cから水圧により水が揚水管3の中に入り込み、そこを通り揚水流となって、その後噴射口3aから噴射される。このとき、揚水管3の内部の揚水流により水車5が回転させられることで(第1工程)、回転軸5bおよび水力発電機4の入力回転軸に架け渡された伝達ベルト4aが回転する。したがって、水力発電装置1は、伝達ベルト4aが回転することで水力発電機4の入力回転軸が回転して内部のロータおよびステータを介して発電される。この水力発電装置1の発電量については、具体的な数値を用いて後記する。
Next, the operating state of the hydroelectric generator 1 will be described.
First, the hydroelectric generator 1 opens the opening / closing valve 9 by an operation from the operation chamber OP. When the opening / closing valve 9 is opened, water enters the pumping pipe 3 from the introduction port 3c by water pressure, passes through the pumping pipe 3, and is then injected from the injection port 3a. At this time, the water wheel 5 is rotated by the pumping flow inside the pumping pipe 3 (first step), so that the transmission belt 4a spanned between the rotating shaft 5b and the input rotating shaft of the hydroelectric generator 4 rotates. Therefore, the hydroelectric generator 1 generates electric power via the internal rotor and stator by rotating the transmission belt 4a and rotating the input rotation shaft of the hydroelectric generator 4. The power generation amount of the hydroelectric generator 1 will be described later using specific numerical values.

一方、水力発電装置1は、揚水管3の噴射口3aから水圧により噴射した水が、噴水柱WPとして噴き上がり、この噴水柱WPが所定の一方向に傾斜するように揚水管3が設置されているので、噴射した水の頂上から落下する水が貯水槽6内に受水され貯水される(第2工程)。そして、水力発電装置1は、貯水槽6に噴射口3aから噴射された水の貯水が開始されると、排出手段8の揚水ポンプ8aが作動して排出管7により貯水槽6内の水を水面Wsへと汲み上げて排水している(第3工程)。   On the other hand, in the hydroelectric generator 1, the water jetted by the water pressure from the jet port 3a of the water pump 3 is spouted as a fountain column WP, and the water pump 3 is installed so that the fountain column WP is inclined in a predetermined direction. Therefore, the water falling from the top of the injected water is received and stored in the water storage tank 6 (second step). Then, when the storage of the water injected from the injection port 3 a into the water storage tank 6 is started, the hydroelectric generator 1 operates the pump 8 a of the discharge means 8 to operate the water in the water storage tank 6 through the discharge pipe 7. The water is pumped to the water surface Ws and drained (third step).

このように、水力発電装置1では、水圧を駆動源として揚水管3内部に揚水流を発生させその揚水を噴射口3aから噴水柱WPとして噴射させ、その噴水柱WPの頂上から落下する水を貯水槽6に一旦貯水し、その後排出手段8により水面Wsへと汲み上げて排出する動作(第1工程〜第3工程)を連続的に行っている。そのため、水力発電装置1では、揚水管3内の水車5を、水圧を駆動源とする揚水流により回転させて水力発電機4により発電することができるので、化石燃料を使用することなく安定した発電を行うことが可能となる。また、電力を必要とする排出手段8等に対してもこの水力発電機4により発電した電力の一部を使用して作動させることができるので、都合がよい。なお、水力発電装置1により発電した電力は、フライホイール等の電力貯蔵手段に貯蔵させて使用する構成としても構わない。   Thus, in the hydroelectric generator 1, the pumping flow is generated inside the pumping pipe 3 by using the hydraulic pressure as a driving source, the pumped water is jetted as the fountain column WP, and the water falling from the top of the fountain column WP is dropped. The operation (first process to third process) of temporarily storing water in the water storage tank 6 and then pumping it up to the water surface Ws by the discharging means 8 (first process to third process) is continuously performed. Therefore, in the hydroelectric generator 1, since the water turbine 5 in the pumping pipe 3 can be rotated by the pumping flow using the water pressure as a driving source and can be generated by the hydroelectric generator 4, it is stable without using fossil fuel. Power generation can be performed. Moreover, since it can be made to operate | move using a part of electric power generated with this hydroelectric generator 4 also with respect to the discharge means 8 etc. which require electric power, it is convenient. The electric power generated by the hydroelectric generator 1 may be stored and used in electric power storage means such as a flywheel.

また、水力発電装置1により、水中あるいは水底側の水が揚水されて排出手段8により水面Ws側に移動することが繰り返されることにより、水の強制的な循環が起こり水中あるいは水底側での水の停滞を解消することになるため、水力発電装置1を動作させることで水質浄化にも寄与する。また、貯水槽6から揚水ポンプ8aにより排出管7を介して水面Wsへと汲み上げて戻すときに、排出管7から排出される水が空気に接するように適宜な高さを設けることで、水面Wsに戻されるときに大気中の酸素が水中に巻き込まれて、より水質浄化に対して良い影響を与えることになる。   Further, the water is forcedly circulated by repeating the pumping of the water or the bottom water by the hydroelectric generator 1 and the movement of the water to the water surface Ws side by the discharge means 8, thereby generating water in the bottom or the bottom. Therefore, operating the hydroelectric generator 1 contributes to water purification. In addition, when the water is pumped up from the water storage tank 6 to the water surface Ws through the discharge pipe 7 by the pump 8a, the water surface is provided with an appropriate height so that the water discharged from the discharge pipe 7 is in contact with the air. When returned to Ws, oxygen in the atmosphere is involved in the water, which has a better effect on water purification.

