JP2010216020A - High-strength polyethylene fiber - Google Patents

High-strength polyethylene fiber Download PDF

Info

Publication number
JP2010216020A
JP2010216020A JP2009061301A JP2009061301A JP2010216020A JP 2010216020 A JP2010216020 A JP 2010216020A JP 2009061301 A JP2009061301 A JP 2009061301A JP 2009061301 A JP2009061301 A JP 2009061301A JP 2010216020 A JP2010216020 A JP 2010216020A
Authority
JP
Japan
Prior art keywords
group
molecular weight
general formula
hydrocarbon
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009061301A
Other languages
Japanese (ja)
Inventor
Naoki Matsuoka
直樹 松岡
Hidenobu Takeyama
英伸 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009061301A priority Critical patent/JP2010216020A/en
Publication of JP2010216020A publication Critical patent/JP2010216020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength polyethylene fiber having good tensile characteristics and excellent dimensional stability by using an ultrahigh molecular weight polyethylene used in various fields as engineering plastics having characteristics such as excellent impact resistance, excellent abrasion resistance and self-lubricating properties. <P>SOLUTION: The high-strength polyethylene fiber is formed by melting and kneading the ultrahigh molecular-weight polyethylene obtained by carrying out the polymerization by using a specific olefin polymerization catalyst comprising a solid catalyst component prepared by reacting an organomagnesium compound soluble in a hydrocarbon solvent with a titanium compound, and an organometallic compound component of an organoaluminum compound, and having a viscosity-averaged molecular weight of 1,500,000-10,000,000 with a solvent, and forming the resultant product. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は高強度ポリエチレン繊維に関する。さらに詳しくは、引張特性が良好で形状安定性に優れた高強度ポリエチレン繊維に関する。   The present invention relates to high-strength polyethylene fibers. More specifically, the present invention relates to a high-strength polyethylene fiber having good tensile properties and excellent shape stability.

超高分子量ポリエチレンは耐衝撃性、耐摩耗性に優れ、また自己潤滑性も有するなど特徴のあるエンジニアリングプラスチックとして各種の分野で使用されている。この超高分子量ポリエチレンは、汎用のポリエチレンに比較して遥かに分子量が高いので、高配向させることができれば高強度、高弾性を有する成形物が得られることが期待され、その高配向化が種々検討されてきた。   Ultra high molecular weight polyethylene is used in various fields as an engineering plastic characterized by excellent impact resistance, wear resistance, and self-lubricating properties. Since this ultra high molecular weight polyethylene has a much higher molecular weight than general-purpose polyethylene, it is expected that if it can be highly oriented, a molded product having high strength and high elasticity can be obtained. Has been studied.

特許文献1には、超高分子量ポリエチレンを溶剤に溶解し得られたゲル状の繊維を高倍率に延伸する、いわゆる「ゲル紡糸法」の技術が開示されている。「ゲル紡糸法」により得られた高強度ポリエチレン繊維は、有機繊維としては非常に高い強度・弾性率を有し、さらには耐衝撃性が非常に優れることが知られており、各種用途においてその応用が広がりつつある。
特許文献2および3には、これらの原料として特殊な超高分子量オレフィン系重合体が例示されている。しかしながら、これらの触媒に限定される理由はなく、元来この分野はチーグラー触媒の独壇場であり、さらに粘度平均分子量の等しい超高分子量ポリエチレンであっても触媒や重合条件等の微妙な差によって得られる高強度ポリエチレン繊維の物性値は大きく変化する。これらの背景から、より好ましい原料が存在する可能性が示唆されており、さらなる改良が切望されていた。
Patent Document 1 discloses a so-called “gel spinning method” technique in which gel-like fibers obtained by dissolving ultrahigh molecular weight polyethylene in a solvent are stretched at a high magnification. High-strength polyethylene fibers obtained by the “gel spinning method” are known to have very high strength and elastic modulus as organic fibers, and also have very high impact resistance. Applications are spreading.
Patent Documents 2 and 3 exemplify special ultrahigh molecular weight olefin polymers as these raw materials. However, there is no reason to be limited to these catalysts, and this field is inherently unique in Ziegler catalysts, and even ultra-high molecular weight polyethylene with the same viscosity average molecular weight can be obtained due to subtle differences in the catalyst and polymerization conditions. The physical property values of the high-strength polyethylene fibers obtained vary greatly. From these backgrounds, there is a possibility that more preferable raw materials exist, and further improvement has been eagerly desired.

特開昭56−15408号公報JP-A-56-15408 特許第4139341号公報Japanese Patent No. 4139341 特開2005−8711号公報JP 2005-8711 A

本発明は、引張特性が良好で形状安定性に優れた高強度ポリエチレン繊維の提供を目的とする。   An object of the present invention is to provide a high-strength polyethylene fiber having good tensile properties and excellent shape stability.

本発明者は、前記課題を解決するために鋭意研究を重ねた結果、特定のオレフィン重合触媒を用いて重合した、粘度平均分子量が150万〜1000万の超高分子量ポリエチレンを繊維状に成形することによって、引張特性が良好で形状安定性に優れた高強度ポリエチレン繊維が得られることを見出し、本発明を完成させるに至った。すなわち、本発明は以下の通りである。
(1)固体触媒成分[A]および有機金属化合物成分[B]からなるオレフィン重合触媒において、固体触媒成分[A]が下記一般式(1)
As a result of intensive studies to solve the above problems, the present inventor forms ultra high molecular weight polyethylene having a viscosity average molecular weight of 1,500,000 to 10,000,000, which is polymerized using a specific olefin polymerization catalyst, into a fiber shape. As a result, it was found that high-strength polyethylene fibers having good tensile properties and excellent shape stability can be obtained, and the present invention has been completed. That is, the present invention is as follows.
(1) In the olefin polymerization catalyst comprising the solid catalyst component [A] and the organometallic compound component [B], the solid catalyst component [A] is represented by the following general formula (1)

Mg ・・・・・(1) M 1 E Mg G R 1 p R 2 q X r Y s ····· (1)

(上記一般式(1)中、Mは周期律表第1族、第2族、第3族、第12族および第13族からなる群に含まれる金属原子、RおよびRは炭素数2〜20の炭化水素基、XおよびYは同一または異なるOR、OSiR、NR、SR、ハロゲンから選ばれた官能基、RおよびRは炭素数1〜20の炭化水素基、R、R、R、R、およびRは水素原子または炭素数1〜20の炭化水素基、E、G、p、q、r、およびsは、E≧0、G>0、p≧0、q≧0、r≧0、s≧0、p+q>0、0≦(r+s)/(E+G)≦2、kE+2G=p+q+r+s(kはMの原子価)を満たす数である。) (In the above general formula (1), M 1 is a metal atom included in the group consisting of Group 1, Group 2, Group 3, Group 12 and Group 13 of the periodic table, and R 1 and R 2 are carbon atoms. 2 to 20 hydrocarbon groups, X and Y are the same or different OR 3 , OSiR 4 R 5 R 6 , NR 7 R 8 , SR 9 , a functional group selected from halogen, R 3 and R 9 are carbon numbers 1 to 20 hydrocarbon groups, R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen atoms or hydrocarbon groups having 1 to 20 carbon atoms, E, G, p, q, r, and s are , E ≧ 0, G> 0, p ≧ 0, q ≧ 0, r ≧ 0, s ≧ 0, p + q> 0, 0 ≦ (r + s) / (E + G) ≦ 2, kE + 2G = p + q + r + s (k is M 1 Valence).)

で示される炭化水素溶媒に可溶な有機マグネシウム化合物と、下記一般式(2) An organomagnesium compound soluble in a hydrocarbon solvent represented by the following general formula (2):

Ti(OR104−w・・・・・(2) Ti (OR 10 ) w Z 4-w (2)

(上記一般式(2)中、R10は炭化水素基、Zはハロゲン、wは0≦w≦4を満たす数である。) (In the general formula (2), R 10 is a hydrocarbon group, Z is a halogen, and w is a number satisfying 0 ≦ w ≦ 4.)

で示されるチタン化合物とを反応させることによって調製され、これに前記有機金属化合物成分[B]として、下記一般式(3) It is prepared by reacting with a titanium compound represented by the following general formula (3) as the organometallic compound component [B]:

AlR11 3−f・・・・・(3) AlR 11 f T 3-f (3)

(上記一般式(3)中、R11は炭素数1〜12の炭化水素基、Tは水素、ハロゲン、アルコキシ、アリロキシ、シロキシ基より選ばれた基であり、fは2〜3の数である。) (In the above general formula (3), R 11 is a hydrocarbon group having 1 to 12 carbon atoms, T is a group selected from hydrogen, halogen, alkoxy, allyloxy and siloxy groups, and f is a number of 2 to 3. is there.)

で示される有機アルミニウム化合物を混合して得られることを特徴とするオレフィン重合触媒を用いて重合した、粘度平均分子量が150万〜1000万の超高分子量ポリエチレンからなる高強度ポリエチレン繊維。 A high-strength polyethylene fiber made of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 1,500,000 to 10,000,000, polymerized using an olefin polymerization catalyst obtained by mixing an organoaluminum compound represented by formula (1).

(2)該超高分子量ポリエチレンを溶剤と溶融混練してから成形することを特徴とする上記(1)に記載の高強度ポリエチレン繊維。 (2) The high-strength polyethylene fiber according to (1), wherein the ultrahigh molecular weight polyethylene is molded after melt kneading with a solvent.

