JP2010216361A - Axial fan - Google Patents

Axial fan Download PDF

Info

Publication number
JP2010216361A
JP2010216361A JP2009063705A JP2009063705A JP2010216361A JP 2010216361 A JP2010216361 A JP 2010216361A JP 2009063705 A JP2009063705 A JP 2009063705A JP 2009063705 A JP2009063705 A JP 2009063705A JP 2010216361 A JP2010216361 A JP 2010216361A
Authority
JP
Japan
Prior art keywords
fan
wing
main
axial
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009063705A
Other languages
Japanese (ja)
Other versions
JP4994406B2 (en
Inventor
Takahide Tadokoro
敬英 田所
Yasuaki Kato
康明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009063705A priority Critical patent/JP4994406B2/en
Publication of JP2010216361A publication Critical patent/JP2010216361A/en
Application granted granted Critical
Publication of JP4994406B2 publication Critical patent/JP4994406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in a conventional axial fan, as air separates from a pressure surface to flow downstream and not along blades at the inner peripheral part of the fan, energy is hardly transmitted from the blades, and when the air does not flow along blade surfaces, blown-out flow is easily directed in the revolving direction of the fan, so that air flow is disturbed by a crosspiece and a rib of a protective grille installed at downstream of the fan and noise becomes large. <P>SOLUTION: The axial fan 101 includes a plurality of blades on the circumferential face of a hub 1 mounted on a rotary shaft, and blows air in the axial direction through the rotation of the rotary shaft. In the axial fan 101, the main blade 5 and an auxiliary blade 6 are disposed at positions shifted from each other in the axial direction. The auxiliary blade 6 is disposed further on the axial downstream side than the main blade 5 and covers the rear edge 52 of the main blade 5. The fan diameter of the auxiliary blade 6 is smaller than that of the main blade 5. In the axial fan 101, the air flow on the inner peripheral side is made to flow along the main blade 5, activating energy transmission, and noise occurring in a fan grille can be reduced by directing the blown-out air flow in the axial direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軸流ファンおよびこれを用いた空気調和機の室外機に関するものである。   The present invention relates to an axial fan and an outdoor unit of an air conditioner using the same.

図13は従来の軸流ファンの構成図である。ボス1(ハブと呼ぶ場合もある)の周りに複数の翼2が取り付けられており、ボス1に取り付けられた軸が回転して吹出方向3へ風を発生させている。軸流ファンを用いた送風機では、回転する翼で手などをケガしないように吹き出し側に複数の桟やリブ4で構成されたファングリルや防護ネットを備えていることが多い。   FIG. 13 is a configuration diagram of a conventional axial fan. A plurality of blades 2 are attached around a boss 1 (sometimes referred to as a hub), and a shaft attached to the boss 1 rotates to generate wind in the blowing direction 3. A blower using an axial fan is often provided with a fan grill or a protection net composed of a plurality of crosspieces and ribs 4 on the blowout side so as not to injure hands and the like with rotating blades.

送風機の省エネ(低入力化)を実現するためには送風機の効率を高めることが必要である。空気が翼間を流れる間にエネルギーを多く与えられれば、ファンの効率向上が期待できる。従来の軸流ファンの例をみると、主翼の間に補助翼を挟んで、翼の迎え角が大きくなることを防止して、はく離を抑制することや(特許文献1)、複数組の翼を軸方向にずれた位置に設け、回転方向に所定角度ずらして設ける例があり、多段の翼列で高効率化が期待できる(特許文献2)。   In order to realize energy saving (lower input) of the blower, it is necessary to increase the efficiency of the blower. If a lot of energy is given while the air flows between the blades, the efficiency of the fan can be improved. In an example of a conventional axial fan, an auxiliary wing is sandwiched between main wings to prevent an increase in the angle of attack of the wing, thereby suppressing separation (Patent Document 1), and a plurality of sets of wings. Is provided at a position shifted in the axial direction and is provided at a predetermined angle in the rotational direction, and high efficiency can be expected with a multistage blade row (Patent Document 2).

特開平8−177792号公報JP-A-8-177772 特開平5−248395号公報JP-A-5-248395

送風機や空調機に用いられる軸流ファンの効率を高くするためには、空気が翼面(圧力面)に沿って流れ、翼からのエネルギー伝達を多く受けることが必要である。従来のファンの外周部では、空気は翼表面に沿って流れるため、翼から空気へエネルギー伝達されやすい。しかし、ファンの内周部では空気が翼にほとんど沿わず、空気は圧力面からすぐに離脱して下流に流れるため、翼からエネルギーが伝達されにくい。また、空気が翼面に沿って流れないと吹き出し流れがファンの旋回方向を向きやすく、ファン下流に設置される防護グリル(ファングリル)の桟やリブで気流が乱れて騒音が大きくなる恐れがある。   In order to increase the efficiency of an axial fan used for a blower or an air conditioner, it is necessary that air flows along the blade surface (pressure surface) and receives a large amount of energy transfer from the blade. At the outer periphery of a conventional fan, air flows along the blade surface, so that energy is easily transferred from the blade to the air. However, in the inner periphery of the fan, air hardly follows the blades, and the air immediately leaves the pressure surface and flows downstream, so that energy is not easily transmitted from the blades. Also, if the air does not flow along the blade surface, the blowout flow tends to turn in the direction of rotation of the fan, and there is a risk that the airflow will be disturbed by the bars and ribs of the protective grill (fan grill) installed downstream of the fan, resulting in increased noise. is there.

特許文献1にあるように、主翼の間に補助翼を設けると、主翼の後縁では流れを圧力面に抑える効果が得られるが、内周側では前縁部でも剥がれやすく、下流に流れる気流を押さえつけきれず、翼から空気へのエネルギー伝達と吹き出し気流方向の制御は不十分である。また、内周側の主翼間が補助翼で塞がれているため、風量低下の恐れがある。   As described in Patent Document 1, when an auxiliary wing is provided between main wings, the effect of suppressing the flow to the pressure surface is obtained at the trailing edge of the main wing. The energy transfer from the wing to the air and the control of the direction of the blowout airflow are insufficient. In addition, since the space between the main wings on the inner peripheral side is closed with auxiliary wings, there is a risk of a reduction in air volume.

特許文献2にあるような主翼と小翼の配置では、圧力面内周部を流れる空気を面に押さえつけるものがないため、大きな効果は期待できない。また、内周側の翼間を塞ぐ構成になるため、風量低下の恐れがある。   In the arrangement of the main wing and the small wing as disclosed in Patent Document 2, there is nothing that presses the air flowing through the inner peripheral portion of the pressure surface against the surface, and thus a great effect cannot be expected. Moreover, since it becomes the structure which closes between the blade | wings of an inner peripheral side, there exists a possibility of an air volume fall.

