JP2010214362A - Metallic catalyst carrier, method for producing foil brazing material to be used in the carrier and method for producing the carrier - Google Patents

Metallic catalyst carrier, method for producing foil brazing material to be used in the carrier and method for producing the carrier Download PDF

Info

Publication number
JP2010214362A
JP2010214362A JP2009292260A JP2009292260A JP2010214362A JP 2010214362 A JP2010214362 A JP 2010214362A JP 2009292260 A JP2009292260 A JP 2009292260A JP 2009292260 A JP2009292260 A JP 2009292260A JP 2010214362 A JP2010214362 A JP 2010214362A
Authority
JP
Japan
Prior art keywords
brazing
foil material
metal catalyst
honeycomb body
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009292260A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mita
裕弘 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2009292260A priority Critical patent/JP2010214362A/en
Publication of JP2010214362A publication Critical patent/JP2010214362A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic catalyst carrier capable of improving brazing quality, without arranging a groove on an outer cylinder, by preventing a molten foil brazing material from flowing when a honeycomb body and the outer cylinder are subjected to diffusion bonding. <P>SOLUTION: The metallic catalyst carrier C1 is constituted so that the honeycomb body 1, which is formed by superposing corrugated metallic foil on flat metallic foil and winding a superposed material several times, is brazed/held on the inner periphery of the outer cylinder 3 by melting the foil brazing material 2 which is wound partially around the outer periphery of the honeycomb body 1 to the axial direction. A brazing material pool means, which is used for receiving a flow of the molten foil brazing material when the honeycomb body is brazed and which is arranged on the foil brazing material 2, is composed of many through-holes 2c each of which has an almost uniform open area and which are formed at regular intervals over the peripheral direction of the foil brazing material 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属触媒担体、金属触媒担体で用いられるロウ箔材の製造方法及び金属触媒担体の製造方法に関する。   The present invention relates to a metal catalyst carrier, a method for producing a brazing foil material used in the metal catalyst carrier, and a method for producing a metal catalyst carrier.

従来の金属触媒担体は、波板状の金属箔と平板状の金属箔を重ねて多重に巻回して形成されるハニカム体を該ハニカム体の外周の軸方向一部にロウ箔材を巻回した状態で外筒に圧入した後に、高温の真空炉中で20分の加熱によりハニカム体の波板状金属箔と平板状金属箔を拡散接合すると同時に外筒とハニカム体を帯状にロウ付けしている。
ところが、ロウ付けの適正温度(1,100℃前後)は、拡散接合の適正温度(1,250℃前後)より低いため、拡散接合時にロウ箔材が溶融してハニカム体と外筒の隙間を毛細管現象によりロウ上り、ロウ下りというハニカム体の軸方向に沿って波状の不均一なロウ流れをもたらし、所望の接合領域以外にも接合することとなる。これは熱応力の拘束を助長する結果となり、金属製触媒担体の耐久性上大きな問題となる。
そこで、外筒の内周にロウ溜り溝を設けてロウ上りの防止する技術が公知になっている(例えば、特許文献1参照)。
A conventional metal catalyst carrier has a honeycomb body formed by overlapping and winding a corrugated metal foil and a flat metal foil, and winding a brazing foil material around a part of the outer periphery of the honeycomb body in the axial direction. After press-fitting into the outer cylinder, the corrugated metal foil and the flat metal foil of the honeycomb body are diffusion bonded by heating for 20 minutes in a high-temperature vacuum furnace, and at the same time, the outer cylinder and the honeycomb body are brazed into a strip shape. ing.
However, since the appropriate temperature for brazing (around 1,100 ° C) is lower than the appropriate temperature for diffusion bonding (around 1,250 ° C), the brazing foil material melts during diffusion bonding and the gap between the honeycomb body and the outer cylinder is brazed by capillary action. A wavy non-uniform low flow is brought about along the axial direction of the honeycomb body called ascending and descending, and bonding is performed in a region other than the desired bonding region. This results in encouraging restraint of thermal stress, which is a serious problem in terms of durability of the metal catalyst carrier.
In view of this, a technique for preventing the rising of the solder by providing a solder collecting groove on the inner periphery of the outer cylinder is known (for example, see Patent Document 1).

特開2003−80083号公報Japanese Patent Laid-Open No. 2003-80083

しかしながら、外筒の内周にロウ溜り溝を設けるには、まず、平板に溝をプレス成形した後に、円筒状に曲げて両端縁部を溶接する必要があるため、製造に多く手間と時間が掛かるという問題点があった。
本発明の解決しようとする課題は、外筒に溝を設けることなしに拡散接合時のロウ流れを防止してロウ付け品質を向上することができる金属触媒担体を提供することにある。
However, in order to provide the wax retaining groove on the inner periphery of the outer cylinder, it is necessary to first press the groove on the flat plate, then bend it into a cylindrical shape and weld the edges of both ends. There was a problem of hanging.
The problem to be solved by the present invention is to provide a metal catalyst support capable of preventing brazing during diffusion bonding and improving brazing quality without providing a groove in the outer cylinder.

上記課題を解決するため請求項1記載の発明は、波板状の金属箔と平板状の金属箔を重ねて多重に巻回して形成されるハニカム体を該ハニカム体の外周の軸方向一部に巻回したロウ箔材により外筒の内周にロウ付け保持される金属触媒担体であって、ロウ箔材にロウ付け時におけるロウ流れを受け止めるロウ溜まり手段が設けられていることを特徴とする手段とした。
また、請求項10記載の発明は、請求項6または7に記載の金属触媒担体で用いられるロウ箔材の製造方法であって、送り出し装置とラス加工装置を用い、帯状に連続するロウ箔材母材を送り出し装置により間欠的に送り出しながらラス加工装置によりラス加工部を加工するラス加工工程と、送り出し装置による送り出しにより非ラス加工部を送り出す非ラス加工工程とを交互に行う成形工程と、切断装置を用いロウ箔材の製品一単位毎に切断する切断工程とからなることを特徴とする手段とした。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a honeycomb body formed by overlapping and winding a corrugated metal foil and a flat metal foil in a plurality of axial directions on the outer periphery of the honeycomb body. A metal catalyst carrier that is brazed and held on the inner periphery of the outer cylinder by a brazing foil material wound around the brazing foil, wherein the brazing foil member is provided with brazing means for receiving the brazing flow during brazing. It was a means to do.
The invention according to claim 10 is a method for producing a brazing foil material used in the metal catalyst carrier according to claim 6 or 7, wherein the brazing foil material is continuous in a strip shape using a feeding device and a lath processing device. A molding process for alternately performing a lath machining process for machining a lath processed part by a lath machining apparatus while intermittently feeding a base material by a feeding apparatus, and a non-laser machining process for feeding a non-laser processed part by feeding by a feeding apparatus; And a cutting step of cutting each unit of the wax foil material using a cutting device.

また、請求項11記載の発明は、請求項10に記載の金属触媒担体で用いられるロウ箔材の製造方法であって、成形工程と切断工程との間に、ラス加工部のラス加工により形成される隆起部を非ラス加工部の厚さまで平坦に圧縮成形する圧縮工程を備えることを特徴とする手段とした。
また、請求項12記載の発明は、波板状の金属箔と平板状の金属箔を重ねて多重に巻回して形成されるハニカム体を該ハニカム体の外周の軸方向一部に巻回したロウ箔材の溶融により外筒の内周にロウ付け保持され、ロウ箔材にロウ付け時におけるロウ流れを受け止めるロウ溜まり手段が設けられている金属触媒担体の製造方法であって、第1所定温度でロウ箔材の溶融による外筒に対するハニカム体のロウ付け固定を行い、第1所定温度よりは高い第2所定温度でハニカム体の拡散接合を行うことを特徴とする手段とした。
The invention according to claim 11 is a method for producing a brazing foil material used in the metal catalyst carrier according to claim 10, which is formed by lath processing of a lath processed portion between a forming step and a cutting step. It is a means characterized by comprising a compression step of flatly compressing the raised portion to the thickness of the non-laser processed portion.
The invention according to claim 12 is a method of winding a honeycomb body formed by overlapping and winding a corrugated metal foil and a flat metal foil around a part of the outer periphery of the honeycomb body in the axial direction. A method for producing a metal catalyst carrier, wherein a brazing member is provided that is brazed and held on the inner periphery of an outer cylinder by melting of a brazing foil material and receives brazing flow during brazing. The honeycomb body is brazed and fixed to the outer cylinder by melting the brazing foil material at a temperature, and diffusion bonding of the honeycomb body is performed at a second predetermined temperature higher than the first predetermined temperature.

請求項1記載の発明では、上述のように、ロウ箔材にロウ付け時におけるロウ流れを受け止めるロウ溜まり手段が設けられている。
これにより、拡散接合時に必要以上に溶融したロウ箔材はロウ箔材自体に設けられたロウ溜まり手段に受け止められるため、ロウ上り、ロウ下りというロウ流れを防止できる。
従って、外筒に溝を設けることなしに拡散接合時のロウ流れを防止してロウ付け品質を向上することができる。
請求項10記載の発明では、上述のように、送り出し装置とラス加工装置を用い、帯状に連続するロウ箔材母材を送り出し装置により間欠的に送り出しながらラス加工装置によりラス加工部を加工するラス加工工程と、送り出し装置による送り出しにより非ラス加工部を送り出す非ラス加工工程とを交互に行う成形工程と、切断装置を用いロウ箔材の製品一単位毎に切断する切断工程とからなる。
これにより、一部にラス加工によるロウ溜まり手段を有するロウ箔材を効率的に製造することができる。
In the first aspect of the invention, as described above, the brazing member is provided with the brazing foil material to receive the brazing flow during brazing.
As a result, the brazing foil material melted more than necessary at the time of diffusion bonding is received by the brazing means provided in the brazing foil material itself, so that it is possible to prevent low flow such as low rise and low fall.
Therefore, brazing quality can be improved by preventing brazing during diffusion bonding without providing a groove in the outer cylinder.
In the invention of claim 10, as described above, the lath processing portion is processed by the lath processing device while using the feeding device and the lath processing device and intermittently feeding the brazing foil base material continuous in a strip shape by the feeding device. It consists of a forming process in which a lath processing step and a non-laser processing step in which a non-laser processing portion is sent out by sending out by a feeding device are alternately performed, and a cutting step in which a brazing foil material is cut into one unit of product using a cutting device.
As a result, it is possible to efficiently manufacture a brazing foil material having part of brazing means by lath processing.

請求項11記載の発明では、上述のように、成形工程と切断工程との間に、ラス加工部のラス加工により形成される隆起部を非ラス加工部の厚さまで平坦に圧縮成形する圧縮工程を備える。
これにより、ラス加工により形成される隆起部の圧縮成形を連続的に行えるため、隆起部のないロウ箔材を効率的に製造することができる。
請求項12記載の発明では、上述のように、第1所定温度でロウ箔材の溶融による外筒に対するハニカム体のロウ付け固定を行い、第1所定温度よりは高い第2所定温度でハニカム体の拡散接合を行う。
これにより、拡散接合時にロウ箔材が必要以上に溶融するが、この必要以上に溶融したロウ箔材はロウ箔材自体に設けられたロウ溜まり手段に受け止められるため、ロウ上り、ロウ下りというロウ流れを防止できる。
従って、ロウ付け温度より拡散接合温度が高い場合でも、外筒に溝を設けることなしに拡散接合時のロウ流れを防止してロウ付け品質を向上することができる。
In the invention described in claim 11, as described above, the compression step of flatly forming the raised portion formed by the lath processing of the lath processed portion to the thickness of the non-laser processed portion between the forming step and the cutting step. Is provided.
Thereby, since the compression molding of the raised part formed by lath processing can be performed continuously, the brazing foil material without a raised part can be manufactured efficiently.
In the twelfth aspect of the invention, as described above, the honeycomb body is brazed and fixed to the outer cylinder by melting the brazing foil material at the first predetermined temperature, and the honeycomb body is set at the second predetermined temperature higher than the first predetermined temperature. Diffusion bonding is performed.
As a result, the brazing foil material melts more than necessary at the time of diffusion bonding, and the brazing foil material melted more than necessary is received by the brazing means provided in the brazing foil material itself. The flow can be prevented.
Therefore, even when the diffusion bonding temperature is higher than the brazing temperature, brazing quality can be improved by preventing brazing during diffusion bonding without providing grooves in the outer cylinder.