本発明の高強度ポリエチレン繊維は、引張特性が良好で形状安定性に優れた高強度ポリエチレン繊維として有用である。   The high-strength polyethylene fiber of the present invention is useful as a high-strength polyethylene fiber having good tensile properties and excellent shape stability.

本発明における触媒の構成を示すフローシート図。The flow sheet figure which shows the structure of the catalyst in this invention.

本発明について、以下具体的に説明する。
本発明における超高分子量ポリエチレンとは、粘度平均分子量が150万〜1000万のエチレン単独重合体であり、成形性と最終物性の兼ね合いから、粘度平均分子量が160万〜700万の範囲にあることが好ましく、180万〜500万の範囲にあることがより好ましく、200万〜400万であることが特に好ましい。なお、本発明における粘度平均分子量は、ポリマー溶液の比粘度から求めた極限粘度を粘度平均分子量に換算した値を指す。
本発明における超高分子量ポリエチレンは、重合によって得られた樹脂パウダーをそのまま用いてもよいし、分級して用いてもよい。また、パウダー以外の形状に賦形した物であってもよいし、それらを機械粉砕、冷凍粉砕、化学粉砕等の公知の方法によって粉砕した物であってもよい。
The present invention will be specifically described below.
The ultra high molecular weight polyethylene in the present invention is an ethylene homopolymer having a viscosity average molecular weight of 1,500,000 to 10,000,000, and the viscosity average molecular weight is in the range of 1,600,000 to 7,000,000 in view of the balance between moldability and final physical properties. Is more preferable, and it is more preferably in the range of 1.8 million to 5 million, and particularly preferably 2 million to 4 million. In addition, the viscosity average molecular weight in this invention points out the value which converted the intrinsic viscosity calculated | required from the specific viscosity of the polymer solution into the viscosity average molecular weight.
For the ultrahigh molecular weight polyethylene in the present invention, the resin powder obtained by polymerization may be used as it is, or may be used after classification. Moreover, the thing shaped into shapes other than powder may be sufficient, and the thing which grind | pulverized them by well-known methods, such as mechanical grinding | pulverization, freeze grinding | pulverization, chemical grinding | pulverization, may be sufficient.

本発明における超高分子量ポリエチレンがパウダーである場合の形状について特に制限はない。真球状でも不定形でもよく、一次粒子からなるものでも、一次粒子が複数個凝集し一体化した二次粒子でも、二次粒子をさらに粉砕したものでも構わない。
本発明における炭化水素溶媒は不活性であることが重要であり、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン等の芳香族炭化水素、または、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素等が挙げられる。
本発明に用いられる炭化水素溶媒に可溶な有機マグネシウム化合物としては、下記一般式(1)で示される有機マグネシウム化合物が用いられる。
There is no restriction | limiting in particular about the shape in case the ultra high molecular weight polyethylene in this invention is powder. It may be spherical or indefinite, and may be composed of primary particles, secondary particles in which a plurality of primary particles are aggregated and integrated, or secondary particles that are further pulverized.
It is important that the hydrocarbon solvent in the present invention is inert, aliphatic hydrocarbons such as pentane, hexane and heptane, aromatic hydrocarbons such as benzene and toluene, or alicyclic such as cyclohexane and methylcyclohexane. A hydrocarbon etc. are mentioned.
As the organomagnesium compound soluble in the hydrocarbon solvent used in the present invention, an organomagnesium compound represented by the following general formula (1) is used.

Mg ・・・・・(1) M 1 E Mg G R 1 p R 2 q X r Y s ····· (1)

(上記一般式(1)中、Mは周期律表第1族、第2族、第3族、第12族および第13族からなる群に含まれる金属原子、RおよびRは炭素数2〜20の炭化水素基、XおよびYは同一または異なるOR、OSiR、NR、SR、ハロゲンから選ばれた官能基、RおよびRは炭素数1〜20の炭化水素基、R、R、R、R、およびRは水素原子または炭素数1〜20の炭化水素基、E、G、p、q、r、およびsは、E≧0、G>0、p≧0、q≧0、r≧0、s≧0、p+q>0、0≦(r+s)/(E+G)≦2、kE+2G=p+q+r+s(kはMの原子価)を満たす数である。) (In the above general formula (1), M 1 is a metal atom included in the group consisting of Group 1, Group 2, Group 3, Group 12 and Group 13 of the periodic table, and R 1 and R 2 are carbon atoms. 2 to 20 hydrocarbon groups, X and Y are the same or different OR 3 , OSiR 4 R 5 R 6 , NR 7 R 8 , SR 9 , a functional group selected from halogen, R 3 and R 9 are carbon numbers 1 to 20 hydrocarbon groups, R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen atoms or hydrocarbon groups having 1 to 20 carbon atoms, E, G, p, q, r, and s are , E ≧ 0, G> 0, p ≧ 0, q ≧ 0, r ≧ 0, s ≧ 0, p + q> 0, 0 ≦ (r + s) / (E + G) ≦ 2, kE + 2G = p + q + r + s (k is M 1 Valence).)

なお、周期律表の族番号は、IUPAC(国際純正および応用化学連合)無機化学命名法で1989年に定められた命名法を用いた。
この化合物は、炭化水素溶媒に可溶な有機マグネシウムの錯化合物の形として示されているが、ジヒドロカルビルマグネシウム化合物、およびこの化合物と他の金属化合物との錯体の全てを包含するものである。記号E、G、p、q、r、およびsの関係式kE+2G=p+q+r+sは、金属原子の原子価と置換基との化学量論性を示している。 全金属原子に対するXとYのモル組成比(r+s)/(E+G)の範囲は0≦(r+s)/(E+G)≦2であり、特に0≦(r+s)/(E+G)≦1が好ましい。
In addition, the nomenclature established in 1989 by the IUPAC (International Pure and Applied Chemistry) inorganic chemical nomenclature was used for the group number of the periodic table.
This compound is shown as a complex form of organomagnesium soluble in a hydrocarbon solvent, but encompasses all dihydrocarbylmagnesium compounds and complexes of this compound with other metal compounds. The relational expression kE + 2G = p + q + r + s of the symbols E, G, p, q, r, and s indicates the stoichiometry between the valence of the metal atom and the substituent. The range of the molar composition ratio (r + s) / (E + G) of X and Y with respect to all metal atoms is 0 ≦ (r + s) / (E + G) ≦ 2, and particularly preferably 0 ≦ (r + s) / (E + G) ≦ 1.

上記の式中R、R、R、およびRで表される炭化水素基は、アルキル基、シクロアルキル基またはアリール基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロヘキシル基、フェニル基等が挙げられ、Rはアルキル基であることが好ましい。また、R、R、R、R、およびRが炭化水素基である場合は、アルキル基、シクロアルキル基またはアリール基であり、アルキル基またはアリール基が好ましい。
E>0の場合、金属原子Mとしては、周期律表第1族、第2族、第3族、第12族、および第13族からなる群に含まれる金属元素を使用することができ、例えば、リチウム、ナトリウム、カリウム、ベリリウム、亜鉛、ホウ素、アルミニウム等が挙げられるが、特にアルミニウム、ホウ素、ベリリウム、亜鉛が好ましい。金属原子Mに対するマグネシウムの比G/Eは、任意に設定可能であるが、0.1〜30の範囲が好ましく、特に0.5〜10の範囲が好ましい。
The hydrocarbon group represented by R 1 , R 2 , R 3 , and R 9 in the above formula is an alkyl group, a cycloalkyl group, or an aryl group, such as a methyl group, an ethyl group, a propyl group, or a butyl group. Pentyl group, hexyl group, octyl group, decyl group, cyclohexyl group, phenyl group and the like, and R 1 is preferably an alkyl group. When R 4 , R 5 , R 6 , R 7 , and R 8 are hydrocarbon groups, they are alkyl groups, cycloalkyl groups, or aryl groups, and alkyl groups or aryl groups are preferred.
In the case of E> 0, as the metal atom M 1 , a metal element included in the group consisting of Group 1, Group 2, Group 3, Group 12, and Group 13 of the Periodic Table can be used. Examples thereof include lithium, sodium, potassium, beryllium, zinc, boron, and aluminum, and aluminum, boron, beryllium, and zinc are particularly preferable. Metal atom M ratio G / E of magnesium to 1 can be arbitrarily set, preferably in the range of 0.1 to 30, especially 0.5 to 10 is preferred.

本発明においてこれらの有機マグネシウム化合物は、一般式RMgZおよびR Mg(式中、Rは前述の意味であり、Zはハロゲンである)からなる群に属する有機マグネシウム化合物と一般式M およびM k−1H(式中、M、R、およびkは前述の意味である)からなる群に属する有機金属化合物とを不活性炭化水素溶媒中、室温〜150℃の間で反応させ、必要な場合には続いて、これをさらにアルコール、水、シロキサン、アミン、イミン、メルカプタン、またはジチオ化合物等の追加成分と反応させることによって合成される。反応の順序については、有機マグネシウム化合物中に追加成分を加えていく方法、追加成分に有機マグネシウム化合物を加えていく方法、または両者を同時に加えていく方法のいずれの方法も用いることができる。 In the present invention, these organomagnesium compounds include those represented by the general formulas R 1 MgZ and R 1 2 Mg (wherein R 1 has the above-mentioned meaning and Z is a halogen). An organometallic compound belonging to the group consisting of M 1 R 2 k and M 1 R 2 k-1 H (wherein M 1 , R 2 and k are as defined above) in an inert hydrocarbon solvent, It is synthesized by reacting between room temperature and 150 ° C. and, if necessary, subsequently reacting it with additional components such as alcohol, water, siloxane, amine, imine, mercaptan, or dithio compounds. Regarding the order of the reaction, any of a method of adding an additional component to the organic magnesium compound, a method of adding the organic magnesium compound to the additional component, or a method of adding both at the same time can be used.