この発明は、エネルギー効率がよく、騒音の小さい軸流ファンの提供を目的とする。   An object of the present invention is to provide an axial fan that is energy efficient and low in noise.

この発明の軸流ファンは、
回転軸に取り付けられ、前記回転軸の回転によって前記回転軸の軸方向に気体を吹き出す軸流ファンにおいて、
前記回転軸に取り付けられるハブと、
前記ハブに設置された複数枚の主翼と、
前記複数枚の主翼の各主翼に1対1に対応して前記ハブに設置された前記主翼と同じ枚数の補助翼と
を備え、
前記補助翼は、
対応する前記主翼よりも軸方向の下流側にずれた位置に設置され、対応する前記主翼と共に前記回転軸を法線とする平面に投影された場合には、前記補助翼の後縁が前記主翼の後縁と重なるか、あるいは前記主翼の後縁よりも逆回転方向に位置し、前記補助翼のファン径が前記主翼のファン径よりも小さいことを特徴とする。
The axial fan of this invention is
In an axial fan that is attached to a rotating shaft and blows gas in the axial direction of the rotating shaft by rotation of the rotating shaft,
A hub attached to the rotating shaft;
A plurality of main wings installed in the hub;
The main wings of the plurality of main wings are provided with the same number of auxiliary wings as the main wings installed on the hub in a one-to-one correspondence,
The auxiliary wing is
The rear edge of the auxiliary wing is located at a position shifted to the downstream side in the axial direction from the corresponding main wing and projected onto a plane having the rotation axis as a normal along with the corresponding main wing. It overlaps with the trailing edge of the main wing or is positioned in the reverse rotation direction with respect to the trailing edge of the main wing, and the fan diameter of the auxiliary wing is smaller than the fan diameter of the main wing.

この発明によれば、翼の内周部(ファン径の小さい側)の圧力面に入る空気は主翼と補助翼に囲まれた空間を流れるようになり、圧力面から離脱しなくなる。その結果、主翼の内周側でもエネルギー伝達が活発になるため内周翼の効率が向上する。また、翼に流れが沿うため吹き出し流れが回転軸の軸方向を向きやすくなるので、ファングリルの桟間を気流が滑らかに通過するため、騒音発生を抑制することができる。   According to the present invention, the air entering the pressure surface of the inner peripheral portion of the blade (smaller fan diameter side) flows in the space surrounded by the main wing and the auxiliary wing, and does not leave the pressure surface. As a result, since the energy transmission becomes active on the inner peripheral side of the main wing, the efficiency of the inner peripheral wing is improved. In addition, since the flow follows the blades, the blow-out flow can easily be directed in the axial direction of the rotating shaft, so that the airflow smoothly passes between the crosspieces of the fan grill, and noise generation can be suppressed.

実施の形態1における軸流ファン101を示す図。FIG. 3 shows an axial fan 101 according to the first embodiment. 実施の形態1の軸流ファン101と比較するための従来の軸流ファンの翼周りの流れ図。FIG. 3 is a flowchart around a blade of a conventional axial fan for comparison with the axial fan 101 of the first embodiment. 実施の形態1で説明する従来のファンの吹き出し流れ方向の説明図。Explanatory drawing of the blowing flow direction of the conventional fan demonstrated in Embodiment 1. FIG. 実施の形態1における軸流ファン101の翼周りの流れ図。FIG. 3 is a flowchart around a blade of an axial fan 101 according to the first embodiment. 実施の形態2における軸流ファン102を示す図。FIG. 6 shows an axial fan 102 according to the second embodiment. 実施の形態2における軸流ファン102の速度ベクトル図。FIG. 10 is a velocity vector diagram of the axial fan 102 according to the second embodiment. 実施の形態3における軸流ファン103の線19の投影を示す図。FIG. 10 shows a projection of a line 19 of an axial fan 103 in the third embodiment. 実施の形態3における軸流ファン103の翼の前傾角を示す図。FIG. 10 is a diagram illustrating a forward tilt angle of a blade of an axial fan 103 according to the third embodiment. 実施の形態3における軸流ファン103の翼外周部の流れ図。FIG. 9 is a flowchart of a blade outer peripheral portion of an axial fan 103 according to the third embodiment. 実施の形態4における軸流ファン104を示す図。FIG. 10 shows an axial fan 104 in the fourth embodiment. 実施の形態5における軸流ファン105を示す図。FIG. 10 shows an axial fan 105 according to the fifth embodiment. 実施の形態6における軸流ファン106を示す図。FIG. 10 shows an axial fan 106 according to the sixth embodiment. 従来の軸流ファンを示す図。The figure which shows the conventional axial fan.

実施の形態1.
図1〜図4を参照して実施の形態1の軸流ファン101を説明する。図1は、実施の形態1の軸流ファン101の斜視図(a)、正面図(b)、翼間の側面図(c)(翼は所定の半径の円筒側面で切った場合の断面を示した)を示す。図をわかりやすくするため、翼1枚分(1枚の主翼5と、この主翼5に対応する1枚の補助翼6)を示す。回転軸が取り付けられるボス1(ハブともいう)の周面に主翼5と補助翼6が取り付けられており、正面図(b)に示すように、正面からみると、主翼5よりも補助翼6のファン径は小さく、補助翼6のファン径範囲では主翼5の後縁52を覆う構成になっている。つまり、範囲50では補助翼6の後縁62が主翼5の後縁52を覆っている。また、正面図(b)でみた場合に補助翼6は、主翼5の内部に収まって配置されており、主翼5に隣り合う他の主翼の空間を塞がない構造である。側面図(c)をみると主翼5の下流側に補助翼6が設置されており、主翼5と補助翼6で構成される翼間8は略一定幅になっている。
Embodiment 1 FIG.
The axial fan 101 according to the first embodiment will be described with reference to FIGS. FIG. 1 is a perspective view (a), a front view (b), and a side view (c) between blades of an axial fan 101 according to the first embodiment (a cross section when a blade is cut by a cylindrical side surface having a predetermined radius). Show). In order to make the figure easy to understand, one wing (one main wing 5 and one auxiliary wing 6 corresponding to the main wing 5) is shown. A main wing 5 and an auxiliary wing 6 are attached to a peripheral surface of a boss 1 (also referred to as a hub) to which a rotating shaft is attached. As shown in a front view (b), the auxiliary wing 6 is more than the main wing 5 when viewed from the front. The fan diameter of the auxiliary wing 6 is small and covers the trailing edge 52 of the main wing 5 in the fan diameter range of the auxiliary wing 6. That is, in the range 50, the trailing edge 62 of the auxiliary wing 6 covers the trailing edge 52 of the main wing 5. Further, when viewed from the front view (b), the auxiliary wings 6 are disposed inside the main wings 5 and do not block the space of other main wings adjacent to the main wings 5. Looking at the side view (c), the auxiliary wing 6 is installed on the downstream side of the main wing 5, and the space 8 between the main wing 5 and the auxiliary wing 6 has a substantially constant width.