実施例1の金属触媒担体を示す断面図である。1 is a cross-sectional view showing a metal catalyst carrier of Example 1. FIG. 実施例1のロウ箔材を示す一部切欠展開図である。1 is a partially cutaway development view showing a brazing foil material of Example 1. FIG. 実施例1のロウ箔材のラス加工方法を示す工程説明図である。It is process explanatory drawing which shows the lath processing method of the brazing foil material of Example 1. FIG. 実施例1のロウ箔材の連続成形状態を示す平面図である。It is a top view which shows the continuous molding state of the brazing foil material of Example 1. FIG. 実施例1のロウ箔材における隆起部の圧縮加工方法を示す説明図である。It is explanatory drawing which shows the compression processing method of the protruding part in the brazing foil material of Example 1. FIG. 図5のA1矢視図である。It is A1 arrow line view of FIG. 図5のA2矢視図である。FIG. 6 is a view taken along arrow A2 in FIG. 5. 実施例1のロウ箔材の製品一単位毎の切断位置を示す説明図である。It is explanatory drawing which shows the cutting position for every product of the brazing foil material of Example 1. FIG. 実施例1の圧入装置を説明する図である。It is a figure explaining the press injection apparatus of Example 1. FIG. 実施例1の圧入治具の平面図である。3 is a plan view of a press-fitting jig according to Embodiment 1. FIG. 図10のS11-S11線における断面図である。It is sectional drawing in the S11-S11 line | wire of FIG. 実施例1の圧入装置の作動を説明する図である。It is a figure explaining the action | operation of the press injection apparatus of Example 1. FIG. 実施例1の圧入装置の作動を説明する図である。It is a figure explaining the action | operation of the press injection apparatus of Example 1. FIG. 実施例1の圧入装置の作動を説明する図である。It is a figure explaining the action | operation of the press injection apparatus of Example 1. FIG. 実施例1の圧入装置の作動を説明する図である。It is a figure explaining the action | operation of the press injection apparatus of Example 1. FIG. 実施例1の圧入装置の作動を説明する図である。It is a figure explaining the action | operation of the press injection apparatus of Example 1. FIG. 実施例1の圧入装置の作動を説明する図である。It is a figure explaining the action | operation of the press injection apparatus of Example 1. FIG. 実施例1の排気系を説明する図である。It is a figure explaining the exhaust system of Example 1. FIG. 実施例2の金属触媒担体を示す断面図である。3 is a cross-sectional view showing a metal catalyst carrier of Example 2. FIG. 実施例2のロウ箔材を示す一部切欠展開図である。It is a partially cutaway developed view showing the brazing foil material of Example 2. 実施例2のロウ箔材における隆起部の圧縮加工方法を示す説明図である。It is explanatory drawing which shows the compression processing method of the protruding part in the brazing foil material of Example 2. FIG. 実施例2のロウ箔材の製品一単位毎の切断位置を示す説明図である。It is explanatory drawing which shows the cutting position for every product of the brazing foil material of Example 2. FIG. 実施例3の金属触媒担体を示す断面図である。6 is a cross-sectional view showing a metal catalyst carrier of Example 3. FIG. 実施例4のロウ箔材を示す一部切欠展開図である。It is a partially cutaway developed view showing the brazing foil material of Example 4. 実施例5のロウ箔材母材B1を示す斜視図である。10 is a perspective view showing a brazing foil material base material B1 of Example 5. FIG. 実施例6のロウ箔材母材B1を示す斜視図である。It is a perspective view which shows the brazing foil material base material B1 of Example 6. FIG.

以下にこの発明の実施例を図面に基づいて説明する。
〔実施例1〕
まず、この実施例1の金属触媒担体を図面に基づいて説明する。
図1はこの実施例1の金属触媒担体を示す断面図、図2はロウ箔材を示す一部切欠展開図、図3はロウ箔材のラス加工方法を示す工程説明図、図4はロウ箔材の連続成形状態を示す平面図、図5は隆起部の圧縮加工方法を示す説明図、図6は図5のA1矢視図、図7は図5のA2矢視図、図8は製品一単位毎の切断位置を示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
[Example 1]
First, the metal catalyst carrier of Example 1 will be described with reference to the drawings.
FIG. 1 is a sectional view showing a metal catalyst carrier of Example 1, FIG. 2 is a partially cutaway development view showing a brazing foil material, FIG. 3 is a process explanatory diagram showing a lath processing method of the brazing foil material, and FIG. FIG. 5 is an explanatory view showing a method for compressing a raised portion, FIG. 6 is a view taken along the arrow A1 in FIG. 5, FIG. 7 is a view taken along the arrow A2 in FIG. It is explanatory drawing which shows the cutting position for every product unit.

実施例1の金属触媒担体C1は、図1に示すように、ハニカム体1と、ロウ箔材2と、外筒3と、を備えている。
さらに詳述すると、ハニカム体1は、波板状の金属箔と平板状の金属箔を重ねて多重に巻回して形成されている。
ハニカム体1を構成する金属箔の板厚や材質は適宜設定できる。
例えば、両金属箔の厚みはそれぞれ20〜30μm前後、材質は高剛性のアルミニウムを含むステンレス合金製で、さらに、焼き鈍し、または緩い焼き入れ処理が施されて高剛性になっている。
具体的には、例えばクロム(Cr)、アルミ(Al)をベースに高温酸化で生成するAl2O3被膜(アルミナ被膜)の成長を抑制する効果の高いランタン(LA)等を添加した、耐高温酸化性に優れたフェライト系ステンレス鋼が採用されている。
フェライト系ステンレス鋼の一例としてJFE規格のJFE20-5USRまたはJFE18-3USRを挙げておく。
同様に、ロウ箔材2の板厚や材質も適宜設定できる。一般的にはロウ箔材2の厚みは金属箔と同等の厚み(20〜30μm前後)で、材質はニッケル系のロウ箔材である。
ロウ箔材2は、図2の展開図に示すように、ロウ箔材2の一方の軸方向端部に周方向に亘り略均一の開口面積でかつ均一間隔で形成された多数の貫通孔2cが形成されている。
この貫通孔2cは、外筒3に対するハニカム体1のロウ付け時におけるロウ流れを受け止めるロウ溜まり手段を構成するもので、この実施例1ではラス加工により形成されている。
そして、この実施例1では、図1、2に示すように、ロウ箔材2は、ラス加工により貫通孔2cが切り開かれる方向を周方向としてハニカム体1の外周に巻回されている。
As shown in FIG. 1, the metal catalyst carrier C1 of Example 1 includes a honeycomb body 1, a brazing foil material 2, and an outer cylinder 3.
More specifically, the honeycomb body 1 is formed by overlapping a corrugated metal foil and a flat metal foil and winding them in multiple layers.
The thickness and material of the metal foil constituting the honeycomb body 1 can be set as appropriate.
For example, the thicknesses of both metal foils are each about 20-30 μm, and the material is made of a stainless steel alloy containing high-rigidity aluminum, which is further annealed or subjected to a mild quenching process to provide high-rigidity.
Specifically, for example, lanthanum (LA), which has a high effect of suppressing the growth of an Al 2 O 3 coating (alumina coating) produced by high-temperature oxidation based on chromium (Cr) or aluminum (Al), is added. Ferritic stainless steel with excellent high temperature oxidation is used.
An example of ferritic stainless steel is JFE standard JFE20-5USR or JFE18-3USR.
Similarly, the thickness and material of the brazing foil material 2 can be set as appropriate. Generally, the thickness of the brazing foil material 2 is the same as that of the metal foil (around 20 to 30 μm), and the material is a nickel-based brazing foil material.
As shown in the development view of FIG. 2, the brazing foil material 2 has a large number of through-holes 2c formed at one end in the axial direction of the brazing foil material 2 with a substantially uniform opening area and uniform intervals in the circumferential direction. Is formed.
The through-hole 2c constitutes a solder pool means for receiving a solder flow when the honeycomb body 1 is brazed to the outer cylinder 3, and is formed by lath machining in the first embodiment.
In Example 1, as shown in FIGS. 1 and 2, the brazing foil material 2 is wound around the outer periphery of the honeycomb body 1 with the direction in which the through holes 2 c are cut open by lath processing as the circumferential direction.

また、ロウ箔材6は、図2に示すように、その周方向両端縁部に非ラス加工部2bが形成され、図1に示すように、該両非ラス加工部2bを重ねてスポット溶接P1されている。非ラス加工部は必ずしも設けなくてもスポット溶接は可能である。
後に詳述するが、ロウ箔材2のラス加工部2aでラス加工により隣接する貫通孔2c相互間の網部に形成される隆起部2dはラス加工後に非ラス加工部2b(ロウ箔材母材B1)の厚さまで平坦に圧縮成形される(図5参照)。
Further, as shown in FIG. 2, the brazing foil material 6 has non-laser processed portions 2b formed at both edges in the circumferential direction. As shown in FIG. 1, the non-laser processed portions 2b are overlapped and spot welded. P1 has been. Spot welding is possible without necessarily providing a non-laser processed portion.
As will be described in detail later, the raised portion 2d formed in the mesh portion between the adjacent through holes 2c by the lath processing in the lath processing portion 2a of the brazing foil material 2 is the non-laser processing portion 2b (the brazing foil material mother) after the lath processing. It is compression-molded flat to the thickness of the material B1) (see FIG. 5).

次に、ラス加工による貫通孔2cを有するロウ箔材2の製造方法を、図3〜8に基づいて説明する。
まず、製造装置に付いて説明する。
ロウ箔材の製造には、送り出し装置4と、ラス加工装置5と、圧縮装置6と、切断装置7が用いられる。
送り出し装置4は、帯状に連続するロウ箔材母材B1をラス加工装置5及び圧縮装置6に順次送り出すもので、図3に示すように、上下一対の送り出しローラ41,41で構成されている。この送り出し装置4はロウ箔材母材B1の連続的な送り出しと間欠的な送り出しが行えるようになっている。
ラス加工装置5は、送り出し装置4によって送り出されるロウ箔材母材B1にラス加工により貫通孔2cを形成するもので、平坦な刃部51aを有する固定下刃51と、鋸刃状刃部52aを有する可動上刃52とで構成されている。可動上刃52は、上下方向への可動と、切断線方向への移動が可能になっている。
圧縮装置6は、ラス加工装置5により形成されるラス加工部2aでラス加工により隣接する貫通孔2c相互間の網部に形成される隆起部2dを非ラス加工部2bの厚さまで平坦に圧縮成形するもので、図4に示すように、上下一対の圧縮ローラ61,61で構成されている。
切断装置7は、ロウ箔材母材B1の一部にラス加工により貫通孔2cが形成されたロウ箔材2の製品一単位毎に切断するもので、図7に示すように、固定下刃71と、可動上刃72とで構成されている。
Next, a method for manufacturing the brazing foil material 2 having the through holes 2c by lath processing will be described with reference to FIGS.
First, the manufacturing apparatus will be described.
In the production of the brazing foil material, a feeding device 4, a lath processing device 5, a compression device 6, and a cutting device 7 are used.
The feeding device 4 sequentially feeds the strip-shaped brazing foil base material B1 to the lath processing device 5 and the compression device 6, and is composed of a pair of upper and lower feeding rollers 41, 41 as shown in FIG. . The delivery device 4 can perform continuous delivery and intermittent delivery of the brazing foil base material B1.
The lath processing device 5 forms a through hole 2c by lath processing in the brazing foil base material B1 fed by the feeding device 4, and includes a fixed lower blade 51 having a flat blade portion 51a, and a saw blade-like blade portion 52a. And a movable upper blade 52 having The movable upper blade 52 is movable in the vertical direction and movable in the cutting line direction.
The compressing device 6 flatly compresses the raised portion 2d formed in the mesh portion between the adjacent through holes 2c by lath processing to the thickness of the non-laser processing portion 2b by the lath processing portion 2a formed by the lath processing device 5. As shown in FIG. 4, it is formed by a pair of upper and lower compression rollers 61, 61.
The cutting device 7 is for cutting each product unit of the brazing foil material 2 in which a through hole 2c is formed by lath processing on a part of the brazing foil base material B1, and as shown in FIG. 71 and a movable upper blade 72.

次に、上記製造装置によるロウ箔材の製造方法を説明する。
<ラス加工>(図3(イ)〜(ヘ)参照)
(イ)ラス加工装置5の可動上刃52が上昇した状態で、送り出し装置4によりロウ箔材母材B1の先端縁部がラス加工装置5の固定下刃51上に送り出す。
(ロ)可動上刃52を下降させ、一列目の貫通孔2cを加工する。
(ハ)可動上刃52を上昇させ、送り出し装置4でロウ箔材母材B1を所定量送り出す。
(ニ)可動上刃52を貫通孔2cの幅(LW)の約1/2幅だけ横移動させる。
(ホ)可動上刃52を下降させ、二列目の貫通孔2cを加工する。
(ヘ)可動上刃52を上昇させ、送り出し装置4でロウ箔材母材B1を所定量送り出すと共に、可動上刃52を貫通孔2cの幅LWの約1/2幅だけ横移動させた分だけ元の位置に戻す。
以上の工程を繰り返すことにより、ロウ箔材母材B1の一部にラス加工により貫通孔2cを形成する。
Next, the manufacturing method of the brazing foil material by the said manufacturing apparatus is demonstrated.
<Lath machining> (See FIGS. 3 (a) to (f))
(A) With the movable upper blade 52 of the lath processing apparatus 5 raised, the leading edge of the brazing foil material base material B1 is fed onto the fixed lower blade 51 of the lath processing apparatus 5 by the feeding apparatus 4.
(B) The movable upper blade 52 is lowered to process the first row of through holes 2c.
(C) The movable upper blade 52 is raised and the feeding device 4 feeds the brazing foil base material B1 by a predetermined amount.
(D) The movable upper blade 52 is moved laterally by about half the width (LW) of the through hole 2c.
(E) The movable upper blade 52 is lowered to process the through holes 2c in the second row.
(F) The movable upper blade 52 is raised, and the feeder 4 feeds the brazing foil base material B1 by a predetermined amount, and the movable upper blade 52 is laterally moved by about 1/2 width LW of the through hole 2c. Only return it to its original position.
By repeating the above steps, a through hole 2c is formed in a part of the brazing foil base material B1 by lath processing.