さらに、これらの有機マグネシウム化合物は、一般式MgXおよびRMgXからなる群に属する有機マグネシウム化合物と、一般式M およびM k−1Hからなる群に属する有機金属化合物との反応、または、一般式RMgXおよびR Mgからなる群に属する有機マグネシウム化合物と一般式R k−tからなる群に属する有機金属化合物との反応、または、一般式RMgXおよびR Mgからなる群に属する有機マグネシウム化合物と一般式Yk−t(式中、M、R、R、X、およびYは前述の意味であって、XおよびYがハロゲンである場合を含み、tは0〜kの数である。)からなる群に属する有機金属化合物との反応によっても合成することができる。 Further, these organomagnesium compounds include organomagnesium compounds belonging to the group consisting of general formulas MgX 2 and R 1 MgX, and organometallics belonging to the group consisting of general formulas M 1 R 2 k and M 1 R 2 k-1 H. Reaction with a compound, or a reaction between an organomagnesium compound belonging to the group consisting of the general formulas R 1 MgX and R 1 2 Mg and an organometallic compound belonging to the group consisting of the general formula R 2 t M 1 X k-t , or An organic magnesium compound belonging to the group consisting of R 1 MgX and R 1 2 Mg and a general formula Y t M 1 X kt (wherein M, R 1 , R 2 , X and Y are as defined above) In which X and Y are halogens, and t is a number from 0 to k.) Can also be synthesized by reaction with an organometallic compound belonging to the group consisting of:

本発明において一般式(1)で示される有機マグネシウム化合物としては、一般式(1)においてr=s=0となる有機マグネシウム化合物、一般式(1)においてs=0、X=ORとなる有機マグネシウム化合物、あるいは一般式(1)においてr=s=0となる有機マグネシウム化合物と、下記一般式(4)で示される鎖状または環状のシロキサン化合物との反応物を用いることが特に好ましい。 In the present invention, the organomagnesium compound represented by the general formula (1) is an organomagnesium compound in which r = s = 0 in the general formula (1), s = 0 in the general formula (1), and X = OR 3 It is particularly preferable to use a reaction product of an organomagnesium compound or an organomagnesium compound in which r = s = 0 in the general formula (1) and a linear or cyclic siloxane compound represented by the following general formula (4).

Figure 2010216020
Figure 2010216020

(上記一般式(4)中、R12、R13は水素または炭素数1〜10の炭化水素基、eは2〜40の整数である。) (In the general formula (4), R 12, R 13 is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, e is an integer from 2 to 40.)

一般式(1)においてs=0、X=ORとなる有機マグネシウム化合物のRで表される炭化水素基としては、炭素原子数1〜12のアルキル基またはアリール基が好ましく、特に3〜10のアルキル基またはアリール基が好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、1−メチルエチル基、ブチル基、1−メチルプロピル基、1,1−ジメチルエチル基、ペンチル基、ヘキシル基、2−メチルペンチル基、2−エチルブチル基、2−エチルペンチル基、2−エチルヘキシル基、2−エチル−4−メチルペンチル基、2−プロピルヘプチル基、2−エチル−5−メチルオクチル基、オクチル基、ノニル基、デシル基、フェニル基、ナフチル基等が挙げられ、ブチル基、1−メチルプロピル基、2−メチルペンチル基および2−エチルヘキシル基が特に好ましい。 The hydrocarbon group represented by R 3 of the organomagnesium compound in which s = 0 and X = OR 3 in the general formula (1) is preferably an alkyl group or aryl group having 1 to 12 carbon atoms, particularly 3 to 3. Ten alkyl groups or aryl groups are preferred. Specifically, for example, methyl group, ethyl group, propyl group, 1-methylethyl group, butyl group, 1-methylpropyl group, 1,1-dimethylethyl group, pentyl group, hexyl group, 2-methylpentyl group 2-ethylbutyl group, 2-ethylpentyl group, 2-ethylhexyl group, 2-ethyl-4-methylpentyl group, 2-propylheptyl group, 2-ethyl-5-methyloctyl group, octyl group, nonyl group, decyl Group, phenyl group, naphthyl group and the like, and butyl group, 1-methylpropyl group, 2-methylpentyl group and 2-ethylhexyl group are particularly preferable.

一般式(4)においてR12およびR13で表される炭化水素基は、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロヘキシル基、フェニル基、2−メチルフェニル基、4−メチルフェニル基、2,4−ジメチルフェニル基等が挙げられる。メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1〜3のアルキル基および炭素数7以下の芳香族炭化水素基が好ましく、メチル基およびフェニル基が特に好ましい。シロキサン化合物としてはポリヒドロメチルシロキサン、ポリヒドロフェニルシロキサンが好ましい。また、eは2〜40の整数であるが、4〜20が好ましく、7〜15が特に好ましい。 The hydrocarbon group represented by R 12 and R 13 in the general formula (4) is an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group, such as a methyl group, an ethyl group, or a propyl group. Group, isopropyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, cyclohexyl group, phenyl group, 2-methylphenyl group, 4-methylphenyl group, 2,4-dimethylphenyl group and the like. An alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group and an aromatic hydrocarbon group having 7 or less carbon atoms are preferable, and a methyl group and a phenyl group are particularly preferable. The siloxane compound is preferably polyhydromethylsiloxane or polyhydrophenylsiloxane. Moreover, although e is an integer of 2-40, 4-20 are preferable and 7-15 are especially preferable.

一般式(1)においてr=s=0となる有機マグネシウム化合物と、一般式(4)で表される鎖状または環状のシロキサン化合物との反応は、不活性炭化水素溶媒中で行われることが好ましい。反応温度は10℃〜150℃が好ましく、40℃〜90℃が特に好ましい。反応時間について特に制限はないが、3時間以上であることが好ましい。また、一般式(4)で表される鎖状または環状のシロキサン化合物の使用量は、一般式(1)においてr=s=0となる有機マグネシウム化合物中の全金属原子に対するモル比で0.3〜5の範囲が好ましく、0.5〜2の範囲が特に好ましい。
本発明において一般式(1)で示される有機マグネシウム化合物は、不活性炭化水素溶媒に不活性であり、E>0である有機マグネシウム化合物は可溶性である。また、E=0となる有機マグネシウム化合物を用いる場合、例えば、Rが1−メチルプロピル等の場合には炭化水素溶媒に可溶性であり、このような化合物も本発明に好ましい結果を与える。
The reaction between the organomagnesium compound in which r = s = 0 in the general formula (1) and the chain or cyclic siloxane compound represented by the general formula (4) may be performed in an inert hydrocarbon solvent. preferable. The reaction temperature is preferably 10 ° C to 150 ° C, particularly preferably 40 ° C to 90 ° C. Although there is no restriction | limiting in particular about reaction time, It is preferable that it is 3 hours or more. The amount of the chain-like or cyclic siloxane compound represented by the general formula (4) is 0.00 by mole ratio relative to all metal atoms in the organomagnesium compound in which r = s = 0 in the general formula (1). A range of 3 to 5 is preferable, and a range of 0.5 to 2 is particularly preferable.
In the present invention, the organomagnesium compound represented by the general formula (1) is inactive in an inert hydrocarbon solvent, and the organomagnesium compound in which E> 0 is soluble. Further, when an organomagnesium compound in which E = 0 is used, for example, when R 1 is 1-methylpropyl or the like, it is soluble in a hydrocarbon solvent, and such a compound also gives preferable results to the present invention.

一般式(1)において、E=0の場合のR、Rは、以下に示す三つの群(i)、(ii)、(iii)のいずれか一つであることが推奨される。
(i)R、Rの少なくとも一方が炭素原子数4〜6である二級または三級のアルキル基であること、好ましくはR、Rがともに炭素原子数4〜6であり、少なくとも一方が二級または三級のアルキル基であること。
(ii)R、Rが、炭素原子数の互いに相異なるアルキル基であること、好ましくはRが炭素原子数2または3のアルキル基であり、Rが炭素原子数4以上のアルキル基であること。
(iii)R、Rの少なくとも一方が炭素原子数6以上の炭化水素基であること、好ましくはR、Rに含まれる炭素原子数を加算すると12以上になるアルキル基であること。
In the general formula (1), when E = 0, R 1 and R 2 are recommended to be any one of the following three groups (i), (ii), and (iii).
(I) At least one of R 1 and R 2 is a secondary or tertiary alkyl group having 4 to 6 carbon atoms, preferably both R 1 and R 2 have 4 to 6 carbon atoms, At least one is a secondary or tertiary alkyl group.
(Ii) R 1 and R 2 are alkyl groups having different carbon atoms, preferably R 1 is an alkyl group having 2 or 3 carbon atoms, and R 2 is an alkyl having 4 or more carbon atoms. Be a group.
(Iii) At least one of R 1 and R 2 is a hydrocarbon group having 6 or more carbon atoms, preferably an alkyl group that becomes 12 or more when the number of carbon atoms contained in R 1 and R 2 is added. .