つぎに、表1から表5に具体的な数値を用いて算出した結果をそれぞれ示す。
表1は噴射口3aの口径(dφ)[m]と噴射水高距離H2との関係を、喫水深さH1を変化させて示している。また、表2は噴射口3aからの噴射水高距離H2と噴射口3aの口径とより発生する水動力([m/s])を示している。表3は水力発電機4の駆動作業後の総合効率を75%に設定し、噴射口3aの口径と噴射水高距離H2を変化させたときの発電量[kW]の数値を試算した結果を示している。表4は本発明の水力発電装置1による貯水槽6から水面Wsへと揚水するためのポンプに必要なポンプ能力[kW]を示している。表5は水力発電装置1による発電効率を揚水ポンプで消費した分を差し引いた総合効率が75%として設定したときに、水力発電装置1による発電量[kW]の数値を算出した結果を示している。なお、水動力は、揚水流により水車を回転させるできる力と同等である。
Next, Table 1 to Table 5 show the results calculated using specific numerical values.
Table 1 shows the relationship between the diameter (dφ) [m] of the injection port 3a and the injection water high distance H2, while changing the draft depth H1. Table 2 shows the hydraulic power ([m 3 / s]) generated by the jet water high distance H2 from the jet port 3a and the diameter of the jet port 3a. Table 3 shows the result of the trial calculation of the numerical value of the power generation amount [kW] when the overall efficiency after the driving operation of the hydroelectric generator 4 is set to 75% and the diameter of the injection port 3a and the injection water high distance H2 are changed. Show. Table 4 shows the pump capacity [kW] necessary for the pump for pumping water from the water storage tank 6 to the water surface Ws by the hydroelectric generator 1 of the present invention. Table 5 shows the result of calculating the numerical value of the amount of power [kW] generated by the hydroelectric generator 1 when the total efficiency obtained by subtracting the amount consumed by the pump is set to 75%. Yes. The hydropower is equivalent to the force that can rotate the water turbine by the pumping flow.

Figure 2010216387
Figure 2010216387

Figure 2010216387
Figure 2010216387

表2では、Q=Cc×Cv×A×(2gH2)1/2(松本容吉 1942年発行、第5版 修教社書院 水力工学 p11 19式)を使用してQ(噴射口を通過する水量)を算出した。
なお、Qは噴射口を通過する水量[m/s]、Ccは収縮係数[1.0]、Cvは速度係数[0.98]、gは重力加速度9.8[m/s]、Aは噴射口の面積[m]、H2は噴射水高距離(有効噴射高:有効落差[m]と同じ)[m]、dφ[m]は噴射管の口径である。
In Table 2, Q = Cc × Cv × A × (2 g H2) 1/2 (Yokichi Matsumoto 1942, 5th edition Shukyosha Shoin Hydraulic Engineering p11 19 formula) is used to pass Q (injection port) Water amount) was calculated.
Q is the amount of water passing through the nozzle [m 3 / s], Cc is the contraction coefficient [1.0], Cv is the velocity coefficient [0.98], and g is the gravitational acceleration 9.8 [m / s 2 ]. , A is the area [m 2 ] of the injection port, H2 is the height of the injection water (effective injection height: the same as the effective head [m]) [m], and dφ [m] is the diameter of the injection pipe.

Figure 2010216387
Figure 2010216387

表3では、表2で算出した通過流量Q[m/s]に相当する噴射水を噴射するために必要な動力エネルギー[kW]として算出した結果を示している。一般に管路で圧力水を送る場合には、管壁による損失水頭、管の出口、管の折り曲げ形状、弁などによる損失水頭の原因があるが、水力発電装置1ではその損失水頭が極めて小さい。表3では、圧力水が噴射する噴射口3aの形状は円筒形状なので断面積に相当する円管直径変化(dφ)とし、圧力水が噴射する噴射水高距離(H2)の変化が、水力発電装置1の設置喫水に相当する。
Lt=(1000×Q[m/s]×H2[m])/102[kW]
(松本容吉 1942年発行、第5版 修教社書院 水力工学 p33 56式)
なお、式中、Ltは水動力(WaterPower)もしくは理論動力であり、揚水流により水車を回転させる力に相当する動力として[kW]で示す。Qは噴射口を通過する水量[m/s](表1,2の値を使用)、dφ[m]は噴射管の口径、H2は噴射水高距離(有効噴射高:有効落差[m]と同じ)[m]、および、有効噴射距離(Actual Lift)と有効水頭(Actual Head)とは試算数値として表3では示している。
In Table 3, the result calculated as power energy [kW] required in order to inject the injection water equivalent to the passage flow volume Q [m < 3 > / s] calculated in Table 2 is shown. In general, when pressure water is sent through a pipe line, there are causes of a loss head due to a pipe wall, a pipe outlet, a bent shape of a pipe, a valve, and the like, but in the hydroelectric generator 1, the loss head is extremely small. In Table 3, since the shape of the injection port 3a from which the pressure water is injected is a cylindrical shape, the diameter of the circular pipe corresponding to the cross-sectional area (dφ) is set, and the change in the injection water high distance (H2) from which the pressure water is injected is the hydroelectric power generation. It corresponds to the installation draft of the apparatus 1.
Lt = (1000 × Q [m 3 / s] × H 2 [m]) / 102 [kW]
(Yokichi Matsumoto, 1942, 5th edition Shushusha Shoin Hydraulic Engineering, p33 56)
In the equation, Lt is water power (WaterPower) or theoretical power, and is expressed as [kW] as power corresponding to the force for rotating the water turbine by the pumped water flow. Q is the amount of water passing through the injection port [m 3 / s] (using the values in Tables 1 and 2), dφ [m] is the diameter of the injection pipe, and H2 is the injection water high distance (effective injection height: effective head [m ] [M], and the effective injection distance (Actual Lift) and effective head (Actual Head) are shown in Table 3 as trial calculation values.

