JP2010212049A - Fuel cell, and fuel cell power generation system equipped with it - Google Patents

Fuel cell, and fuel cell power generation system equipped with it Download PDF

Info

Publication number
JP2010212049A
JP2010212049A JP2009056209A JP2009056209A JP2010212049A JP 2010212049 A JP2010212049 A JP 2010212049A JP 2009056209 A JP2009056209 A JP 2009056209A JP 2009056209 A JP2009056209 A JP 2009056209A JP 2010212049 A JP2010212049 A JP 2010212049A
Authority
JP
Japan
Prior art keywords
cooling water
fuel
fuel cell
manifold
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009056209A
Other languages
Japanese (ja)
Inventor
Takahiro Umeda
孝裕 梅田
Shigeyuki Unoki
重幸 鵜木
Yasushi Sugawara
靖 菅原
Kiichi Shibata
礎一 柴田
Osamu Sakai
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009056209A priority Critical patent/JP2010212049A/en
Publication of JP2010212049A publication Critical patent/JP2010212049A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of improving the efficiency of exhaust heat recovery by reducing heat radiation from collector terminals. <P>SOLUTION: The fuel cell is provided at least with a unit cell 2 composed of a fuel electrode 8 and an oxidizer electrode 9 formed on either face of an electrolyte 7 and a pair of separators 1a, 1b which sandwich the electrolyte 7 or a stack 3 laminating a plurality of unit cells 2, collectors 4 arranged at either end of the unit cell 2 or the stack 3, collector terminals 5 fitted to the collectors 4, fuel gas manifolds supplying and exhausting fuel gas to the fuel electrode 8, oxidizer gas manifolds supplying and exhausting oxidizer gas to the oxidizer electrode 9, and a cooling water manifold supplying and exhausting cooling water collecting heat generated at the unit cells 2 or the stack 3. The collector terminals 5 are arranged in the vicinity of a cooling water inlet 10a of the cooling water manifold. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、集電端子からの放熱を削減して排熱回収効率を向上できる燃料電池とそれを備えた燃料電池発電システムに関する。   The present invention relates to a fuel cell that can reduce heat radiation from a current collecting terminal and improve exhaust heat recovery efficiency, and a fuel cell power generation system including the fuel cell.

従来の一般的な燃料電池は、図7に示すように、電解質と、電解質の両面に形成した燃料極および酸化剤極と、燃料極に少なくとも水素を含む燃料ガスを供給排出し、酸化剤極に少なくとも酸素を含む酸化剤ガスを供給排出する一対のセパレータ21aおよび21bからなる単電池22と、単電池22を複数積層したスタック23と、スタック23の両端に配置された集電体24と、集電体24に設けられた集電端子25と、燃料ガスを供給排出する燃料ガスマニホールドと、酸化剤ガスを供給排出する酸化剤ガスマニホールドと、スタック23で発生する熱を回収する冷却水を供給排出する冷却水マニホールドで構成される。   As shown in FIG. 7, a conventional general fuel cell supplies and discharges an electrolyte, a fuel electrode and an oxidant electrode formed on both surfaces of the electrolyte, and a fuel gas containing at least hydrogen in the fuel electrode, A unit cell 22 composed of a pair of separators 21a and 21b for supplying and discharging an oxidant gas containing at least oxygen, a stack 23 in which a plurality of unit cells 22 are stacked, a current collector 24 disposed at both ends of the stack 23, A collector terminal 25 provided on the current collector 24, a fuel gas manifold for supplying and discharging fuel gas, an oxidant gas manifold for supplying and discharging oxidant gas, and cooling water for recovering heat generated in the stack 23 are provided. It consists of a cooling water manifold that supplies and discharges.

ここで、集電体24の集電端子25は、直流電流を取り出すために設けられているが、導電性の金属などで形成されるため、熱伝導性が高いこと、また、スタック23の両端に配置されること、ケーブルを接続するため集電端子25の面積が大きくなることなどの理由により、発電中にスタックなどで発生する熱が集電端子25から放熱されやすい。   Here, the current collecting terminal 25 of the current collector 24 is provided for taking out a direct current, but since it is formed of a conductive metal or the like, it has high thermal conductivity, and both ends of the stack 23. The heat generated in the stack or the like during power generation is likely to be radiated from the current collecting terminal 25 due to the fact that the current collecting terminal 25 is increased in area for connecting the cables.

そして、放熱が多くなると排熱回収効率が低下し、総合エネルギー効率が低下する。さらに、放熱の大きい部分で局所的に加湿された燃料ガスあるいは酸化剤ガス、あるいは反応で生成した水蒸気が、その流路内で凝縮することにより、発電中にフラッディングが発生し、電圧が低下して発電性能が低下する場合がある。   And if heat dissipation increases, exhaust heat recovery efficiency will fall and total energy efficiency will fall. In addition, fuel gas or oxidant gas that is locally humidified in a part where heat dissipation is large, or water vapor generated by the reaction condenses in the flow path, causing flooding during power generation and voltage drop. Power generation performance may be reduced.

そのため、従来の燃料電池では、集電端子25からの放熱を削減するため、集電端子25の周囲に断熱材26を配置して、集電端子25からの放熱を抑制していた(例えば、特許文献1参照)。
特開2005−327558号公報
Therefore, in the conventional fuel cell, in order to reduce heat radiation from the current collecting terminal 25, a heat insulating material 26 is disposed around the current collecting terminal 25 to suppress heat radiation from the current collecting terminal 25 (for example, Patent Document 1).
JP 2005-327558 A

しかしながら、上記従来の燃料電池では、スタックで発生する熱を回収する冷却水を供給排出する冷却水マニホールドとの位置関係により集電端子から放熱される熱量が依存する。そのため、集電端子と冷却水マニホールドの冷却水出口との距離が近い場合、集電端子の温度が上昇して、集電端子と外気との温度差が大きくなるため、断熱材があっても集電端子による放熱が増える。その結果、集電端子と冷却水マニホールドの冷却水出口との距離が離れている場合に比べて、排熱回収効率が低下するという課題があった。   However, in the conventional fuel cell, the amount of heat radiated from the current collecting terminal depends on the positional relationship with the cooling water manifold that supplies and discharges the cooling water that recovers the heat generated in the stack. Therefore, when the distance between the current collecting terminal and the cooling water outlet of the cooling water manifold is short, the temperature of the current collecting terminal rises and the temperature difference between the current collecting terminal and the outside air becomes large. Increases heat dissipation due to current collecting terminals. As a result, there has been a problem that exhaust heat recovery efficiency is reduced as compared with a case where the distance between the current collecting terminal and the cooling water outlet of the cooling water manifold is long.