すなわち、図1に示すように、軸流ファン101は、回転軸(図示していない)に取り付けられ、この回転軸の回転によってファン回転軸14の方向である吹出方向3に気体を吹き出す。軸流ファン101は、回転軸に取り付けられるボス1(ハブ)と、ハブに設置された複数枚の主翼5と、複数枚の主翼5の各主翼に1対1に対応してハブ1に設置された主翼と同じ枚数の補助翼6とを備える。図1では、主翼5には補助翼6が対応する。補助翼6は斜視図(a)、側面図(c)等に示すように、主翼5よりもファン回転軸14方向の下流側にずれた位置に設置される。また、補助翼6は、正面図(a)に示すように、主翼5と共にファン回転軸14を法線とする平面に投影された場合には、補助翼6の後縁62が主翼5の後縁52と重なるか、あるいは主翼5の後縁52よりも逆回転方向(回転方向31と反対方向:正面図で左周り方向)に位置する形状である。また、補助翼6は、図1の正面図(b)に示すように、補助翼6の一番大きいファン径でも、主翼5の最も小さいファン径よりも小さい。すなわち図1の正面図(b)でみると、補助翼6は、外周(補助翼6の前縁61、後縁62を除いた補助翼6の周部分)は、主翼5の外周(主翼5の前縁51、後縁52を除いた主翼5の周部分)よりも内径側に位置する。   That is, as shown in FIG. 1, the axial fan 101 is attached to a rotating shaft (not shown), and gas is blown out in the blowing direction 3 that is the direction of the fan rotating shaft 14 by the rotation of the rotating shaft. The axial fan 101 is installed in the hub 1 in a one-to-one correspondence with each wing of the boss 1 (hub) attached to the rotating shaft, the plurality of main wings 5 installed in the hub, and the plurality of main wings 5. The same number of auxiliary wings 6 as the main wings are provided. In FIG. 1, the auxiliary wing 6 corresponds to the main wing 5. As shown in the perspective view (a), the side view (c), etc., the auxiliary blade 6 is installed at a position shifted from the main blade 5 toward the downstream side in the direction of the fan rotation shaft 14. In addition, as shown in the front view (a), when the auxiliary wing 6 is projected on a plane with the main wing 5 and the fan rotation shaft 14 as a normal line, the trailing edge 62 of the auxiliary wing 6 is located behind the main wing 5. The shape overlaps with the edge 52 or is positioned in the reverse rotation direction (the direction opposite to the rotation direction 31: the counterclockwise direction in the front view) with respect to the rear edge 52 of the main wing 5. Further, as shown in the front view (b) of FIG. 1, the auxiliary wing 6 is smaller than the smallest fan diameter of the main wing 5 even at the largest fan diameter of the auxiliary wing 6. That is, in the front view (b) of FIG. 1, the auxiliary wing 6 has an outer periphery (a peripheral portion of the auxiliary wing 6 excluding the front edge 61 and the rear edge 62 of the auxiliary wing 6). Of the main wing 5 excluding the leading edge 51 and the trailing edge 52).

次に、動作について図2〜図4を用いて説明する。   Next, the operation will be described with reference to FIGS.

(従来の流れ1)
図2は、従来のプロペラファンの翼2の周りの空気の流れを数値解析により観察した結果を模式的に斜視図(a)、側面図(b)として示した図である。ファン外周側の気流9は、前縁201から後縁202にかけて翼面に沿って流れ、その間に翼2から気流9へエネルギーが供給される。しかし、側面図(b)に示すように、ファン内周側の気流10は後縁202に到達する前に下流に離脱する。ここでいう内周側、外周側とは、例えば図1の正面図(b)において、ファン半径の大きい方(半径R2)を外周側と呼び、ファン半径の小さい方(半径R1)を内周側と呼んでいる。この離脱により、内周側を通過する空気には翼2からのエネルギーが十分に供給されないため、ファンの効率が悪い。なお、外周側気流9、内周側気流10は、翼2から観測した相対流れを図示したものである。
(Conventional flow 1)
FIG. 2 is a perspective view (a) and a side view (b) schematically showing the results of observing the air flow around the blades 2 of a conventional propeller fan by numerical analysis. The airflow 9 on the fan outer peripheral side flows along the blade surface from the leading edge 201 to the trailing edge 202, and energy is supplied from the blade 2 to the airflow 9 during that time. However, as shown in the side view (b), the air flow 10 on the fan inner peripheral side leaves downstream before reaching the trailing edge 202. As used herein, the inner peripheral side and the outer peripheral side refer to, for example, the front fan (radius R2) having the larger fan radius in FIG. 1B as the outer peripheral side, and the smaller fan radius (radius R1). Called the side. Due to this separation, the air passing through the inner peripheral side is not sufficiently supplied with energy from the blades 2, and the efficiency of the fan is poor. In addition, the outer peripheral airflow 9 and the inner peripheral airflow 10 illustrate the relative flows observed from the blade 2.

(従来の流れ2)
次に、ファンの吹き出し流れ方向を図3により考える。吹き出し流速ベクトル11(絶対速度ベクトル)は、相対速度ベクトル12と翼の周速ベクトル13で合成されたベクトルで表される。ファン回転方向は、斜線矢印32(ファン回転軸14に示した速度方向を示すベクトルを意味する)とする。この場合、図3(a)のように、翼2に沿った流れの場合(相対速度ベクトル12a)は、吹き出し流れ方向11aがファン回転軸14の方向を向く。これ対して、図3(b)のように、翼2から離脱する流れの場合(相対速度ベクトル12b)は、吹き出し流れ方向11bがファンの旋回方向よりに向く。すなわち、図3(b)のように、翼2から離脱する流れの場合(相対速度ベクトル12b)は、「角度θ」が図3(a)の場合よりも小さくなる。従来のファンの内周側の流れは図3(b)のような流れになっているため、吹き出し流速ベクトル11が回転方向ベクトル32を向きやすい。旋回成分が強くなると送風機などでファン下流部に設置されるファングリルの桟やリブ4に衝突した気流が乱れて、渦が発生して騒音が大きくなる課題があった。
(Conventional flow 2)
Next, the blow-out flow direction of the fan will be considered with reference to FIG. The blowout flow velocity vector 11 (absolute velocity vector) is represented by a vector synthesized from the relative velocity vector 12 and the peripheral velocity vector 13 of the blade. The fan rotation direction is a hatched arrow 32 (meaning a vector indicating the speed direction indicated on the fan rotation shaft 14). In this case, as shown in FIG. 3A, in the case of the flow along the blade 2 (relative velocity vector 12 a), the blowing flow direction 11 a faces the direction of the fan rotation shaft 14. On the other hand, as shown in FIG. 3B, in the case of a flow separating from the blades 2 (relative velocity vector 12b), the blowing flow direction 11b is directed to the turning direction of the fan. That is, as shown in FIG. 3B, in the case of the flow separating from the blade 2 (relative velocity vector 12b), the “angle θ” is smaller than in the case of FIG. Since the flow on the inner peripheral side of the conventional fan is as shown in FIG. 3B, the blowout flow velocity vector 11 tends to face the rotation direction vector 32. When the swirl component becomes strong, there is a problem that the air current colliding with the fan grille and ribs 4 installed in the downstream of the fan by a blower or the like is disturbed to generate vortex and increase noise.