Figure 2010216387
Figure 2010216387

表4では、貯水槽6より源水面にポンプにより揚水するときのポンプ能力(kW)またはエネルギーを示している。
貯水槽6に噴射水が貯水されたときに、その貯水槽6内の水を水力発電装置1が設置されている水面に戻す(返還する)必要がある。水力発電装置1では、排出手段8の揚水ポンプ8aの汲み上げる位置から水面Wsまでの位置をH3としたときに、表4で示すように、H3の高さを1m、2m、3mと変えて、横軸に示す貯水量を揚水するために必要なポンプ能力を示している。
In Table 4, the pump capacity (kW) or energy when pumping water from the water storage tank 6 to the source water surface is shown.
When jet water is stored in the water storage tank 6, it is necessary to return (return) the water in the water storage tank 6 to the water surface where the hydroelectric generator 1 is installed. In the hydroelectric generator 1, when the position from the pumping up of the pump 8a of the discharge means 8 to the water surface Ws is H3, as shown in Table 4, the height of H3 is changed to 1 m, 2 m, and 3 m, It shows the pumping capacity necessary for pumping the amount of water stored on the horizontal axis.

貯水槽6から3m上方の水面Wsに向かって汲み上げる場合には、173.4kWのポンプ能力が必要であることが表4から分かる。そのため、そのポンプ能力に対応する揚水ポンプあるいは複数の揚水ポンプを設置することで、貯水槽6の水を貯水槽6外となる水面Wsに戻して排水することができる。   It can be seen from Table 4 that a pumping capacity of 173.4 kW is necessary when pumping up from the water storage tank 6 toward the water surface Ws 3 m above. Therefore, by installing a pump or a plurality of pumps corresponding to the pump capacity, the water in the water storage tank 6 can be returned to the water surface Ws outside the water storage tank 6 and drained.

Figure 2010216387
Figure 2010216387

表5では、表1〜表4までに算出した各数値を基準にして、発電される電力量を総合効率を75%と仮定して示している。表1には、水面Wsから噴射口3aまでの喫水距離(喫水深さ)H1に対して噴射水高距離H2までの距離が示されているので、相関数値による発電力の規模を[kW]で表5では示している。表5では、例えば、噴射水高距離H2が30mで、噴射口3aの口径が1mであったときに、4785[kW/h]の電力を発電することができる。したがって、水力発電装置1は、設置する場所に複数台を設けることで、必要となる電力量を供給することができる。   In Table 5, based on the numerical values calculated in Tables 1 to 4, the amount of power generated is shown assuming that the overall efficiency is 75%. Table 1 shows the distance from the water surface Ws to the jet outlet 3a to the jet water height distance H2 with respect to the draft distance (draft depth) H1. This is shown in Table 5. In Table 5, for example, when the injection water high distance H2 is 30 m and the diameter of the injection port 3a is 1 m, electric power of 4785 [kW / h] can be generated. Therefore, the hydroelectric generator 1 can supply the required amount of electric power by providing a plurality of units at the installation location.

このように、水力発電装置1を、揚水管1の直径が1mで、海や池などの貯水されている環境において喫水位置が20〜30mの深さに設置できれば、水圧により発生する揚水流により、2592〜4785[kW/h]の電力を発電することができる。   In this way, if the hydroelectric generator 1 can be installed at a depth of 20 to 30 m in an environment where the diameter of the pumping pipe 1 is 1 m and the water is stored, such as the sea or a pond, the pumping flow generated by the water pressure is used. Electric power of 2592-4785 [kW / h] can be generated.

つぎに、図6を参照して、水力発電装置1Aが湖沼あるいは海上に設けられた水上基地KBの所定位置に設置された状態について説明する。なお、すでに説明した構成は同じ符号を付して説明を省略する。また、図1〜図4で示した水力発電装置1の構成と異なる点は、水力発電機4を筐支持構造体2の上方に配置したことと、中間設置部2bが噴水通路20Aとして機能する構成としたことである。   Next, with reference to FIG. 6, a state in which the hydroelectric generator 1A is installed at a predetermined position of a water base KB provided on a lake or the sea will be described. In addition, the already demonstrated structure attaches | subjects the same code | symbol and abbreviate | omits description. 1 to 4 are different from the configuration of the hydroelectric generator 1 in that the hydroelectric generator 4 is disposed above the housing support structure 2 and the intermediate installation portion 2b functions as the fountain passage 20A. It is a configuration.

