JP2010213115A - Magneto-coupling type isolator - Google Patents

Magneto-coupling type isolator Download PDF

Info

Publication number
JP2010213115A
JP2010213115A JP2009058626A JP2009058626A JP2010213115A JP 2010213115 A JP2010213115 A JP 2010213115A JP 2009058626 A JP2009058626 A JP 2009058626A JP 2009058626 A JP2009058626 A JP 2009058626A JP 2010213115 A JP2010213115 A JP 2010213115A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
layer
magnetic layer
elongated portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009058626A
Other languages
Japanese (ja)
Inventor
Yosuke Ide
洋介 井出
Masaji Saito
正路 斎藤
Akira Takahashi
高橋  彰
Yoshihiro Nishiyama
義弘 西山
Hidekazu Kobayashi
秀和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009058626A priority Critical patent/JP2010213115A/en
Publication of JP2010213115A publication Critical patent/JP2010213115A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magneto-coupling type isolator particularly improving responsibility at a high speed. <P>SOLUTION: A plurality of elongate parts 59 having a length of L1 in an X1-X2 direction, which is longer than a width of T1 in a Y1-Y2 direction, are arranged at intervals in the Y1-Y2 direction in a plan view in magnetic detecting elements R1 to R4, and both side ends of each elongate part 59 are alternately connected in meandering shapes. The magnetizing direction (the P direction) of fixed magnetic layers configuring the magnetic detecting elements R1 to R4 is directed in the plan view direction C of an external magnetic field working from a plane coil. When an angle of inclination from the plan view direction C of the external magnetic field is set at θ, the angle of inclination θ in the longitudinal direction of the slender 59 is specified in a range from 72 to 108°. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁界発生部と磁気検出素子とを備えて構成される磁気結合型アイソレータに関する。   The present invention relates to a magnetically coupled isolator configured to include a magnetic field generation unit and a magnetic detection element.

下記特許文献には磁気結合型アイソレータに関する発明が開示されている。磁気結合型アイソレータは、入力信号を、磁気に変換するための磁界発生部と、前記磁界発生部から生じた外部磁界を検出して電気信号に変換するための磁気検出素子とを有して構成される。そして、その電気信号を信号処理回路を介して出力側に伝送して出力を取り出す。   The following patent documents disclose inventions related to magnetically coupled isolators. The magnetically coupled isolator includes a magnetic field generation unit for converting an input signal into magnetism, and a magnetic detection element for detecting an external magnetic field generated from the magnetic field generation unit and converting it into an electric signal. Is done. Then, the electric signal is transmitted to the output side via the signal processing circuit to take out the output.

磁気検出素子としては、ホール素子、AMR素子(異方性磁気検出素子)、あるいは、GMR素子(巨大磁気検出素子)が使用される。   As the magnetic detection element, a Hall element, an AMR element (anisotropic magnetic detection element), or a GMR element (giant magnetic detection element) is used.

特表2003−526083号公報Japanese translation of PCT publication No. 2003-526083

図9は、従来における磁気結合型アイソレータの部分平面図、図10(a)は、磁気検出素子の拡大平面図、図10(b)は、磁気検出素子を構成する固定磁性層やフリー磁性層の磁化方向等を示す概念図、である。なお図9では、絶縁層は図示していない。また平面コイル100は、その内縁と外縁のみを図示し、コイル100の真下に配置される4つの磁気検出素子101〜104を透視して示している。   9 is a partial plan view of a conventional magnetically coupled isolator, FIG. 10A is an enlarged plan view of a magnetic detection element, and FIG. 10B is a fixed magnetic layer or a free magnetic layer constituting the magnetic detection element. It is a conceptual diagram which shows the magnetization direction etc. of FIG. In FIG. 9, the insulating layer is not shown. The planar coil 100 shows only the inner and outer edges of the planar coil 100, and shows through the four magnetic detection elements 101 to 104 arranged just below the coil 100.

コイル100は平面内にて巻回形成され、X1−X2方向に平行に延びる磁界発生部105,106を備える。図9に示す平面視にて、磁界発生部105,106から発生する外部磁界は、X1−X2方向に直交するY1−Y2方向を向いている。図10(b)に示す符号Bが、前記外部磁界の平面視方向を示している。   The coil 100 includes magnetic field generators 105 and 106 that are wound in a plane and extend parallel to the X1-X2 direction. In the plan view shown in FIG. 9, the external magnetic field generated from the magnetic field generators 105 and 106 is directed in the Y1-Y2 direction orthogonal to the X1-X2 direction. A symbol B shown in FIG. 10B indicates a planar view direction of the external magnetic field.

図10(a)に示すように、磁気検出素子101〜104は、複数本の細長部107がX1−X2方向に間隔を空けて配置され、細長部107のY1−Y2方向を向く両側端部間が互い違いに連結されてミアンダ形状に形成されている。   As shown in FIG. 10A, the magnetic detection elements 101 to 104 have a plurality of elongated portions 107 arranged at intervals in the X1-X2 direction, and both end portions of the elongated portion 107 facing the Y1-Y2 direction. The gaps are alternately connected to form a meander shape.

したがって、図10(a)に示すように、磁気検出素子101〜104を構成する各細長部107の長手方向は、外部磁界Hの平面視方向Bを向いている。   Therefore, as shown in FIG. 10A, the longitudinal direction of each elongated portion 107 constituting the magnetic detection elements 101 to 104 is directed to the planar view direction B of the external magnetic field H.

磁気検出素子101〜104はGMR素子(巨大磁気抵抗効果素子)で形成されており、磁気検出素子101〜104を構成する固定磁性層の磁化方向(P方向)が、図10(b)に示すように、平面コイル100の磁界発生部105,106から発生する外部磁界の平面視方向Bと平行な方向に向けられる。また、無磁場状態でのフリー磁性層の磁化方向は、形状磁気異方性により、固定磁性層の磁化方向(P方向)と同じく外部磁界の平面視方向Bと平行な方向に向けられる。ここで、固定磁性層とフリー磁性層との間で生じる層間結合磁界によりフリー磁性層の磁化方向(F方向)は、固定磁性層の磁化方向(P方向)と同じ方向か、あるいは反対方向を向く。   The magnetic detection elements 101 to 104 are formed by GMR elements (giant magnetoresistive effect elements), and the magnetization direction (P direction) of the fixed magnetic layer constituting the magnetic detection elements 101 to 104 is shown in FIG. As described above, the external magnetic field generated from the magnetic field generators 105 and 106 of the planar coil 100 is directed in a direction parallel to the planar view direction B. Further, the magnetization direction of the free magnetic layer in the absence of a magnetic field is oriented in a direction parallel to the planar view direction B of the external magnetic field in the same manner as the magnetization direction (P direction) of the pinned magnetic layer due to shape magnetic anisotropy. Here, the magnetization direction (F direction) of the free magnetic layer is the same as or opposite to the magnetization direction (P direction) of the pinned magnetic layer due to the interlayer coupling magnetic field generated between the pinned magnetic layer and the free magnetic layer. Turn to.