以下、これらの基を具体的に示す。
(i)において炭素原子数4〜6である二級または三級のアルキル基としては、1−メチルプロピル基、2−メチルプロピル基、1,1−ジメチルエチル基、2−メチルブチル基、2−エチルプロピル基、2,2−ジメチルプロピル基、2−メチルペンチル基、2−エチルブチル基、2,2−ジメチルブチル基、2−メチル−2−エチルプロピル基等が用いられ、1−メチルプロピル基が特に好ましい。
次に(ii)において炭素原子数2または3のアルキル基としては、エチル基、1−メチルエチル基、プロピル基等が挙げられ、エチル基が特に好ましい。また炭素原子数4以上のアルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられ、ブチル基、ヘキシル基が特に好ましい。
さらに、(iii)において炭素原子数6以上のアルキル基としては、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、フェニル基、2−ナフチル基等が挙げられ、炭化水素基の中ではアルキル基が好ましく、アルキル基の中でもヘキシル基、オクチル基が特に好ましい。
Hereinafter, these groups are specifically shown.
As the secondary or tertiary alkyl group having 4 to 6 carbon atoms in (i), 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group, 2-methylbutyl group, 2- Ethylpropyl group, 2,2-dimethylpropyl group, 2-methylpentyl group, 2-ethylbutyl group, 2,2-dimethylbutyl group, 2-methyl-2-ethylpropyl group, etc. are used, and 1-methylpropyl group Is particularly preferred.
Next, examples of the alkyl group having 2 or 3 carbon atoms in (ii) include an ethyl group, a 1-methylethyl group, a propyl group, and the like, and an ethyl group is particularly preferable. Examples of the alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and the like, and a butyl group and a hexyl group are particularly preferable.
Furthermore, in (iii), examples of the alkyl group having 6 or more carbon atoms include hexyl group, heptyl group, octyl group, nonyl group, decyl group, phenyl group, 2-naphthyl group, and the like. An alkyl group is preferable, and a hexyl group and an octyl group are particularly preferable among the alkyl groups.

一般に、アルキル基に含まれる炭素原子数が増えると炭化水素溶媒に溶けやすくなるが、溶液の粘性が高くなるため、溶解性を満足させる範囲で炭素原子数の少ないアルキル基を用いることが好ましい。なお、上記有機マグネシウム化合物は炭化水素溶液として使用されるが、該溶液中に微量のエーテル、エステル、アミン等のコンプレックス化剤がわずかに含有されあるいは残存していても差し支えなく用いることができる。なお、本発明に用いられる炭化水素溶媒に可溶な有機マグネシウム化合物は、固体触媒成分[A]の触媒機能を工業的なレベルにまで増幅させる点において極めて重要な役割を果たしている。
本発明に用いられるチタン化合物としては下記一般式(2)で示されるチタン化合物が用いられる。
Generally, an increase in the number of carbon atoms contained in an alkyl group facilitates dissolution in a hydrocarbon solvent. However, since the viscosity of the solution increases, it is preferable to use an alkyl group having a small number of carbon atoms within a range that satisfies the solubility. The organomagnesium compound is used as a hydrocarbon solution, but it may be used even if a slight amount of a complexing agent such as ether, ester or amine is contained or remains in the solution. The organomagnesium compound soluble in the hydrocarbon solvent used in the present invention plays an extremely important role in amplifying the catalytic function of the solid catalyst component [A] to an industrial level.
As the titanium compound used in the present invention, a titanium compound represented by the following general formula (2) is used.

Ti(OR104−w・・・・・(2) Ti (OR 10 ) w Z 4-w (2)

(上記一般式(2)中、R10は炭化水素基、Zはハロゲン、wは0≦w≦4を満たす数である。) (In the general formula (2), R 10 is a hydrocarbon group, Z is a halogen, and w is a number satisfying 0 ≦ w ≦ 4.)

10で表される炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、2−エチルヘキシル基、ヘプチル基、オクチル基、デシル基、アリル基等の脂肪族炭化水素基、シクロヘキシル基、2−メチルシクロヘキシル基、シクロペンチル基等の脂環式炭化水素基、フェニル基、ナフチル基等の芳香族炭化水素基等が挙げられるが、脂肪族炭化水素基が特に好ましい。Zで表されるハロゲンとしては、塩素、臭素、ヨウ素が挙げられるが、塩素が特に好ましい。また、上記から選ばれたチタン化合物を2種以上混合した形で用いることも可能である。 Examples of the hydrocarbon group represented by R 10 include aliphatic groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, 2-ethylhexyl group, heptyl group, octyl group, decyl group, and allyl group. Examples include hydrocarbon groups, cyclohexyl groups, 2-methylcyclohexyl groups, cyclopentyl groups and other alicyclic hydrocarbon groups, and phenyl groups, naphthyl groups and other aromatic hydrocarbon groups, with aliphatic hydrocarbon groups being particularly preferred. . Examples of the halogen represented by Z include chlorine, bromine and iodine, with chlorine being particularly preferred. It is also possible to use a mixture of two or more titanium compounds selected from the above.

本発明において一般式(2)で示されるチタン化合物の総使用量は、一般式(1)で示される有機マグネシウム化合物中に含まれるマグネシウム原子1モルに対して、0.05〜20モルの範囲が好ましく、0.2〜10モルの範囲がより好ましく、0.5〜5モルの範囲が特に好ましい。一般式(1)で示される有機マグネシウム化合物と一般式(2)で示されるチタン化合物との反応は不活性炭化水素溶媒中で行われるが、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒を用いることが好ましい。
本発明において炭化水素溶媒に可溶な有機マグネシウム化合物とチタン化合物の添加方法としては、炭化水素溶媒に可溶な有機マグネシウム化合物に続いてチタン化合物を添加する方法、チタン化合物に続いて炭化水素溶媒に可溶な有機マグネシウム化合物を添加する方法、両方を同時に添加する方法、のいずれの方法も可能であるが、炭化水素溶媒に可溶な有機マグネシウム化合物とチタン化合物の両方を同時に添加する方法が、析出する固体粒子の均一性および取扱い性の点で好ましい。接触させる温度について特に制限はないが、−80℃〜150℃の範囲で行うことが好ましく、−40℃〜100℃の範囲で行うことが特に好ましい。
In the present invention, the total amount of the titanium compound represented by the general formula (2) is in the range of 0.05 to 20 mol with respect to 1 mol of the magnesium atom contained in the organomagnesium compound represented by the general formula (1). Is preferable, the range of 0.2 to 10 mol is more preferable, and the range of 0.5 to 5 mol is particularly preferable. The reaction between the organomagnesium compound represented by the general formula (1) and the titanium compound represented by the general formula (2) is performed in an inert hydrocarbon solvent, but an aliphatic hydrocarbon solvent such as hexane or heptane should be used. Is preferred.
In the present invention, a method of adding an organic magnesium compound soluble in a hydrocarbon solvent and a titanium compound includes a method of adding a titanium compound following an organic magnesium compound soluble in a hydrocarbon solvent, and a hydrocarbon solvent subsequent to the titanium compound. Either a method of adding a soluble organic magnesium compound or a method of adding both at the same time is possible, but a method of adding both an organic magnesium compound soluble in a hydrocarbon solvent and a titanium compound simultaneously is possible. From the viewpoint of the uniformity and handleability of the precipitated solid particles. Although there is no restriction | limiting in particular about the temperature made to contact, It is preferable to carry out in the range of -80 degreeC-150 degreeC, and it is especially preferable to carry out in the range of -40 degreeC-100 degreeC.

本発明における固体触媒成分[A]は、一般式(1)で示される炭化水素溶媒に可溶な有機マグネシウム化合物と、一般式(2)で示されるチタン化合物とを反応させた後、機械的に剪断応力を加えてもよい。ここで、本発明における機械的な剪断応力とは、衝撃とキャビテーションをもつ摩擦荷重を与えることによって生じるずれの応力である。なお、本発明における機械的な剪断応力は、固体粒子の析出反応が完了した後に加える。
本発明において炭化水素溶媒に可溶な有機マグネシウム化合物とチタン化合物とを反応させた後に加える機械的な剪断応力は、固体粒子が不活性炭化水素溶媒中に分散したスラリー状態で加えることが好ましく、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒を用いることが特に好ましい。また、スラリー濃度としては、1〜150グラム/リットルの範囲にあることが好ましく、5〜100グラム/リットルの範囲にあることが特に好ましい。
The solid catalyst component [A] in the present invention is obtained by reacting an organomagnesium compound soluble in a hydrocarbon solvent represented by the general formula (1) with a titanium compound represented by the general formula (2), and then reacting mechanically. Shear stress may be applied. Here, the mechanical shear stress in the present invention is a shear stress generated by applying a frictional load having impact and cavitation. The mechanical shear stress in the present invention is applied after the solid particle precipitation reaction is completed.
In the present invention, the mechanical shear stress applied after reacting the organomagnesium compound soluble in the hydrocarbon solvent and the titanium compound is preferably applied in a slurry state in which solid particles are dispersed in the inert hydrocarbon solvent. It is particularly preferable to use an aliphatic hydrocarbon solvent such as hexane or heptane. The slurry concentration is preferably in the range of 1 to 150 grams / liter, and particularly preferably in the range of 5 to 100 grams / liter.