そして、その後、送り出し装置4によりロウ箔材母材B1を非ラス加工部2bの倍の長さ分だけ送り出し、ラス加工装置5によるラス加工を行う。このように、送り出し装置4による送り出しとラス加工装置5によるラス加工を交互に繰り返すことにより、図4に示すように、貫通孔2cを有するラス加工部2aと非ラス加工部2b,2bが交互に形成されたロウ箔材2が連続的に製造される。
なお、非ラス加工部2bを設けない場合は中断することなく連続ラス加工製造が可能となり効率的である。
After that, the feeding device 4 feeds the brazing foil base material B1 by a length twice that of the non-laser processing portion 2b, and the lath processing device 5 performs the lath processing. Thus, by alternately repeating the feeding by the feeding device 4 and the lath machining by the lath machining device 5, as shown in FIG. 4, the lath machining portion 2a having the through-hole 2c and the non-laser machining portions 2b and 2b are alternated. The brazing foil material 2 formed in the above is continuously manufactured.
If the non-laser processing portion 2b is not provided, continuous lath processing can be manufactured without interruption, which is efficient.

<圧縮加工>(図5〜8参照)
上記ラス加工装置5で貫通孔2cを有するラス加工部2aと非ラス加工部2b,2bが交互に形成されたロウ箔材母材B1は、圧縮装置6における上下一対のローラ61,61間を通過することで、ラス加工部2aでラス加工により隣接する貫通孔2c相互間の網部に形成される隆起部2dが非ラス加工部2bの厚さまで平坦に圧縮成形される。
<切断加工>(図8参照)
上記圧縮装置で隆起部2dが非ラス加工部2bの厚さまで平坦に圧縮成形されたロウ箔材母材B1は、連続して形成された両非ラス加工部2b,2bの境界K1部において切断装置7を構成する固定下刃71に向けて下降する可動上刃72で切断することにより、ラス加工による貫通孔2cが形成されたラス加工部2aの両端に非ラス加工部2b,2bが形成されたロウ箔材2の製品一単位毎に切断されていく。
<Compression processing> (See FIGS. 5-8)
The brazing foil base material B1 in which the lath processed portion 2a having the through-hole 2c and the non-laser processed portions 2b, 2b are alternately formed in the lath processing device 5 is formed between the pair of upper and lower rollers 61, 61 in the compression device 6. By passing, the raised portion 2d formed in the mesh portion between the adjacent through holes 2c by the lath processing in the lath processed portion 2a is compression-molded flat to the thickness of the non-laser processed portion 2b.
<Cutting> (See Fig. 8)
The brazing foil base material B1 in which the raised portion 2d is flatly compressed to the thickness of the non-laser processed portion 2b by the compression device is cut at the boundary K1 portion between the two non-laser processed portions 2b and 2b formed continuously. By cutting with the movable upper blade 72 descending toward the fixed lower blade 71 constituting the device 7, non-laser processed portions 2b and 2b are formed at both ends of the lath processed portion 2a in which the through hole 2c is formed by lath processing. It is cut for each product unit of the wax material 2 that has been made.

次に、実施例1の金属触媒担体の製造方法を説明する。
まず、外筒3に対するハニカム体1の組み付け方法を図9〜18に基づいて説明する。
図9は実施例1の圧入装置を説明する図、図10は実施例1の圧入治具の平面図、図11は図9のS11-S11線における断面図、図12〜17は実施例1の圧入装置の作動を説明する図、図18は実施例1の排気系を説明する図である。
ハニカム体1は、図1に示すように、該ハニカム体1の外周の軸方向一部である排気ガス流れ方向下流側寄りの位置にロウ箔材2を巻回しスポット溶接P1で固定した状態で外筒3内に圧入装着される。
この圧入工程では、公知の特開平11−197518号公報と同様の圧入装置10を用いてハニカム体1を外筒3内に収容する。
Next, a method for producing the metal catalyst carrier of Example 1 will be described.
First, a method for assembling the honeycomb body 1 to the outer cylinder 3 will be described with reference to FIGS.
9 is a diagram for explaining the press-fitting device according to the first embodiment, FIG. 10 is a plan view of the press-fitting jig according to the first embodiment, FIG. 11 is a cross-sectional view taken along the line S11-S11 in FIG. FIG. 18 is a diagram for explaining the exhaust system of the first embodiment.
As shown in FIG. 1, the honeycomb body 1 has a brazing foil material 2 wound around a position near the downstream side in the exhaust gas flow direction which is a part of the outer periphery of the honeycomb body 1 and fixed by spot welding P1. It is press-fitted into the outer cylinder 3.
In this press-fitting step, the honeycomb body 1 is accommodated in the outer cylinder 3 by using a press-fitting device 10 similar to that disclosed in JP-A-11-197518.

<圧入装置について>
先ず、圧入装置10について詳述する。
図9において、水平な基台11上に立設されたタワーブロック12には、鉛直方向にレール13が延設されると共に、このレール13には昇降板14が摺動可能に係合されている。
昇降板14には、タワーブロック12に取付けられたエア式または油圧式等のシリンダ15のピストンロッド15aが連結しており、このシリンダ15の作動により昇降板14を上下動可能に構成されている。
また、昇降板14の上部には支持ブラケット16が備えられる一方、下部には支持ブラケット17が備えられている。
支持ブラケット16にはエア式または油圧式等のシリンダ18が鉛直方向に向けて装着される一方、支持ブラケット17には円筒状の圧入治具19がシリンダ18のピストンロッド18aと同軸上に装着されている。
ピストンロッド18aの下端には、円柱状の圧入ブロック20が連結されている。
なお、圧入ブロック20は、特開2001−341034号公報に記載のものと同様に径方向へ拡縮可能な構成にしても良い。
基台11上には、圧入治具19の下方で同軸上に配置されたワーク支持ブロック21が固設されると共に、このワーク支持ブロック21の上面には、外筒3の下端内周に嵌合する環状突起状の突起21aが形成されている。
さらに、圧入ブロック20の下方には同軸上に円盤状の支持体22が配置されている。
この支持体22の下部には、圧入治具19及びワーク支持ブロック21を貫通して基台11内に収容されたエア式または油圧式等のシリンダ23のピストンロッド23aが連結されており、このシリンダ23の作動により支持体22を上下動可能に構成されている。
<Press-fit device>
First, the press-fitting device 10 will be described in detail.
In FIG. 9, a tower block 12 standing on a horizontal base 11 is extended with a rail 13 in the vertical direction, and a lifting plate 14 is slidably engaged with the rail 13. Yes.
A piston rod 15a of an air or hydraulic cylinder 15 attached to the tower block 12 is connected to the elevating plate 14, and the elevating plate 14 can be moved up and down by the operation of the cylinder 15. .
In addition, a support bracket 16 is provided on the upper part of the elevating plate 14, and a support bracket 17 is provided on the lower part.
A pneumatic or hydraulic cylinder 18 is mounted on the support bracket 16 in the vertical direction, while a cylindrical press-fitting jig 19 is mounted on the support bracket 17 coaxially with the piston rod 18a of the cylinder 18. ing.
A cylindrical press-fit block 20 is connected to the lower end of the piston rod 18a.
Note that the press-fitting block 20 may be configured to be expandable / contractable in the radial direction, similar to that described in JP-A-2001-341034.
A work support block 21 coaxially disposed below the press-fitting jig 19 is fixed on the base 11, and the upper surface of the work support block 21 is fitted to the inner periphery of the lower end of the outer cylinder 3. A mating annular projection 21a is formed.
Further, a disk-like support 22 is coaxially disposed below the press-fit block 20.
A piston rod 23a of a cylinder 23 such as an air type or a hydraulic type, which is housed in the base 11 through the press-fitting jig 19 and the work support block 21, is connected to the lower part of the support body 22. The support 22 can be moved up and down by the operation of the cylinder 23.

図10、11に示すように、圧入治具19には同軸上に入口端部19aと出口端部19bを有する貫通孔19cが形成されている。
貫通孔19cには、入口端部19aから先細りした傾斜面を有する傾斜部19dと、この傾斜部19dから出口端部19b側へ鉛直方向に延設された環状突起状のガイド部19eが備えられている。
なお、傾斜部19dとガイド部19eとは滑らかな曲面で接続されている。
さらに、貫通孔19cの出口端部19bには所定の曲率で面取り加工された曲部19f(図11参照)が形成されている。
As shown in FIGS. 10 and 11, the press-fitting jig 19 is formed with a through-hole 19c having an inlet end 19a and an outlet end 19b on the same axis.
The through hole 19c is provided with an inclined portion 19d having an inclined surface tapered from the inlet end portion 19a, and an annular protrusion-shaped guide portion 19e extending vertically from the inclined portion 19d toward the outlet end portion 19b. ing.
The inclined portion 19d and the guide portion 19e are connected with a smooth curved surface.
Further, a curved portion 19f (see FIG. 11) chamfered with a predetermined curvature is formed at the outlet end portion 19b of the through hole 19c.

図11に示すように、貫通孔19cの入口端部19aの内径L1は巻回直後のハニカム体1の外径よりも大きく設定される一方、出口端部19bの内径L2はガイド部19eの板厚の分だけ外筒3の内径よりも小さい値に設定されている。
さらに、ガイド部19eにおける圧入治具19の底面19gからガイド部19eの下端までの突出長さL3は、前述したハニカム体1の各端面と外筒3のそれぞれ対応する端部3a(3b)からまでの長さH1と同じ値に設定されている。
As shown in FIG. 11, the inner diameter L1 of the inlet end portion 19a of the through hole 19c is set larger than the outer diameter of the honeycomb body 1 just after winding, while the inner diameter L2 of the outlet end portion 19b is the plate of the guide portion 19e. It is set to a value smaller than the inner diameter of the outer cylinder 3 by the thickness.
Furthermore, the protruding length L3 from the bottom surface 19g of the press-fitting jig 19 to the lower end of the guide portion 19e in the guide portion 19e is determined from each end surface of the honeycomb body 1 and the corresponding end portion 3a (3b) of the outer cylinder 3. It is set to the same value as the length H1 until.

<圧入装置の作動について>
このように構成された圧入装置10では、先ず、シリンダ15のピストンロッド15aの収縮作動により昇降板14を上昇位置に停止させる。
また、図12に示すように、シリンダ23のピストンロッド23aの収縮作動により支持体22を突起21aと同一高さで停止させた状態として、ワーク支持ブロック21上に外筒3を載置する。
この際、外筒3の下端内側に突起21aを嵌合させることにより、外筒3を圧入治具19と同軸上に配置できる。
次に、図12、13に示すように、シリンダ15のピストンロッド15aの伸長作動により昇降板14を徐々に下降させて、圧入治具19のガイド部19eを外筒3の上端部内側に挿入して、外筒3の上端部が圧入治具19の底面19gに当接したところで昇降板14の下降を停止させる。
この際、外筒3の上端部が圧入治具19の底面19gに当接することで、ガイド部19eの外筒3内への挿入代を適正にできる。
<Operation of press-fitting device>
In the press-fitting device 10 configured as described above, first, the lifting plate 14 is stopped at the raised position by the contraction operation of the piston rod 15a of the cylinder 15.
Further, as shown in FIG. 12, the outer cylinder 3 is placed on the work support block 21 in a state where the support 22 is stopped at the same height as the protrusion 21a by the contraction operation of the piston rod 23a of the cylinder 23.
At this time, the outer cylinder 3 can be arranged coaxially with the press-fitting jig 19 by fitting the protrusion 21a inside the lower end of the outer cylinder 3.
Next, as shown in FIGS. 12 and 13, the lifting plate 14 is gradually lowered by the extension operation of the piston rod 15 a of the cylinder 15, and the guide portion 19 e of the press-fitting jig 19 is inserted inside the upper end portion of the outer cylinder 3. Then, when the upper end portion of the outer cylinder 3 comes into contact with the bottom surface 19g of the press-fitting jig 19, the lowering of the elevating plate 14 is stopped.
At this time, since the upper end portion of the outer cylinder 3 abuts against the bottom surface 19g of the press-fitting jig 19, the insertion allowance of the guide portion 19e into the outer cylinder 3 can be made appropriate.