図6に示すように、水力発電装置1Aは、水上基地KBの一端側で水中側に浮遊するように設置されている。この水力発電装置1Aは、水上基地KBから水中側に所定の深さに設置された筐支持構造体2Aと、この筐支持構造体2Aの底部側に設けた揚水管3と、この揚水管3の管内に水車5を設置して配置された水力発電機4と、揚水管3から噴射される噴水柱WPの通路である中間設置部2bと、この中間設置部2bを通過する水を受けて貯水する貯水槽6と、この貯水槽6に貯水される水を貯水槽6外に排出管7を介して揚水ポンプ8aにより排出する排出手段8と、を備えている。   As shown in FIG. 6, the hydroelectric generator 1A is installed so as to float on the underwater side at one end side of the water base KB. The hydroelectric generator 1A includes a housing support structure 2A installed at a predetermined depth on the underwater side from the floating base KB, a pumping pipe 3 provided on the bottom side of the housing support structure 2A, and the pumping pipe 3 The hydroelectric generator 4 disposed with the water turbine 5 installed in the pipe, the intermediate installation part 2b which is a passage of the fountain column WP ejected from the pumping pipe 3, and the water passing through the intermediate installation part 2b A water storage tank 6 for storing water and discharge means 8 for discharging water stored in the water storage tank 6 to the outside of the water storage tank 6 through a discharge pipe 7 by a pumping pump 8a are provided.

筐支持構造体2Aは、下部設置部2aと、中間設置部(噴水通路)2bと、上部設置部2cと、下部設置部2aから上部設置部2cまで隣接して設けられた伝達手段案内設置部2dと、を備えている。そして、上部設置部2cには、貯水槽6と、この貯水槽6内の水を貯水槽6外の水面Wsへと揚水ポンプ8aにより排出管7を介して排出する排出手段8とが設けられている。また、下部設置部2aには、揚水管3が設置され、この揚水管3の分岐部13の分岐部分に回転軸を水密に設けた水車5と、この水車5の回転力を伝達する伝達ベルト4aとが設置されている。さらに、中間設置部(噴水通路)2bは、噴射口3aから水面側に向かって噴射される噴水柱WPが形成される空間を備える広さに形成されている。   The housing support structure 2A includes a lower installation part 2a, an intermediate installation part (fountain passage) 2b, an upper installation part 2c, and a transmission means guide installation part provided adjacent to the lower installation part 2a to the upper installation part 2c. 2d. And the upper installation part 2c is provided with the water storage tank 6 and the discharge means 8 which discharges the water in this water storage tank 6 to the water surface Ws outside the water storage tank 6 through the discharge pipe 7 by the pumping pump 8a. ing. Further, the lower installation portion 2 a is provided with a pumping pipe 3, and a water wheel 5 in which a rotating shaft is provided in a watertight manner at a branch portion of the branching portion 13 of the pumping pipe 3, and a transmission belt that transmits the rotational force of the water wheel 5. 4a is installed. Furthermore, the intermediate installation part (fountain passage) 2b is formed to have a space provided with a space in which a fountain column WP ejected from the ejection port 3a toward the water surface is formed.

伝達手段案内設置部2dには、伝達ベルト4aによる回転力を筐支持構造体2の上方となる水上基地KBのベース部分に設置した水力発電機4に伝達するための伝達駆動手段4cが設置されている。この伝達駆動手段4cは、円柱状の金属棒体に所定間隔で歯車等の回転案内手段4dを設けており、一端側において伝達ベルト4aからの回転を伝達するプーリが設置され、他端側において水力発電機4に回転力を伝達するプーリが設置されている。なお、伝達手段案内設置部2dの側壁には、伝達駆動手段4cの回転を案内する軸受け部材が回転案内手段4dに対応する位置に設けられている。   The transmission means guide installation portion 2d is provided with transmission drive means 4c for transmitting the rotational force of the transmission belt 4a to the hydroelectric generator 4 installed at the base portion of the water base KB above the housing support structure 2. ing. This transmission drive means 4c is provided with a rotation guide means 4d such as a gear at a predetermined interval on a cylindrical metal rod body. A pulley for transmitting rotation from the transmission belt 4a is installed on one end side, and on the other end side. A pulley that transmits rotational force to the hydroelectric generator 4 is installed. A bearing member for guiding the rotation of the transmission driving means 4c is provided at a position corresponding to the rotation guiding means 4d on the side wall of the transmission means guide installation portion 2d.

水力発電機4は、水上基地KBのベース部分に設置され、伝達駆動手段4cの回転により駆動ベルト(チェーン等)4eを介して回転軸が回転することでロータおよびステータにより発電を行っている。この水力発電機4により発電された電力は、水上基地KBで使用される各装置等に用いられ、あるいは、バッテリーに蓄電されたり、電線を介して陸地側に送られたりして使用される。   The hydroelectric generator 4 is installed at the base portion of the water base KB, and generates electric power by the rotor and the stator by rotating the rotating shaft via the driving belt (chain or the like) 4e by the rotation of the transmission driving means 4c. The electric power generated by the hydroelectric generator 4 is used for each device used in the water base KB, or stored in a battery or sent to the land side through an electric wire.

なお、図6で示す水力発電装置1Aでは、水力発電機4を揚水管3の隣り合う位置に設置してもよく、また、噴射口3aから噴射した噴水柱WPの周囲に図1、図2で示す噴水通路20を設置しても構わない。
このように、水中に浮遊する水上基地KBに水力発電装置1Aを設置しても、加わる水圧により発生する揚水流を介して水車5を回転させて発電するので、環境に左右されることなく安定的な電力を発生させることが可能となる。
In the hydroelectric generator 1A shown in FIG. 6, the hydroelectric generator 4 may be installed at a position adjacent to the pumping pipe 3, and around the fountain column WP ejected from the ejection port 3a. You may install the fountain channel | path 20 shown by.
Thus, even if the hydroelectric generator 1A is installed in the floating base KB floating in the water, the turbine 5 is rotated through the pumped water flow generated by the applied water pressure, so that the power generation is stable without being influenced by the environment. Power can be generated.