一般に、固体粒子が液中に分散したスラリー状態で機械的な剪断応力が加わると、粒子が粉砕され、微粒子化される、均一な粒度分布になる、粒子の分散性が向上する、あるいは粒子の形状が整う等の効果が得られるが、本発明では、機械的な剪断応力を加えることによって、固体触媒成分[A]の粒子形状を嵩高くすることに特徴がある。ガス法またはスラリー法によってエチレンを重合する場合には、固体触媒成分[A]の形状が超高分子量ポリエチレンパウダーの形状に直接反映されるため、嵩高い固体触媒成分[A]を用いてエチレンを重合することによって、成形性に優れた超高分子量ポリエチレンパウダーを得ることができる。   In general, when a mechanical shear stress is applied in a slurry state in which solid particles are dispersed in a liquid, the particles are pulverized and finely divided, a uniform particle size distribution is obtained, or the dispersibility of the particles is improved. Although the effect of adjusting the shape can be obtained, the present invention is characterized by increasing the particle shape of the solid catalyst component [A] by applying mechanical shear stress. When ethylene is polymerized by the gas method or the slurry method, the shape of the solid catalyst component [A] is directly reflected in the shape of the ultrahigh molecular weight polyethylene powder. By polymerization, an ultrahigh molecular weight polyethylene powder having excellent moldability can be obtained.

本発明において一般式(1)で示される炭化水素溶媒に可溶な有機マグネシウム化合物と、一般式(2)で示されるチタン化合物とを反応させて得られる固体粒子は、平均粒径が0.5〜20マイクロメートルの範囲が好ましく、より好ましくは1〜20マイクロメートルの範囲にあり、特に不活性炭化水素溶媒中において凝集しやすい特徴を有している。一方で、上記固体粒子は、外部エネルギーによる形状変化を受けやすいという特徴も有している。つまり、これら両方の特徴に起因する現象として、上記固体粒子に機械的な剪断応力が加えられることで形状変化と凝集が繰り返され、非常に嵩高い粒子が形成されることになる。なお、上記固体粒子の平均粒径が上記の範囲にない場合には、機械的な剪断応力による嵩高い粒子の形成が十分に進行しないことがある。ここで、本発明における平均粒径とは、累積重量が50%となる粒子径、すなわちメディアン径である。   In the present invention, the solid particles obtained by reacting the organomagnesium compound soluble in the hydrocarbon solvent represented by the general formula (1) and the titanium compound represented by the general formula (2) have an average particle size of 0.00. The range of 5-20 micrometers is preferable, More preferably, it exists in the range of 1-20 micrometers, and it has the characteristics which are easy to aggregate especially in an inert hydrocarbon solvent. On the other hand, the solid particles have a feature that they are easily subjected to a shape change caused by external energy. That is, as a phenomenon resulting from both of these characteristics, when a mechanical shear stress is applied to the solid particles, shape change and aggregation are repeated, and very bulky particles are formed. When the average particle size of the solid particles is not within the above range, the formation of bulky particles due to mechanical shear stress may not sufficiently proceed. Here, the average particle diameter in the present invention is the particle diameter at which the cumulative weight is 50%, that is, the median diameter.

本発明において、機械的に剪断応力を加えるための装置としては、粉砕装置であることが好ましい。また、粉砕装置としては、ボールミル、ビーズミル、チューブミル、ロッドミル、振動ミル、あるいはロータ/ステータ方式のホモジナイザー等の湿式で使用可能な粉砕装置が例示されるが、ボールミルまたはロータ/ステータ方式のホモジナイザーが、過度な微細化を抑えながら嵩高い粒子が得られる点で好ましい。
本発明におけるボールミルとは、硬質ボールと原料粉体を円筒形の缶体に入れて回転させることにより原料粉体をすりつぶす装置である。硬質ボールとしては、ジルコニア、アルミナ、天然ケイ石、ガラス等のセラミックスボール、鋼、ステンレス等の金属ボール、鉄芯入りナイロン球、鉄芯入りテフロン(登録商標)球等の金属被覆ボール、ナイロン、テフロン(登録商標)、ポリプロピレン等の樹脂製ボール等が例示される。
In the present invention, the device for mechanically applying shear stress is preferably a pulverizer. Examples of the pulverizer include a ball mill, a bead mill, a tube mill, a rod mill, a vibration mill, and a pulverizer that can be used in a wet manner such as a rotor / stator type homogenizer. This is preferable because bulky particles can be obtained while suppressing excessive miniaturization.
The ball mill in the present invention is an apparatus for grinding raw material powder by putting a hard ball and raw material powder in a cylindrical can body and rotating the same. Hard balls include ceramic balls such as zirconia, alumina, natural silica, and glass, metal balls such as steel and stainless steel, iron cored nylon spheres, iron cored Teflon (registered trademark) balls and other metal coated balls, nylon, Examples thereof include resin balls such as Teflon (registered trademark) and polypropylene.

本発明におけるロータ/ステータ方式のホモジナイザーとは、二つの歯形リングからなる遠心力を利用した分散装置である。外側の固定された歯形リングをステータ(固定刃)、ステータの内側で回転する歯型リングをロータ(回転刃)といい、シャフトを介しモーターによって駆動する。原料粉体は、回転するロータとステータとの間で発生する剪断応力によってすりつぶされる。
本発明におけるビーズミルとは、中央に回転軸を有するベッセル(容器)の中にビーズ(メディア)を充填して回転軸の回転による動きを与え、ここに送り込んだ原料粉体をビーズですりつぶす装置である。
The rotor / stator type homogenizer in the present invention is a dispersion device that utilizes centrifugal force composed of two tooth-shaped rings. The outer fixed tooth profile ring is called a stator (fixed blade), and the tooth ring rotating inside the stator is called a rotor (rotary blade), which is driven by a motor through a shaft. The raw material powder is ground by shearing stress generated between the rotating rotor and the stator.
The bead mill in the present invention is a device that fills a bead (medium) into a vessel (container) having a rotation shaft in the center and gives a movement caused by the rotation of the rotation shaft. is there.

本発明におけるチューブミルとは、チューブ型の缶体の一端より原料粉体を供給し、他端より取り出す連続式のボールミルである。
本発明におけるロッドミルとは、円筒形の缶体内面の長さよりやや短い棒状のロッドと原料粉体を円筒形の缶体に入れて回転させることにより原料粉体をすりつぶす装置である。構造的にはボールミルとほぼ同じあるが、ボール間は点で接触するのに対し、ロッド間は線で接触するため、ボールミルよりも粗粒を優先的にすりつぶす特徴を有している。
本発明における振動ミルとは、原料粉体を挿入した粉砕筒を高速円振動させることによって、原料粉体をすりつぶす装置である。
The tube mill in the present invention is a continuous ball mill that supplies raw material powder from one end of a tube-shaped can body and takes it out from the other end.
The rod mill in the present invention is an apparatus for grinding raw material powder by putting a rod-like rod and raw material powder slightly shorter than the length of the inner surface of the cylindrical can body into a cylindrical can body and rotating it. Although the structure is almost the same as that of the ball mill, the balls are in contact with each other at a point, whereas the rods are in contact with each other with a line, so that it has a feature of preferentially grinding coarse particles over the ball mill.
The vibration mill in the present invention is an apparatus that grinds raw material powder by causing high-speed circular vibration of a pulverizing cylinder into which raw material powder is inserted.

本発明において機械的に剪断応力を加える温度については、固体触媒成分[A]の触媒活性が劣化しない−50〜100℃の範囲が好ましく、−20〜70℃の範囲が特に好ましい。また、本発明において機械的に剪断応力を加える時間については、所望の固体触媒成分[A]が得られる時間であれば特に制限はないが、嵩高い粒子の形成が十分に進行し、さらに重合によって得られる超高分子量ポリエチレンパウダーの流動性や輸送時の包装等、工業的な観点からも望ましいパウダーが得られることから、5分間〜100時間の範囲が好ましく、10分間〜30時間の範囲が特に好ましい。
かくして得られた固体触媒成分[A]は、不活性炭化水素溶媒を用いたスラリー溶液として使用される。本発明の固体触媒成分[A]は、有機金属化合物成分[B]と組み合わせることにより、さらに高活性な重合用触媒となる。
本発明における有機金属化合物成分[B]としては下記一般式(3)で示される有機アルミニウム化合物が用いられる。
In the present invention, the temperature at which the shear stress is mechanically applied is preferably in the range of −50 to 100 ° C., particularly preferably in the range of −20 to 70 ° C., at which the catalytic activity of the solid catalyst component [A] does not deteriorate. In addition, the time for mechanically applying the shear stress in the present invention is not particularly limited as long as the desired solid catalyst component [A] can be obtained, but the formation of bulky particles sufficiently proceeds, and further polymerization is performed. From the viewpoint of obtaining a desirable powder from an industrial point of view, such as fluidity of the ultra-high molecular weight polyethylene powder obtained by packaging and packaging during transportation, a range of 5 minutes to 100 hours is preferable, and a range of 10 minutes to 30 hours is preferable. Particularly preferred.
The solid catalyst component [A] thus obtained is used as a slurry solution using an inert hydrocarbon solvent. The solid catalyst component [A] of the present invention is combined with the organometallic compound component [B] to become a more highly active polymerization catalyst.
As the organometallic compound component [B] in the present invention, an organoaluminum compound represented by the following general formula (3) is used.

AlR11 3−f・・・・・(3) AlR 11 f T 3-f (3)

(上記一般式(3)中、R11は炭素数1〜12の炭化水素基、Tは水素、ハロゲン、アルコキシ、アリロキシ、シロキシ基より選ばれた基であり、fは2〜3の数である。) (In the above general formula (3), R 11 is a hydrocarbon group having 1 to 12 carbon atoms, T is a group selected from hydrogen, halogen, alkoxy, allyloxy and siloxy groups, and f is a number of 2 to 3. is there.)