次に、図14に示すように、シリンダ23のピストンロッド23aの伸長作動により支持体22を圧入治具19の上端よりも僅かに上方となるように配置した後、支持体22上にハニカム体1を載置する。
次に、シリンダ18の伸長作動によりピストンロッド18aに結合された圧入ブロック20を徐々に下降させて、図15に示すように、圧入ブロック20の下面がハニカム体1の上面に当接したところで、シリンダ23のピストンロッド23aの収縮作動により支持体22を圧入ブロック20と同期させて下降させる。
その後、ハニカム体1の下端が圧入治具19の傾斜部19dに接触したところで、支持体22を増速して元位置に復帰させる(図14参照)。
一方、図16に示すように、圧入ブロック20はハニカム体1の上面を下方へ押して、圧入ブロック20の下端がガイド部19eの下端と同一高さか僅かに下方位置になるまで下降する。
これにより、ハニカム体1は、ガイド部19eを貫通して、外筒3内への圧入が開始され、圧入ブロック20の下端がガイド部19eの下端位置に達して、ハニカム体1がガイド部19eを完全に貫通したところで、外筒3内への圧入が終了する。
なお、ハニカム体1が収容された外筒3は、シリンダ15、18のピストンロッド15a、18aの収縮作動により、昇降板14(圧入治具19)を元位置に復帰させた後、ワーク支持ブロック21から取り外すことができる。
Next, as shown in FIG. 14, after the support body 22 is disposed slightly above the upper end of the press-fitting jig 19 by the extension operation of the piston rod 23 a of the cylinder 23, the honeycomb body is placed on the support body 22. Place 1
Next, the press-fitting block 20 coupled to the piston rod 18a is gradually lowered by the extension operation of the cylinder 18, and as shown in FIG. 15, when the lower surface of the press-fitting block 20 comes into contact with the upper surface of the honeycomb body 1, The support 22 is lowered in synchronization with the press-fit block 20 by the contraction operation of the piston rod 23a of the cylinder 23.
Thereafter, when the lower end of the honeycomb body 1 comes into contact with the inclined portion 19d of the press-fitting jig 19, the support body 22 is accelerated and returned to the original position (see FIG. 14).
On the other hand, as shown in FIG. 16, the press-fitting block 20 pushes the upper surface of the honeycomb body 1 downward, and lowers until the lower end of the press-fitting block 20 is at the same height as the lower end of the guide portion 19e or slightly below.
Thereby, the honeycomb body 1 penetrates the guide portion 19e, and press-fitting into the outer cylinder 3 is started, the lower end of the press-fit block 20 reaches the lower end position of the guide portion 19e, and the honeycomb body 1 becomes the guide portion 19e. When completely passing through, the press-fitting into the outer cylinder 3 is completed.
The outer cylinder 3 in which the honeycomb body 1 is housed is moved to the work support block after the lifting plate 14 (press-fit jig 19) is returned to the original position by the contraction operation of the piston rods 15a and 18a of the cylinders 15 and 18. Can be removed from 21.

<ハニカム体の損傷防止について>
ここで、図17に示すように、ガイド部19eは外筒3内の上端部から突出長さL3だけ移動した位置まで挿入されているため、ハニカム体1は外筒3の上端部から突出長さL3だけ移動した位置から外筒3内に圧入されることとなる。
これにより、ハニカム体1の圧入開始位置が外筒3の端部から軸方向内側位置へ突出長さL3だけ移動した位置になる。
従って、ハニカム体1の圧入距離を短くでき、ハニカム体1の変形・座屈を防止できる。
また、ハニカム体1の圧入距離を短くしたことで、圧入抵抗を軽減できる上、圧入に掛かる時間を短縮でき、結果的にハニカム体1の変形・座屈の防止に繋がる。
<About prevention of damage to honeycomb body>
Here, as shown in FIG. 17, since the guide portion 19e is inserted from the upper end portion in the outer cylinder 3 to a position moved by the protruding length L3, the honeycomb body 1 has a protruding length from the upper end portion of the outer cylinder 3. It is press-fitted into the outer cylinder 3 from the position moved by the distance L3.
Thereby, the press-fitting start position of the honeycomb body 1 is a position moved from the end of the outer cylinder 3 to the axially inner position by the protruding length L3.
Therefore, the press-fitting distance of the honeycomb body 1 can be shortened, and deformation and buckling of the honeycomb body 1 can be prevented.
In addition, since the press-fitting distance of the honeycomb body 1 is shortened, the press-fitting resistance can be reduced and the time required for press-fitting can be shortened. As a result, the honeycomb body 1 is prevented from being deformed or buckled.

さらに、貫通孔19cの出口端部19bには曲部19f(図12参照)が形成されているため、ハニカム体1を保護できると同時に、圧入治具19の耐用寿命を延ばすこともできる。
また、ガイド部19eの内径L2はガイド部19eの板厚の分だけ外筒3の内径よりも小さいため、ハニカム体1の外径を外筒3の内径よりも僅かに小さくした状態でハニカム体1を外筒3内に圧入できる。
これにより、ハニカム体1の圧入抵抗を低減でき、結果的にハニカム体1の変形・座屈の防止に繋がる。
このように、実施例1では、ハニカム体1の座屈を招くことなく、比較的小さい圧入荷重でもって、ハニカム体1を外筒3内にスムーズに圧入できる。
Further, since the curved end portion 19f (see FIG. 12) is formed at the outlet end portion 19b of the through hole 19c, the honeycomb body 1 can be protected and the useful life of the press-fitting jig 19 can be extended.
Further, since the inner diameter L2 of the guide part 19e is smaller than the inner diameter of the outer cylinder 3 by the thickness of the guide part 19e, the honeycomb body 1 is slightly smaller than the inner diameter of the outer cylinder 3 in the honeycomb body 1 1 can be press-fitted into the outer cylinder 3.
As a result, the press-fit resistance of the honeycomb body 1 can be reduced, and as a result, deformation and buckling of the honeycomb body 1 can be prevented.
Thus, in Example 1, the honeycomb body 1 can be smoothly press-fitted into the outer cylinder 3 with a relatively small press-fit load without causing the buckling of the honeycomb body 1.

<外筒端部の変形防止について>
また、従来の発明のようにハニカム体の圧入開始位置を外筒の上端部位置とした場合には、ハニカム体によって外筒の上端部に負担が掛かり、歪みが生じる虞がある。
これに対し、実施例1では外筒3の上端部に負担が掛かる虞がなく、真円度を維持することができる。
<Preventing deformation of the outer cylinder end>
Moreover, when the press-fitting start position of the honeycomb body is set to the upper end position of the outer cylinder as in the conventional invention, the honeycomb body places a burden on the upper end portion of the outer cylinder, which may cause distortion.
On the other hand, in Example 1, there is no possibility that a load is applied to the upper end portion of the outer cylinder 3, and the roundness can be maintained.

次に、ハニカム体1における波板状の金属箔と平板状の金属箔の拡散接合とロウ箔材2の溶融による外筒3とハニカム体1のロウ付け固定方法について説明する
以上のようにハニカム体1の外周の軸方向一部である排気ガス流れ方向下流側寄りの位置にロウ箔材2を巻回した状態で外筒3内に圧入装着された金属触媒担体C1は、真空炉内で加熱することでハニカム体1の波板状金属箔と平板状金属箔を拡散接合すると同時に外筒3とハニカム体1を帯状にロウ付け固定することにより製造される。
即ち、真空炉内の温度を上昇させて行くことにより、まず、1,100℃(第1所定温度)でハニカム体1の外周一部と外筒3がロウ箔材2の溶融によりロウ付け固定され、1,250℃(第2所定温度)でハニカム体1の波板状金属箔と平板状金属箔の接している部が拡散接合される。
Next, a method for brazing and fixing the outer cylinder 3 and the honeycomb body 1 by diffusion bonding of the corrugated metal foil and the flat metal foil in the honeycomb body 1 and melting of the brazing foil material 2 will be described. The metal catalyst carrier C1 press-fitted into the outer cylinder 3 in a state where the wax foil material 2 is wound at a position near the downstream side in the exhaust gas flow direction, which is a part of the outer circumference of the body 1, is placed in the vacuum furnace. By heating, the corrugated metal foil and the flat metal foil of the honeycomb body 1 are diffusion-bonded, and at the same time, the outer tube 3 and the honeycomb body 1 are brazed and fixed in a band shape.
That is, by increasing the temperature in the vacuum furnace, first, the outer peripheral part of the honeycomb body 1 and the outer cylinder 3 are brazed and fixed by melting the brazing foil material 2 at 1,100 ° C. (first predetermined temperature). The portion of the honeycomb body 1 where the corrugated metal foil and the flat metal foil are in contact is diffusion-bonded at 1,250 ° C. (second predetermined temperature).

このように構成された金属触媒担体C1は、外筒3の端部3a、3bが自動車の内燃機関排気系に連通接続された状態で介装される。
例えば、図18に示すように、自動車の内燃機関排気系は、排気上流側となるエンジンa1の図示しない排気ポートから各排気管a2〜a4を介して金属触媒担体C1、サブマフラa5、メインマフラa6が連通接続されている。
また、金属触媒担体C1の外筒3の端部3a、3bには、筒状のディフューザ24,25の一端部が溶接固定されている。
さらに、ディフューザ24,25の縮径した他端部にはそれぞれ対応する排気管a2,a3と締結するための接続フランジa7が溶接固定されている。
The thus configured metal catalyst carrier C1 is interposed in a state in which the end portions 3a and 3b of the outer cylinder 3 are connected in communication with the internal combustion engine exhaust system of the automobile.
For example, as shown in FIG. 18, an internal combustion engine exhaust system of an automobile has a metal catalyst carrier C1, a sub muffler a5, a main muffler a6 from exhaust ports (not shown) of an engine a1 on the exhaust upstream side through exhaust pipes a2 to a4. Are connected.
In addition, one end portions of the cylindrical diffusers 24 and 25 are welded and fixed to the end portions 3a and 3b of the outer cylinder 3 of the metal catalyst carrier C1.
Further, connecting flanges a7 for fastening to the corresponding exhaust pipes a2 and a3 are welded and fixed to the other end portions of the diffusers 24 and 25 whose diameters are reduced.

次に、この実施例1の作用を説明する。
<ロウ流れ防止作用について>
ロウ箔材2にロウ付け時におけるロウ流れを受け止めるロウ溜まり手段がロウ箔材2の周方向に亘り略均一の開口面積でかつ均一間隔で形成された多数の貫通孔2cで構成されることで、拡散接合のため加熱された時に溶融したロウ箔材2はロウ箔材2自体に設けられた貫通孔2c内に広がり受け止められるため、ロウ箔材2の幅を越えてハニカム体1の軸方向に広がらないので外筒3に溝を設けることなしにロウ上り、ロウ下りというロウ流れを防止してロウ付け品質を向上することができる。
Next, the operation of the first embodiment will be described.
<About low flow prevention action>
The brazing means for receiving the brazing flow at the time of brazing on the brazing foil material 2 is composed of a large number of through holes 2c formed with a substantially uniform opening area and uniform intervals in the circumferential direction of the brazing foil material 2. Since the brazing foil material 2 melted when heated for diffusion bonding spreads and is received in the through-hole 2c provided in the brazing foil material 2 itself, the axial direction of the honeycomb body 1 exceeds the width of the brazing foil material 2. Therefore, it is possible to improve the brazing quality by preventing a row flow such as going up and going down without providing a groove in the outer cylinder 3.

<ロウ箔材の材料費低減作用について>
ロウ溜まり手段を構成する貫通孔2cがラス加工により形成されることで、ラス加工では貫通孔2cが切り開かれてロウ箔材2の貫通孔2cを含めた面積が広がるため、高価なニッケルロウ箔材2の使用量は、ロウ箔材2の面積比で数分の1(1/3〜1/5)ですむことなり、材料費の大幅低減が可能になる。つまり、同じ貫通孔2cを含めた面積のロウ箔材2をプレス等の打ち抜き加工で製造する場合に比べて廃棄する材料が無くなるためである。
なお、ラス加工による貫通孔2cの大きさは、任意であるが、1.4×2.0mm程度まで小さくすることが望ましい。
また、貫通孔2cの大きさが1.4×2.0mmの場合に網部の幅を0.4mmとすることで、ロウ箔材2の使用量は、ロウ箔材2の面積比で約1/5まで減少させることができる。
<Reducing the material cost of brazing foil material>
Since the through hole 2c constituting the brazing means is formed by lath processing, the through hole 2c is cut open in lath processing and the area including the through hole 2c of the brazing foil material 2 is widened. The amount of material 2 used is only a fraction of the area ratio of brazing foil material 2 (1/3 to 1/5), and material costs can be greatly reduced. That is, there is no material to be discarded compared to the case where the brazing foil material 2 having the same area including the through hole 2c is manufactured by punching such as a press.
The size of the through-hole 2c by lath processing is arbitrary, but it is desirable to reduce it to about 1.4 × 2.0 mm.
In addition, when the size of the through hole 2c is 1.4 × 2.0 mm, the width of the net portion is set to 0.4 mm, so that the usage amount of the brazing foil material 2 is up to about 1/5 in terms of the area ratio of the brazing foil material 2. Can be reduced.