(軸流ファン101での流れ)
図4は、実施の形態1の軸流ファン101の翼周りの流れの模式図(斜視図(a)と側面図(b))を示す。ファン内周側の流れ10は,主翼5と補助翼6の間に入るため、側面図(b)に示すように、空気の流れが、主翼面から下流側に離脱しなくなる。よって気流への翼面からのエネルギー供給が活発に行われる。また、内周側の吹き出し相対速度ベクトル12が主翼5に沿うため、吹き出し流速ベクトル11の方向がファン回転軸14の方向に近づく。このため、軸流ファン101の下流側に置かれるファングリルの桟を通過するときに気流が乱れにくくなり、騒音が低減する。なお、補助翼6の圧力面を流れる気流15は翼面から離脱しやすい状態にあるが、翼長が短いためロスは小さく、補助翼6に主翼5と同様の対策をしてもファン全体として得る効果は小さい。
(Flow in axial fan 101)
FIG. 4 is a schematic diagram (a perspective view (a) and a side view (b)) of the flow around the blades of the axial fan 101 according to the first embodiment. Since the flow 10 on the fan inner peripheral side enters between the main wing 5 and the auxiliary wing 6, as shown in the side view (b), the air flow does not detach from the main wing surface to the downstream side. Therefore, energy is actively supplied from the blade surface to the airflow. Further, since the blowout relative velocity vector 12 on the inner peripheral side is along the main wing 5, the direction of the blowout flow velocity vector 11 approaches the direction of the fan rotation shaft 14. For this reason, the airflow is less likely to be disturbed when passing through a fan grille bar placed on the downstream side of the axial fan 101, and noise is reduced. Although the airflow 15 flowing on the pressure surface of the auxiliary blade 6 is easily separated from the blade surface, the loss is small because the blade length is short. Even if the same measures as the main blade 5 are applied to the auxiliary blade 6, the entire fan The effect obtained is small.

以上のように、実施の形態1では、回転軸に取付けられるハブ1の周面に複数の翼を設け、その回転により軸方向に送風する軸流ファンにおいて、主翼5と補助翼6が軸方向にずれた位置に配置され、補助翼6は主翼5よりも軸方向下流側にあって主翼5の後縁52を覆い、補助翼6のファン径は主翼5のファン径より小さいことを特徴とする軸流ファン101を説明した。この軸流ファン101を用いることによって、翼が気流に与えるエネルギーを増加させてファン効率を向上できると共に、吹き出し流れをファン回転軸の方向に向けることができるので、ファングリルで発生する騒音を低減できる。また、補助翼6は主翼5と隣り合う他の主翼との翼間を塞ぐことはないため、風量低下を起こしにくい。   As described above, in the first embodiment, in the axial fan in which a plurality of blades are provided on the peripheral surface of the hub 1 attached to the rotating shaft and the air is blown in the axial direction by the rotation, the main blade 5 and the auxiliary blade 6 are axially arranged. The auxiliary wing 6 is located downstream of the main wing 5 in the axial direction and covers the trailing edge 52 of the main wing 5, and the fan diameter of the auxiliary wing 6 is smaller than the fan diameter of the main wing 5. The axial flow fan 101 is described. By using this axial flow fan 101, it is possible to improve the fan efficiency by increasing the energy given to the airflow by the blades and to direct the blown flow toward the fan rotation axis, thereby reducing the noise generated in the fan grille. it can. Further, since the auxiliary wing 6 does not block the wing between the main wing 5 and another main wing adjacent to the main wing 5, it is difficult for the air volume to decrease.

実施の形態2.
次に図5を用いて、実施の形態2の軸流ファン102を説明する。図5は、実施の形態2における軸流ファン102の斜視図(a)と翼断面図(b)を示している。
Embodiment 2. FIG.
Next, the axial fan 102 according to the second embodiment will be described with reference to FIG. FIG. 5 shows a perspective view (a) and a blade cross-sectional view (b) of the axial fan 102 according to the second embodiment.

翼断面図(b)を参照して説明する。翼断面図(b)では、翼間幅を同一半径の2次元翼断面の間に収まる円の径16で規定している。すなわち、図5(b)は、ファン回転軸14を中心軸とする仮想円筒33の側面で主翼5、補助翼6を切断した場合、断面において、その断面における主翼5と補助翼6との翼間が、主翼5の後縁に向かうに従って狭くなる。このように軸流ファン102は、主翼5の後縁に向かうほど円径(この円は、仮想円筒の側面に描かれた円である)が小さくなる(直径16a>直径16b)。つまり、主翼5の後縁に向かうに従って翼間が狭くなっている。   This will be described with reference to the blade cross-sectional view (b). In the blade cross-sectional view (b), the inter-blade width is defined by the diameter 16 of a circle that fits between two-dimensional blade cross sections having the same radius. That is, FIG. 5B shows a cross section of the main wing 5 and the auxiliary wing 6 in the cross section when the main wing 5 and the auxiliary wing 6 are cut at the side surface of the virtual cylinder 33 with the fan rotation shaft 14 as the central axis. The space becomes narrower toward the trailing edge of the main wing 5. Thus, the axial fan 102 has a smaller diameter (this circle is a circle drawn on the side surface of the virtual cylinder) as it goes toward the rear edge of the main wing 5 (diameter 16a> diameter 16b). That is, the distance between the wings becomes narrower toward the rear edge of the main wing 5.