さらに、図7で示すような構成として水力発電装置1BをダムDWに設置する場合について説明する。なお、すでに説明した構成は同じ符号を付して説明を省略する。この水力発電装置1Bでは、噴射口3aの設置面に貯水槽6で受け取れなかった、すなわち噴射水が貯水槽6外に溜まった場合に、排水管30により排水する構成がこれまでとは異なる。   Furthermore, the case where the hydroelectric generator 1B is installed in the dam DW as a structure as shown in FIG. 7 is demonstrated. In addition, the already demonstrated structure attaches | subjects the same code | symbol and abbreviate | omits description. In this hydroelectric power generation device 1B, when the water tank 6 cannot receive the installation surface of the injection port 3a, that is, when the water is accumulated outside the water tank 6, the drainage pipe 30 drains the water.

つまり、この筐支持構造体2の設置位置は、ダムDWで貯水をするときにダム壁面を形成して、ダム壁面の囲いの中に水を貯水する構成であるため、噴水通路20(図示せず)の下端の位置(設置面2ab)はダム壁面の外側では、川Rvよりも高い場所に位置している。そのため、ダム壁面の一部に連通して排水管30を設置すれば、噴水通路20の底部分に溜まる水は僅かであっても、水圧を受けない外部に対して自然に排水される。   That is, the installation position of the housing support structure 2 is configured such that when storing water in the dam DW, a dam wall surface is formed and water is stored in the enclosure of the dam wall. The lower end position (installation surface 2ab) is positioned higher than the river Rv outside the dam wall surface. Therefore, if the drain pipe 30 is installed in communication with a part of the dam wall surface, even if a small amount of water is accumulated in the bottom portion of the fountain passage 20, it is naturally drained to the outside not subjected to water pressure.

したがって、この排水管30により排水する場合は、動力源を特に設置しなくても噴水通路20の下端の位置となる設置面2abから外部に排出されることになり、動力源があればよりスムーズに外部に排出されることになる。また、下部設置部2aの噴射口3aが設置されている設置面2abに溝あるいは傾斜を設け、排水管30へと排水する水を案内する構成とすればさらに都合がよい。   Therefore, when draining with this drainage pipe 30, it will be discharged outside from the installation surface 2ab which is the position of the lower end of the fountain passage 20 even if a power source is not particularly installed. Will be discharged to the outside. Further, it is more convenient if a groove or an inclination is provided on the installation surface 2ab where the injection port 3a of the lower installation part 2a is installed to guide the water to be drained to the drain pipe 30.

また、水力発電装置1では、中間設置部2bを空間部分が密閉されている構成として説明したが、例えば、図8で示すように、中間設置部2Bは、単なるやぐら状の支持体として構成しても構わない。なお、図8ではすでに説明した構成は同じ符号を付して説明を省略する。図8に示すように、中間設置部2Bを支持体として構成した場合には、下部設置部2aの接続面と噴水通路20および上部設置部2cの接続面2eと噴水通路20とは密閉した状態で構成されることになる。ここでは、上部設置部2cの接続面2eと噴水通路20とは、噴水通路20の先端がその接続面2eから突出するように設置されている。   In the hydroelectric generator 1, the intermediate installation portion 2b has been described as having a structure in which the space portion is hermetically sealed. For example, as shown in FIG. 8, the intermediate installation portion 2B is configured as a simple tower-shaped support. It doesn't matter. In FIG. 8, the components already described are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 8, when the intermediate installation portion 2B is configured as a support, the connection surface of the lower installation portion 2a and the fountain passage 20 and the connection surface 2e of the upper installation portion 2c and the fountain passage 20 are sealed. It will consist of Here, the connection surface 2e of the upper installation part 2c and the fountain passage 20 are installed such that the tip of the fountain passage 20 protrudes from the connection surface 2e.

そして、接続面2eは、一部を凹ませた凹部2fが形成され、この凹部2fに溜めた水を貯水槽6に送るポンプおよびホースを有する第1汲上手段18を設置している。
また、噴水通路20内で下部設置部2aの噴水通路20との接続面となる位置に、上部設置部2cの接続面2eまで水を汲み上げるポンプおよびホースを有する第2汲上手段19を備えている。
したがって、噴射口3aから噴射して噴水通路20内に落下した水は、この第2汲上手段19により接続面2eまで汲み上げられ、さらに、第1汲上手段18により貯水槽6まで送られる。
このように中間設置部2Bのような構成としても、図1で示す水力発電装置1と同等の効果を奏することができる。
The connection surface 2e is formed with a recess 2f having a partially recessed portion, and a first pumping means 18 having a pump and a hose for supplying water stored in the recess 2f to the water storage tank 6 is installed.
Moreover, the 2nd pumping means 19 which has a pump and a hose which pump up water to the connection surface 2e of the upper installation part 2c in the position used as the connection surface with the fountain path 20 of the lower installation part 2a in the fountain path 20 is provided. .
Therefore, the water sprayed from the injection port 3 a and falling into the fountain passage 20 is pumped up to the connection surface 2 e by the second pumping means 19 and further sent to the water storage tank 6 by the first pumping means 18.
Thus, even if it is a structure like the intermediate installation part 2B, there can exist an effect equivalent to the hydroelectric generator 1 shown in FIG.