<ロウ箔材の生産性向上作用について>
ラス加工により貫通孔2cが切り開かれる方向を周方向としてハニカム体1の外周に巻回することで、金属触媒担体C1の直径が変わっても、同じ幅のロウ箔材母材B1で切断長さを変えるだけであるため、幅鋸となる複数のロウ箔材母材B1を準備する必要がなくなる。
ハニカム体1の外周長さの異なるものを製造する場合に任意の位置で切断し、巻回後スポット溶接でハニカム体1の外周に固定することができる。
なお、この実施例1におけるようにロウ箔材2の両端に非ラス加工部2b,2bを形成する場合は、金属触媒担体C1の直径に応じて送り出し装置4による送り出し量を変えればよい。
<Productivity improvement effect of wax foil material>
Even if the diameter of the metal catalyst carrier C1 is changed by winding it around the outer periphery of the honeycomb body 1 with the direction in which the through-hole 2c is cut open by lath processing as the circumferential direction, the cutting length with the brazing foil base material B1 of the same width Therefore, it is not necessary to prepare a plurality of brazing foil base materials B1 to be width saws.
When manufacturing the honeycomb body 1 having different outer peripheral lengths, it can be cut at an arbitrary position and fixed to the outer periphery of the honeycomb body 1 by spot welding after winding.
Note that when the non-laser processed portions 2b and 2b are formed at both ends of the brazing foil material 2 as in the first embodiment, the delivery amount by the delivery device 4 may be changed according to the diameter of the metal catalyst carrier C1.

<組み付け性向上作用について>
ロウ箔材2のラス加工により形成される隆起部2dが平坦に圧縮成形されることで、一部にロウ箔材2を巻き付けたハニカム体1を外筒3内に圧入する時の摩擦抵抗が低減し、スムーズに圧入することができる。
また、ロウ箔材2がラス加工により貫通孔2cが切り開かれる方向を周方向としてハニカム体1の外周に巻回されることにより、ロウ箔材2を巻き付けたハニカム体1を外筒3内に圧入する時の、ラス加工により形成される隆起部2dによる摩擦抵抗がラス加工により切り開かれる方向を軸方向とする場合に比べて小さくなるため、隆起部2dを平坦に圧縮成形しない場合でもハニカム体1を外筒3内にスムーズに圧入装着できるようになる。
<Assemblyability improvement effect>
The raised portion 2d formed by lath processing of the brazing foil material 2 is flatly compression-molded, so that the friction resistance when the honeycomb body 1 around which the brazing foil material 2 is wound is press-fitted into the outer cylinder 3 is increased. It can be reduced and press-fit smoothly.
Further, the brazing foil material 2 is wound around the outer periphery of the honeycomb body 1 with the direction in which the through holes 2c are cut open by lath processing as the circumferential direction, whereby the honeycomb body 1 around which the brazing foil material 2 is wound is placed in the outer cylinder 3. Since the frictional resistance due to the raised portion 2d formed by lath processing during press-fitting is smaller than the case where the direction in which the raised portion is opened by lath processing is set to the axial direction, the honeycomb body even when the raised portion 2d is not flatly compression-molded 1 can be press fitted smoothly into the outer cylinder 3.

<金属触媒担体の耐久性向上作用について>
ハニカム体1は、該ハニカム体1の外周の軸方向一部にロウ箔材2を巻回した状態で外筒3内に圧入装着されてロウ接される。これによりハニカム体1の軸方向に溶融したロウ材が所定範囲内にとどまり、広がらないようになることで、ハニカム体1のロウ箔材2が巻回されていない部分は軸方向及び半径方向に自由に熱膨張収縮できるため、高温の排気ガスが流通したときの熱膨張、冷却時の熱収縮時における熱応力の集中を防止、耐久性を向上させることができる。
<Durability improvement action of metal catalyst carrier>
The honeycomb body 1 is press-fitted and brazed into the outer cylinder 3 in a state where the brazing foil material 2 is wound around a part of the outer periphery of the honeycomb body 1 in the axial direction. As a result, the brazing material melted in the axial direction of the honeycomb body 1 stays within a predetermined range and does not spread, so that the portion of the honeycomb body 1 where the brazing foil material 2 is not wound is in the axial direction and the radial direction. Since the thermal expansion and contraction can be freely performed, the thermal expansion when high-temperature exhaust gas flows and the concentration of thermal stress during the thermal contraction during cooling can be prevented and the durability can be improved.

<ロウ箔材の製造効率化作用について>
送り出し装置4とラス加工装置5を用い、帯状に連続するロウ箔材母材B1を送り出し装置4により間欠的に送り出しながらラス加工装置5によりラス加工部2aを加工するラス加工工程と、送り出し装置4による送り出しにより非ラス加工部2bを送り出す非ラス加工工程とを交互に行う成形工程と、切断装置7によりロウ箔材2の製品一単位毎に切断する切断工程とからなる製造装置を用いることで、ラス加工による貫通孔2c(ロウ溜まり手段)が形成されたラス加工部2aの両端に非ラス加工部2b,2bが形成されたロウ箔材2を効率的に製造することができる。
<About the production efficiency improvement effect of wax foil material>
A lathe machining process in which the lath machining section 2a is machined by the lath machining device 5 while intermittently feeding the brazing foil base material B1 in a strip shape using the feed device 4 and the lath machining device 5, and the feeding device Use a manufacturing apparatus comprising a forming process for alternately performing a non-laser processing step for sending out the non-laser processed part 2b by feeding by 4 and a cutting process for cutting the brazing foil material 2 for each product unit by the cutting device 7. Thus, it is possible to efficiently manufacture the brazing foil material 2 in which the non-laser processed portions 2b and 2b are formed at both ends of the lath processed portion 2a in which the through hole 2c (wax collecting means) is formed by the lath processing.

なお、非ラス加工部2bを設けない場合は中断することなく連続ラス加工製造が可能となり効率的である。
また、成形工程と切断工程との間に、ラス加工部2aのラス加工により形成される隆起部2dを圧縮装置6により非ラス加工部2bの厚さまで平坦に圧縮成形する圧縮工程を備えることで、ラス加工により形成される隆起部2dの圧縮成形を連続的に行えるため、隆起部2dのないロウ箔材2を効率的に製造することができる。
If the non-laser processing portion 2b is not provided, continuous lath processing can be manufactured without interruption, which is efficient.
In addition, by providing a compression step between the forming step and the cutting step, the raised portion 2d formed by the lath processing of the lath processed portion 2a is flatly compressed to the thickness of the non-laser processed portion 2b by the compression device 6. Since the bulging portion 2d formed by lath processing can be continuously compressed, the brazing foil material 2 without the bulging portion 2d can be efficiently manufactured.

次に、実施例1の効果を列挙する。
(1) 実施例1の金属触媒担体では、上述のように、ロウ箔材2にロウ付け時におけるロウ流れを受け止めるロウ溜まり手段が設けられている。
これにより、拡散接合時に溶融したロウ箔材2はロウ箔材2自体に設けられたロウ溜まり手段に受け止められるため、必要以上にハニカム体1と外筒3の間に広がらない。所謂メタルロウ上り、ロウ下りというロウ流れを防止できる。
従って、外筒3に溝を設けることなしに拡散接合時のロウ流れを防止してロウ付け品質を向上することができる。
(2) 実施例1の金属触媒担体では、上述のように、ロウ溜まり手段がロウ箔材2の周方向に亘り略均一の開口面積でかつ均一間隔で形成された多数の貫通孔2cで構成されている。
これにより、拡散接合時に溶融したロウ箔材2はロウ箔材2自体に設けられた貫通孔2c(ロウ溜まり手段)に受け止められるため必要以上にハニカム体1と外筒3の間に広がらない。所謂、ロウ上り、ロウ下りというロウ流れを防止できる。
従って、外筒3に溝を設けることなしに拡散接合時のロウ流れを防止してロウ付け品質を向上することができる。
(3) 実施例1の金属触媒担体では、上述のように、ロウ溜まり手段を構成する貫通孔2cがラス加工により形成されている。
このように、ラス加工では貫通孔2cが切り開かれてロウ箔材2の面積が広がるため、高価なニッケルロウ箔材2の使用量は、ロウ箔材2の面積比で数分の1(1/3〜1/5)ですむことなり、材料費の大幅低減が可能になる。
Next, effects of Example 1 are listed.
(1) In the metal catalyst carrier of the first embodiment, as described above, the brazing member 2 is provided with brazing means for receiving the brazing flow during brazing.
As a result, the brazing foil material 2 melted at the time of diffusion bonding is received by the brazing means provided in the brazing foil material 2 itself, so that it does not spread between the honeycomb body 1 and the outer cylinder 3 more than necessary. It is possible to prevent the so-called metal flow up and down.
Therefore, brazing quality can be improved by preventing brazing during diffusion bonding without providing a groove in the outer cylinder 3.
(2) In the metal catalyst carrier of Example 1, as described above, the brazing reservoir means is composed of a large number of through holes 2c formed in the circumferential direction of the brazing foil material 2 with a substantially uniform opening area and uniform intervals. Has been.
As a result, the brazing foil material 2 melted at the time of diffusion bonding is received by the through-hole 2c (wax collecting means) provided in the brazing foil material 2 itself, so that it does not spread between the honeycomb body 1 and the outer cylinder 3 more than necessary. It is possible to prevent so-called low flow and low flow.
Therefore, brazing quality can be improved by preventing brazing during diffusion bonding without providing a groove in the outer cylinder 3.
(3) In the metal catalyst carrier of Example 1, as described above, the through hole 2c constituting the brazing pool means is formed by lath processing.
Thus, in the lath processing, the through hole 2c is cut open and the area of the brazing foil material 2 is expanded, so the amount of expensive nickel brazing foil material 2 used is a fraction of the area ratio of the brazing foil material 2 (1 / 3 to 1/5), and material costs can be greatly reduced.

(4) 実施例1の金属触媒担体では、上述のように、ロウ箔材2がラス加工により貫通孔2cが切り開かれる方向を周方向としてハニカム体1の外周に巻回されている。
これにより、ロウ箔材2を巻き付けたハニカム体1を外筒3内に圧入する時の、ラス加工により形成される隆起部2dによる摩擦抵抗がラス加工により切り開かれる方向を軸方向とする場合に比べて小さくなるため、隆起部2dを平坦に圧縮成形しない場合でもハニカム体1を外筒3内にスムーズに圧入装着できるようになる。
さらに、ラス加工により貫通孔2cが切り開かれる方向を周方向としてハニカム体1の外周に巻回することにより、金属触媒担体C1の直径が変わっても、同じ幅のロウ箔材母材B1で切断長さを変えるだけであるため、幅鋸となる複数のロウ箔材母材B1を準備する必要がなくなる。なお、この実施例1におけるようにロウ箔材2の両端に非ラス加工部2b,2bを形成する場合は、金属触媒担体C1の直径に応じて送り出し装置4による送り出し量を変えればよい。
また、非ラス加工部2bは、ロウ箔材2の成形の長手方向に任意の間隔で連続的に設けることにより、任意に切断してハニカム体1の周囲に巻回し任意の位置でスポット溶接P1することができるようになる。また、ハニカム体1の半径方向の大きさの種類の異なるものに対して公倍数的に間隔を設けることにより、1種類のラス加工ロウ箔材2で異なる半径のハニカム体1へ対応することも可能になる。
(4) In the metal catalyst carrier of Example 1, as described above, the brazing foil material 2 is wound around the outer periphery of the honeycomb body 1 with the direction in which the through hole 2c is cut open by lath processing as the circumferential direction.
Accordingly, when the honeycomb body 1 around which the brazing foil material 2 is wound is press-fitted into the outer cylinder 3, the axial direction is the direction in which the frictional resistance due to the raised portion 2d formed by lath machining is cut open by lath machining. Therefore, the honeycomb body 1 can be smoothly press-fitted into the outer cylinder 3 even when the raised portion 2d is not flatly compression-molded.
Furthermore, even if the diameter of the metal catalyst carrier C1 is changed by winding it around the outer periphery of the honeycomb body 1 with the direction in which the through-hole 2c is opened by lath processing as the circumferential direction, it is cut with the brazing foil base material B1 having the same width. Since only the length is changed, it is not necessary to prepare a plurality of brazing foil base materials B1 to be width saws. Note that when the non-laser processed portions 2b and 2b are formed at both ends of the brazing foil material 2 as in the first embodiment, the delivery amount by the delivery device 4 may be changed according to the diameter of the metal catalyst carrier C1.
Further, the non-laser processed portion 2b is continuously cut at an arbitrary interval in the longitudinal direction of the molding of the brazing foil material 2, and is arbitrarily cut and wound around the honeycomb body 1 to be spot-welded P1 at an arbitrary position. Will be able to. In addition, it is possible to deal with honeycomb bodies 1 having different radii by using one type of lath-processed brazing foil material 2 by providing a common multiple spacing for different types of honeycomb bodies 1 in the radial direction. become.