図2(b)で述べたように、内周側で圧力面の気流は後縁ほど離脱しやすくなるため、主翼5の後縁52に向かうに従って主翼5と補助翼6との翼間を狭くすることにより、圧力面に気流を押さえつける効果が大きくなり、翼からのエネルギーを空気により多く伝達させることができる。また、翼間が徐々に狭くなることにより吹き出し相対速度ベクトル12が速くなる。すると、図6のような速度ベクトルの関係(相対速度ベクトル12が長くなる)になるため、吹き出し流速ベクトル11がさらに軸方向を向きやすくなる(角度θが大きくなる)。その結果、ファングリルの桟で乱れが発生しなくなる効果が強くなり、騒音をさらに低減することができる。   As described with reference to FIG. 2B, the airflow on the pressure surface on the inner peripheral side is more easily separated from the rear edge, so that the space between the main wing 5 and the auxiliary wing 6 becomes narrower toward the rear edge 52 of the main wing 5. By doing so, the effect of pressing the airflow against the pressure surface is increased, and more energy from the blades can be transmitted to the air. Further, the blowing relative velocity vector 12 is increased by gradually narrowing the distance between the blades. Then, since the velocity vector relationship (relative velocity vector 12 becomes longer) as shown in FIG. 6, the blowout flow velocity vector 11 becomes easier to face in the axial direction (the angle θ becomes larger). As a result, the effect that the disturbance of the fan grille does not occur becomes stronger, and the noise can be further reduced.

実施の形態3.
次に図7〜図9を参照して実施の形態3の軸流ファン103を説明する。軸流ファン103は、主翼5、補助翼6の前傾角に関する実施形態である。
Embodiment 3 FIG.
Next, the axial flow fan 103 according to the third embodiment will be described with reference to FIGS. The axial fan 103 is an embodiment relating to the forward tilt angle of the main wing 5 and the auxiliary wing 6.

まず図7(a)を参照して説明する。図7(a)は正面図である。
翼の前傾角を以下のように決める。
(1)まず、図7(a)の線17を構成する一つの点34は、次の点である。ファン回転軸14を中心軸とする半径Rの仮想円筒35の側面で3次元形状の翼(厚さはないと仮定)を切断した場合、円筒側面上に前縁と後縁とを結ぶ交線ができる。点34は、その交線上の中央の点(交線上において交線両端からその点に向かう場合、両端からの距離が等しくなる点)である。線17を構成する各点は、異なる半径Rの各仮想円筒に対して得られた中心(中央の位置)である。線17は、これらの点を結んでできた線(翼弦線の中心線)である。線17を円筒断面18に回転投影したできた図7(b)の線19と、水平面20とのなす角度21で、翼の前傾角を表現する。次の(2)に詳しく説明する。
(2)翼の前傾角を、線17を円筒断面18に回転投影した図7(b)の線19と、水平面20とのなす角度21で表現する。ここで、図7(a)に示す円筒断面18とは、正面図(a)でみた場合、ファン回転軸14の方向に延びる平面であり、図7(c)に示す円筒断面18を意味している。そして、「線17を、円筒断面18に回転投影する」とは、図7の正面図(a)の線17は3次元形状(つまり正面図(a)の法線方向に奥行きをもつ)であり、平面である円筒断面18を固定しつつ、線17の形成されたファンを回転させたときに、線17が円筒断面18に投影された線が線19であることを意味する。
First, a description will be given with reference to FIG. FIG. 7A is a front view.
Determine the forward tilt angle of the wing as follows.
(1) First, one point 34 constituting the line 17 in FIG. 7A is the next point. When a three-dimensional shaped blade (assuming no thickness) is cut at the side surface of the virtual cylinder 35 having a radius R with the fan rotation axis 14 as the central axis, an intersection line connecting the leading edge and the trailing edge on the cylinder side surface Can do. The point 34 is a central point on the intersection line (a point on the intersection line where distances from both ends are equal when going from the both ends of the intersection line to the point). Each point constituting the line 17 is a center (center position) obtained for each virtual cylinder having a different radius R. The line 17 is a line formed by connecting these points (the center line of the chord line). The forward tilt angle of the wing is expressed by an angle 21 formed by the line 19 in FIG. 7B, which is obtained by rotating and projecting the line 17 onto the cylindrical section 18, and the horizontal plane 20. The following (2) will be described in detail.
(2) The forward tilt angle of the wing is expressed by an angle 21 formed by a horizontal plane 20 and a line 19 in FIG. Here, the cylindrical cross section 18 shown in FIG. 7 (a) is a plane extending in the direction of the fan rotation shaft 14 when viewed in the front view (a), and means the cylindrical cross section 18 shown in FIG. 7 (c). ing. “The line 17 is rotationally projected onto the cylindrical section 18” means that the line 17 in the front view (a) of FIG. 7 has a three-dimensional shape (that is, the depth is in the normal direction of the front view (a)). Yes, it means that the line 17 projected onto the cylindrical cross section 18 is the line 19 when the fan on which the line 17 is formed is rotated while fixing the cylindrical cross section 18 which is a plane.

本実施の形態3における軸流ファン103の翼の前傾角を図8に示す(ただし、判りやすくするため、翼外形線を略して投影された線のみで説明する)。軸流ファン103は、投影線と水平線とのなす角21(前傾角)が、主翼5と補助翼6で異なっていることを特徴としている。補助翼6の前傾角θの方が、主翼5の前傾角θよりも小さくなっていることが特徴である。これはファン半径が大きくなるほど、その半径位置での主翼5と補助翼6との翼間が広くなることを意味している。逆にいえば、ファン半径が小さくなるほど(内周側ほど)、その半径位置での主翼5と補助翼6との翼間が狭くなる。このように、ファンの内周側ほど主翼5から流れが離脱しやすいため翼間を狭くして流れを押さえつけることで、効率改善と吹き出し方向の制御を行う。 FIG. 8 shows the forward tilt angle of the blades of the axial fan 103 according to the third embodiment (however, in order to make it easy to understand, the blade outline is abbreviated and described only with the projected lines). The axial fan 103 is characterized in that the angle 21 (forward tilt angle) formed by the projection line and the horizontal line is different between the main wing 5 and the auxiliary wing 6. Earlier inclination theta 6 aileron 6, is characterized in that is smaller than the forward inclination theta 5 wing 5. This means that the larger the fan radius, the wider the space between the main wing 5 and the auxiliary wing 6 at the radial position. In other words, the smaller the fan radius (the inner peripheral side), the narrower the distance between the main wing 5 and the auxiliary wing 6 at that radial position. Thus, since the flow is more easily separated from the main wing 5 toward the inner peripheral side of the fan, the efficiency is improved and the blowing direction is controlled by narrowing the space between the wings and suppressing the flow.