なお、上記の有機アルミニウム化合物は、単独で用いてもよいし、複数の有機アルミニウム化合物からなる混合物として用いてもよい。
上記の式中R11で表される炭素数1〜20の炭化水素基は、脂肪族炭化水素、芳香族炭化水素、脂環式炭化水素を包含するものである。これらの化合物を具体的に示すと、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム、トリペンチルアルミニウム、トリス(3−メチルブチル)アルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等のトリアルキルアルミニウム、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド等の水素化アルミニウム化合物、ジエチルアルミニウムクロライドクロライド、エチルアルミニウムジクロライド、ジイソブチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、ジエチルアルミニウムブロミド等のハロゲン化アルミニウム化合物、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムブトキシド等のアルコキシアルミニウム化合物、ジメチルヒドロシロキシアルミニウムジメチル、エチルメチルヒドロシロキシアルミニウムジエチル、エチルジメチルシロキシアルミニウムジエチル等のシロキシアルミニウム化合物およびこれらの混合物が好ましく、トリアルキルアルミニウム化合物、水素化アルミニウム化合物およびこれらの混合物が特に好ましい。
In addition, said organoaluminum compound may be used independently and may be used as a mixture consisting of a plurality of organoaluminum compounds.
The hydrocarbon group having 1 to 20 carbon atoms represented by R 11 in the above formula includes aliphatic hydrocarbons, aromatic hydrocarbons, and alicyclic hydrocarbons. Specific examples of these compounds are trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum, tripentylaluminum, tris (3-methylbutyl) aluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum. Aluminum trihydride such as trialkylaluminum, diethylaluminum hydride, diisobutylaluminum hydride, etc., aluminum halide compounds such as diethylaluminum chloride, ethylaluminum dichloride, diisobutylaluminum chloride, ethylaluminum sesquichloride, diethylaluminum bromide, diethylaluminum Ethoxide Preferred are alkoxyaluminum compounds such as diisobutylaluminum butoxide, siloxyaluminum compounds such as dimethylhydrosiloxyaluminum dimethyl, ethylmethylhydrosiloxyaluminum diethyl, ethyldimethylsiloxyaluminum diethyl, and mixtures thereof. Trialkylaluminum compounds, aluminum hydride compounds and these The mixture of is particularly preferred.

固体触媒成分[A]および有機金属化合物成分[B]の混合は、重合条件下で重合系内に添加する場合または重合に先立って組み合わせる場合のいずれも含む。また組み合わせる両成分の比率は、固体触媒成分[A]1gに対し有機金属化合物[B]が1〜3000ミリモルの範囲で行うのが好ましい。
本発明における超高分子量ポリエチレンの製造方法について特に制限はないが、超高分子量ポリエチレンパウダーを直接的に得る場合にはガス法またはスラリー法が好ましく、除熱効率に優れるスラリー法が特に好ましい。本発明における重合圧力について特に制限はなく、通常はゲージ圧として0.1MPa〜5MPaであるが、スラリー重合の場合には0.1MPa〜1MPaが好ましい。本発明における重合温度について特に制限はなく、通常は25℃〜300℃であるが、スラリー重合の場合には25℃〜120℃が好ましく、50℃〜100℃が特に好ましい。
The mixing of the solid catalyst component [A] and the organometallic compound component [B] includes both the case where the solid catalyst component [A] is added to the polymerization system under the polymerization conditions and the case where the solid catalyst component [A] is combined prior to the polymerization. The ratio of the two components to be combined is preferably in the range of 1 to 3000 mmol of the organometallic compound [B] with respect to 1 g of the solid catalyst component [A].
Although there is no restriction | limiting in particular about the manufacturing method of the ultra high molecular weight polyethylene in this invention, When obtaining ultra high molecular weight polyethylene powder directly, a gas method or a slurry method is preferable and the slurry method which is excellent in heat removal efficiency is especially preferable. There is no restriction | limiting in particular about the polymerization pressure in this invention, Usually, it is 0.1 MPa-5 MPa as a gauge pressure, However, 0.1 MPa-1 MPa are preferable in the case of slurry polymerization. There is no restriction | limiting in particular about the polymerization temperature in this invention, Usually, it is 25 to 300 degreeC, However, In the case of slurry polymerization, 25 to 120 degreeC is preferable and 50 to 100 degreeC is especially preferable.

本発明におけるスラリー重合の溶媒としては、通常使用される不活性炭化水素溶媒が用いられ、例えば、イソブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン等の芳香族炭化水素、または、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素等が挙げられる。
本発明によって得られる重合体の分子量は、重合系に存在させる水素の濃度を変化させるか、重合温度を変化させるか、または有機金属化合物[B]の濃度を変化させることによって調節することができる。また、二個以上の反応器を直列および/または並列につなぎこむことによって、分子量分布、側鎖分布等を制御することができる。
本発明における高強度ポリエチレン繊維の製造方法について、特に制限はないが、均一な繊維を得ることができることから、溶剤と溶融混練してから成形することが好ましい。
As the solvent for slurry polymerization in the present invention, a commonly used inert hydrocarbon solvent is used, for example, an aliphatic hydrocarbon such as isobutane, pentane, hexane, and heptane, an aromatic hydrocarbon such as benzene and toluene, or And alicyclic hydrocarbons such as cyclohexane and methylcyclohexane.
The molecular weight of the polymer obtained by the present invention can be adjusted by changing the concentration of hydrogen present in the polymerization system, changing the polymerization temperature, or changing the concentration of the organometallic compound [B]. . Further, by connecting two or more reactors in series and / or in parallel, the molecular weight distribution, the side chain distribution, and the like can be controlled.
Although there is no restriction | limiting in particular about the manufacturing method of the high strength polyethylene fiber in this invention, Since it can obtain a uniform fiber, it is preferable to shape | mold after melt-kneading with a solvent.

本発明において使用する溶剤としては、超高分子量ポリエチレンと混合した際に超高分子量ポリエチレンの融点以上において均一溶液を形成しうる不揮発性溶媒であればよい。例えば、流動パラフィン、パラフィンワックス、デカリン(デカヒドロナフタレン)等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコール等が挙げられる。特にポリエチレンと相溶性が高い流動パラフィンやデカリン(デカヒドロナフタレン)等の炭化水素類が好ましい。
本発明における超高分子量ポリエチレンの融点は、JIS K7121に基づきPERKIN ELMER社製示差走査熱量分析装置Pyris1(商品名)を用いて測定した値である。サンプル8.4mgを50℃で1分保持した後、10℃/分の速度で200℃まで昇温し、その際に得られる融解曲線において最大ピークを示す温度から求めることができる。
The solvent used in the present invention may be any non-volatile solvent that can form a uniform solution at a temperature equal to or higher than the melting point of the ultra high molecular weight polyethylene when mixed with the ultra high molecular weight polyethylene. Examples thereof include hydrocarbons such as liquid paraffin, paraffin wax and decalin (decahydronaphthalene), esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol. In particular, hydrocarbons such as liquid paraffin and decalin (decahydronaphthalene) which are highly compatible with polyethylene are preferable.
The melting point of the ultra high molecular weight polyethylene in the present invention is a value measured using a differential scanning calorimeter Pyris1 (trade name) manufactured by PERKIN ELMER based on JIS K7121. After holding 8.4 mg of the sample at 50 ° C. for 1 minute, the temperature is raised to 200 ° C. at a rate of 10 ° C./minute, and the temperature can be determined from the temperature showing the maximum peak in the melting curve obtained at that time.

本発明における溶融混練の方法について特に制限はなく、超高分子量ポリエチレンと溶剤を加熱しながら溶融混練できる様式であればニーダーや二軸押出機、あるいはミキサー型樹脂混練設備等、いかなる方法であってもよい。なお、溶融混練時における超高分子量ポリエチレンの酸化を防止するために酸化防止剤を添加しておくことが好ましい。
本発明における高強度ポリエチレン繊維とは、超高分子量ポリエチレンからなる直径が0.1μm〜1mmの糸状組成物であり、0.3μm〜800μmであることが好ましく、0.5μm〜500μmであることが特に好ましい。
The melt kneading method in the present invention is not particularly limited, and any method such as a kneader, a twin screw extruder, or a mixer type resin kneading equipment can be used as long as it can be melt kneaded while heating ultrahigh molecular weight polyethylene and a solvent. Also good. It is preferable to add an antioxidant in order to prevent oxidation of the ultrahigh molecular weight polyethylene during melt kneading.
The high-strength polyethylene fiber in the present invention is a filamentous composition made of ultrahigh molecular weight polyethylene and having a diameter of 0.1 μm to 1 mm, preferably 0.3 μm to 800 μm, and preferably 0.5 μm to 500 μm. Particularly preferred.