本発明は、上記従来の課題を解決するもので、冷却水マニホールドの冷却水入口近傍に集電端子を配置することにより、集電端子からの放熱を低減して排熱回収効率を向上できる燃料電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and by disposing a current collecting terminal in the vicinity of the cooling water inlet of the cooling water manifold, a fuel capable of reducing heat radiation from the current collecting terminal and improving exhaust heat recovery efficiency. An object is to provide a battery.

上記従来の課題を解決するために、本発明の燃料電池は、電解質の両面に形成された燃料極および酸化剤極と、電解質を挟持した一対のセパレータとからなる単電池、または単電池を複数積層したスタックと、単電池またはスタックの両端に配置された集電体と、集電体に設けられた集電端子と、燃料極に燃料ガスを供給排出する燃料ガスマニホールドと
、酸化剤極に酸化剤ガスを供給排出する酸化剤ガスマニホールドと、単電池またはスタックで発生する熱を回収する冷却水を供給排出する冷却水マニホールドと、を少なくとも備え、集電端子を冷却水マニホールドの冷却水入口近傍に配置するものである。
In order to solve the above-described conventional problems, a fuel cell of the present invention includes a unit cell or a plurality of unit cells each including a fuel electrode and an oxidant electrode formed on both surfaces of an electrolyte, and a pair of separators sandwiching the electrolyte. Stacked stacks, single cells or current collectors disposed at both ends of the stack, current collector terminals provided on the current collectors, a fuel gas manifold for supplying and discharging fuel gas to the fuel electrode, and an oxidant electrode An oxidant gas manifold that supplies and discharges oxidant gas and a cooling water manifold that supplies and discharges cooling water that recovers heat generated in the unit cell or the stack are provided at least, and a current collecting terminal is a cooling water inlet of the cooling water manifold. It is arranged in the vicinity.

これにより、集電端子をスタックの中で最も温度の低い冷却水マニホールドの冷却水入口近傍に配置するので、集電端子の温度を低く保持することができる。その結果、集電端子からの放熱を抑制して、排熱回収効率の向上を図ることができる。   Thereby, since the current collection terminal is arrange | positioned in the vicinity of the cooling water inlet of the cooling water manifold with the lowest temperature in the stack, the temperature of the current collection terminal can be kept low. As a result, heat dissipation from the current collecting terminals can be suppressed, and exhaust heat recovery efficiency can be improved.

本発明によれば、集電端子からの放熱を低減することにより、排熱回収効率を向上させ、総合エネルギー効率の優れた燃料電池とそれを用いた燃料電池発電システムを実現できる。   ADVANTAGE OF THE INVENTION According to this invention, by reducing the thermal radiation from a current collection terminal, exhaust heat recovery efficiency can be improved and the fuel cell excellent in total energy efficiency and a fuel cell power generation system using the same can be realized.

第1の発明は、電解質の両面に形成された燃料極および酸化剤極と、電解質を挟持した一対のセパレータとからなる単電池、または単電池を複数積層したスタックと、単電池またはスタックの両端に配置された集電体と、集電体に設けられた集電端子と、燃料極に少なくとも水素を含む燃料ガスを供給排出する燃料ガスマニホールドと、酸化剤極に少なくとも酸素を含む酸化剤ガスを供給排出する酸化剤ガスマニホールドと、単電池またはスタックで発生する熱を回収する冷却水を供給排出する冷却水マニホールドと、を少なくとも備え、集電端子を冷却水マニホールドの冷却水入口近傍に配置する構成の燃料電池である。   A first invention is a unit cell comprising a fuel electrode and an oxidant electrode formed on both surfaces of an electrolyte and a pair of separators sandwiching the electrolyte, or a stack in which a plurality of unit cells are stacked, and both ends of the unit cell or the stack. A current collector disposed on the current collector, a current collector terminal provided on the current collector, a fuel gas manifold for supplying and discharging a fuel gas containing at least hydrogen to the fuel electrode, and an oxidant gas containing at least oxygen at the oxidant electrode And at least a cooling water manifold that supplies and discharges cooling water that recovers the heat generated by the single cell or stack, and a current collecting terminal is disposed near the cooling water inlet of the cooling water manifold It is a fuel cell of the composition to do.

この構成により、集電端子からの放熱を抑制して集電端子の温度を低く保持し、排熱回収効率を向上できる。   With this configuration, it is possible to suppress heat dissipation from the current collecting terminal, keep the temperature of the current collecting terminal low, and improve exhaust heat recovery efficiency.

第2の発明は、第1の発明において、集電端子を冷却水マニホールドの冷却水入口と酸化剤ガスマニホールドの酸化剤ガス入口との間に配置する。これにより、酸化剤ガス入口の露点温度が冷却水温度に比べて同じもしくは高い場合で、かつ、燃料ガス入口の露点温度が冷却水温度に比べて低い場合、燃料極側が低い湿度状態になるが、集電端子からの放熱により燃料ガス入口の露点温度がそれ以上低くなるのを抑制するので、燃料極側の不純物に対する耐性を高く保持することができる。   In a second aspect based on the first aspect, the current collecting terminal is disposed between the cooling water inlet of the cooling water manifold and the oxidant gas inlet of the oxidant gas manifold. As a result, when the dew point temperature at the oxidant gas inlet is the same or higher than the cooling water temperature and the dew point temperature at the fuel gas inlet is lower than the cooling water temperature, the fuel electrode side is in a low humidity state. Since the dew point temperature at the fuel gas inlet is prevented from further lowering due to heat radiation from the current collecting terminal, the resistance against impurities on the fuel electrode side can be kept high.