図11は、従来における磁気検出素子101〜104のR−H波形図を示す。磁気検出素子101〜104は、平面コイル100の磁界発生部105,106から発生する外部磁界に対して、図11に示すようにヒステリシスを持ってしまう。これは、フリー磁性層の磁化反転は磁壁移動が支配的であるためである。   FIG. 11 shows an RH waveform diagram of the conventional magnetic detection elements 101 to 104. The magnetic detection elements 101 to 104 have hysteresis as shown in FIG. 11 with respect to the external magnetic field generated from the magnetic field generators 105 and 106 of the planar coil 100. This is because the domain wall motion is dominant in the magnetization reversal of the free magnetic layer.

このように磁気検出素子101〜104の電気抵抗変化が平面コイル100からの外部磁界に対してヒステリシスを持つため、外部磁界に対するリニア特性が悪く、高速磁化スイッチングに不利となり、高速応答性を低下させる問題が生じた。   As described above, since the change in the electric resistance of the magnetic detection elements 101 to 104 has hysteresis with respect to the external magnetic field from the planar coil 100, the linear characteristic with respect to the external magnetic field is poor, which is disadvantageous for high-speed magnetization switching and reduces high-speed response. There was a problem.

特許文献1のFig.6には、磁気検出素子を全体的にやや傾けた図が示されている。特許文献1の記述からすると、特許文献1では、図10に示す磁気検出素子101〜104の細長部107を、平面コイル100から発生する外部磁界の平面視方向Bから0°〜15°の範囲内で傾けている。   FIG. 6 shows a diagram in which the magnetic detection element is slightly inclined as a whole. According to the description in Patent Document 1, in Patent Document 1, the elongated portions 107 of the magnetic detection elements 101 to 104 shown in FIG. 10 are in the range of 0 ° to 15 ° from the planar view direction B of the external magnetic field generated from the planar coil 100. Tilt inside.

しかしながら、傾き角度を0°〜15°としても依然として、図11と同様にR−H波形に大きなヒステリシスを持ち(後述する実験では、フリー磁性層の保磁力Hcが大きいことで証明されている)、高速応答性を十分に改善することが出来ない。   However, even when the tilt angle is 0 ° to 15 °, it still has a large hysteresis in the RH waveform as in FIG. 11 (in the experiment described later, it is proved that the coercive force Hc of the free magnetic layer is large). The high-speed response cannot be improved sufficiently.

そこで本発明は上記従来課題を解決するためのものであり、特に、高速応答性を向上させることが可能な磁気結合型アイソレータを提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and in particular, an object of the present invention is to provide a magnetically coupled isolator capable of improving high-speed response.

本発明における磁気結合型アイソレータは、平面内にて巻回形成され、入力信号により外部磁界を発生させるための平面コイルと、前記平面コイルと電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気検出素子と、を有し、
前記平面コイルは、前記平面内のX1−X2方向に平行に延びる磁界発生部を備え、
前記磁気検出素子は、高さ方向へ平行に切断した断面において、磁化方向が一方向に固定された固定磁性層と、前記固定磁性層に非磁性層を介して形成され前記外部磁界により磁化方向が変動するフリー磁性層とを有する積層部分を備えるとともに、平面視にて、前記平面内の一方向への幅寸法がT1、前記平面内にて前記一方向に対し直交する方向への長さ寸法がL1で形成され、前記長さ寸法L1が前記幅寸法T1よりも長く形成された細長部が前記一方向に間隔を空けて複数配置され、各細長部の両側端部間が互い違いに連結されたミアンダ形状で形成されており、
前記固定磁性層の磁化方向は、前記磁界発生部から作用する前記外部磁界の平面視方向を向いており、
前記外部磁界の平面視方向からの前記平面内への傾き角度をθとしたとき、前記細長部の長手方向の傾き角度θは、72°〜108°の範囲内に規定されることを特徴とするものである。
The magnetically coupled isolator according to the present invention is formed by winding in a plane, and a plane coil for generating an external magnetic field by an input signal, and a position that is electrically insulated from the plane coil and can be magnetically coupled. And a magnetic detection element for detecting the external magnetic field and converting it to an electrical signal,
The planar coil includes a magnetic field generator extending parallel to the X1-X2 direction in the plane,
The magnetic sensing element is formed of a pinned magnetic layer whose magnetization direction is fixed in one direction in a cross section cut parallel to the height direction, and a magnetization direction by the external magnetic field formed on the pinned magnetic layer via a nonmagnetic layer. And a laminating portion having a free magnetic layer that fluctuates, and in a plan view, the width dimension in one direction in the plane is T1, and the length in the direction orthogonal to the one direction in the plane is A plurality of elongated portions each having a dimension L1 and having the length dimension L1 longer than the width dimension T1 are arranged at intervals in the one direction, and the end portions on both sides of each elongated portion are alternately connected. Formed with a meander shape,
The magnetization direction of the pinned magnetic layer is oriented in a plan view direction of the external magnetic field acting from the magnetic field generation unit,
The inclination angle θ in the longitudinal direction of the elongated portion is defined within a range of 72 ° to 108 °, where θ is the inclination angle into the plane from the planar view direction of the external magnetic field. To do.

上記の構成により、フリー磁性層の磁化反転はスピン回転が支配的になり、R−H波形上でのヒステリシスが小さくなり、外部磁界に対するリニア特性を向上できる。よって、高速応答性を向上させることができる。   With the above configuration, the spin reversal is dominant in the magnetization reversal of the free magnetic layer, the hysteresis on the RH waveform is reduced, and the linear characteristic against the external magnetic field can be improved. Therefore, high-speed response can be improved.

本発明では、前記細長部の長手方向の傾き角度θは、85°〜95°の範囲内に規定されることが好ましい。また、前記細長部の長手方向の傾き角度θは、略90°であり、前記細長部の長手方向が、前記X1−X2方向に略平行に向けられていることがより好ましい。これにより、R−H波形上でのヒステリシスをほぼ無くすことができ、高速応答性をより効果的に向上させることができる。   In the present invention, the inclination angle θ in the longitudinal direction of the elongated portion is preferably defined within a range of 85 ° to 95 °. Further, the inclination angle θ in the longitudinal direction of the elongated portion is approximately 90 °, and it is more preferable that the longitudinal direction of the elongated portion is directed substantially parallel to the X1-X2 direction. Thereby, the hysteresis on the RH waveform can be almost eliminated, and the high-speed response can be improved more effectively.