本発明における高強度ポリエチレン繊維を糸状に成形する方法として、特に制限はなく、例えば、オリフィスが設置された口金を先端に取り付けた押出機を用いて押し出した溶融混練物を引き取ることによって成形してもよいし、溶融混練物をオリフィスから押出した直後に延伸することによって成形してもよいし、溶融混練物を冷却させてから再溶融しない温度で延伸することによって成形してもよい。また、連続的に成形してもよいし、多段階で成形してもよい。
本発明において溶剤を使用する場合には、糸状に成形した後、洗浄溶媒を用いて高強度ポリエチレン繊維を洗浄することが好ましい。なお、洗浄溶媒としては、ヘキサンなどの低沸点炭化水素、ハイドロフルオロエーテルやハイドロフルオロカーボンなどの非塩素含有フッ素系有機溶剤やメチルエーテルケトンなどのケトンを用いることが好ましい。
本発明における高強度ポリエチレン繊維は、多孔質であっても無孔質であってもよい。また、多孔質な高強度ポリエチレン繊維を超延伸等の処理によって無孔質化してもよい。
次に、実施例および比較例によって本発明を説明するが、本発明はこれら実施例に限定されるものではない。
The method for forming the high-strength polyethylene fiber in the present invention into a thread shape is not particularly limited. For example, the high-strength polyethylene fiber is formed by pulling out a melt-kneaded product extruded using an extruder having a mouthpiece provided with an orifice attached to the tip. Alternatively, the melt-kneaded product may be formed by stretching immediately after being extruded from the orifice, or may be formed by stretching the melt-kneaded product at a temperature that does not remelt after being cooled. Moreover, you may shape | mold continuously and may shape | mold in multistep.
In the case of using a solvent in the present invention, it is preferable to wash the high-strength polyethylene fiber using a washing solvent after forming into a thread shape. As the cleaning solvent, it is preferable to use low boiling point hydrocarbons such as hexane, non-chlorine-containing fluorine-based organic solvents such as hydrofluoroether and hydrofluorocarbon, and ketones such as methyl ether ketone.
The high-strength polyethylene fiber in the present invention may be porous or nonporous. Alternatively, porous high-strength polyethylene fibers may be rendered nonporous by a process such as ultra-drawing.
Next, although an example and a comparative example explain the present invention, the present invention is not limited to these examples.

本発明を実施例に基づいて説明する。
[粘度平均分子量の測定]
本発明の実施例および比較例における超高分子量ポリエチレンの粘度平均分子量は、以下に示す方法によって求めた。まず、20ミリリットルのデカリン(デカヒドロナフタレン)にポリマー10mgをいれ、150℃で2時間攪拌してポリマーを溶解させた。その溶液を135℃の恒温槽で、ウベローデタイプの粘度計を用いて、標線間の落下時間(t)を測定した。同様に、ポリマー5mgの場合についても測定した。ブランクとしてポリマーを入れていない、デカリンのみの落下時間(t)を測定した。以下の式に従って求めたポリマーの比粘度(ηsp/C)をそれぞれプロットして濃度(C)とポリマーの比粘度(ηsp/C)の直線式を導き、濃度0に外挿した極限粘度(η)を求めた。
ηsp/C=(t/t−1)/0.1
この極限粘度(η)から以下の式に従い、粘度平均分子量(Mv)を求めた。
Mv=5.34×10η1.49
The present invention will be described based on examples.
[Measurement of viscosity average molecular weight]
The viscosity average molecular weight of the ultrahigh molecular weight polyethylene in the examples and comparative examples of the present invention was determined by the method shown below. First, 20 mg of decalin (decahydronaphthalene) was charged with 10 mg of polymer and stirred at 150 ° C. for 2 hours to dissolve the polymer. The drop time (t s ) between the marked lines was measured using a Ubbelohde type viscometer for the solution in a thermostatic bath at 135 ° C. Similarly, the measurement was performed for a polymer of 5 mg. The falling time (t b ) of only decalin without a polymer as a blank was measured. The specific viscosity (η sp / C) of the polymer determined according to the following equation is plotted to derive a linear expression of the concentration (C) and the specific viscosity of the polymer (η sp / C), and the intrinsic viscosity extrapolated to a concentration of 0 (Η) was determined.
η sp / C = (t s / t b -1) /0.1
From this intrinsic viscosity (η), the viscosity average molecular weight (Mv) was determined according to the following formula.
Mv = 5.34 × 10 4 η 1.49

[実施例1]
(1)固体触媒成分[A]の調製
充分に窒素置換された200ミリリットルのステンレス製オートクレーブに組成式AlMg(C12(Cで表される有機マグネシウム化合物のヘキサン溶液40ミリリットル(アルミニウムとマグネシウムの総量として37.8ミリモル相当)を仕込み、25℃で攪拌しながらメチルヒドロポリシロキサン2.27グラム(37.8ミリモル)を含有するヘキサン40ミリリットルを30分かけて滴下した。滴下後、80℃に昇温し、3時間攪拌しながら反応させることにより、チタン化合物と接触させる有機マグネシウム化合物を得た。
充分に窒素置換された200ミリリットルのガラス製丸底フラスコにヘキサン40ミリリットルを仕込み、−10℃で攪拌しながら、上記有機マグネシウム化合物のヘキサン溶液40ミリリットル(マグネシウム16ミリモル相当)と、0.4モル/リットルの四塩化チタンヘキサン溶液50ミリリットルとを、2時間かけて同時に滴下した。滴下後、さらに1時間攪拌した。この際、最終的に10℃となるよう徐々に昇温させた。その後、上澄み液を除去し、ヘキサン70ミリリットルでの洗浄を4回行うことにより、固体触媒成分[A]を得た。得られた固体触媒成分[A]の平均粒径は3.6マイクロメートルであった。
[Example 1]
(1) Preparation of solid catalyst component [A] An organic magnesium compound represented by the composition formula AlMg 6 (C 4 H 9 ) 12 (C 2 H 5 ) 3 was placed in a 200 ml stainless steel autoclave sufficiently substituted with nitrogen. Charge 40 ml of hexane solution (corresponding to 37.8 mmol as the total amount of aluminum and magnesium) and stir at 25 ° C. 40 ml of hexane containing 2.27 g (37.8 mmol) of methylhydropolysiloxane over 30 minutes And dripped. After dropping, the mixture was heated to 80 ° C. and reacted with stirring for 3 hours to obtain an organomagnesium compound to be brought into contact with the titanium compound.
Into a 200 ml glass round-bottom flask thoroughly purged with nitrogen, 40 ml of hexane was charged, and while stirring at −10 ° C., 40 ml of a hexane solution of the above organic magnesium compound (equivalent to 16 mmol of magnesium) / L of titanium tetrachloride hexane solution (50 ml) was added dropwise simultaneously over 2 hours. After dropping, the mixture was further stirred for 1 hour. At this time, the temperature was gradually raised to finally reach 10 ° C. Thereafter, the supernatant liquid was removed, and washing with 70 ml of hexane was performed four times to obtain a solid catalyst component [A]. The average particle diameter of the obtained solid catalyst component [A] was 3.6 micrometers.

(2)超高分子量ポリエチレンの重合
有機金属化合物成分[B]としてのトリイソブチルアルミニウム0.4ミリモルと上記の固体触媒成分[A]10ミリグラムを、脱水脱酸素したヘキサン0.8リットルとともに、内部を真空脱気し窒素置換した内容積1.5リットルのオートクレーブに入れた。 オートクレーブの内温を70℃に保ち、エチレンを添加して全圧を0.2MPaとすることにより重合を開始した。エチレンを補給することにより全圧を0.2MPaに保ちつつ30分間重合を行った。重合後、ろ過によってポリマーを回収し、メタノール洗浄および乾燥を経て超高分子量ポリエチレンパウダーを得た。この重合により得られた超高分子量ポリエチレンパウダーの粘度平均分子量は328万であった。
(2) Polymerization of ultra high molecular weight polyethylene 0.4 mmol of triisobutylaluminum as the organometallic compound component [B] and 10 mg of the above solid catalyst component [A], together with 0.8 liter of dehydrated and deoxygenated hexane, Was put into an autoclave with an internal volume of 1.5 liters which was degassed by vacuum and purged with nitrogen. Polymerization was started by keeping the internal temperature of the autoclave at 70 ° C. and adding ethylene to bring the total pressure to 0.2 MPa. Polymerization was carried out for 30 minutes while maintaining the total pressure at 0.2 MPa by supplying ethylene. After the polymerization, the polymer was collected by filtration, and washed with methanol and dried to obtain ultrahigh molecular weight polyethylene powder. The ultrahigh molecular weight polyethylene powder obtained by this polymerization had a viscosity average molecular weight of 3,280,000.

(3)ポリエチレン繊維の成形
上記の超高分子量ポリエチレンパウダー4.0g、(株)松村石油研究所製流動パラフィン(製品名:スモイルP−350P)35.6g、グレートレイクスケミカル日本(株)製テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマート)]メタン(製品名:ANOX20)0.4gを200mlポリカップに加えてよく混合してから(株)東洋精機製作所製ラボプラストミルミキサー(本体型式:30C150、ミキサー形式:R−60)に仕込み、回転数を50rpmに設定して190℃で10分間混練した。溶融混練物を取り出して常温まで冷却した後、得られた固化物14gを(株)東洋精機製作所製キャピログラフ1D(オリフィス径2mm)に仕込み、設定温度180℃、押し出し速度2mm/分、引き取り速度2m/分で糸状に成形し、ヘキサン洗浄を経てポリエチレン繊維を作製した。JIS L1013に基づき引張特性の試験を行った結果、引張弾性率が良好であった。
(3) Molding of polyethylene fiber 4.0 g of the above ultra high molecular weight polyethylene powder, 35.6 g of liquid paraffin (product name: Sumoyle P-350P) manufactured by Matsumura Oil Research Co., Ltd. Tetrakis manufactured by Great Lakes Chemical Japan Co., Ltd. [Methylene (3,5-di-t-butyl-4-hydroxy-hydrocinnamate)] 0.4 g of methane (product name: ANOX20) was added to a 200 ml polycup and mixed well, then Toyo Seiki Seisakusho A lab plast mill mixer (main body model: 30C150, mixer type: R-60) was charged, and the number of revolutions was set to 50 rpm, followed by kneading at 190 ° C. for 10 minutes. After the melt-kneaded product was taken out and cooled to room temperature, 14 g of the obtained solidified product was charged into Capillograph 1D (orifice diameter 2 mm) manufactured by Toyo Seiki Seisakusho Co., Ltd., set temperature 180 ° C., extrusion rate 2 mm / min, take-off rate 2 m. It was formed into a thread shape at a rate of / min, and was washed with hexane to produce polyethylene fibers. As a result of testing the tensile properties based on JIS L1013, the tensile modulus was good.