第3の発明は、第1の発明において、集電端子を冷却水マニホールドの冷却水入口と燃料ガスマニホールドの燃料ガス入口との間に配置する。これにより、燃料ガス入口の露点温度が冷却水温度に比べて同じもしくは高い場合で、かつ、酸化剤ガス入口の露点温度が冷却水温度に比べて低い場合、酸化剤極側が低い湿度状態になるが、集電端子からの放熱により酸化剤ガス入口の露点温度がそれ以上低くなるのを抑制するので、電池電圧を高く保持することができ、酸化剤極側の不純物に対する耐性を高く保持することができる。   In a third aspect based on the first aspect, the current collecting terminal is disposed between the cooling water inlet of the cooling water manifold and the fuel gas inlet of the fuel gas manifold. As a result, when the dew point temperature at the fuel gas inlet is the same or higher than the cooling water temperature and the dew point temperature at the oxidant gas inlet is lower than the cooling water temperature, the oxidant electrode side is in a low humidity state. However, since the dew point at the oxidant gas inlet is prevented from further lowering due to heat dissipation from the current collector terminal, the battery voltage can be kept high, and the resistance to impurities on the oxidant electrode side can be kept high. Can do.

第4の発明は、第1の発明において、冷却水マニホールドの冷却水入口を集電体内の集電端子の近傍に配置する。これにより、冷却水が熱伝導性の高い集電体を介して集電端子を冷却する。その結果、集電端子の温度が低下し、集電端子と外気の温度差が小さくなるので、集電端子からの放熱が抑制され、冷却水の排熱回収効率を向上できる。   In a fourth aspect based on the first aspect, the cooling water inlet of the cooling water manifold is disposed in the vicinity of the current collecting terminal in the current collector. Thereby, a cooling water cools a current collection terminal via a collector with high heat conductivity. As a result, the temperature of the current collecting terminal is lowered, and the temperature difference between the current collecting terminal and the outside air is reduced, so that heat radiation from the current collecting terminal is suppressed and the exhaust heat recovery efficiency of the cooling water can be improved.

第5の発明は、第1の発明において、集電端子内に冷却水マニホールドの冷却水入口を設ける。これにより、集電端子をさらに冷却して温度を低下させるので、冷却水の排熱回収効率がさらに向上する。   In a fifth aspect based on the first aspect, the cooling water inlet of the cooling water manifold is provided in the current collecting terminal. Thereby, since the current collecting terminal is further cooled to lower the temperature, the exhaust heat recovery efficiency of the cooling water is further improved.

第6の発明は、第4または第5の発明において、集電端子の面内に冷却水マニホールド
の冷却水入口と接続される冷却水流路を設けた。これにより、集電端子を効率的に冷却して、冷却水の排熱回収効率をさらに向上できる。
According to a sixth invention, in the fourth or fifth invention, the cooling water flow path connected to the cooling water inlet of the cooling water manifold is provided in the surface of the current collecting terminal. Thereby, a current collection terminal can be cooled efficiently and exhaust heat recovery efficiency of cooling water can further be improved.

第7の発明は、第1から第6のいずれかの発明において、上記燃料電池と、燃料処理手段と、酸化剤ガス供給手段と、を少なくとも備えた燃料電池発電システムである。これにより、発電性能に優れ、排熱回収効率の高い燃料電池発電システムを実現できる。   A seventh invention is a fuel cell power generation system according to any one of the first to sixth inventions, comprising at least the fuel cell, fuel processing means, and oxidant gas supply means. As a result, a fuel cell power generation system having excellent power generation performance and high exhaust heat recovery efficiency can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した従来の技術と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional technology described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池を示す概略構成図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing a fuel cell according to Embodiment 1 of the present invention.

図1に示すように、本発明の実施の形態1の燃料電池は、単電池2を複数積層したスタック3と、スタック3の両端に配置された集電体4と、集電体4に設けられた集電端子5と、燃料ガスを供給排出する燃料ガスマニホールドと、酸化剤ガスを供給排出する酸化剤ガスマニホールドと、スタック3で発生する熱を回収する冷却水を供給排出する冷却水マニホールドの冷却水入口10aと冷却水出口10bとで少なくとも構成される。   As shown in FIG. 1, the fuel cell according to Embodiment 1 of the present invention includes a stack 3 in which a plurality of single cells 2 are stacked, a current collector 4 disposed at both ends of the stack 3, and a current collector 4. Current collector terminal 5, fuel gas manifold for supplying and discharging fuel gas, oxidant gas manifold for supplying and discharging oxidant gas, and cooling water manifold for supplying and discharging cooling water for recovering heat generated in stack 3 The cooling water inlet 10a and the cooling water outlet 10b are at least configured.

そして、単電池2は、電解質7の両面に燃料極8と酸化剤極9を形成した膜電極接合体と、膜電極接合体の周囲に配置された燃料ガスと酸化剤ガスとの混合やリークを防止するガスケットと、燃料ガスや酸化剤ガスを供給排出するガス流路を備えた一対のセパレータ1a、1bで挟持して構成されている。   The unit cell 2 includes a membrane electrode assembly in which the fuel electrode 8 and the oxidant electrode 9 are formed on both surfaces of the electrolyte 7, and mixing or leakage of the fuel gas and the oxidant gas disposed around the membrane electrode assembly. Is sandwiched between a pair of separators 1a and 1b having a gas flow path for supplying and discharging fuel gas and oxidant gas.

ここで、電解質7は、例えば水素イオン伝導性を有するパーフルオロカーボンスルフォン酸ポリマーからなる固体高分子電解質から構成される。   Here, the electrolyte 7 is composed of a solid polymer electrolyte made of a perfluorocarbon sulfonic acid polymer having hydrogen ion conductivity, for example.