一方、外周側では図9のように補助翼6の外周端部から発生する漏れ渦22と主翼5上の流れが干渉して風量低下や騒音発生を起こす恐れがあるため、翼間の距離を広げることを狙っている。この結果、補助翼ファン設置による悪影響を防ぎつつファン効率改善と吹き出し風向制御による騒音低減を実現することができる。   On the other hand, since the leakage vortex 22 generated from the outer peripheral edge of the auxiliary wing 6 interferes with the flow on the main wing 5 as shown in FIG. Aims to spread. As a result, it is possible to improve fan efficiency and reduce noise by blowing air direction control while preventing adverse effects due to the installation of the auxiliary blade fan.

実施の形態4.
次に図10を参照して、実施の形態4の軸流ファン104を説明する。図10は、軸流ファン104の斜視図(a)と正面図(b)とを示す。正面図(b)に示すように、軸流ファン104は、正面図でみて、ファン半径の大きい位置ほど、補助翼6の前縁61が、主翼5の同一径の前縁51、後縁52を結んだ周区間24に対して相対的に後縁側に寄っていることを特徴としている。言い換えると、正面図(b)でみた場合に、補助翼6の前縁61は主翼5の前縁51よりも主翼5の後縁52よりに位置し、かつ、補助翼6の前縁61と主翼5の前縁51とは、ファン外周に向かいに従って互いに離れていく。また別の言い方をすれば、補助翼6は、主翼5と共にファン回転軸14を法線とする平面に投影された場合には、ファン半径の大きい位置ほど、そのファン半径の円の周上における補助翼6の前縁61と主翼5の前縁51との距離が大きいことを特徴とする。
Embodiment 4 FIG.
Next, the axial fan 104 according to the fourth embodiment will be described with reference to FIG. FIG. 10 shows a perspective view (a) and a front view (b) of the axial flow fan 104. As shown in the front view (b), in the axial fan 104, the front edge 61 of the auxiliary wing 6 has a front edge 51 and a rear edge 52 of the same diameter of the main wing 5 as the fan radius increases, as viewed from the front view. It is characterized in that it is relatively closer to the rear edge side with respect to the circumferential section 24 connecting the two. In other words, when viewed from the front view (b), the leading edge 61 of the auxiliary wing 6 is located closer to the trailing edge 52 of the main wing 5 than the leading edge 51 of the main wing 5, and the leading edge 61 of the auxiliary wing 6 The leading edge 51 of the main wing 5 is separated from each other along the outer periphery of the fan. In other words, when the auxiliary wing 6 is projected onto a plane having the fan rotation axis 14 as a normal line together with the main wing 5, the larger the fan radius, the more the fan wing 6 is located on the circumference of the circle of the fan radius. The distance between the front edge 61 of the auxiliary wing 6 and the front edge 51 of the main wing 5 is large.

上記特徴は、主翼圧力面において翼から離脱しやすい場所だけを補助翼6でカバーする事例である。内周側の流れほど圧力面から早く離脱する傾向があるため、主翼前縁よりに補助翼6を設置してファン効率と気流方向の改善を行っている。逆に外周部では後縁付近まで離脱しにくいため、補助翼6は後縁寄りから設置されている。   The above feature is an example in which the auxiliary wing 6 covers only the place where the main wing pressure surface is easily separated from the wing. Since the flow on the inner peripheral side tends to separate from the pressure surface earlier, the auxiliary wing 6 is installed from the leading edge of the main wing to improve the fan efficiency and the air flow direction. On the other hand, the auxiliary wing 6 is installed from the vicinity of the rear edge because it is difficult to separate to the vicinity of the rear edge at the outer peripheral portion.

この形状によると、実施の形態3よりも補助翼6の重量が減少するので、翼にかかるトルクの増加を抑制できる。その結果、ファンの効率をさらに改善できる。   According to this shape, since the weight of the auxiliary wing 6 is reduced as compared with the third embodiment, an increase in torque applied to the wing can be suppressed. As a result, the fan efficiency can be further improved.

実施の形態5.
次に図11を参照して、実施の形態の軸流ファン105を説明する。図11は、軸流ファン105の斜視図(a)と正面図(b)を示す。軸流ファン105では、斜視図(a)に示すように、補助翼6は主翼5の下流側にある。そして、正面図(b)でみた場合に、補助翼6のファン径25が、主翼5の後縁側に向かうほど長くなっている。これは、翼圧力面を流れる気流が後縁、内周側ほど離脱しやすい点を考慮したものである。言い換えると、補助翼6は、主翼5と共にファン回転軸14を法線とする平面に投影された場合には、補助翼6のファン径が、主翼5の前縁側から後縁側に向かうに従って大きくなる。
Embodiment 5 FIG.
Next, the axial fan 105 of the embodiment will be described with reference to FIG. FIG. 11 shows a perspective view (a) and a front view (b) of the axial flow fan 105. In the axial fan 105, the auxiliary blade 6 is on the downstream side of the main blade 5 as shown in the perspective view (a). When viewed from the front view (b), the fan diameter 25 of the auxiliary wing 6 becomes longer toward the rear edge side of the main wing 5. This is in consideration of the fact that the airflow flowing on the blade pressure surface tends to separate toward the trailing edge and the inner peripheral side. In other words, when the auxiliary wing 6 is projected on a plane with the main wing 5 and the fan rotation axis 14 as a normal line, the fan diameter of the auxiliary wing 6 increases from the front edge side to the rear edge side of the main wing 5. .

主翼5のファン径中間位置の前縁部では流れが翼面に沿うため、補助翼6で主翼5を覆わない。流れが離脱しやすい後縁付近からで補助翼6で主翼5を覆う構成にする。一方、内周側では、気流は前縁通過直後に剥がれるため、補助翼6で主翼全域を覆って翼にはり付かせる流れにする。   Since the flow follows the blade surface at the front edge portion of the main wing 5 at the fan diameter intermediate position, the auxiliary wing 6 does not cover the main wing 5. The main wing 5 is covered with the auxiliary wing 6 from the vicinity of the trailing edge where the flow is easily separated. On the other hand, on the inner peripheral side, the airflow is peeled off immediately after passing through the leading edge, and therefore, the auxiliary wing 6 covers the entire main wing so as to be attached to the wing.

軸流ファン105の形状によれば、補助翼6の重量を低減することができるため、翼にかかるトルクを低減することができ、ファン効率をさらに上げることができる。   According to the shape of the axial fan 105, the weight of the auxiliary blade 6 can be reduced, so that the torque applied to the blade can be reduced and the fan efficiency can be further increased.

実施の形態6.
次に図12を参照して実施の形態6の軸流ファン106を説明する。
図12(a)は、斜視図を示す。
図12(b)は、正面図を示す。
図12(c)は、ファン回転軸を中心軸とする円筒の円筒側面で切断した翼断面を示す。
Embodiment 6 FIG.
Next, the axial fan 106 according to the sixth embodiment will be described with reference to FIG.
FIG. 12A shows a perspective view.
FIG. 12B shows a front view.
FIG. 12C shows a blade cross section cut along a cylindrical side surface of a cylinder having a fan rotation axis as a central axis.