(5) 実施例1の金属触媒担体では、上述のように、ロウ箔材2のラス加工により形成される隆起部2dが平坦に圧縮成形されている。
これにより、一部にロウ箔材2を巻き付けたハニカム体1を外筒3内に圧入する時の摩擦抵抗が低減し、スムーズに圧入することができる。
(6) 実施例1の金属触媒担体では、上述のように、ハニカム体1は、該ハニカム体1の外周の軸方向一部にロウ箔材2を巻回した状態で外筒3内に圧入装着されている。
これにより、ハニカム体1のロウ箔材2が巻回されていない部は軸方向及び半径方向に自由に熱膨張収縮できるため、外筒3とハニカム体1との間の熱応力の集中を防止、耐久性を向上させることができる。
(7) 実施例1の金属触媒担体の製造方法では、上述のように、送り出し装置4とラス加工装置5を用い、帯状に連続するロウ箔材母材B1を送り出し装置4により間欠的に送り出しながらラス加工装置5によりラス加工部2aを加工するラス加工工程と、送り出し装置4による送り出しにより非ラス加工部2bを送り出す非ラス加工工程とを交互に行う成形工程と、切断装置7を用いロウ箔材2の製品一単位毎に切断する切断工程とからなる。
これにより、一部にラス加工によるロウ溜まり手段を有するロウ箔材2を効率的に製造することができる。
(5) In the metal catalyst carrier of Example 1, as described above, the raised portion 2d formed by lath processing of the brazing foil material 2 is flatly compression-molded.
Thereby, the frictional resistance when the honeycomb body 1 partially wrapped with the wax foil material 2 is press-fitted into the outer cylinder 3 is reduced, and can be smoothly press-fitted.
(6) In the metal catalyst carrier of Example 1, as described above, the honeycomb body 1 is press-fitted into the outer cylinder 3 with the brazing foil material 2 wound around a part of the outer periphery of the honeycomb body 1 in the axial direction. It is installed.
As a result, the portion of the honeycomb body 1 where the brazing foil material 2 is not wound can be freely thermally expanded and contracted in the axial direction and the radial direction, thereby preventing concentration of thermal stress between the outer tube 3 and the honeycomb body 1. , Durability can be improved.
(7) In the method for producing the metal catalyst carrier of Example 1, as described above, the brazing material base material B1 continuous in a strip shape is intermittently fed by the feeding device 4 using the feeding device 4 and the lath processing device 5. However, a forming process for alternately performing a lath machining process in which the lath machining part 2a is machined by the lath machining apparatus 5 and a non-laser machining process in which the non-laser machining part 2b is fed by feeding by the feeding apparatus 4 and a cutting apparatus 7 are used for soldering. And a cutting step of cutting each unit of the product of the foil material 2.
As a result, it is possible to efficiently manufacture the brazing foil material 2 partially having brazing pool means by lath processing.

(8) 実施例1の金属触媒担体で用いられるロウ箔材の製造方法では、上述のように、成形工程と切断工程との間に、ラス加工部2aのラス加工により形成される隆起部2dを圧縮装置6により非ラス加工部2bの厚さまで平坦に圧縮成形する圧縮工程を備える。
これにより、ラス加工により形成される隆起部2dの圧縮成形を連続的に行えるため、隆起部2dのないロウ箔材2を効率的に製造することができる。
(9) 実施例1の金属触媒担体の製造方法では、上述のように、1,100℃(第1所定温度)でロウ箔材の溶融による外筒に対するハニカム体のロウ付け固定を行い、1,100℃(第1所定温度)よりは高い1,250℃(第2所定温度)でハニカム体の拡散接合を行う。
これにより、拡散接合時にロウ箔材2が必要以上に溶融するが、この必要以上に溶融したロウ箔材2はロウ箔材2自体に設けられたロウ溜まり手段に受け止められるため、ロウ上り、ロウ下りというロウが外筒3とハニカム体1の隙間に広がるロウ流れを防止できる。
従って、ロウ付け温度より拡散接合温度が高い場合でも、外筒3に溝を設けることなしに拡散接合時のロウ流れを防止してロウ付け品質を向上することができる。
(8) In the method for producing the brazing foil material used in the metal catalyst carrier of Example 1, as described above, the raised portion 2d formed by the lath processing of the lath processed portion 2a between the forming step and the cutting step. Is provided with a compression step in which the compression device 6 is compression-molded flat to the thickness of the non-laser processed portion 2b.
Thereby, since the compression molding of the raised portion 2d formed by lath processing can be performed continuously, the brazing foil material 2 without the raised portion 2d can be efficiently manufactured.
(9) In the method of manufacturing the metal catalyst carrier of Example 1, as described above, the honeycomb body is brazed and fixed to the outer cylinder by melting the brazing foil material at 1,100 ° C. (first predetermined temperature), and 1,100 ° C. ( The diffusion bonding of the honeycomb body is performed at 1,250 ° C. (second predetermined temperature) higher than the first predetermined temperature.
As a result, the brazing foil material 2 melts more than necessary during diffusion bonding, but the brazing foil material 2 melted more than necessary is received by the brazing means provided in the brazing foil material 2 itself. It is possible to prevent the flow of descending wax from spreading in the gap between the outer cylinder 3 and the honeycomb body 1.
Therefore, even when the diffusion bonding temperature is higher than the brazing temperature, the brazing quality can be improved by preventing the brazing flow during the diffusion bonding without providing a groove in the outer cylinder 3.

次に、他の実施例について説明する。この他の実施例の説明にあたっては、前記実施例1と同様の構成部については図示を省略し、もしくは同一の符号を付けてその説明を省略し、相違点についてのみ説明する。   Next, another embodiment will be described. In the description of the other embodiments, the same components as those of the first embodiment are not shown, or the same reference numerals are given and the description thereof is omitted, and only the differences will be described.

〔実施例2〕
この実施例2は、実施例1におけるロウ箔材の変形例を示すものであり、図19(金属触媒担体を示す断面図)、図20(ロウ箔材の一部切欠展開図)に示すように、ロウ箔材2が、ラス加工により切り開かれる方向を軸方向として前記ハニカム体の外周に巻回されるもので、該ロウ箔材2の排気ガス上流側となる軸方向端部の貫通孔2cが形成されたラス加工部2eと、排気ガス下流側となる軸方向端部側の貫通孔2cが形成されていない非ラス加工部2fとで構成されている点が、上記実施例1とは相違したものである。
[Example 2]
This Example 2 shows a modification of the brazing foil material in Example 1, as shown in FIG. 19 (cross-sectional view showing the metal catalyst carrier) and FIG. 20 (partially cutaway development view of the brazing foil material). In addition, the brazing foil material 2 is wound around the outer periphery of the honeycomb body with the direction opened by lath processing as the axial direction, and the through-hole in the axial end portion on the exhaust gas upstream side of the brazing foil material 2 The first embodiment is that the lath processed portion 2e in which 2c is formed and the non-laser processed portion 2f in which the through hole 2c on the axial end portion side, which is the exhaust gas downstream side, is not formed. Is different.

次に、ラス加工による貫通孔2cを有するロウ箔材2の製造方法を、図3〜8に基づいて説明する。
この実施例2では、上記実施例1で用いた製造装置が用いられる。
<ラス加工>(図3(イ)〜(ヘ)参照)
(イ)ラス加工装置5の可動上刃52が上昇した状態で、送り出し装置4によりロウ箔材母材B1の先端縁部がラス加工装置5の固定下刃51上に送り出す。
(ロ)可動上刃52を下降させ、一列目の貫通孔2cを加工する。
(ハ)可動上刃52を上昇させ、送り出し装置4でロウ箔材母材B1を所定量送り出す。
(ニ)可動上刃52を貫通孔2cの幅(LW)の約1/2幅だけ横移動させる。
(ホ)可動上刃52を下降させ、二列目の貫通孔2cを加工する。
(ヘ)可動上刃52を上昇させ、送り出し装置4でロウ箔材母材B1を所定量送り出すと共に、可動上刃52を貫通孔2cの幅LWの約1/2幅だけ横移動させた分だけ元の位置に戻す。
以上の工程を繰り返すことにより、ロウ箔材母材B1の一部にラス加工により貫通孔2cを形成する。
Next, a method for manufacturing the brazing foil material 2 having the through holes 2c by lath processing will be described with reference to FIGS.
In the second embodiment, the manufacturing apparatus used in the first embodiment is used.
<Lath machining> (See FIGS. 3 (a) to (f))
(A) With the movable upper blade 52 of the lath processing apparatus 5 raised, the leading edge of the brazing foil material base material B1 is fed onto the fixed lower blade 51 of the lath processing apparatus 5 by the feeding apparatus 4.
(B) The movable upper blade 52 is lowered to process the first row of through holes 2c.
(C) The movable upper blade 52 is raised and the feeding device 4 feeds the brazing foil base material B1 by a predetermined amount.
(D) The movable upper blade 52 is moved laterally by about half the width (LW) of the through hole 2c.
(E) The movable upper blade 52 is lowered to process the through holes 2c in the second row.
(F) The movable upper blade 52 is raised, and the feeder 4 feeds the brazing foil base material B1 by a predetermined amount, and the movable upper blade 52 is laterally moved by about 1/2 width LW of the through hole 2c. Only return it to its original position.
By repeating the above steps, a through hole 2c is formed in a part of the brazing foil base material B1 by lath processing.

そして、その後、送り出し装置4によりロウ箔材母材B1を非ラス加工部2fの長さ分だけ送り出した後、ラス加工装置5によるラス加工を行う。このように、送り出し装置4による送り出しとラス加工装置5によるラス加工を交互に繰り返すことにより、一部に貫通孔2cを有するラス加工部2eを備えたロウ箔材2が連続的に製造される。   Then, after the brazing foil base material B1 is fed by the length of the non-laser processing portion 2f by the feeding device 4, the lath processing by the lath processing device 5 is performed. As described above, by alternately repeating the feeding by the feeding device 4 and the lath processing by the lath processing device 5, the brazing foil material 2 having the lath processed portion 2e having a through hole 2c in part is continuously manufactured. .

<圧縮加工>(図21参照)
上記ラス加工装置5で一部に貫通孔2cが形成されたロウ箔材母材B1は、圧縮装置6における上下一対のローラ61,61間を通過することで、ラス加工部2eでラス加工により隣接する貫通孔2c相互間の網部に形成される隆起部2dが非ラス加工部2bの厚さまで平坦に圧縮成形される。
<切断加工>(図22参照)
上記圧縮装置で隆起部2dが非ラス加工部2fの厚さまで平坦に圧縮成形されたロウ箔材母材B1は、非ラス加工部2fとラス加工部2eとの境界K2部において切断装置7を構成する固定下刃71に向けて下降する可動上刃72により、一部にラス加工による貫通孔2cが形成されたロウ箔材2の製品一単位毎に切断されていく。
以上のようにして形成されたロウ箔材2は、図19、20に示すように、ラス加工により貫通孔2cが切り開かれる方向を軸方向としてハニカム体1の外周に巻回し、ロウ箔材2の周方向両縁部同士を重ね、両非ラス加工部2f、2fをスポット溶接P1することでハニカム体1に取り付けられている。
<Compression processing> (See FIG. 21)
The brazing foil base material B1 in which the through-hole 2c is partially formed in the lath processing apparatus 5 passes between the pair of upper and lower rollers 61, 61 in the compression apparatus 6 so that the lath processing section 2e performs lath processing. A raised portion 2d formed in a net portion between adjacent through holes 2c is compression-molded flat to the thickness of the non-laser processed portion 2b.
<Cutting> (See Fig. 22)
The brazing foil base material B1 in which the raised portion 2d is flatly compressed to the thickness of the non-laser processed portion 2f by the compression device, the cutting device 7 is used at the boundary K2 between the non-laser processed portion 2f and the lath processed portion 2e. By the movable upper blade 72 that descends toward the fixed lower blade 71 that constitutes, the product of the brazing foil material 2 in which the through-hole 2c is partially formed by lath processing is cut.
As shown in FIGS. 19 and 20, the brazing foil material 2 formed as described above is wound around the outer periphery of the honeycomb body 1 with the direction in which the through-hole 2c is cut open by lath processing as the axial direction. The two edge portions in the circumferential direction are overlapped with each other, and the non-laser processed portions 2f and 2f are attached to the honeycomb body 1 by spot welding P1.