また、燃料極8と酸化剤極9は、耐酸化性の高い多孔質カーボンに白金などの貴金属を担持した触媒および水素イオン伝導性を有する高分子電解質との混合物からなる触媒層と、触媒層の上に積層した通気性および電子伝導性を有するガス拡散層から構成される。このとき、燃料極8の触媒として、一般に、燃料ガス中に含まれる不純物、特に一酸化炭素(CO)による被毒を抑制する白金−ルテニウムの合金触媒が用いられる。また、燃料極8のガス拡散層として、撥水処理を施したカーボンペーパー、カーボンクロスやカーボン不織布などが用いられる。また、セパレータ1a、1bは、例えばカーボンなどの導電性を有する材料で形成される。   The fuel electrode 8 and the oxidant electrode 9 include a catalyst layer formed of a mixture of a catalyst having a noble metal such as platinum supported on porous carbon having high oxidation resistance and a polymer electrolyte having hydrogen ion conductivity, and a catalyst layer. It is composed of a gas diffusion layer having air permeability and electronic conductivity laminated on. At this time, a platinum-ruthenium alloy catalyst that suppresses poisoning by impurities contained in the fuel gas, particularly carbon monoxide (CO), is generally used as the catalyst for the fuel electrode 8. As the gas diffusion layer of the fuel electrode 8, carbon paper, carbon cloth, carbon non-woven fabric or the like subjected to water repellent treatment is used. The separators 1a and 1b are formed of a conductive material such as carbon.

そして、スタック3は、複数の単電池2を積層し、その両端に集電体4、絶縁板および端板を配置して、締結ロッドで強固に締結して形成される。ここで、集電端子5が、スタック3で発生した直流電流を外部に取り出すケーブルと接続するために、集電体4の一部から突出させて設けられている。さらに、単電池2の間には発電中に発生するスタック3の排熱を熱交換して回収する冷却水を供給排出する流路(図示せず)が設けられている。そして、図1に示すように、各流路には、冷却水が、スタック3の上部に配置した冷却水マニホールドの冷却水入口10aから供給され、排熱を回収してスタック3の下部に配置した冷却水マニホールドの冷却水出口10bから排出されるように接続されている。なお、図1では、冷却水マニホールドの冷却水入口10aおよび冷却水出口10bの配管が同じ側面側に配置した例で図示しているが、これに限られない。例えば、冷却水マニホールドの冷却水入口10aと冷却水出口10bの配管を異なる側面に配置してもよく、また、冷却水をスタック3の必ずしも上部から下部へ流す必要もない。   The stack 3 is formed by laminating a plurality of unit cells 2, arranging the current collector 4, the insulating plate and the end plate at both ends thereof, and firmly fastening them with a fastening rod. Here, the current collecting terminal 5 is provided so as to protrude from a part of the current collector 4 so as to be connected to a cable for taking out a direct current generated in the stack 3 to the outside. Further, a flow path (not shown) for supplying and discharging cooling water that is recovered by exchanging heat of the stack 3 generated during power generation is provided between the single cells 2. As shown in FIG. 1, cooling water is supplied to each flow path from a cooling water inlet 10 a of a cooling water manifold arranged at the top of the stack 3, and exhaust heat is recovered and arranged at the bottom of the stack 3. The cooling water manifold is connected to be discharged from the cooling water outlet 10b. In FIG. 1, the cooling water inlet 10 a and the cooling water outlet 10 b of the cooling water manifold are illustrated on the same side surface, but the present invention is not limited thereto. For example, the piping of the cooling water inlet 10a and the cooling water outlet 10b of the cooling water manifold may be arranged on different side surfaces, and the cooling water does not necessarily flow from the upper part to the lower part of the stack 3.

このとき、集電端子5は、以下で説明するように、スタック3の中で最も温度の低い冷却水マニホールドの冷却水入口10aの近傍に配置することが重要である。   At this time, it is important to arrange the current collecting terminal 5 in the vicinity of the cooling water inlet 10a of the cooling water manifold having the lowest temperature in the stack 3, as described below.

また、スタック3の周囲に断熱材6を配置して、スタック3の外部への放熱を防止するとともに、安定した温度にスタック3を保持する構成としている。   In addition, a heat insulating material 6 is disposed around the stack 3 to prevent heat radiation to the outside of the stack 3 and to keep the stack 3 at a stable temperature.

上記のように構成された燃料電池は、スタック3を構成する単電池2の燃料極8に少なくとも水素を含む燃料ガスを、酸化剤極9に少なくとも酸素を含む酸化剤ガスを供給することにより発電する。   The fuel cell configured as described above generates power by supplying a fuel gas containing at least hydrogen to the fuel electrode 8 of the unit cell 2 constituting the stack 3 and supplying an oxidant gas containing at least oxygen to the oxidant electrode 9. To do.

以下に、本実施の形態のポイントである集電体4の集電端子5と冷却水マニホールドの冷却水入口10aとの配置関係について、図2を用いて説明する。   Below, the arrangement | positioning relationship between the current collection terminal 5 of the collector 4 which is the point of this Embodiment and the cooling water inlet 10a of a cooling water manifold is demonstrated using FIG.

図2は、本発明の実施の形態1における燃料電池の冷却水マニホールドの冷却水入口と集電端子5の配置関係を示す概略平面図である。なお、図2は、冷却水マニホールドの冷却水入口10a側からみた状態で示している。   FIG. 2 is a schematic plan view showing the arrangement relationship between the cooling water inlet of the cooling water manifold and the current collecting terminal 5 of the fuel cell according to Embodiment 1 of the present invention. FIG. 2 shows the cooling water manifold as viewed from the cooling water inlet 10a side.

図2に示すように、集電体4の上側周囲のスタック3には、冷却水マニホールドの冷却水入口10aと、燃料ガスマニホールドの燃料ガス入口11aおよび酸化剤ガスマニホールドの酸化剤ガス入口12aが配置されている。また、集電体4の下側周囲のスタック3には、冷却水マニホールドの冷却水出口10bと、燃料ガスマニホールドの燃料ガス出口11bおよび酸化剤ガスマニホールドの酸化剤ガス出口12bが配置されている。   As shown in FIG. 2, the stack 3 around the upper side of the current collector 4 has a cooling water inlet 10a of the cooling water manifold, a fuel gas inlet 11a of the fuel gas manifold, and an oxidant gas inlet 12a of the oxidant gas manifold. Has been placed. The stack 3 around the lower side of the current collector 4 is provided with a cooling water outlet 10b of the cooling water manifold, a fuel gas outlet 11b of the fuel gas manifold, and an oxidant gas outlet 12b of the oxidant gas manifold. .