また本発明では、前記磁気検出素子が複数設けられてブリッジ回路を構成しており、
前記固定磁性層の磁化方向と、前記フリー磁性層の磁化方向とが無磁場状態にて直交状態にあることが好ましい。
In the present invention, a plurality of the magnetic detection elements are provided to constitute a bridge circuit,
It is preferable that the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer are orthogonal to each other in the absence of a magnetic field.

上記のように、無磁場状態にて固定磁性層の磁化方向とフリー磁性層の磁化方向とが直交状態にあると、無磁場状態での磁気検出素子の電気抵抗値をほぼ中間値Rc(最大値Rmaxと最小値間Rminの真ん中の値)にできるため、ブリッジ回路の電位を無磁場状態にて中点電位に合わせやすく、信号伝送の信頼性を向上させることができる。   As described above, when the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer are perpendicular to each other in the absence of a magnetic field, the electric resistance value of the magnetic detection element in the absence of a magnetic field is approximately the intermediate value Rc (maximum). (The middle value between the value Rmax and the minimum value Rmin), it is easy to match the potential of the bridge circuit to the midpoint potential in the absence of a magnetic field, and the signal transmission reliability can be improved.

本発明の磁気結合型アイソレータによれば、高速応答性を向上させることができる。   According to the magnetically coupled isolator of the present invention, high-speed response can be improved.

本実施形態の磁気結合型アイソレータ(磁気カプラ)の全体の回路構成図、FIG. 2 is an overall circuit configuration diagram of a magnetically coupled isolator (magnetic coupler) according to the present embodiment; 磁気検出素子R1〜R4にて構成されるブリッジ回路図、Bridge circuit diagram composed of magnetic detection elements R1 to R4, 本実施形態における磁気結合型アイソレータの部分平面図、The partial top view of the magnetic coupling type isolator in this embodiment, 図3に示すA−A線に沿って厚さ方向に切断し矢印方向から見た部分断面図、FIG. 3 is a partial sectional view taken along the line AA shown in FIG. 本実施形態の磁気検出素子の拡大縦断面図、An enlarged longitudinal sectional view of the magnetic detection element of the present embodiment, (a)は本実施形態の磁気検出素子の拡大平面図、(b)は、固定磁性層及びフリー磁性層の磁化方向、外部磁界の平面視方向、さらには外部磁界の平面視方向からの細長部の長手方向の傾き角度θを示す概念図、(A) is an enlarged plan view of the magnetic detection element of the present embodiment, (b) is an elongated direction from the magnetization direction of the fixed magnetic layer and the free magnetic layer, the planar view direction of the external magnetic field, and further the planar view direction of the external magnetic field. A conceptual diagram showing the inclination angle θ in the longitudinal direction of the part, 本実施形態における磁気検出素子のR−H波形図、RH waveform diagram of the magnetic detection element in the present embodiment, 細長部の長手方向の傾き角度θと、フリー磁性層の保磁力とを関係を示すグラフであり(b)は(a)の一部を拡大したグラフ、It is a graph showing the relationship between the inclination angle θ in the longitudinal direction of the elongated portion and the coercivity of the free magnetic layer, (b) is a graph in which a part of (a) is enlarged, 従来における磁気結合型アイソレータの部分平面図、Partial plan view of a conventional magnetically coupled isolator, (a)は従来例の磁気検出素子の拡大平面図、(b)は、固定磁性層及びフリー磁性層の磁化方向、外部磁界の平面視方向を示す概念図、(A) is an enlarged plan view of a conventional magnetic detection element, (b) is a conceptual diagram showing the magnetization direction of the fixed magnetic layer and the free magnetic layer, and the planar view direction of the external magnetic field, 従来における磁気検出素子のR−H波形図、RH waveform diagram of a conventional magnetic detection element,

図1は、本実施形態の磁気結合型アイソレータ(磁気カプラ)の全体の回路構成図、図2は、磁気検出素子R1〜R4にて構成されるブリッジ回路図、図3は本実施形態における磁気結合型アイソレータの部分平面図、図4は、図3に示すA−A線に沿って厚さ方向に切断し矢印方向から見た部分断面図、図5は、本実施形態の磁気検出素子の拡大縦断面図、図6(a)は、本実施形態における磁気検出素子の拡大平面図、(b)は、磁気検出素子を構成する固定磁性層及びフリー磁性層の磁化方向、平面コイルから磁気検出素子に作用する外部磁界の平面視方向、さらには、前記外部磁界の平面視方向からの磁気検出素子の細長部の傾き角度θを示す概念図、である。   1 is an overall circuit configuration diagram of a magnetically coupled isolator (magnetic coupler) according to the present embodiment, FIG. 2 is a bridge circuit diagram including magnetic detection elements R1 to R4, and FIG. 3 is a magnetic circuit according to the present embodiment. 4 is a partial plan view of the coupled isolator, FIG. 4 is a partial cross-sectional view taken along the line AA shown in FIG. 3 and viewed from the direction of the arrow, and FIG. 5 is a diagram of the magnetic sensing element of the present embodiment. FIG. 6A is an enlarged longitudinal sectional view, FIG. 6A is an enlarged plan view of the magnetic detection element in the present embodiment, and FIG. 6B is a magnetization direction of the fixed magnetic layer and the free magnetic layer constituting the magnetic detection element, and the magnetic force from the planar coil. FIG. 4 is a conceptual diagram showing a plan view direction of an external magnetic field acting on a detection element, and further an inclination angle θ of an elongated portion of the magnetic detection element from the plan view direction of the external magnetic field.

なお図3では、絶縁層を図示せず、また平面コイル2の内縁及び外縁のみを示し、平面コイル2下に位置する磁気検出素子R1〜R4を透視して示した。   In FIG. 3, the insulating layer is not shown, only the inner and outer edges of the planar coil 2 are shown, and the magnetic detection elements R1 to R4 positioned below the planar coil 2 are shown through.

図1に示すように磁気結合型アイソレータ1は、平面コイル2と、磁気検出素子R1〜R4とを有して構成される。平面コイル2と各磁気検出素子R1〜R4は絶縁層を介して電気的に絶縁されているが、磁気的結合が可能な間隔を空けて配置される。   As shown in FIG. 1, the magnetically coupled isolator 1 includes a planar coil 2 and magnetic detection elements R1 to R4. The planar coil 2 and each of the magnetic detection elements R1 to R4 are electrically insulated via an insulating layer, but are arranged with an interval that allows magnetic coupling.