以上の実施の形態1〜実施の形態5の軸流ファンでは、図1の正面図(b)に示すように、軸方向から見て、主翼5と補助翼6の後縁の形状は略一致した(重なっていた)。これに対して軸流ファン106では、正面図から見た場合、補助翼6の後縁62は、主翼5の後縁52よりも逆回転側にはみ出して主翼5の後縁52を覆う領域26(破線で示した範囲36)を持っている。言い換えると、軸流ファン106の構成は、補助翼6が主翼5と共にファン回転軸を法線とする平面に投影された場合には、補助翼6は補助翼6の後縁62が主翼5の後縁52よりも逆回転方向に位置して、補助翼6の後縁62を含む後縁領域が主翼5の後縁52を含む後縁領域を覆う構成である。   In the axial fans of the first to fifth embodiments, as shown in the front view (b) of FIG. 1, the shapes of the trailing edges of the main wing 5 and the auxiliary wing 6 are substantially the same as seen from the axial direction. (Overlapping). On the other hand, in the axial fan 106, when viewed from the front view, the rear edge 62 of the auxiliary blade 6 protrudes beyond the rear edge 52 of the main wing 5 to the reverse rotation side and covers the rear edge 52 of the main wing 5. (A range 36 indicated by a broken line). In other words, the configuration of the axial flow fan 106 is such that when the auxiliary blade 6 is projected on a plane having the fan rotation axis as a normal line together with the main blade 5, the auxiliary blade 6 has the trailing edge 62 of the main blade 5. The rear edge region including the rear edge 62 of the auxiliary wing 6 is located in the reverse rotation direction with respect to the rear edge 52 and covers the rear edge region including the rear edge 52 of the main wing 5.

軸流ファン106の構成は、主翼5の後縁端部まで仕事量を稼ぎたいときに有効な構成である。   The configuration of the axial fan 106 is effective when it is desired to earn a work amount up to the trailing edge of the main wing 5.

後縁端部は翼面圧が最も高くなるため、この位置まで気流が翼に沿うことができれば、気流は、より大きなエネルギーを受けることができるが、流れが離脱しやすいことが課題であった。そこで、主翼5の後縁端部よりも下流側に補助翼6を延ばすことで主翼端部まで気流を張り付かせてエネルギーの吸収量を増やすことを狙う。補助翼6を延ばす長さは隣接する主翼間の円周区間27の1/3以内として、主翼間を完全に塞がないようにして風量低下が起きないようにする。この結果、さらに高効率のファンを実現できる。また、翼に流れが沿うため、吹き出し流れが軸方向になりやすく、ファングリルでの騒音を減少させることができる。   The trailing edge end has the highest blade pressure, so if the airflow can follow the wing to this position, the airflow can receive more energy, but the problem is that the flow is easily separated. . Therefore, the aim is to increase the amount of energy absorbed by extending the auxiliary wing 6 downstream from the rear edge end of the main wing 5 so that the airflow is stuck to the main wing end. The length of extending the auxiliary wing 6 is set to be within 1/3 of the circumferential section 27 between the adjacent main wings so as not to completely block between the main wings so as not to cause a decrease in the air volume. As a result, a more efficient fan can be realized. Further, since the flow follows the blade, the blowout flow tends to be in the axial direction, and noise at the fan grill can be reduced.

1 ボス、2 翼、3 吹出方向、4 リブ、5 主翼、6 補助翼、8 主翼と補助翼との翼間、9 ファン外周側の気流、10 ファン内周側の気流、11 吹き出し流速ベクトル、12 相対速度ベクトル、13 翼の周速ベクトル、14 ファン回転軸、15 補助翼の圧力面を流れる気流、16 径、17 翼弦線の中心線、18 円筒断面、19 円筒断面18に回転投影した線、20 水平面、21 前傾角、22 漏れ渦、24 主翼の前縁〜後縁を結んだ周区間、25 補助翼のファン径、26 後縁から逆回転側にはみ出す領域、27 主翼間の円周区間、31 回転方向、32 回転方向ベクトル、33 仮想円筒、34 点、35 仮想円筒、50 範囲、51 前縁、52 後縁、61 前縁、62 後縁、101,102,103,104,105,106 軸流ファン。   1 boss, 2 wings, 3 blowing direction, 4 ribs, 5 main wings, 6 auxiliary wings, 8 between the wings of the main wing and auxiliary wings, 9 air current on the fan outer peripheral side, 10 air current on the inner peripheral side of the fan, 11 blowout flow velocity vector, 12 Relative velocity vector, 13 Wing peripheral speed vector, 14 Fan rotation axis, 15 Airflow flowing through the pressure surface of the auxiliary wing, 16 diameter, 17 chord line centerline, 18 cylindrical cross section, 19 cylindrical projection Line, 20 horizontal plane, 21 forward tilt angle, 22 leakage vortex, 24 circumferential section connecting the leading edge to the trailing edge of the main wing, 25 fan diameter of the auxiliary wing, 26 area protruding from the trailing edge to the reverse rotation side, 27 circle between the main wings Circumference section, 31 rotation direction, 32 rotation direction vector, 33 virtual cylinder, 34 points, 35 virtual cylinder, 50 range, 51 leading edge, 52 trailing edge, 61 leading edge, 62 trailing edge, 101, 102, 103, 10 4,105,106 Axial fan.

Claims (7)