そして、集電体4の集電端子5は、冷却水マニホールドの冷却水入口10aの近傍で、酸化剤ガスマニホールドの酸化剤ガス入口12aとの間に設けられている。なお、冷却水マニホールドの冷却水入口10aの近傍とは、冷却水マニホールドの冷却水入口10aの外周から集電端子5の外周までの最短距離が20mm以下または集電端子5の端子幅の2倍以下の距離の範囲内である。特に、集電端子5と冷却水マニホールドの冷却水入口10aの外周が接することが好ましい。   The current collector terminal 5 of the current collector 4 is provided in the vicinity of the cooling water inlet 10a of the cooling water manifold and between the oxidant gas inlet 12a of the oxidant gas manifold. The vicinity of the cooling water inlet 10 a of the cooling water manifold means that the shortest distance from the outer periphery of the cooling water inlet 10 a of the cooling water manifold to the outer periphery of the current collecting terminal 5 is 20 mm or less or twice the terminal width of the current collecting terminal 5. Within the following distance range. In particular, it is preferable that the current collector terminal 5 is in contact with the outer periphery of the cooling water inlet 10a of the cooling water manifold.

以下に、上記で説明した集電体の集電端子を冷却水マニホールドの冷却水入口近傍に配置した燃料電池発電システムの排熱回収効率について、具体的に説明する。   Hereinafter, the exhaust heat recovery efficiency of the fuel cell power generation system in which the current collector terminal of the current collector described above is disposed in the vicinity of the cooling water inlet of the cooling water manifold will be specifically described.

そこで、本実施の形態の燃料電池に、燃料極8側に都市ガスを改質して生成した水素を含む燃料ガスを供給する燃料処理手段と、酸化剤極9側に大気中の酸素を含む酸化剤ガスを供給する酸化剤ガス供給手段を接続して、燃料電池発電システムを構成した。   Therefore, the fuel cell of the present embodiment includes a fuel processing means for supplying a fuel gas containing hydrogen generated by reforming city gas to the fuel electrode 8 side, and oxygen in the atmosphere on the oxidant electrode 9 side. The fuel cell power generation system was configured by connecting an oxidant gas supply means for supplying the oxidant gas.

まず、以下に燃料処理手段について、具体的に説明する。   First, the fuel processing means will be specifically described below.

燃料処理手段は、脱硫部と、改質部と、一酸化炭素変成部と、一酸化炭素除去部から少なくとも構成される。このとき、脱硫部は、メタンなどの炭化水素を含む都市ガスなどの原料ガスの付臭剤などに含まれる硫黄化合物を吸着除去する。また、改質部は、メタンなどの炭化水素を含む原料ガスを、水素を含む燃料ガスに改質する。また、一酸化炭素変成部は、改質反応で発生する一酸化炭素を変成し、一酸化炭素除去部は、さらに一酸化炭素を選択的に酸化除去する。   The fuel processing means includes at least a desulfurization section, a reforming section, a carbon monoxide shift section, and a carbon monoxide removal section. At this time, the desulfurization unit adsorbs and removes sulfur compounds contained in the odorant of the raw material gas such as city gas containing hydrocarbons such as methane. The reforming unit reforms a raw material gas containing hydrocarbon such as methane into a fuel gas containing hydrogen. In addition, the carbon monoxide conversion unit converts carbon monoxide generated by the reforming reaction, and the carbon monoxide removal unit further selectively oxidizes and removes carbon monoxide.

つまり、原料ガスは、脱硫部で脱硫された後、改質部で改質されて水素を含む燃料ガスとなる。このとき、例えば原料ガスにメタンを用いた場合、改質部では、水蒸気を伴って(化1)および(化2)で示した反応が起こり、水素が発生する。   That is, the raw material gas is desulfurized in the desulfurization section and then reformed in the reforming section to become a fuel gas containing hydrogen. At this time, for example, when methane is used as the raw material gas, the reaction shown in (Chemical Formula 1) and (Chemical Formula 2) occurs in the reforming unit with water vapor to generate hydrogen.

Figure 2010212049
Figure 2010212049

Figure 2010212049
Figure 2010212049

なお、改質部で起こる全反応をまとめると(化3)に示す反応が行われる。   In addition, the reaction shown in (Chemical Formula 3) is performed by summing up all reactions occurring in the reforming section.

Figure 2010212049
Figure 2010212049

しかし、改質部で生成した改質ガス中には水素以外に10%程度の一酸化炭素が含まれている。そして、一酸化炭素は、スタック3の運転温度域において燃料極8に含まれる白金触媒を被毒して、その触媒活性を低下させる。そこで、改質部で発生した一酸化炭素を、一酸化炭素変成部で(化2)の反応式に示すように、一酸化炭素を二酸化炭素に変成する。これにより、一酸化炭素の濃度が約5000ppmまで減少する。   However, the reformed gas generated in the reforming section contains about 10% carbon monoxide in addition to hydrogen. The carbon monoxide poisons the platinum catalyst contained in the fuel electrode 8 in the operating temperature range of the stack 3 and reduces the catalytic activity. Therefore, carbon monoxide generated in the reforming section is converted into carbon dioxide in the carbon monoxide conversion section as shown in the reaction formula (Chemical Formula 2). This reduces the concentration of carbon monoxide to about 5000 ppm.

さらに、濃度が低減した一酸化炭素を、一酸化炭素除去部で(化4)で示す反応により、選択酸化空気供給手段で大気中から取り込んだ空気で選択的に酸化する。これにより、燃料極8の白金触媒の触媒活性の低下を抑制できる約10ppm以下までに一酸化炭素の濃度が減少する。   Further, the carbon monoxide having a reduced concentration is selectively oxidized with the air taken in from the atmosphere by the selective oxidizing air supply means by the reaction shown by (Chemical Formula 4) in the carbon monoxide removing section. As a result, the concentration of carbon monoxide is reduced to about 10 ppm or less which can suppress the decrease in the catalytic activity of the platinum catalyst of the fuel electrode 8.