平面コイル2は図3のように、X1−X2方向に帯状に延びる第1磁界発生部3と第2磁界発生部4を有する。第1磁界発生部3と第2磁界発生部4は図示Y1−Y2方向に間隔を空けて対向している。第1磁界発生部3と第2磁界発生部4は連結部17,18を介して連結されている。連結部17,18は、湾曲状となっているが形態を限定するものではない。第1磁界発生部3、第2磁界発生部4、及び連結部17,18に囲まれて空間部19が形成されている。   As shown in FIG. 3, the planar coil 2 includes a first magnetic field generation unit 3 and a second magnetic field generation unit 4 that extend in a strip shape in the X1-X2 direction. The first magnetic field generator 3 and the second magnetic field generator 4 are opposed to each other with an interval in the Y1-Y2 direction shown in the drawing. The first magnetic field generating unit 3 and the second magnetic field generating unit 4 are connected via connecting parts 17 and 18. Although the connection parts 17 and 18 are curving, it does not limit a form. A space 19 is formed by being surrounded by the first magnetic field generator 3, the second magnetic field generator 4, and the connecting portions 17 and 18.

図4に示すように平面コイル2は、幅寸法T3で形成されたコイル片6が所定の間隔T2を空けて、複数回、平面内にて巻回形成された形状である。よって、図4に示すように、第1磁界発生部3及び第2磁界発生部4は、複数本のX1−X2方向に延びるコイル片6がY1−Y2方向に並設された構成となっている。   As shown in FIG. 4, the planar coil 2 has a shape in which a coil piece 6 formed with a width dimension T3 is wound a plurality of times in a plane with a predetermined interval T2. Therefore, as shown in FIG. 4, the first magnetic field generating unit 3 and the second magnetic field generating unit 4 have a configuration in which a plurality of coil pieces 6 extending in the X1-X2 direction are arranged in parallel in the Y1-Y2 direction. Yes.

平面コイル2に接続される2つの電極パッド5,9が設けられている。電極パッド5,9は円形状であるが特に形状を限定するものではない。さらに平面コイル2は電極パッド5,9を介して図1に示すように送信回路7に接続されている。送信回路7から入力信号に基づく電流が流れると、平面コイル2から外部磁界が発生する。図4に示すように第1磁界発生部3を構成するコイル片6、及び第2磁界発生部4を構成するコイル片6では電流の流れる向きが逆である。よって、第1磁界発生部3を構成するコイル片6により発生する外部磁界H1と、第2磁界発生部4を構成するコイル片6により発生する外部磁界H2は逆向きである。図3、図4に示すように第1磁界発生部3の真下(真上でもよい)、及び第2磁界発生部の真下(真上でもよい)には、夫々磁気検出素子R1〜R4が絶縁層8を介して対向配置されている。そして、第1磁界発生部3と対向配置された第1磁気検出素子R1及び第4磁気検出素子R4に第1磁界発生部3より作用する外部磁界H1と、第2磁界発生部4と対向配置された第2磁気検出素子R2及び第3磁気検出素子R3に前記第2磁界発生部4より作用する外部磁界H2は反平行となる。なお、磁気検出素子R1〜R4の形成位置は、磁界発生部3,4の真上、真下以外の位置であってもよい。   Two electrode pads 5 and 9 connected to the planar coil 2 are provided. The electrode pads 5 and 9 are circular, but the shape is not particularly limited. Further, the planar coil 2 is connected to the transmission circuit 7 through the electrode pads 5 and 9 as shown in FIG. When a current based on an input signal flows from the transmission circuit 7, an external magnetic field is generated from the planar coil 2. As shown in FIG. 4, the direction of current flow is reversed in the coil piece 6 constituting the first magnetic field generation unit 3 and the coil piece 6 constituting the second magnetic field generation unit 4. Therefore, the external magnetic field H1 generated by the coil piece 6 constituting the first magnetic field generation unit 3 and the external magnetic field H2 generated by the coil piece 6 constituting the second magnetic field generation unit 4 are opposite to each other. As shown in FIGS. 3 and 4, the magnetic detection elements R <b> 1 to R <b> 4 are insulated immediately below the first magnetic field generator 3 (may be directly above) and directly below the second magnetic field generator (may be directly above). Opposing to each other via the layer 8. Then, the external magnetic field H1 acting from the first magnetic field generation unit 3 on the first magnetic detection element R1 and the fourth magnetic detection element R4 disposed to face the first magnetic field generation unit 3 and the second magnetic field generation unit 4 are disposed to face each other. The external magnetic field H2 acting on the second magnetic detection element R2 and the third magnetic detection element R3 thus applied from the second magnetic field generation unit 4 is antiparallel. The formation positions of the magnetic detection elements R1 to R4 may be positions other than directly above and directly below the magnetic field generators 3 and 4.

図4に示すように、基板50上に絶縁下地層51が形成され、絶縁下地層51上に各磁気検出素子R1〜R4が形成される。絶縁下地層51はAl23やSiO2等である。また図4に示すように各磁気検出素子R1〜R4上は絶縁層8で覆われ、絶縁層8の平坦化面8a上に平面コイル2が形成される。さらに平面コイル2上が絶縁層52で覆われる。絶縁層8,52は、無機絶縁材料で形成されても有機絶縁材料で形成されてもどちらでもよい。 As shown in FIG. 4, the insulating base layer 51 is formed on the substrate 50, and the magnetic detection elements R <b> 1 to R <b> 4 are formed on the insulating base layer 51. The insulating underlayer 51 is made of Al 2 O 3 or SiO 2 . As shown in FIG. 4, the magnetic detection elements R <b> 1 to R <b> 4 are covered with the insulating layer 8, and the planar coil 2 is formed on the planarized surface 8 a of the insulating layer 8. Further, the planar coil 2 is covered with an insulating layer 52. The insulating layers 8 and 52 may be formed of an inorganic insulating material or an organic insulating material.

図2に示すように第1磁気検出素子R1と第2磁気検出素子R2は直列接続され、第3磁気検出素子R3と第4磁気検出素子R4は直列接続されている。   As shown in FIG. 2, the first magnetic detection element R1 and the second magnetic detection element R2 are connected in series, and the third magnetic detection element R3 and the fourth magnetic detection element R4 are connected in series.

図2に示すように第1磁気検出素子R1と第3磁気検出素子R3は入力端子(入力パッド)10に接続されている。   As shown in FIG. 2, the first magnetic detection element R <b> 1 and the third magnetic detection element R <b> 3 are connected to an input terminal (input pad) 10.

また第2磁気検出素子R2と第4磁気検出素子R4は夫々、別々のグランド端子(グランドパッド)11,12に接続されている。よって、この実施形態ではグランド端子11,12は2つある。ただしグランド端子は共通にしてもよい。   The second magnetic detection element R2 and the fourth magnetic detection element R4 are connected to separate ground terminals (ground pads) 11 and 12, respectively. Therefore, in this embodiment, there are two ground terminals 11 and 12. However, the ground terminal may be shared.