以上説明したように、水力発電装置1,1A、1Bは、水圧を駆動源として噴射口3aから水を噴射させるときに揚水管3内に発生する揚水流を利用して水車5を回転させ、その水車5の回転力を水力発電機4により電力に変換してエネルギーを得るため、化石燃料の使用を抑制できる。また、水中(海中)あるいは水底側(海底側)の水を水面(海面)側に貯水槽6から揚水して水を循環させることができるので、水中(海中)に酸素を供給することになり、水質の劣化を防止することができる。   As explained above, the hydroelectric generators 1, 1 </ b> A, 1 </ b> B rotate the water turbine 5 using the pumped water flow generated in the pumped pipe 3 when water is injected from the injection port 3 a using water pressure as a driving source, Since the rotational force of the water turbine 5 is converted into electric power by the hydroelectric generator 4 to obtain energy, the use of fossil fuel can be suppressed. In addition, water can be circulated by pumping water from the water storage tank 6 to the water surface (sea surface) side underwater (underwater) or water bottom side (sea floor side), so that oxygen is supplied to the water (underwater). , Water quality deterioration can be prevented.

なお、水力発電装置1,1A、1Bでは、導入口3cの先端が、水底に向かって開口しないように曲折して形成されていること(図示せず)が好ましい。そして、導入口3cの外側には、網目状の囲いを設け、水中の遊体物や水生動植物を揚水管3内に吸い込むことを防止することが好ましい。   In the hydroelectric generators 1, 1 </ b> A, and 1 </ b> B, it is preferable that the leading end of the introduction port 3 c be bent so as not to open toward the water bottom (not shown). And it is preferable to provide a mesh-like enclosure outside the introduction port 3c to prevent inhalation of underwater funerals and aquatic animals and plants into the water pumping pipe 3.

さらに、水力発電装置1,1A、1Bが複数設置されたときには、排出管7が淡水あるいは海水であっても沖側に向いて配置されるようにすることで、ある範囲のエリアに対して水を循環させることができ、水底側の水の停滞を改善させることができる。また、排出管7による水面Ws側に排出する場合に、排出管7の先に、案内板(図示せず)を設け、その案内板により水面側に排出した水の方向を案内する構成としても構わない。このような案内板による水の方向を案内する場合には、排出管7を直線的に配置でき、貯水槽6からの水の揚水効率を向上させることができる。   Furthermore, when a plurality of hydroelectric generators 1, 1A, 1B are installed, even if the discharge pipe 7 is fresh water or seawater, it is arranged toward the offshore side, so that water is supplied to a certain area. Can be circulated, and stagnation of water on the bottom side can be improved. Further, when discharging to the water surface Ws side by the discharge pipe 7, a guide plate (not shown) is provided at the tip of the discharge pipe 7, and the direction of the water discharged to the water surface side is guided by the guide plate. I do not care. When guiding the direction of water by such a guide plate, the discharge pipe 7 can be arranged linearly, and the pumping efficiency of water from the water storage tank 6 can be improved.

また、水力発電装置1,1A、1Bでは、筐支持構造体2を3つのエリアに分けた状態として説明したが、少なくとも揚水管3が水圧を受けて噴射水を噴射できる構造であればよく、特に限定されるものではない。また、筐支持構造体2の内部に揚水管3を設置するように説明したが、水車5の回転軸5b、伝達ベルト4aおよび水力発電機4に対して防水されている状態であれば、揚水管3は、水中に露出して設置されていても構わない。   In the hydroelectric generators 1, 1 </ b> A, 1 </ b> B, the housing support structure 2 has been described as being divided into three areas. However, it is sufficient that at least the pumped pipe 3 receives water pressure and injects spray water. It is not particularly limited. Further, the pumping pipe 3 is described as being installed inside the housing support structure 2, but if the water pump 5 is waterproof with respect to the rotating shaft 5 b, the transmission belt 4 a, and the hydroelectric generator 4, The tube 3 may be installed so as to be exposed in water.

そして、水力発電装置1,1A、1Bでは、揚水管3の全体を傾斜させた状態に配置することで噴射口3aから噴射する噴水柱WPが所定角度傾斜するように説明したが、揚水管3は垂直に配置し、噴射口3aまでに到る連続する管を徐々に垂直方向から傾斜して曲がるように形成することで噴水柱WPを所定の傾斜角度になるようにしても構わない。   In the hydroelectric generators 1, 1 </ b> A, and 1 </ b> B, the explanation has been made so that the fountain column WP ejected from the ejection port 3 a is inclined at a predetermined angle by being arranged in an inclined state. May be arranged vertically and the fountain column WP may have a predetermined inclination angle by forming a continuous pipe reaching the injection port 3a so as to bend gradually from the vertical direction.

また、図1から図8で説明した構成では、噴水柱WPが傾斜するように揚水管3を傾けて設けた例として説明したが、噴水柱WPが垂直となるように揚水管3を設置しても構わない。噴水柱WPが垂直になるように揚水管3を設置する場合、噴水柱WPの頂上から360度方向に水が落下するので、噴水通路20の上端の周りに円環状の水受けを有する貯水槽水(図示せず)を配置することで対応することができる。   In the configuration described with reference to FIGS. 1 to 8, the example is described in which the pumping pipe 3 is inclined so that the fountain column WP is inclined. However, the pumping pipe 3 is installed so that the fountain column WP is vertical. It doesn't matter. When the pumping pipe 3 is installed so that the fountain column WP is vertical, water falls in the direction of 360 degrees from the top of the fountain column WP, so that the water tank having an annular water receiver around the upper end of the fountain passage 20 This can be dealt with by arranging water (not shown).