回転軸に取り付けられ、前記回転軸の回転によって前記回転軸の軸方向に気体を吹き出す軸流ファンにおいて、
前記回転軸に取り付けられるハブと、
前記ハブに設置された複数枚の主翼と、
前記複数枚の主翼の各主翼に1対1に対応して前記ハブに設置された前記主翼と同じ枚数の補助翼と
を備え、
前記補助翼は、
対応する前記主翼よりも軸方向の下流側にずれた位置に設置され、
対応する前記主翼と共に前記回転軸を法線とする平面に投影された場合には、前記補助翼の後縁が前記主翼の後縁と重なるか、あるいは前記主翼の後縁よりも逆回転方向に位置し、
前記補助翼のファン径が前記主翼のファン径よりも小さいことを特徴とする軸流ファン。
In an axial fan that is attached to a rotating shaft and blows gas in the axial direction of the rotating shaft by rotation of the rotating shaft,
A hub attached to the rotating shaft;
A plurality of main wings installed in the hub;
The main wings of the plurality of main wings are provided with the same number of auxiliary wings as the main wings installed on the hub in a one-to-one correspondence,
The auxiliary wing is
Installed at a position shifted to the downstream side in the axial direction from the corresponding main wing,
When projected onto a plane having the rotation axis as a normal along with the corresponding main wing, the trailing edge of the auxiliary wing overlaps with the trailing edge of the main wing, or in the reverse rotation direction from the trailing edge of the main wing. Position to,
An axial fan, wherein the fan diameter of the auxiliary wing is smaller than the fan diameter of the main wing.
前記主翼と、前記主翼に対応する前記補助翼とは、
翼間が前記主翼の後縁に向かうに従って狭くなることを特徴とする請求項1記載の軸流ファン。
The main wing and the auxiliary wing corresponding to the main wing are:
2. The axial fan according to claim 1, wherein a distance between the blades becomes narrower toward a trailing edge of the main wing.
それぞれの前記補助翼は、
前傾角が、対応する前記主翼の前傾角よりも小さいことを特徴とする請求項1または2のいずれかに記載の軸流ファン。
Each said aileron is
3. An axial fan according to claim 1, wherein a forward tilt angle is smaller than a forward tilt angle of the corresponding main wing.
それぞれの前記補助翼は、
対応する前記主翼と共に前記回転軸を法線とする平面に投影された場合には、
ファン半径の大きい位置ほど前記補助翼の前縁と対応する前記主翼の前縁との間隔が大きいことを特徴とする請求項1〜3のいずれかに記載の軸流ファン。
Each said aileron is
When projected onto a plane with the rotation axis as a normal along with the corresponding main wing,
The axial fan according to any one of claims 1 to 3, wherein the larger the fan radius, the larger the distance between the front edge of the auxiliary wing and the corresponding front edge of the main wing.
それぞれの前記補助翼は、
対応する前記主翼と共に前記回転軸を法線とする平面に投影された場合には、ファン径が、対応する主翼の前縁側から後縁側に向かうに従って大きくなることを特徴とする請求項1〜4記載の軸流ファン。
Each said aileron is
5. When projected onto a plane having the rotation axis as a normal along with the corresponding main wing, the fan diameter increases from the front edge side to the rear edge side of the corresponding main wing. The described axial flow fan.
回転軸に取り付けられ、前記回転軸の回転によって前記回転軸の軸方向に気体を吹き出す軸流ファンにおいて、
前記回転軸に取り付けられるハブと、
前記ハブの外周面に設置された複数枚の主翼と、
前記複数枚の主翼の各主翼に1対1に対応して前記ハブに設置されると共に、対応する前記主翼のファン半径の短い側を示す内周側を流れる気流を対応する前記主翼の圧力面に押さえつける前記複数枚の主翼と同じ枚数の補助翼と
を備えたことを特徴とする軸流ファン。
In an axial fan that is attached to a rotating shaft and blows gas in the axial direction of the rotating shaft by rotation of the rotating shaft,
A hub attached to the rotating shaft;
A plurality of main wings installed on the outer peripheral surface of the hub;
The pressure surfaces of the main wings corresponding to the airflow flowing on the inner peripheral side of the main wings corresponding to the main wings of the plurality of main wings, which are installed on the hub in a one-to-one correspondence. An axial fan comprising the same number of auxiliary blades as the plurality of main wings pressed against the axial wing.
請求項1〜6のいずれかに記載の軸流ファンを備えた空調機用の室外機。   The outdoor unit for air conditioners provided with the axial fan in any one of Claims 1-6.
JP2009063705A 2009-03-17 2009-03-17 Axial fan Active JP4994406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063705A JP4994406B2 (en) 2009-03-17 2009-03-17 Axial fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063705A JP4994406B2 (en) 2009-03-17 2009-03-17 Axial fan

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011235000A Division JP5253554B2 (en) 2011-10-26 2011-10-26 Outdoor fans for axial fans and air conditioners

Publications (2)

Publication Number Publication Date
JP2010216361A true JP2010216361A (en) 2010-09-30
JP4994406B2 JP4994406B2 (en) 2012-08-08

Family

ID=42975453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063705A Active JP4994406B2 (en) 2009-03-17 2009-03-17 Axial fan

Country Status (1)

Country Link
JP (1) JP4994406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032377A (en) * 2011-10-09 2013-04-10 珠海格力电器股份有限公司 Axial flow fan blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248395A (en) * 1992-03-10 1993-09-24 Yamaha Motor Co Ltd Axial fan
JPH08177792A (en) * 1994-10-25 1996-07-12 Matsushita Seiko Co Ltd Axial fan
WO2004003391A1 (en) * 2002-06-28 2004-01-08 Seiko Epson Corporation Axial flow fan and projector using the same
JP2005054717A (en) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd Blower impeller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248395A (en) * 1992-03-10 1993-09-24 Yamaha Motor Co Ltd Axial fan
JPH08177792A (en) * 1994-10-25 1996-07-12 Matsushita Seiko Co Ltd Axial fan
WO2004003391A1 (en) * 2002-06-28 2004-01-08 Seiko Epson Corporation Axial flow fan and projector using the same
JP2005054717A (en) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd Blower impeller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032377A (en) * 2011-10-09 2013-04-10 珠海格力电器股份有限公司 Axial flow fan blade

Also Published As

Publication number Publication date
JP4994406B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5422336B2 (en) Vehicle heat exchange module
WO2017026150A1 (en) Air blower and air conditioning device equipped with air blower
JP5689538B2 (en) Outdoor cooling unit for vehicle air conditioner
JP5971667B2 (en) Propeller fan, blower and outdoor unit
WO2011141964A1 (en) Axial flow blower
WO2009130954A1 (en) Blower and heat pump device using same
JP6524331B2 (en) Blower and air conditioner using the same
JP6377172B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
KR20080019521A (en) Propeller fan
CN110914553B (en) Impeller, blower and air conditioner
JP5253554B2 (en) Outdoor fans for axial fans and air conditioners
JP2012107538A (en) Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
JP4994406B2 (en) Axial fan
JP2010236372A (en) Axial blower, air conditioner, and ventilation fan
JPWO2018179075A1 (en) Propeller fan
JP5984162B2 (en) Propeller fan, blower, and outdoor unit
JP2009127541A (en) Centrifugal fan
WO2015122134A1 (en) Blower
JP2022012386A (en) Air blower and outdoor machine for air conditioner
JP2010236371A (en) Axial blower, air conditioner, and ventilation fan
JP2019211146A (en) Wind direction change device and air blower
JP6685433B2 (en) Blower and air conditioner
JP6692456B2 (en) Outdoor unit of propeller fan and air conditioner
JP6929453B2 (en) Outdoor unit for blower and air conditioner
WO2020136750A1 (en) Impeller, blower, and air-conditioning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4994406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250