図2に示すように、第1磁気検出素子R1と第2磁気検出素子R2の間には第1出力端子(第1出力パッド,OUT1)13が接続されており、第3磁気検出素子R3と第4磁気検出素子R4の間には第2出力端子(第2出力パッド,OUT2)14が接続されている。   As shown in FIG. 2, a first output terminal (first output pad, OUT1) 13 is connected between the first magnetic detection element R1 and the second magnetic detection element R2, and the third magnetic detection element R3 and A second output terminal (second output pad, OUT2) 14 is connected between the fourth magnetic detection elements R4.

図1,図2に示すように、第1出力端子13及び第2出力端子14の出力側が差動増幅器15に接続されている。   As shown in FIGS. 1 and 2, the output sides of the first output terminal 13 and the second output terminal 14 are connected to a differential amplifier 15.

そして図1に示すように差動増幅器15の出力側は、外部出力端子16に接続されている。   As shown in FIG. 1, the output side of the differential amplifier 15 is connected to the external output terminal 16.

図5に示すように、本実施形態における磁気検出素子R1〜R4は、下から下地層53、反強磁性層54、固定磁性層55、非磁性層56、フリー磁性層57及び保護層58の順に積層された積層構造で形成される。   As shown in FIG. 5, the magnetic detection elements R <b> 1 to R <b> 4 in the present embodiment include an underlayer 53, an antiferromagnetic layer 54, a fixed magnetic layer 55, a nonmagnetic layer 56, a free magnetic layer 57, and a protective layer 58 from below. It is formed in a laminated structure that is laminated in order.

反強磁性層54は、例えば、元素α(ただしαは、Pt,Pd,Ir,Rh,Ru,Osのうち1種または2種以上の元素である)とMnとを含有する反強磁性材料で形成される。   The antiferromagnetic layer 54 is an antiferromagnetic material containing, for example, the element α (where α is one or more of Pt, Pd, Ir, Rh, Ru, and Os) and Mn. Formed with.

固定磁性層55は、反強磁性層54との界面で生じる交換結合磁界(Hex)により例えば図示Y1方向に磁化固定されている。また図5では、固定磁性層55は、CoFe等の単層構造であるが、積層構造、特に磁性層/非磁性中間層/磁性層で形成された積層フェリ構造であることが、固定磁性層55の磁化固定力を大きくでき好適である。   The pinned magnetic layer 55 is pinned in the Y1 direction, for example, by an exchange coupling magnetic field (Hex) generated at the interface with the antiferromagnetic layer 54. In FIG. 5, the pinned magnetic layer 55 has a single-layer structure such as CoFe. However, the pinned magnetic layer has a laminated structure, particularly a laminated ferrimagnetic structure formed of a magnetic layer / nonmagnetic intermediate layer / magnetic layer. This is suitable because the magnetization fixing force of 55 can be increased.

非磁性層56はCu等で形成される。フリー磁性層57は、NiFe等の磁性層を有して形成されている。フリー磁性層57の磁化方向(F方向)は固定されておらず外部磁界により変動する。保護層58はTa等の非磁性金属材料で形成される。   The nonmagnetic layer 56 is made of Cu or the like. The free magnetic layer 57 has a magnetic layer such as NiFe. The magnetization direction (F direction) of the free magnetic layer 57 is not fixed and varies with an external magnetic field. The protective layer 58 is made of a nonmagnetic metal material such as Ta.

図6(a)の平面図に示すように、各磁気検出素子R1〜R4は、X1−X2方向の長さ寸法L1がY1−Y2方向の幅寸法T1より長い細長部59が、Y1−Y2方向に間隔を空けて複数配列され、各細長部59のX1−X2方向を向く両側端部が互い違いに連結されたミアンダ形状で形成される。ただし細長部59は1つでもよい。   As shown in the plan view of FIG. 6A, each of the magnetic detection elements R1 to R4 has an elongated portion 59 in which the length dimension L1 in the X1-X2 direction is longer than the width dimension T1 in the Y1-Y2 direction. A plurality of arrays are arranged at intervals in the direction, and are formed in a meander shape in which both end portions facing each other in the X1-X2 direction of each elongated portion 59 are alternately connected. However, the number of the elongated portions 59 may be one.

図6(a)に示す実施形態では、細長部59の長さ寸法L1を、湾曲した連結部60を除いた残りの部分で規定している。幅寸法T1は5μm以下で、長さ寸法L1は幅寸法T1の2倍以上、好ましくは10倍以上であると後述する形状異方性を大きくでき好適である。   In the embodiment shown in FIG. 6A, the length dimension L <b> 1 of the elongated portion 59 is defined by the remaining portion excluding the curved connecting portion 60. When the width dimension T1 is 5 μm or less and the length dimension L1 is 2 times or more, preferably 10 times or more, the width dimension T1, it is preferable because shape anisotropy described later can be increased.

平面コイル2の第1磁界発生部3からは図4に示す外部磁界H1が生じ、第2磁界発生部4からは図4に示す外部磁界H2が生じる。第1磁界発生部3及び第2磁界発生部4はともにX1−X2方向に平行に延びる形態であり、第1磁界発生部3を構成するX1−X2方向に延びるコイル片6に電流が流れることで発生する外部磁界H1、及び第2磁界発生部4を構成するX1−X2方向に延びるコイル片6に電流が流れることで発生する外部磁界H2はともに平面視にてY1−Y2方向を向いている。図6(b)では外部磁界H1,H2の平面視方向をCで示している。   An external magnetic field H1 shown in FIG. 4 is generated from the first magnetic field generator 3 of the planar coil 2, and an external magnetic field H2 shown in FIG. 4 is generated from the second magnetic field generator 4. Both the first magnetic field generation unit 3 and the second magnetic field generation unit 4 extend in parallel to the X1-X2 direction, and current flows through the coil piece 6 extending in the X1-X2 direction that constitutes the first magnetic field generation unit 3. And the external magnetic field H2 generated by current flowing through the coil piece 6 extending in the X1-X2 direction constituting the second magnetic field generating unit 4 are both directed in the Y1-Y2 direction in plan view. Yes. In FIG. 6B, the planar view direction of the external magnetic fields H1 and H2 is indicated by C.

本実施形態では、磁気検出素子R1〜R4の固定磁性層55の磁化方向(P方向)は、図5、図6(b)に示すように前記外部磁界H1,H2の平面視方向Cを向いている。   In the present embodiment, the magnetization direction (P direction) of the pinned magnetic layer 55 of the magnetic detection elements R1 to R4 faces the planar view direction C of the external magnetic fields H1 and H2, as shown in FIGS. ing.