1 水力発電装置
2 筐支持構造体
2a 下部設置部
2ab 設置面
2b 中間設置部
2c 上部設置部
2d 伝達手段案内設置部
3 揚水管
3a 噴射口
3c 導入口
4 水力発電機
4a 伝達ベルト
4b 発電機本体
4c 伝達駆動手段
4d 回転案内手段
5 水車
5b 回転軸
5c 軸受部
6 貯水槽
7 排出管
8 排出手段
8a 揚水ポンプ(駆動ポンプ)
9 開閉バルブ(開閉手段)
10 送電ケーブル
11 水位検出センサ
12 整流器
13 分岐部
13a 一側分岐管
13b 他側分岐管
20 噴水通路
21 連通穴
30 排水管
DW ダム
KB 水上基地
OP 操作室
Rv 川
Ws 水面
WP 噴水柱
DESCRIPTION OF SYMBOLS 1 Hydroelectric generator 2 Case support structure 2a Lower installation part 2ab Installation surface 2b Intermediate installation part 2c Upper installation part 2d Transmission means guide installation part 3 Pumping pipe 3a Injection port 3c Inlet 4 Hydroelectric generator 4a Transmission belt 4b Generator main body 4c Transmission drive means 4d Rotation guide means 5 Water wheel 5b Rotating shaft 5c Bearing portion 6 Water storage tank 7 Discharge pipe 8 Discharge means 8a Lift pump (drive pump)
9 Open / close valve (open / close means)
DESCRIPTION OF SYMBOLS 10 Transmission cable 11 Water level detection sensor 12 Rectifier 13 Branch part 13a One side branch pipe 13b Other side branch pipe 20 Fountain passage 21 Communication hole 30 Drain pipe DW Dam KB Water base OP Operation room Rv River Ws Water surface WP Fountain pillar

Claims (6)

水圧により水中側から水面側に向かう揚水流を発生させて水力発電を行う水力発電装置において、
前記水力発電装置は、水中に配置して一端を水中側に向けて水の導入口にすると共に、他端を水面側に向けて水の噴射口にする揚水管と、
この揚水管の噴射口を囲む位置から水面側に向けて大気に連通させて配置し、水圧により前記噴射口から噴射する噴水柱の周りを包囲するように設けた噴水通路と、
この噴水通路内で水圧により噴き上がる噴水柱の頂上から落下する水を受け取れるように、前記噴水通路の上方でかつ水面より低い位置に設置された貯水槽と、
この貯水槽に一旦貯水された水を前記貯水槽外へ排出する排出手段と、
前記揚水管の導入口と噴射口との間の管内に配置され、当該管内を流れる揚水流により回転し、水力発電機を介して発電を行う水車と、
を備えることを特徴とする水力発電装置。
In a hydroelectric power generator that generates hydroelectric power by generating a pumping flow from the underwater side to the water surface side by water pressure,
The hydroelectric generator is disposed in water and has one end facing the underwater side to be a water inlet, and the other end is directed to the water surface side to be a water injection port,
A fountain passage disposed so as to surround the fountain column ejected from the ejection port by water pressure, arranged in communication with the atmosphere from the position surrounding the ejection port of the pumping pipe toward the water surface side;
A water tank installed above the fountain passage and at a position lower than the water surface so as to receive water falling from the top of the fountain column spouted by water pressure in the fountain passage,
Discharging means for discharging the water once stored in the water tank to the outside of the water tank;
A turbine arranged in a pipe between the inlet and the injection port of the pumping pipe, rotated by a pumping flow flowing in the pipe, and generating power via a hydroelectric generator;
A hydroelectric power generator comprising:
前記排出手段は、前記貯水槽から前記水面に向けて設置された排出管と、この排出管を介して前記貯水槽内の水を水面上へと汲み上げる駆動ポンプとを有することを特徴とする請求項1に記載の水力発電装置。   The discharge means has a discharge pipe installed from the water storage tank toward the water surface, and a drive pump for pumping water in the water storage tank onto the water surface through the discharge pipe. Item 4. The hydroelectric power generation device according to item 1. 前記揚水管は、水圧により管内を流れる揚水流を噴射口から噴射したときの噴水柱が、垂直方向から所定角度傾斜するように設けられていることを特徴とする請求項1または請求項2に記載の水力発電装置。   The said pumping pipe is provided so that the fountain column at the time of jetting the pumping flow which flows in the pipe by water pressure may incline from the vertical direction by a predetermined angle. The hydroelectric generator as described. 前記導入口あるいは前記噴射口の一方または両方には、通過する水を整流する整流器が設置されていることを特徴とする請求項1から請求項3のいずれか一項に記載の水力発電装置。   The hydroelectric power generator according to any one of claims 1 to 3, wherein a rectifier that rectifies water passing therethrough is installed at one or both of the introduction port and the injection port. 前記揚水管には、前記導入口から前記噴射口の間に、当該揚水管内の閉鎖あるいは開放を行う開閉手段が設けられていることを特徴とする請求項1から請求項4のいずれか一項に記載の水力発電装置。   5. The opening / closing means for closing or opening the inside of the pumping pipe is provided between the inlet and the injection port in the pumping pipe. The hydroelectric power generator described in 1. 水中に配置した揚水管内に水圧により発生させる揚水流を介して、前記揚水管内に設けた水車を回転させて水力発電を行う水力発電方法であって、
前記揚水管の一端側に設けた導入口から水圧により水を導入して、当該揚水管の管路内に配置した前記水車を回転させる第1工程と、
前記揚水管の他端に設けた噴射口を囲む位置から、前記水面側に向かって設けかつ大気に連通した噴水通路内に、前記水車を回転させた水を水圧により噴水として噴射させ、前記噴水通路の上方にかつ前記水面より低い位置で前記噴水柱の頂上からの落下を受けることが可能となる位置に設けた貯水槽に水を受け取る第2工程と、
前記貯水槽内に貯水された水を排出手段により前記水面上に汲み上げて排出する第3工程と、を含み、
前記第1工程から前記第3工程までを繰り返し連続して行うことで、前記揚水管内を流れる揚水流により回転する前記水車の駆動力を用いて、水力発電機を介して発電を行うことを特徴とする水力発電方法。
A hydroelectric power generation method for performing hydropower generation by rotating a water wheel provided in the pumping pipe through a pumping flow generated by water pressure in the pumping pipe arranged in water,
A first step of introducing water by water pressure from an inlet provided on one end side of the pumping pipe and rotating the water wheel disposed in the pipe line of the pumping pipe;
From the position surrounding the injection port provided at the other end of the pumping pipe, into the fountain passage provided toward the water surface side and communicating with the atmosphere, water obtained by rotating the water wheel is injected as a fountain by water pressure, and the fountain A second step of receiving water in a water storage tank provided at a position above the passage and at a position lower than the water surface so as to receive a drop from the top of the fountain column;
A third step of pumping and discharging the water stored in the water tank onto the water surface by a discharging means;
By repeating the steps from the first step to the third step repeatedly, electric power is generated through a hydroelectric generator using the driving force of the water turbine rotated by the pumped water flowing in the pumping pipe. Hydroelectric power generation method.
JP2009064622A 2009-03-17 2009-03-17 Hydraulic power generation device and hydraulic power generation method Pending JP2010216387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064622A JP2010216387A (en) 2009-03-17 2009-03-17 Hydraulic power generation device and hydraulic power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064622A JP2010216387A (en) 2009-03-17 2009-03-17 Hydraulic power generation device and hydraulic power generation method