次に、この実施例1の作用・効果を説明する。
この実施例2の金属製触媒担体では、上記実施例1とほぼ同様の効果が得られる他、ロウ流れ防止に最小限必要なロウ箔材2の軸方向端部だけをラス加工することにより、ラス加工の作業時間が短縮され、加工費の低減と、生産性の向上が可能になるという追加の効果が得られる。
Next, operations and effects of the first embodiment will be described.
In the metal catalyst carrier of Example 2, the same effect as in Example 1 can be obtained, and only the axial end portion of the wax foil material 2 that is the minimum necessary for preventing the brazing flow is lathed. An additional effect is obtained that the working time of the lath machining is shortened, the machining cost can be reduced, and the productivity can be improved.

〔実施例3〕
この実施例3は、実施例1におけるロウ箔材の変形例を示すものであり、図23(金属触媒担体を示す断面図)に示すように、ロウ箔材2の軸方向両端部に貫通孔2cが形成されたラス加工部2eと、ロウ箔材2の軸方向中央部の貫通孔2cが形成されていない非ラス加工部2fとで構成され、ロウ箔材2がハニカム体1の軸方向中央部に配置されている点が、上記実施例1とは相違したものである。
このように、ロウ箔材2をハニカム体1の軸方向中央部に配置することにより、ハニカム体1が軸方向均一に熱膨張収縮するため、軸方向における熱応力の集中を防止することができる。
Example 3
This Example 3 shows a modified example of the brazing foil material in Example 1. As shown in FIG. 23 (cross-sectional view showing the metal catalyst carrier), through-holes are formed at both axial ends of the brazing foil material 2. The lath processed portion 2e formed with 2c and the non-laser processed portion 2f in which the through hole 2c in the central portion in the axial direction of the brazing foil material 2 is not formed, and the brazing foil material 2 is in the axial direction of the honeycomb body 1 The point arranged in the center is different from the first embodiment.
In this way, by arranging the brazing foil material 2 in the central portion of the honeycomb body 1 in the axial direction, the honeycomb body 1 is thermally expanded and contracted uniformly in the axial direction, so that concentration of thermal stress in the axial direction can be prevented. .

〔実施例4〕
この実施例4は、実施例1におけるロウ箔材の変形例を示すものであり、図24(ロウ箔材の展開図)に示すように、ロウ箔材2の全体にラス加工による貫通孔2cを形成した点が、実施例1、2とは相違したものである。
このように、ロウ箔材2の全体にラス加工による貫通孔2cを形成したラス加工部2eとすることにより、高価なニッケルロウ箔材2の使用量を最大限に少なくでき、材料費の大幅低減が可能になる。
Example 4
The fourth embodiment shows a modification of the brazing foil material in the first embodiment. As shown in FIG. 24 (development of the brazing foil material), the entire brazing foil material 2 has a through hole 2c formed by lath processing. This is different from the first and second embodiments.
In this way, by using the lath processed portion 2e in which the through-hole 2c by lath processing is formed on the entire brazing foil material 2, the amount of expensive nickel brazing foil material 2 can be reduced to the maximum, and the material cost is greatly increased. Reduction is possible.

〔実施例5〕
実施例5は、ロウ箔材の構造が実施例1と異なる。図25は、実施例5のロウ箔材母材B1を示す斜視図であり、ロウ箔材母材B1は、箔材26の両面をロウ層27,28で挟んだ三層構造である。
箔材26は、ハニカム体1と同一のフェライト系ステンレス鋼、例えば、JFE規格のJFE20-5USRまたはJFE18-3USRで形成されている。箔材26は、必ずしもハニカム体1と同一のステンレス鋼でなくてもよい。例えば、オーステナイト系ステンレス鋼を用いることができる。なお、箔材26の厚みは、例えば、10〜20μmとする。
ロウ層27,28は、Ni基の粉末ロウ材(ニッケル系ロウ材)を有機バインダによりペースト状にしたものを適当な厚さ(例えば、20μm)で箔材26にプリント塗布したものである。ここで、有機バインダとは、ロウ材を箔材26に被膜として構成させるための結合剤であって、例えば、樹脂が用いられる。
実施例5のロウ箔材母材B1を用い、実施例1に示したロウ箔材の製造方法を用いてロウ箔材を製造することで、箔材26の両面をロウ層27,28で被覆したロウ箔材が得られる。
Example 5
Example 5 differs from Example 1 in the structure of the brazing foil material. FIG. 25 is a perspective view showing a brazing foil material base material B1 of Example 5, and the brazing foil material base material B1 has a three-layer structure in which both surfaces of the foil material 26 are sandwiched between brazing layers 27 and 28. FIG.
The foil material 26 is formed of the same ferritic stainless steel as the honeycomb body 1, for example, JFE standard JFE20-5USR or JFE18-3USR. The foil material 26 is not necessarily made of the same stainless steel as the honeycomb body 1. For example, austenitic stainless steel can be used. In addition, the thickness of the foil material 26 shall be 10-20 micrometers, for example.
The brazing layers 27 and 28 are obtained by applying a paste of Ni-based powder brazing material (nickel brazing material) with an organic binder to the foil material 26 with an appropriate thickness (for example, 20 μm). Here, the organic binder is a binder for forming the brazing material on the foil material 26 as a coating, and for example, a resin is used.
By using the brazing foil base material B1 of Example 5 and producing the brazing foil material using the brazing foil material production method shown in Example 1, both surfaces of the foil material 26 are covered with brazing layers 27 and 28. A brazed foil material is obtained.

次に、実施例5の作用を説明する。
ロウ箔材をニッケル系ロウ材による単層構造、つまり、ロウ材そのもので形成した場合、アモルファス合金は脆く、塑性加工性に劣るため、ラス加工が困難である。
これに対し、実施例5では、ロウ箔材をフェライト系ステンレス鋼による箔材26と、その両面にプリント塗布されたNi基の粉末ロウ材によるロウ層27,28との三層構造とした。フェライト系ステンレス鋼はオーステナイト系であり、ニッケル系と比較して成形性に優れるため、ラス加工性を向上できる。また、ハニカム体1における波板状金属箔と平板状金属箔を拡散接合する際、ロウ層27,28を構成するロウ材が溶融することで、ハニカム体1と外筒3とをロウ付け固定できる。
Next, the operation of the fifth embodiment will be described.
When the brazing foil material is formed of a single layer structure of nickel brazing material, that is, the brazing material itself, the amorphous alloy is brittle and inferior in plastic workability, so that lath processing is difficult.
On the other hand, in Example 5, the brazing foil material has a three-layer structure of the foil material 26 made of ferritic stainless steel and the brazing layers 27 and 28 made of Ni-based powder brazing material printed on both sides thereof. Ferritic stainless steel is austenitic and has excellent formability compared to nickel, so that lath workability can be improved. Further, when the corrugated metal foil and the flat metal foil in the honeycomb body 1 are diffusion-bonded, the brazing material constituting the brazing layers 27 and 28 is melted so that the honeycomb body 1 and the outer cylinder 3 are brazed and fixed. it can.

つまり、実施例5のロウ箔材では、ステンレス鋼による箔材26を用いてラス加工時の加工性を高めつつ、箔材26の両面にロウ層27,28を塗布することで、ハニカム体1と外筒3とをロウ付け固定するロウ箔材としての機能を担保しようとするものである。さらに、箔材26はハニカム体1の使用条件によるが、オーステナイト系、フェライト系の安価なステンレス鋼を採用できるため、ロウ箔材を高価なニッケル系ロウ材のみで形成したものと比較して、製造コストを大幅に低減できる。   That is, in the brazing foil material of Example 5, the honeycomb body 1 is obtained by applying the brazing layers 27 and 28 to both surfaces of the foil material 26 while improving the processability during the lath processing using the foil material 26 made of stainless steel. It is intended to secure the function as a brazing foil material for brazing and fixing the outer cylinder 3 to the outer cylinder 3. Furthermore, the foil material 26 depends on the use conditions of the honeycomb body 1, but since austenite-based and ferrite-based inexpensive stainless steel can be adopted, the brazing foil material is formed only with an expensive nickel-based brazing material, Manufacturing costs can be greatly reduced.

次に、実施例5の効果を説明する。
実施例5の金属触媒担体では、上記実施例1とほぼ同様の効果が得られる他、ロウ箔材母材B1を、ステンレス鋼の箔材26と、その両面にNi基の粉末ロウ材を有機バインダによりペースト状にしたものをプリント塗布したロウ層27,28とから構成したため、ラス加工時の加工性を高めることができる。また、安価なステンレス鋼を用いることができるため、製造コストを低減できる。
Next, effects of the fifth embodiment will be described.
In the metal catalyst carrier of Example 5, the same effects as those of Example 1 can be obtained. In addition, the brazing foil base material B1, the stainless steel foil 26, and Ni-based powder brazing material on both sides are organically formed. Since it is composed of the solder layers 27 and 28, which are paste-coated with a binder, the workability during lath processing can be improved. Moreover, since inexpensive stainless steel can be used, manufacturing cost can be reduced.

〔実施例6〕
図26は、実施例6のロウ箔材母材B1を示す斜視図である。
実施例5では、ラス加工前に箔材26の両面にロウ層27,28を被覆する例を示したが、実施例6では、箔材26のみからなるロウ箔材母材B1をラス加工した後、箔材26の片面にNi基の粉末ロウ材を有機バインダによりペースト状にしてロウ層29を形成している。ロウ層29の厚みは、実施例5のロウ層27,28よりも厚くする。
次に、実施例6の作用を説明する。
実施例6では、箔材26の片面側にのみロウ層29を設けたが、ロウ層29の厚みを適宜コントロールすることで、波板状金属箔と平板状金属箔を拡散接合する際、ロウ層29を構成するロウ材が溶融流動して貫通孔2cから箔材26のロウ層29が設けられていない他面側に至り、ハニカム体1と外筒3とをロウ付け固定できる。また、ロウ層を片面のみとすることで、ロウ箔材26をより薄くできるため、ハニカム体1を外筒3に圧入する圧入工程における作業性を高めることができる。
他の作用および効果については実施例5と同様である。
Example 6
FIG. 26 is a perspective view showing a brazing foil material base material B1 of Example 6. FIG.
In Example 5, the brazing layers 27 and 28 were coated on both surfaces of the foil material 26 before the lath processing, but in Example 6, the brazing foil base material B1 made only of the foil material 26 was subjected to the lath processing. Thereafter, a Ni-based powder brazing material is pasted on one side of the foil material 26 with an organic binder to form a brazing layer 29. The thickness of the brazing layer 29 is made thicker than that of the brazing layers 27 and 28 of the fifth embodiment.
Next, the operation of the sixth embodiment will be described.
In Example 6, the brazing layer 29 is provided only on one side of the foil material 26. However, when the corrugated metal foil and the flat metal foil are diffusion-bonded by appropriately controlling the thickness of the brazing layer 29, the brazing layer 29 is provided. The brazing material constituting the layer 29 melts and flows to reach the other side of the foil material 26 where the brazing layer 29 is not provided from the through hole 2c, and the honeycomb body 1 and the outer cylinder 3 can be brazed and fixed. Moreover, since the brazing foil material 26 can be made thinner by using only one side of the brazing layer, the workability in the press-fitting process of press-fitting the honeycomb body 1 into the outer cylinder 3 can be improved.
Other operations and effects are the same as those in the fifth embodiment.

〔実施例7〕
実施例7は、ロウ箔材の構造が実施例1と異なる。
実施例7では、融点が1,200℃以下であって、かつ冷間圧延可能な低合金N基合金を冷間圧延加工してロウ箔材母材B1を形成している。ロウ箔材簿材B1の厚みは実施例1と同様、20〜30μm前後とする。なお、融点は、ハニカム体1の拡散接合の適正温度(1,250℃)よりも低い温度であればよい。
次に、実施例7の作用を説明する。
従来のロウ箔材は、ニッケル系合金を急冷箔帯加工したアモルファス体であるため、ラス加工時の成形性に劣るという問題があった。これに対し、実施例7では、冷間圧延可能なロウ箔材母材B1を用いているため、ラス加工時の成形性を高めることができる。
Example 7
Example 7 is different from Example 1 in the structure of the brazing foil material.
In Example 7, a low-alloy N-base alloy having a melting point of 1,200 ° C. or lower and cold-rollable is cold-rolled to form a brazing foil base material B1. The thickness of the brazing foil material book B1 is about 20 to 30 μm as in the first embodiment. The melting point may be a temperature lower than the appropriate temperature (1,250 ° C.) for diffusion bonding of the honeycomb body 1.
Next, the operation of the seventh embodiment will be described.
Since the conventional brazing foil material is an amorphous body obtained by rapidly cooling a nickel-based alloy, there is a problem that the formability during lath processing is inferior. On the other hand, in Example 7, since the cold-rollable brazing foil base material B1 is used, the formability during lath processing can be improved.