フリー磁性層57の磁化方向(F方向)は、無磁場状態(外部磁界が作用していない状態)で、固定磁性層55の磁化方向(P方向)と直交状態にある。よってフリー磁性層57の磁化方向(F方向)は、X1−X2方向を向いている。このように無磁場状態では固定磁性層55の磁化方向(P方向)とフリー磁性層57の磁化方向(F方向)は直交状態にあるため、無磁場状態での磁気検出素子R1〜R4の電気抵抗値は中間値Rc(最大値Rmaxと最小値Rmin間の真ん中の値)となる。そして、外部磁界H1,H2の作用により、フリー磁性層57の磁化方向(F方向)は、Y1方向、あるいはY2方向を向く。フリー磁性層57の磁化方向(F方向)がY1方向を向いたとき、固定磁性層55の磁化方向(P方向)とフリー磁性層57の磁化方向(F方向)は平行状態になり、電気抵抗値が中間値Rcから最小値Rminに変化する。一方、フリー磁性層57の磁化方向(F方向)がY2方向を向いたとき、固定磁性層55の磁化方向(P方向)とフリー磁性層57の磁化方向(F方向)は反平行状態になり、電気抵抗値が中間値Rcから最大値Rmaxに変化する。   The magnetization direction (F direction) of the free magnetic layer 57 is perpendicular to the magnetization direction (P direction) of the pinned magnetic layer 55 in a no magnetic field state (a state in which no external magnetic field is applied). Therefore, the magnetization direction (F direction) of the free magnetic layer 57 faces the X1-X2 direction. Thus, since the magnetization direction (P direction) of the pinned magnetic layer 55 and the magnetization direction (F direction) of the free magnetic layer 57 are orthogonal to each other in the absence of a magnetic field, the electricity of the magnetic detection elements R1 to R4 in the absence of a magnetic field. The resistance value is an intermediate value Rc (the middle value between the maximum value Rmax and the minimum value Rmin). The magnetization direction (F direction) of the free magnetic layer 57 is directed to the Y1 direction or the Y2 direction by the action of the external magnetic fields H1 and H2. When the magnetization direction (F direction) of the free magnetic layer 57 faces the Y1 direction, the magnetization direction (P direction) of the pinned magnetic layer 55 and the magnetization direction (F direction) of the free magnetic layer 57 are in a parallel state, and the electric resistance The value changes from the intermediate value Rc to the minimum value Rmin. On the other hand, when the magnetization direction (F direction) of the free magnetic layer 57 is in the Y2 direction, the magnetization direction (P direction) of the pinned magnetic layer 55 and the magnetization direction (F direction) of the free magnetic layer 57 are in an antiparallel state. The electric resistance value changes from the intermediate value Rc to the maximum value Rmax.

このように固定磁性層55の磁化方向(P方向)を、外部磁界H1,H2の平面視方向Cと平行に向け、且つ無磁場状態にて固定磁性層55の磁化方向(P方向)とフリー磁性層57の磁化方向(F方向)とを直交状態にすることで、外部磁界H1,H2が作用したときに、磁気検出素子R1〜R4の電気抵抗値の変化をフルレンジで変動させることが出来る。   In this way, the magnetization direction (P direction) of the pinned magnetic layer 55 is parallel to the planar view direction C of the external magnetic fields H1 and H2, and the magnetization direction (P direction) of the pinned magnetic layer 55 is free in the absence of a magnetic field. By making the magnetization direction (F direction) of the magnetic layer 57 orthogonal, the change in the electric resistance values of the magnetic detection elements R1 to R4 can be varied over the full range when the external magnetic fields H1 and H2 are applied. .

外部磁界H1,H2の平面視方向Cから平面内(X−Y面内)への傾き角度をθとしたとき、図6に示す実施形態では、細長部59の長手方向の傾き角度θが略90°である。すなわち細長部59の長手方向はX1−X2方向に略平行に向けられている。   In the embodiment shown in FIG. 6, when the inclination angle from the planar view direction C of the external magnetic fields H1 and H2 to the plane (in the XY plane) is θ, the longitudinal inclination angle θ of the elongated portion 59 is substantially equal. 90 °. That is, the longitudinal direction of the elongated portion 59 is oriented substantially parallel to the X1-X2 direction.

図6(a)の実施形態では、細長部59の長手方向がX1−X2方向に向けられているためフリー磁性層57の磁化方向(F方向)は形状異方性により磁化容易軸方向であるX1−X2方向に向きやすくなる。そして、上記したように、外部磁界H1,H2の平面視方向Cは、Y1−Y2方向であり、固定磁性層55の磁化方向(P方向)は外部磁界H1,H2の平面視方向Cを向いている。このような固定磁性層55及びフリー磁性層57の磁化方向と、外部磁界H1,H2の平面視方向Cとの関係により、フリー磁性層57の磁化反転はスピン回転が支配的になり、図7に示すR−H波形上にてヒステリシスがほとんど発生しない。すなわち外部磁界H1,H2に対するリニア特性が向上し、これにより、従来に比べて高速応答性を向上させることが可能になる。   In the embodiment of FIG. 6A, the longitudinal direction of the elongated portion 59 is oriented in the X1-X2 direction, so the magnetization direction (F direction) of the free magnetic layer 57 is the easy axis direction due to shape anisotropy. It becomes easier to face in the X1-X2 direction. As described above, the planar view direction C of the external magnetic fields H1 and H2 is the Y1-Y2 direction, and the magnetization direction (P direction) of the pinned magnetic layer 55 faces the planar view direction C of the external magnetic fields H1 and H2. ing. Due to the relationship between the magnetization directions of the pinned magnetic layer 55 and the free magnetic layer 57 and the planar view direction C of the external magnetic fields H1 and H2, the spin reversal is dominant in the magnetization reversal of the free magnetic layer 57, and FIG. Hysteresis hardly occurs on the RH waveform shown in FIG. That is, the linear characteristics with respect to the external magnetic fields H1 and H2 are improved, and thereby it is possible to improve the high-speed response compared to the conventional case.

本実施形態では細長部59の長手方向の傾き角度θは、72°〜108°の範囲内に規定される。これにより、図8に示すように、フリー磁性層57の保磁力Hcを2Oe以下に抑えることが出来る。図8(b)は、図8(a)の一部を拡大して示したグラフである。ここで、ヒステリシスループの広がり幅は2×保磁力Hcで示される(図11参照)。よって保磁力Hcが小さいことはヒステリシスが小さいことを意味する。   In the present embodiment, the inclination angle θ in the longitudinal direction of the elongated portion 59 is defined within a range of 72 ° to 108 °. Thereby, as shown in FIG. 8, the coercive force Hc of the free magnetic layer 57 can be suppressed to 2 Oe or less. FIG. 8B is an enlarged graph showing a part of FIG. Here, the expansion width of the hysteresis loop is represented by 2 × coercive force Hc (see FIG. 11). Therefore, a small coercive force Hc means a small hysteresis.