Figure 2010212049
Figure 2010212049

また、燃料極8の手前に、発電中に燃料極8に空気を供給するエアブリード手段を設けて、燃料処理手段で生成した燃料ガスに1〜2%程度の空気を混合した。これにより、わずかに残る一酸化炭素の影響をさらに軽減させた。   Further, an air bleed means for supplying air to the fuel electrode 8 during power generation was provided in front of the fuel electrode 8, and about 1 to 2% of air was mixed with the fuel gas generated by the fuel processing means. This further reduced the effect of the slight remaining carbon monoxide.

上記構成により、燃料処理手段を構築した。   With the above configuration, a fuel processing means was constructed.

なお、燃料処理手段は、上記水蒸気改質法に限られず、オートサーマル法などの水素生成方法でもよい。また、燃料ガスに含まれる一酸化炭素濃度によってはエアブリード手段を省略してもよい。   The fuel processing means is not limited to the steam reforming method, and may be a hydrogen generation method such as an autothermal method. Further, the air bleed means may be omitted depending on the concentration of carbon monoxide contained in the fuel gas.

つぎに、酸化剤ガス供給手段について、具体的に説明する。   Next, the oxidant gas supply means will be specifically described.

酸化剤ガス供給手段は、酸化剤ガスを取り込むブロワと、酸化剤ガス中の不純物を除去する不純物除去手段と、酸化剤ガスを加湿する加湿器で構成される。そして、酸化剤ガスをスタック3の酸化剤極9に加湿して供給する。ここで、酸化剤ガスとは、少なくとも酸素を含む(あるいは酸素を供給することのできる)ガスの総称であり、例えば大気(空気)が利用される。   The oxidant gas supply unit includes a blower that takes in the oxidant gas, an impurity removal unit that removes impurities in the oxidant gas, and a humidifier that humidifies the oxidant gas. Then, the oxidant gas is humidified and supplied to the oxidant electrode 9 of the stack 3. Here, the oxidant gas is a general term for gases containing at least oxygen (or capable of supplying oxygen). For example, the atmosphere (air) is used.

つぎに、以下の構成を備える燃料電池発電システムの動作について、具体的に説明する。   Next, the operation of the fuel cell power generation system having the following configuration will be specifically described.

まず、燃料極8に燃料ガス、酸化剤極9に酸化剤ガスを供給して負荷を接続すると、燃料ガス中の水素は反応式(化5)で示すように燃料極8の触媒層と電解質7の界面で電子を放出して水素イオンとなる。   First, when a fuel gas is supplied to the fuel electrode 8 and an oxidant gas is supplied to the oxidant electrode 9 and a load is connected, hydrogen in the fuel gas is converted into a catalyst layer and an electrolyte of the fuel electrode 8 as shown in the reaction formula Electrons are emitted at the interface of 7 to become hydrogen ions.

Figure 2010212049
Figure 2010212049

そして、放出された水素イオンは、電解質7を通って酸化剤極9へと移動し、酸化剤極9の触媒層と電解質7の界面で電子を受け取る。このとき、酸化剤極9に供給された酸化剤ガス中の酸素と反応して、反応式(化6)で示すように水を生成する。   The released hydrogen ions move to the oxidant electrode 9 through the electrolyte 7 and receive electrons at the interface between the catalyst layer of the oxidant electrode 9 and the electrolyte 7. At this time, it reacts with oxygen in the oxidant gas supplied to the oxidant electrode 9 to generate water as shown in the reaction formula (Formula 6).

Figure 2010212049
Figure 2010212049

上記反応をまとめると(化7)に示す反応が行われる。   When the above reactions are combined, the reaction shown in (Chemical Formula 7) is performed.

Figure 2010212049
Figure 2010212049

そして、負荷を流れる電子の流れを直流の電気エネルギーとして利用できる。また、上記一連の反応は発熱反応である。そのため、スタック3で発生した排熱を、冷却水マニホールドの冷却水入口10aから供給される冷却水により熱交換して回収することにより、湯などの熱エネルギーとして利用することができる。   The flow of electrons flowing through the load can be used as direct current electric energy. The series of reactions is an exothermic reaction. Therefore, the exhaust heat generated in the stack 3 can be used as thermal energy such as hot water by recovering heat by exchanging with the cooling water supplied from the cooling water inlet 10a of the cooling water manifold.

一般に、スタック3の温度は、発電中の直流電流の大きさと冷却水の温度によって決まり、冷却水マニホールドの冷却水入口10aの近傍で最も低く、冷却水マニホールドの冷却水出口10bの近傍で最も高くなる。   In general, the temperature of the stack 3 is determined by the magnitude of the direct current during power generation and the temperature of the cooling water, and is lowest in the vicinity of the cooling water inlet 10a of the cooling water manifold and highest in the vicinity of the cooling water outlet 10b of the cooling water manifold. Become.

具体的には、本発明の実施の形態1の燃料電池では、冷却水入口10aの温度が約60℃、冷却水出口10bの温度が約70℃であった。   Specifically, in the fuel cell according to Embodiment 1 of the present invention, the temperature of the cooling water inlet 10a was about 60 ° C., and the temperature of the cooling water outlet 10b was about 70 ° C.

このとき、一般に、集電体4および集電端子5には、高い熱伝導性を有する金属製の導電体が用いられるため、外気と接触する部分の集電端子5を介して放熱が起こる。   At this time, generally, since the current collector 4 and the current collector terminal 5 are made of a metal conductor having high thermal conductivity, heat is radiated through the current collector terminal 5 in a portion in contact with the outside air.

しかし、本発明の実施の形態1の燃料電池では、集電端子5がスタック3の中で最も温度の低い冷却水マニホールドの冷却水入口10aの近傍に配置されているので、集電端子の放熱が冷却水に吸収される。その結果、近傍に配置されていない場合と比べて、スタック3からの外部への放熱が抑制され、排熱回収効率を高く保持することができる。   However, in the fuel cell according to Embodiment 1 of the present invention, the current collecting terminal 5 is disposed in the vicinity of the cooling water inlet 10a of the cooling water manifold having the lowest temperature in the stack 3, so that the heat radiation of the current collecting terminal is performed. Is absorbed by the cooling water. As a result, compared with the case where it is not arranged in the vicinity, heat radiation from the stack 3 to the outside is suppressed, and the exhaust heat recovery efficiency can be kept high.