〔他の実施例〕
以上、本発明を実施するための形態を、実施例に基づいて説明したが、本発明は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、実施例では、貫通孔をラス加工により形成したが、打ち抜きによるパンチング孔としてもよい。
また、実施例では、波状の金属箔と平板状の金属箔とを用いたが、平板状の金属箔に代えて小波状の金属箔を用いてもよい。
実施例2〜4において、実施例5〜7に示したロウ箔材を用いることで、実施例5〜7と同様の作用効果が得られることは言うまでもない。
[Other Examples]
As mentioned above, although the form for implementing this invention was demonstrated based on the Example, this invention is not limited to an Example, Even if there is a design change etc. of the range which does not deviate from the summary of invention, It is included in the present invention.
For example, in the embodiment, the through hole is formed by lath processing, but it may be a punching hole by punching.
Moreover, although the corrugated metal foil and the flat metal foil are used in the embodiments, a small corrugated metal foil may be used instead of the flat metal foil.
Needless to say, in Examples 2 to 4, the same effects as in Examples 5 to 7 can be obtained by using the brazing foil material shown in Examples 5 to 7.

1 ハニカム体
2 ロウ箔材
3 外筒
2c 貫通孔(ロウ溜まり手段)
1 Honeycomb body
2 Wax foil material
3 outer cylinder
2c Through hole (wax collecting means)

Claims (13)

波板状の金属箔と平板状の金属箔を重ねて多重に巻回して形成されるハニカム体を該ハニカム体の外周の軸方向一部に巻回したロウ箔材の溶融により外筒の内周にロウ付け保持される金属触媒担体であって、
前記ロウ箔材に前記ロウ付け時におけるロウ流れを受け止めるロウ溜まり手段が設けられていることを特徴とする金属触媒担体。
A honeycomb body formed by overlapping and winding a corrugated metal foil and a flat metal foil on a part of the outer periphery of the outer cylinder by melting a wax foil material wound around a part of the outer periphery of the honeycomb body in the axial direction. A metal catalyst carrier that is brazed and held around the circumference,
A metal catalyst carrier, wherein the brazing foil material is provided with brazing reservoir means for receiving brazing flow during brazing.
請求項1に記載の金属触媒担体において、
前記ロウ溜まり手段が前記ロウ箔材の周方向に亘り略均一の開口面積でかつ均一間隔で形成された多数の貫通孔で構成されていることを特徴とする金属触媒担体。
The metal catalyst support according to claim 1, wherein
The metal catalyst carrier characterized in that the brazing means is composed of a large number of through holes formed with a substantially uniform opening area and at a uniform interval in the circumferential direction of the brazing foil material.
請求項2に記載の金属触媒担体において、
前記ロウ溜まり手段を構成する前記貫通孔がラス加工により形成されていることを特徴とする金属触媒担体。
The metal catalyst support according to claim 2,
The metal catalyst carrier according to claim 1, wherein the through holes constituting the wax collecting means are formed by a lath process.
請求項3に記載の金属触媒担体において、
前記ロウ箔材がラス加工により切り開かれる方向を周方向として前記ハニカム体の外周に巻回されていることを特徴とする金属触媒担体。
The metal catalyst support according to claim 3,
A metal catalyst carrier, wherein the brazing foil material is wound around the outer periphery of the honeycomb body with a circumferential direction being a direction in which the brazing foil is cut open by lath processing.
請求項3に記載の金属触媒担体において、
前記ロウ箔材は、その周方向に非ラス加工部が形成され、該非ラス加工部を重ねてスポット溶接されていることを特徴とする金属触媒担体
The metal catalyst support according to claim 3,
The brazing foil material has a non-laser-processed portion formed in a circumferential direction thereof, and the non-laser-processed portion is overlapped and spot-welded.
請求項3に記載の金属触媒担体において、
前記ロウ箔材は、該ロウ箔材の軸方向端部の前記貫通孔が形成されたラス加工部と、前記貫通孔が形成されていない非ラス加工部とで構成されていることを特徴とする金属触媒担体。
The metal catalyst support according to claim 3,
The brazing foil material is composed of a lath processed portion in which the through hole is formed at an axial end portion of the brazing foil material, and a non-laser processed portion in which the through hole is not formed. Metal catalyst support.
請求項6に記載の金属触媒担体において、
前記ロウ箔材は、該ロウ箔材の軸方向両端部に前記貫通孔が形成されたラス加工部と、前記ロウ箔材の軸方向中央部の前記貫通孔が形成されていない非ラス加工部とで構成され、
前記ロウ箔材が前記ハニカム体の軸方向中央部に配置されていることを特徴とする金属触媒担体。
The metal catalyst support according to claim 6,
The brazing foil material includes a lath processed portion in which the through holes are formed at both axial end portions of the brazing foil material, and a non-laser processed portion in which the through hole is not formed in the axial central portion of the brazing foil material. And consists of
The metal catalyst carrier, wherein the brazing foil material is disposed at a central portion in the axial direction of the honeycomb body.
請求項3〜7のいずれか1項に記載の金属触媒担体において、
前記ロウ箔材の前記ラス加工により形成される隆起部が平坦に圧縮成形されていることを特徴とする金属触媒担体。
In the metal catalyst carrier according to any one of claims 3 to 7,
A metal catalyst carrier, wherein a raised portion formed by the lath processing of the brazing foil material is flatly compression-molded.
請求項2〜8のいずれか1項に記載の金属触媒担体において、
前記ハニカム体は、該ハニカム体の外周の軸方向一部に前記ロウ箔材を巻回した状態で前記外筒内に圧入装着されていることを特徴とする金属触媒担体。
The metal catalyst carrier according to any one of claims 2 to 8,
The metal catalyst carrier according to claim 1, wherein the honeycomb body is press-fitted into the outer cylinder in a state where the brazing foil material is wound around a part of the outer periphery of the honeycomb body in the axial direction.
請求項2〜9のいずれか1項に記載の金属触媒担体において、
前記ロウ箔材は、ステンレス製の箔材と、この箔材の片面または両面にロウ材を塗布したロウ層とから構成されることを特徴とする金属触媒担体。
The metal catalyst carrier according to any one of claims 2 to 9,
The brazing foil material is composed of a stainless steel foil material and a brazing layer coated with a brazing material on one or both sides of the foil material.
請求項6または7に記載の金属触媒担体で用いられるロウ箔材の製造方法であって、
送り出し装置とラス加工装置を用い、帯状に連続するロウ箔材母材を前記送り出し装置により間欠的に送り出しながら前記ラス加工装置により前記ラス加工部を加工するラス加工工程と、前記送り出し装置による送り出しにより前記非ラス加工部を送り出す非ラス加工工程とを交互に行う成形工程と、
切断装置を用い前記ロウ箔材の製品一単位毎に切断する切断工程とからなることを特徴とする金属触媒担体で用いられるロウ箔材の製造方法。
A method for producing a wax foil material used in the metal catalyst carrier according to claim 6 or 7,
A lath machining process in which the lath processing section is machined by the lath machining device while intermittently feeding a brazing foil base material that is continuous in a strip shape by using the feeding device and the lath machining device, and feeding by the feeding device A molding step for alternately performing a non-laser processing step of feeding out the non-laser processed portion by:
A method for producing a brazing foil material used in a metal catalyst carrier, comprising a cutting step of cutting each unit of the brazing foil material using a cutting device.
請求項11に記載の金属触媒担体で用いられるロウ箔材の製造方法であって、
前記成形工程と前記切断工程との間に、前記ラス加工部の前記ラス加工により形成される隆起部を前記非ラス加工部の厚さまで平坦に圧縮成形する圧縮工程を備えることを特徴とする金属触媒担体で用いられるロウ箔材の製造方法。
A method for producing a wax foil material used in the metal catalyst carrier according to claim 11,
A metal comprising a compression step of flatly forming a raised portion formed by the lath processing of the lath processed portion to a thickness of the non-laser processed portion between the forming step and the cutting step. A method for producing a wax foil material used in a catalyst carrier.
波板状の金属箔と平板状の金属箔を重ねて多重に巻回して形成されるハニカム体を該ハニカム体の外周の軸方向一部に巻回したロウ箔材の溶融により外筒の内周にロウ付け保持され、
前記ロウ箔材に前記ロウ付け時におけるロウ流れを受け止めるロウ溜まり手段が設けられている金属触媒担体の製造方法であって、
第1所定温度で前記ロウ箔材の溶融による前記外筒に対する前記ハニカム体のロウ付け固定を行い、前記第1所定温度よりは高い第2所定温度で前記ハニカム体の拡散接合を行うことを特徴とする金属触媒担体の製造方法。
A honeycomb body formed by overlapping and winding a corrugated metal foil and a flat metal foil on a part of the outer periphery of the outer cylinder by melting a wax foil material wound around a part of the outer periphery of the honeycomb body in the axial direction. Brazed around the circumference,
A method for producing a metal catalyst carrier provided with brazing means for receiving a brazing flow during brazing on the brazing foil material,
The honeycomb body is brazed and fixed to the outer cylinder by melting the brazing foil material at a first predetermined temperature, and diffusion bonding of the honeycomb body is performed at a second predetermined temperature higher than the first predetermined temperature. A method for producing a metal catalyst carrier.
JP2009292260A 2009-02-17 2009-12-24 Metallic catalyst carrier, method for producing foil brazing material to be used in the carrier and method for producing the carrier Pending JP2010214362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292260A JP2010214362A (en) 2009-02-17 2009-12-24 Metallic catalyst carrier, method for producing foil brazing material to be used in the carrier and method for producing the carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009034347 2009-02-17
JP2009292260A JP2010214362A (en) 2009-02-17 2009-12-24 Metallic catalyst carrier, method for producing foil brazing material to be used in the carrier and method for producing the carrier

Publications (1)

Publication Number Publication Date
JP2010214362A true JP2010214362A (en) 2010-09-30

Family

ID=42973777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292260A Pending JP2010214362A (en) 2009-02-17 2009-12-24 Metallic catalyst carrier, method for producing foil brazing material to be used in the carrier and method for producing the carrier

Country Status (1)

Country Link
JP (1) JP2010214362A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699081A (en) * 1992-09-22 1994-04-12 Usui Internatl Ind Co Ltd Device for purifying exhaust gas
JPH09215931A (en) * 1996-02-09 1997-08-19 Toyota Motor Corp Manufacture of metal carrier
JPH1076165A (en) * 1996-09-03 1998-03-24 Usui Internatl Ind Co Ltd Metallic carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699081A (en) * 1992-09-22 1994-04-12 Usui Internatl Ind Co Ltd Device for purifying exhaust gas
JPH09215931A (en) * 1996-02-09 1997-08-19 Toyota Motor Corp Manufacture of metal carrier
JPH1076165A (en) * 1996-09-03 1998-03-24 Usui Internatl Ind Co Ltd Metallic carrier

Similar Documents

Publication Publication Date Title
US20070271786A1 (en) Apparatus and method for manufacturing a catalytic converter
KR920009120B1 (en) Matallic carrier base for carrying exhaust gas purifying catalyst
KR100426384B1 (en) Layered sheet metal with rolled-on solder and process for manufacturing a honeycombed body therefrom
KR100861737B1 (en) Device for purifying exhaust gases of a motor vehicle and method for the production thereof
US5050790A (en) Process for the fabrication of metal-made carrier body for exhaust gas cleaning catalyst
JP5679645B2 (en) Metal catalyst carrier and method for producing the same
JP5674531B2 (en) Honeycomb unit for exhaust gas purification
KR20100127298A (en) Honeycomb body and process for producing a soldered honeycomb body
JP2010048231A (en) Device for manufacturing metal catalyst carrier
JPS63176613A (en) Catalyst supporter
CN100594087C (en) Method for applying brazing filler metal on metallic carrier plain film
JP5669357B2 (en) Method for producing metal catalyst support
JP2010214362A (en) Metallic catalyst carrier, method for producing foil brazing material to be used in the carrier and method for producing the carrier
JPWO2021070691A1 (en) Honeycomb unit used for exhaust gas purification and method for manufacturing honeycomb unit
WO2019212030A1 (en) Catalyst-carrying substrate, catalyst-carrying body, exhaust gas purification device, exhaust passage component, catalyst-carrying substrate molding method, and method for manufacturing/assembling exhaust gas purification device
JP2010051938A (en) Metallic catalyst carrier
JP5649226B2 (en) Different diameter pipe manufacturing method and different diameter pipe manufacturing apparatus
CN100464855C (en) Method for preparation of metallic carrier for catalyst
JP2709789B2 (en) Exhaust gas purification metal carrier excellent in thermal fatigue resistance and vibration resistance and method for producing the same
JP2010075803A (en) Metallic catalyst carrier
JP2010125423A (en) Metal catalyst carrier
JP2010094643A (en) Method of manufacturing metal catalyst carrier
EP1120163B1 (en) Method for manufacturing a metallic carrier for a catalytic converter
JPS61159238A (en) Method and apparatus for fabricating ring plate shaped constitutional member forming cylindrical gathered pipe structure of heat exchanger
JP2013015110A (en) Method of manufacturing honeycomb body in exhaust gas catalyst device, and honeycomb body manufactured by the method, and exhaust gas catalyst device using the honeycomb body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218