図8では、以下の膜構成を用いてフリー磁性層の保磁力Hcの実験を行った。
実験では、下からTa(30)/NiFeCr(60)/PtMn(200)/Co90at%Fe10at%(17)/Ru(9)/Co90at%Fe10at%(20)/Cu(20)/Co90at%Fe10at%(10)/Ni81at%Fe19at%(50)/Ta(80)の順に積層した。フリー磁性層は、Co90at%Fe10at%(10)/Ni81at%Fe19at%(50)の2層構造である。なお括弧内の数値は膜厚を示し単位はÅである。
In FIG. 8, the coercivity Hc of the free magnetic layer was tested using the following film configuration.
In the experiment, Ta (30) / NiFeCr (60) / PtMn (200) / Co 90 at% Fe 10 at% (17) / Ru (9) / Co 90 at% Fe 10 at% (20) / Cu (20) / Co 90 at% Fe 10 at% (10) / Ni 81 at% Fe 19 at% (50) / Ta (80) were laminated in this order. The free magnetic layer has a two-layer structure of Co 90 at% Fe 10 at% (10) / Ni 81 at% Fe 19 at% (50). The numbers in parentheses indicate the film thickness and the unit is Å.

また、幅寸法T1が3μmで、長さ寸法L1が50μmの細長部59を5本並列に設けたミアンダ形状で磁気検出素子R1〜R4を形成した。固定磁性層55の磁化方向(P方向)はY1−Y2方向であり、フリー磁性層57の磁化方向(F方向)は、細長部59の長手方向である。そして外部磁界をY1−Y2方向に与え、細長部59の長手方向の傾き角度θに対するフリー磁性層57の保磁力Hcを求めた。   Further, the magnetic detection elements R1 to R4 were formed in a meander shape in which five elongated portions 59 having a width dimension T1 of 3 μm and a length dimension L1 of 50 μm were provided in parallel. The magnetization direction (P direction) of the pinned magnetic layer 55 is the Y1-Y2 direction, and the magnetization direction (F direction) of the free magnetic layer 57 is the longitudinal direction of the elongated portion 59. An external magnetic field was applied in the Y1-Y2 direction, and the coercive force Hc of the free magnetic layer 57 with respect to the longitudinal inclination angle θ of the elongated portion 59 was determined.

図8に示すように、細長部59の長手方向の傾き角度θを90°に近づけることでフリー磁性層57の保磁力Hcは徐々に小さくなることがわかった。   As shown in FIG. 8, it was found that the coercive force Hc of the free magnetic layer 57 is gradually reduced by making the longitudinal inclination angle θ of the elongated portion 59 close to 90 °.

本実施形態では、細長部59の長手方向の傾き角度θは、図8に85°〜95°の範囲内に規定されることが好ましく、図6に示したように、細長部59の長手方向の傾き角度θが、略90°であると、フリー磁性層57の保磁力Hcがほぼ0Oeになり、図7のR−H波形に示すようにほとんどヒステリシスが生じないように出来る。   In the present embodiment, the inclination angle θ in the longitudinal direction of the elongated portion 59 is preferably defined within the range of 85 ° to 95 ° in FIG. 8, and as shown in FIG. When the inclination angle θ of the magnetic field is approximately 90 °, the coercive force Hc of the free magnetic layer 57 is approximately 0 Oe, and almost no hysteresis is generated as shown in the RH waveform of FIG.

また本実施形態では、図2,図3に示すように4つの磁気検出素子R1〜R4を用いてブリッジ回路を構成し、また無磁場状態において、固定磁性層55の磁化方向(P方向)とフリー磁性層57の磁化方向(F方向)とを直交させている。これにより、無磁場状態での磁気検出素子R1〜R4の電気抵抗値をほぼ中間値Rcにできるため、ブリッジ回路の出力端子13,14の電位を無磁場状態にて中点電位に合わせやすい。このため、外部出力端子16から得られる信号を、外部磁界の変動に合わせて高精度に出力でき、信号伝送の信頼性を向上させることができる。   In the present embodiment, as shown in FIGS. 2 and 3, a bridge circuit is configured by using four magnetic detection elements R1 to R4, and in the no magnetic field state, the magnetization direction (P direction) of the fixed magnetic layer 55 and The magnetization direction (F direction) of the free magnetic layer 57 is orthogonal. As a result, the electric resistance values of the magnetic detection elements R1 to R4 in the non-magnetic field state can be set to substantially the intermediate value Rc, so that the potentials of the output terminals 13 and 14 of the bridge circuit can be easily matched to the midpoint potential in the non-magnetic field state. For this reason, the signal obtained from the external output terminal 16 can be output with high accuracy in accordance with the fluctuation of the external magnetic field, and the signal transmission reliability can be improved.

本実施形態では、細長部59の長手方向における傾き角度θを72°〜108°に規定している。したがって図6の状態から細長部59がやや傾いた状態を含む。このとき、無磁場状態にて、フリー磁性層57の磁化方向(F方向)が形状異方性により細長部59の長手方向を向いているとすると、外部磁界の平面視方向Cと同方向を向く固定磁性層55の磁化方向(P方向)とは直交状態にならなくなる。このため、例えばバイアス層を設けて、フリー磁性層57にバイアス磁界を与え、無磁場状態にて、固定磁性層55の磁化方向(P方向)とフリー磁性層57の磁化方向(F方向)とが直交状態になるように調整することも可能である。   In the present embodiment, the inclination angle θ in the longitudinal direction of the elongated portion 59 is defined as 72 ° to 108 °. Therefore, it includes a state where the elongated portion 59 is slightly inclined from the state of FIG. At this time, assuming that the magnetization direction (F direction) of the free magnetic layer 57 faces the longitudinal direction of the elongated portion 59 due to shape anisotropy in the absence of a magnetic field, the same direction as the planar view direction C of the external magnetic field is The magnetization direction (P direction) of the pinned magnetic layer 55 facing does not become orthogonal. For this reason, for example, a bias layer is provided, a bias magnetic field is applied to the free magnetic layer 57, and the magnetization direction (P direction) of the pinned magnetic layer 55 and the magnetization direction (F direction) of the free magnetic layer 57 in the absence of a magnetic field. It is also possible to adjust so that is in an orthogonal state.