[比較例1]
超高分子量ポリエチレンパウダーとして、粘度平均分子量が334万であるTicona社製GUR(登録商標)4120を用いた以外は、実施例1と同様の操作でポリエチレン繊維を作製した。JIS L1013に基づき引張特性の試験を行った結果、超高分子量ポリエチレンパウダーの粘度平均分子量がほとんど等しいにも関わらず、引張弾性率が実施例1の結果と比較して大きく劣っていた。
[Comparative Example 1]
A polyethylene fiber was produced in the same manner as in Example 1 except that GUR (registered trademark) 4120 manufactured by Ticona having a viscosity average molecular weight of 3.34 million was used as the ultrahigh molecular weight polyethylene powder. As a result of testing the tensile properties based on JIS L1013, the tensile modulus was greatly inferior to that of Example 1 although the viscosity average molecular weight of the ultrahigh molecular weight polyethylene powder was almost equal.

本発明の高強度ポリエチレン繊維は、引張特性が良好で形状安定性に優れており、超高分子量ポリエチレンの特徴、特にエンジニアリングプラスチックとしての特徴を繊維分野において活用することができる。   The high-strength polyethylene fiber of the present invention has good tensile properties and excellent shape stability, and can utilize the characteristics of ultrahigh molecular weight polyethylene, particularly as an engineering plastic, in the fiber field.

Claims (2)

固体触媒成分[A]および有機金属化合物成分[B]からなるオレフィン重合触媒において、固体触媒成分[A]が下記一般式(1)
Mg ・・・・・(1)
(上記一般式(1)中、Mは周期律表第1族、第2族、第3族、第12族および第13族からなる群に含まれる金属原子、RおよびRは炭素数2〜20の炭化水素基、XおよびYは同一または異なるOR、OSiR、NR、SR、ハロゲンから選ばれた官能基、RおよびRは炭素数1〜20の炭化水素基、R、R、R、R、およびRは水素原子または炭素数1〜20の炭化水素基、E、G、p、q、r、およびsは、E≧0、G>0、p≧0、q≧0、r≧0、s≧0、p+q>0、0≦(r+s)/(E+G)≦2、kE+2G=p+q+r+s(kはMの原子価)を満たす数である。)
で示される炭化水素溶媒に可溶な有機マグネシウム化合物と、下記一般式(2)
Ti(OR104−w・・・・・(2)
(上記一般式(2)中、R10は炭化水素基、Zはハロゲン、wは0≦w≦4を満たす数である。)
で示されるチタン化合物とを反応させることによって調製され、これに前記有機金属化合物成分[B]として、下記一般式(3)
AlR11 3−f・・・・・(3)
(上記一般式(3)中、R11は炭素数1〜12の炭化水素基、Tは水素、ハロゲン、アルコキシ、アリロキシ、シロキシ基より選ばれた基であり、fは2〜3の数である。)
で示される有機アルミニウム化合物を混合して得られることを特徴とするオレフィン重合触媒を用いて重合した、粘度平均分子量が150万〜1000万の超高分子量ポリエチレンからなる高強度ポリエチレン繊維。
In the olefin polymerization catalyst comprising the solid catalyst component [A] and the organometallic compound component [B], the solid catalyst component [A] is represented by the following general formula (1):
M 1 E Mg G R 1 p R 2 q X r Y s ····· (1)
(In the above general formula (1), M 1 is a metal atom included in the group consisting of Group 1, Group 2, Group 3, Group 12 and Group 13 of the periodic table, and R 1 and R 2 are carbon atoms. 2 to 20 hydrocarbon groups, X and Y are the same or different OR 3 , OSiR 4 R 5 R 6 , NR 7 R 8 , SR 9 , a functional group selected from halogen, R 3 and R 9 are carbon numbers 1 to 20 hydrocarbon groups, R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen atoms or hydrocarbon groups having 1 to 20 carbon atoms, E, G, p, q, r, and s are , E ≧ 0, G> 0, p ≧ 0, q ≧ 0, r ≧ 0, s ≧ 0, p + q> 0, 0 ≦ (r + s) / (E + G) ≦ 2, kE + 2G = p + q + r + s (k is M 1 Valence).)
An organomagnesium compound soluble in a hydrocarbon solvent represented by the following general formula (2)
Ti (OR 10 ) w Z 4-w (2)
(In the general formula (2), R 10 is a hydrocarbon group, Z is a halogen, and w is a number satisfying 0 ≦ w ≦ 4.)
It is prepared by reacting with a titanium compound represented by the following general formula (3) as the organometallic compound component [B]:
AlR 11 f T 3-f (3)
(In the above general formula (3), R 11 is a hydrocarbon group having 1 to 12 carbon atoms, T is a group selected from hydrogen, halogen, alkoxy, allyloxy and siloxy groups, and f is a number of 2 to 3. is there.)
A high-strength polyethylene fiber made of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 1,500,000 to 10,000,000, polymerized using an olefin polymerization catalyst obtained by mixing an organoaluminum compound represented by formula (1).
該超高分子量ポリエチレンを溶剤と溶融混練してから成形することを特徴とする請求項1に記載の高強度ポリエチレン繊維。   The high-strength polyethylene fiber according to claim 1, wherein the ultrahigh molecular weight polyethylene is molded after being melt-kneaded with a solvent.
JP2009061301A 2009-03-13 2009-03-13 High-strength polyethylene fiber Pending JP2010216020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061301A JP2010216020A (en) 2009-03-13 2009-03-13 High-strength polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061301A JP2010216020A (en) 2009-03-13 2009-03-13 High-strength polyethylene fiber

Publications (1)

Publication Number Publication Date
JP2010216020A true JP2010216020A (en) 2010-09-30

Family

ID=42975146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061301A Pending JP2010216020A (en) 2009-03-13 2009-03-13 High-strength polyethylene fiber

Country Status (1)

Country Link
JP (1) JP2010216020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168755A (en) * 2014-03-06 2015-09-28 旭化成ケミカルズ株式会社 Ethylenic polymer powder and manufacturing method therefor and molded article
JPWO2021193544A1 (en) * 2020-03-23 2021-09-30

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168755A (en) * 2014-03-06 2015-09-28 旭化成ケミカルズ株式会社 Ethylenic polymer powder and manufacturing method therefor and molded article
JPWO2021193544A1 (en) * 2020-03-23 2021-09-30
WO2021193544A1 (en) * 2020-03-23 2021-09-30 旭化成株式会社 Ultrahigh-molecular-weight polyethylene powder and shaped object obtained by shaping same
CN115348978A (en) * 2020-03-23 2022-11-15 旭化成株式会社 Ultra-high-molecular-weight polyethylene powder and molded body obtained by molding same
JP7343692B2 (en) 2020-03-23 2023-09-12 旭化成株式会社 Ultra-high molecular weight polyethylene powder and molded products made from it

Similar Documents

Publication Publication Date Title
JP5541948B2 (en) Ultra high molecular weight polyethylene powder and method for producing the same
CN1023807C (en) Polyolefin composition for injection molding
JP5191113B2 (en) Ethylene polymer composition powder
JP5774084B2 (en) Polyethylene powder
CN103987736B (en) Catalyst system and the method producing ultra-high molecular weight polyethylene in the presence of this catalyst system
JP2014118535A (en) Ethylene polymer and stretched molded body, microporous film and separator for battery
JP2011522060A (en) Manufacturing process of ultra high molecular weight polyethylene
CN109898170B (en) Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene powder fiber
CN106317273A (en) Ultrahigh molecular weight superfine polyethylene powder and preparation method thereof
JP5685056B2 (en) Method for producing polyolefin stretch molded article
JP2007023171A (en) Ultra-high-molecular-weight polyethylene particulate excellent in heat resistance and method for producing the same
JP5687295B2 (en) 4-methyl-1-pentene polymer, production method thereof and use thereof
JP2010216020A (en) High-strength polyethylene fiber
JP5837170B2 (en) Ultra high molecular weight polyethylene resin composition, method for producing the same, and molded article
JP2010215705A (en) Ultrahigh molecular weight polyethylene film
JP5764125B2 (en) Catalyst systems and processes for producing polyethylene
JP5829295B2 (en) Ethylene polymer powder, method for producing the same, and molded product
JP2008144149A (en) Olefin polymerization catalyst and method for producing polyolefin powder
JP2008144148A (en) Olefin polymerization catalyst and method for producing polyolefin powder
JP2008144147A (en) Olefin polymerization catalyst and method for producing polyolefin powder
JP6608030B2 (en) Ultra high molecular weight polyethylene powder and ultra high molecular weight polyethylene powder fiber
JPH0699513B2 (en) High-strength, high-modulus polyethylene material manufacturing method
KR20100100433A (en) A method for preparation of catalyst for ethylene (co)polymerization
JP2022080251A (en) Polyethylene resin for secondary battery separator, method for manufacturing the same, and separator to which the same is applied
JP2017141312A (en) Ultrahigh-molecular weight polyethylene particle and method for producing the same