Publications (1)

Publication Number Publication Date
JP2010216387A true JP2010216387A (en) 2010-09-30

Family

ID=42975478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064622A Pending JP2010216387A (en) 2009-03-17 2009-03-17 Hydraulic power generation device and hydraulic power generation method

Country Status (1)

Country Link
JP (1) JP2010216387A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237241A (en) * 2011-05-11 2012-12-06 Takeo Terauchi Hydraulic power generating device
JP2015020734A (en) * 2013-07-22 2015-02-02 晴勇 島 Whole concentration of high-capacity rotary fan power generation based on combination of power generation reinforcement by inner and outer rotary fan operation with negative pressure utilization on rough weather
JP2015086851A (en) * 2013-10-28 2015-05-07 末夫 井手 Differential pressure water power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237241A (en) * 2011-05-11 2012-12-06 Takeo Terauchi Hydraulic power generating device
JP2015020734A (en) * 2013-07-22 2015-02-02 晴勇 島 Whole concentration of high-capacity rotary fan power generation based on combination of power generation reinforcement by inner and outer rotary fan operation with negative pressure utilization on rough weather
JP2015086851A (en) * 2013-10-28 2015-05-07 末夫 井手 Differential pressure water power generation device

Similar Documents

Publication Publication Date Title
US5701740A (en) Device for a buoy-based wave power apparatus
AU2004234556B2 (en) Production installation
US4224527A (en) Fluid flow intensifier for tide, current or wind generator
US7898102B2 (en) Hydrocratic generator
US20070048086A1 (en) Shoaling water energy conversion device
JP2011074921A (en) Structure of ultra low head drop water turbine of flow velocity/rate adjusting type
US20130088015A1 (en) Hydroelectric generators
CN102498288A (en) Water power generators
CN109477452A (en) Equipment for collecting energy from wave
US20100059999A1 (en) Sea Floor Pump Tailrace Hydraulic Generation System
JP2013504714A (en) Underwater hydroelectric generator and method
US20110221209A1 (en) Buoyancy Energy Cell
WO2013108412A1 (en) Marine power generating system and marine power generating method
JP2009281142A (en) Hydroelectric power generation facility
JP2016517923A (en) Submersible hydroelectric generator device and method for draining water from such device
JP2010216387A (en) Hydraulic power generation device and hydraulic power generation method
CN115298434B (en) Power output apparatus for a wave energy converter, and a wave energy converter comprising the same
NZ570333A (en) Underwater tidal energy system
JP3687790B2 (en) Hydroelectric power generation equipment
US20120200088A1 (en) Sipoline Hydro Electric Generator
ES2315481T3 (en) EVACUATION OF RESIDUAL FLUIDS.
KR101016456B1 (en) Tidal current power plant
KR20090037649A (en) Vertical gear driven flow current power generation unit
US20150369206A1 (en) Positive boyancy hydraulic power system and method
WO2011123871A1 (en) Dam structure and hydroelectric dam construction therefrom