R1〜R4 磁気検出素子
1 磁気結合型アイソレータ
2 平面コイル
3 第1磁界発生部
4 第2磁界発生部
6 コイル片
7 送信回路
8 絶縁層
50 基板
54 反強磁性層
55 固定磁性層
56 非磁性層
57 フリー磁性層
59 細長部
60 連結部
R1 to R4 Magnetic sensing element 1 Magnetic coupling type isolator 2 Planar coil 3 First magnetic field generating unit 4 Second magnetic field generating unit 6 Coil piece 7 Transmitting circuit 8 Insulating layer 50 Substrate 54 Antiferromagnetic layer 55 Fixed magnetic layer 56 Nonmagnetic layer 57 free magnetic layer 59 elongated portion 60 connecting portion

Claims (4)

平面内にて巻回形成され、入力信号により外部磁界を発生させるための平面コイルと、前記平面コイルと電気的に絶縁されるとともに磁気的結合が可能な位置に配置され、前記外部磁界を検出して電気信号に変換するための磁気検出素子と、を有し、
前記平面コイルは、前記平面内のX1−X2方向に平行に延びる磁界発生部を備え、
前記磁気検出素子は、高さ方向へ平行に切断した断面において、磁化方向が一方向に固定された固定磁性層と、前記固定磁性層に非磁性層を介して形成され前記外部磁界により磁化方向が変動するフリー磁性層とを有する積層部分を備えるとともに、平面視にて、前記平面内の一方向への幅寸法がT1、前記平面内にて前記一方向に対し直交する方向への長さ寸法がL1で形成され、前記長さ寸法L1が前記幅寸法T1よりも長く形成された細長部が前記一方向に間隔を空けて複数配置され、各細長部の両側端部間が互い違いに連結されたミアンダ形状で形成されており、
前記固定磁性層の磁化方向は、前記磁界発生部から作用する前記外部磁界の平面視方向を向いており、
前記外部磁界の平面視方向からの前記平面内への傾き角度をθとしたとき、前記細長部の長手方向の傾き角度θは、72°〜108°の範囲内に規定されることを特徴とする磁気結合型アイソレータ。
A planar coil that is wound in a plane and generates an external magnetic field by an input signal, and is disposed at a position that is electrically insulated from the planar coil and capable of magnetic coupling, and detects the external magnetic field. And a magnetic detection element for converting into an electrical signal,
The planar coil includes a magnetic field generator extending parallel to the X1-X2 direction in the plane,
The magnetic sensing element is formed of a pinned magnetic layer whose magnetization direction is fixed in one direction in a cross section cut parallel to the height direction, and a magnetization direction by the external magnetic field formed on the pinned magnetic layer via a nonmagnetic layer. And a laminating portion having a free magnetic layer that fluctuates, and in a plan view, the width dimension in one direction in the plane is T1, and the length in the direction orthogonal to the one direction in the plane is A plurality of elongated portions each having a dimension L1 and having the length dimension L1 longer than the width dimension T1 are arranged at intervals in the one direction, and the end portions on both sides of each elongated portion are alternately connected. Formed with a meander shape,
The magnetization direction of the pinned magnetic layer is oriented in a plan view direction of the external magnetic field acting from the magnetic field generation unit,
The inclination angle θ in the longitudinal direction of the elongated portion is defined within a range of 72 ° to 108 °, where θ is the inclination angle into the plane from the planar view direction of the external magnetic field. Magnetically coupled isolators.
前記細長部の長手方向の傾き角度θは、85°〜95°の範囲内に規定される請求項1記載の磁気結合型アイソレータ。   2. The magnetically coupled isolator according to claim 1, wherein an inclination angle θ in a longitudinal direction of the elongated portion is defined within a range of 85 ° to 95 °. 前記細長部の長手方向の傾き角度θは、略90°であり、前記細長部の長手方向が、前記X1−X2方向に略平行に向けられている請求項2記載の磁気結合型アイソレータ。   3. The magnetically coupled isolator according to claim 2, wherein an inclination angle θ in the longitudinal direction of the elongated portion is approximately 90 °, and the longitudinal direction of the elongated portion is directed substantially parallel to the X1-X2 direction. 前記磁気検出素子が複数設けられてブリッジ回路を構成しており、
前記固定磁性層の磁化方向と、前記フリー磁性層の磁化方向とが無磁場状態にて直交状態にある請求項1ないし3のいずれか1項に記載の磁気結合型アイソレータ。
A plurality of the magnetic detection elements are provided to form a bridge circuit,
4. The magnetically coupled isolator according to claim 1, wherein the magnetization direction of the pinned magnetic layer and the magnetization direction of the free magnetic layer are perpendicular to each other in the absence of a magnetic field.
JP2009058626A 2009-03-11 2009-03-11 Magneto-coupling type isolator Withdrawn JP2010213115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058626A JP2010213115A (en) 2009-03-11 2009-03-11 Magneto-coupling type isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058626A JP2010213115A (en) 2009-03-11 2009-03-11 Magneto-coupling type isolator

Publications (1)

Publication Number Publication Date
JP2010213115A true JP2010213115A (en) 2010-09-24

Family

ID=42972814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058626A Withdrawn JP2010213115A (en) 2009-03-11 2009-03-11 Magneto-coupling type isolator

Country Status (1)

Country Link
JP (1) JP2010213115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232473A (en) * 2014-06-09 2015-12-24 Dmg森精機株式会社 Position detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232473A (en) * 2014-06-09 2015-12-24 Dmg森精機株式会社 Position detector

Similar Documents

Publication Publication Date Title
JP4433820B2 (en) Magnetic detection element, method of forming the same, magnetic sensor, and ammeter
JP4105147B2 (en) Current sensor
JP5297539B2 (en) Magnetic sensor
JP6107942B2 (en) Magnetic current sensor and current measuring method
JP6425313B2 (en) Single magnetoresistor TMR magnetic field sensor chip and magnetic coin detector head
JP2008268219A (en) Magnetic sensor, its manufacturing method, current detecting method, and current detecting device
JP5215370B2 (en) Magnetic position detector
JP2016176911A (en) Magnetic sensor
JP6610746B1 (en) Magnetic sensor
JP2018112481A (en) Magnetic sensor
JP2007024598A (en) Magnetic sensor
WO2011074488A1 (en) Magnetic sensor
JP2018179776A (en) Thin film magnetic sensor
JP2014089088A (en) Magnetoresistive effect element
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
JP6064656B2 (en) Magnetoresistive element for sensor and sensor circuit
JP6525314B2 (en) Magnetic field detector
JP2006300540A (en) Thin-film magnetometric sensor
JP5341865B2 (en) Magnetic sensor
JP5265689B2 (en) Magnetically coupled isolator
JP2010258372A (en) Magnetic coupling type isolator
JP2010213115A (en) Magneto-coupling type isolator
JP4404069B2 (en) Magnetic sensor
WO2011111457A1 (en) Magnetism sensor and magnetic-balance current sensor provided therewith
JP4240402B2 (en) Magnetic encoder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100728

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605