また、本発明の実施の形態1の燃料電池では、燃料ガス入口11aの露点温度は約55
℃、酸化剤ガス入口12aの露点温度は約65℃であった。このとき、スタック3の発電面内の中央付近の温度を冷却水入口10aの温度と冷却水出口10bの温度の平均とした場合、スタック3の温度は約65℃となる。そのため、燃料ガス入口11aの湿度が、高い湿度状態から水蒸気の少ない低い湿度状態になる。
In the fuel cell according to Embodiment 1 of the present invention, the dew point temperature of the fuel gas inlet 11a is about 55.
C., and the dew point temperature of the oxidant gas inlet 12a was about 65.degree. At this time, when the temperature near the center of the power generation surface of the stack 3 is an average of the temperature of the cooling water inlet 10a and the temperature of the cooling water outlet 10b, the temperature of the stack 3 is about 65 ° C. Therefore, the humidity of the fuel gas inlet 11a is changed from a high humidity state to a low humidity state with little water vapor.

そして、一般に、燃料極8側が低い湿度状態になると、例えば燃料ガス中に含まれる不純物、特に一酸化炭素が燃料極8の触媒を被毒させるため、湿度が低い度合いに応じて発電電圧などの発電性能が低下する場合がある。   In general, when the fuel electrode 8 side is in a low humidity state, for example, impurities contained in the fuel gas, particularly carbon monoxide, poisons the catalyst of the fuel electrode 8, so that the generated voltage or the like depends on the degree of low humidity. The power generation performance may be reduced.

しかし、本発明の実施の形態1の燃料電池では、集電端子5を酸化剤ガスマニホールドの酸化剤ガス入口12aと冷却水マニホールドの冷却水入口10aの間に配置するため、集電端子5からの放熱による水蒸気の凝縮を抑制することができる。その結果、燃料ガス入口11aは、それ以上低い湿度状態になることが抑制され、燃料極8側の不純物に対する耐性を高いまま保持して、安定した発電性能を保持できる。   However, in the fuel cell according to Embodiment 1 of the present invention, the current collecting terminal 5 is disposed between the oxidant gas inlet 12a of the oxidant gas manifold and the cooling water inlet 10a of the cooling water manifold. Condensation of water vapor due to heat dissipation can be suppressed. As a result, the fuel gas inlet 11a is suppressed from being in a lower humidity state, and the resistance to impurities on the fuel electrode 8 side is kept high, so that stable power generation performance can be maintained.

(実施の形態2)
以下に、本発明の実施の形態2における燃料電池について、図3を用いて説明する。
(Embodiment 2)
Hereinafter, a fuel cell according to Embodiment 2 of the present invention will be described with reference to FIG.

図3は、本発明の実施の形態2における燃料電池の冷却水マニホールドの冷却水入口と集電端子の配置関係を示す概略平面図である。   FIG. 3 is a schematic plan view showing the positional relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold of the fuel cell according to Embodiment 2 of the present invention.

つまり、図3に示すように、本実施の形態の燃料電池は、集電端子5を、冷却水マニホールドの冷却水入口10aと燃料ガスマニホールドの燃料ガス入口11aの間に配置した点で、実施の形態1とは異なる。なお、冷却水マニホールドの冷却水入口と集電端子の配置関係以外の燃料電池の構成要素は、実施の形態1と同様であるため、説明を省略する。   That is, as shown in FIG. 3, the fuel cell of the present embodiment is implemented in that the current collecting terminal 5 is arranged between the cooling water inlet 10a of the cooling water manifold and the fuel gas inlet 11a of the fuel gas manifold. This is different from the first form. The constituent elements of the fuel cell other than the arrangement relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold are the same as those in the first embodiment, and thus the description thereof is omitted.

そこで、以下では、実施の形態1と異なる点を主に詳細に説明する。   Therefore, in the following, differences from the first embodiment will be mainly described in detail.

まず、実施の形態1で説明したように、本実施の形態の燃料電池の発電中における冷却水入口10aの温度は約60℃、冷却水出口10bの温度は約70℃である。また、燃料ガス入口11aの露点温度は約65℃、酸化剤ガス入口12aの露点温度は約55℃である。このとき、スタック3の発電面内の中央付近の温度を冷却水入口10aの温度と冷却水出口10bの温度の平均とした場合、スタック3の温度は約65℃となる。そのため、酸化剤ガス入口12aの湿度が、高い湿度状態から水蒸気の少ない低い湿度状態になる。   First, as described in the first embodiment, the temperature of the cooling water inlet 10a during power generation of the fuel cell of the present embodiment is about 60 ° C., and the temperature of the cooling water outlet 10b is about 70 ° C. The dew point temperature of the fuel gas inlet 11a is about 65 ° C., and the dew point temperature of the oxidant gas inlet 12a is about 55 ° C. At this time, if the temperature near the center of the power generation surface of the stack 3 is the average of the temperature of the cooling water inlet 10a and the temperature of the cooling water outlet 10b, the temperature of the stack 3 is about 65 ° C. Therefore, the humidity of the oxidant gas inlet 12a is changed from a high humidity state to a low humidity state with little water vapor.

そして、一般に、酸化剤極9側が低い湿度状態になると、例えば酸化剤ガス中に含まれる不純物、例えば大気中に含まれる二酸化硫黄などの硫黄化合物や窒素酸化物あるいはアンモニアなどが酸化剤極9の触媒に付着(吸着)する。その結果、発電に必要な化学反応を阻害することにより、湿度が低い度合いに応じて発電電圧などの発電性能が低下する場合がある。   In general, when the oxidant electrode 9 side is in a low humidity state, for example, impurities contained in the oxidant gas, for example, sulfur compounds such as sulfur dioxide, nitrogen oxides or ammonia contained in the atmosphere, Adhere (adsorb) to the catalyst. As a result, the chemical reaction necessary for power generation may be hindered, so that power generation performance such as power generation voltage may be reduced depending on the degree of low humidity.

しかし、本発明の実施の形態2の燃料電池では、集電端子5を燃料ガスマニホールドの燃料ガス入口11aと冷却水マニホールドの冷却水入口10aの間に配置するため、集電端子5からの放熱による水蒸気の凝縮を抑制することができる。その結果、酸化剤ガス入口12aは、それ以上低い湿度状態になることが抑制され、酸化剤極9側の不純物に対する耐性を高いまま保持して、安定した発電性能を保持できる。   However, in the fuel cell according to Embodiment 2 of the present invention, the current collecting terminal 5 is disposed between the fuel gas inlet 11a of the fuel gas manifold and the cooling water inlet 10a of the cooling water manifold, so that heat is radiated from the current collecting terminal 5. It is possible to suppress the condensation of water vapor. As a result, the oxidant gas inlet 12a is suppressed from becoming a humidity state lower than that, and the resistance against impurities on the oxidant electrode 9 side is kept high, and stable power generation performance can be maintained.

(実施の形態3)
以下に、本発明の実施の形態3における燃料電池について、図4を用いて説明する。
(Embodiment 3)
Hereinafter, a fuel cell according to Embodiment 3 of the present invention will be described with reference to FIG.

図4は、本発明の実施の形態3における燃料電池の冷却水マニホールドの冷却水入口と集電端子の配置関係を示す概略平面図である。   FIG. 4 is a schematic plan view showing the arrangement relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold of the fuel cell according to Embodiment 3 of the present invention.

つまり、図4に示すように、本実施の形態の燃料電池は、冷却水マニホールドの冷却水入口10aを集電端子5の近傍の集電体4内に設けた点で、実施の形態1とは異なる。なお、冷却水マニホールドの冷却水入口と集電端子の配置関係以外の燃料電池の構成要素は、実施の形態1と同様であるため、説明を省略する。   That is, as shown in FIG. 4, the fuel cell of the present embodiment is different from that of the first embodiment in that the cooling water inlet 10a of the cooling water manifold is provided in the current collector 4 near the current collecting terminal 5. Is different. The constituent elements of the fuel cell other than the arrangement relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold are the same as those in the first embodiment, and thus the description thereof is omitted.

図4に示すように、本実施の形態の燃料電池は、集電体4内の集電端子5の付け根近傍に、冷却水マニホールドの冷却水入口を配置し、集電端子5の放熱を低減する構成である。   As shown in FIG. 4, in the fuel cell of the present embodiment, the cooling water inlet of the cooling water manifold is disposed near the base of the current collecting terminal 5 in the current collector 4 to reduce heat dissipation of the current collecting terminal 5. It is the structure to do.

ここで、集電端子5の近傍とは、冷却水マニホールドの冷却水入口10aの外周から集電端子5の外周までの最短距離が20mm以下または集電端子5の端子幅の2倍以下の距離の範囲内である。特に、冷却水マニホールドの冷却水入口10aを集電体4の集電端子5の付け根部に配置することが好ましい。   Here, the vicinity of the current collecting terminal 5 is a distance in which the shortest distance from the outer periphery of the cooling water inlet 10 a of the cooling water manifold to the outer periphery of the current collecting terminal 5 is 20 mm or less or twice the terminal width of the current collecting terminal 5. Is within the range. In particular, the cooling water inlet 10 a of the cooling water manifold is preferably arranged at the base of the current collecting terminal 5 of the current collector 4.

このとき、集電体4の腐食や冷却水の導電率の上昇を防止するため、冷却水と集電体4および集電端子5が直接接触しないように冷却水マニホールドの冷却水入口10aを樹脂配管や樹脂で被覆して構成するのが好ましい。   At this time, in order to prevent corrosion of the current collector 4 and increase in the conductivity of the cooling water, the cooling water inlet 10a of the cooling water manifold is made of resin so that the cooling water does not directly contact the current collector 4 and the current collecting terminal 5. It is preferable to cover and configure with piping or resin.

本実施の形態によれば、冷却水が熱伝導性の高い集電体4を介して集電端子5を冷却する。それにより、集電端子5の温度を低下させて、集電端子5と外気温の差を小さくする。その結果、集電端子5からの放熱を抑制して、冷却水を介して、排熱回収効率を向上できる。   According to the present embodiment, the cooling water cools the current collecting terminal 5 via the current collector 4 having high thermal conductivity. Thereby, the temperature of the current collecting terminal 5 is lowered, and the difference between the current collecting terminal 5 and the outside air temperature is reduced. As a result, heat dissipation from the current collecting terminals 5 can be suppressed, and the exhaust heat recovery efficiency can be improved via the cooling water.

(実施の形態4)
以下に、本発明の実施の形態4における燃料電池について、図5を用いて説明する。
(Embodiment 4)
Hereinafter, a fuel cell according to Embodiment 4 of the present invention will be described with reference to FIG.

図5は、本発明の実施の形態4における燃料電池の冷却水マニホールドの冷却水入口と集電端子の配置関係を示す概略平面図である。   FIG. 5 is a schematic plan view showing the positional relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold of the fuel cell according to Embodiment 4 of the present invention.

つまり、図5に示すように、本実施の形態の燃料電池は、集電端子5に冷却水マニホールドの冷却水入口10aを設けた点で、実施の形態1とは異なる。なお、冷却水マニホールドの冷却水入口と集電端子の配置関係以外の燃料電池の構成要素は、実施の形態1と同様であるため、説明を省略する。   That is, as shown in FIG. 5, the fuel cell according to the present embodiment is different from the first embodiment in that a cooling water inlet 10 a of a cooling water manifold is provided at the current collecting terminal 5. The constituent elements of the fuel cell other than the arrangement relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold are the same as those in the first embodiment, and thus the description thereof is omitted.

図5に示すように、本実施の形態の燃料電池は、集電体4に突出させて設けた集電端子5内に、冷却水マニホールドの冷却水入口10aを配置し、集電端子5の放熱を低減する構成である。   As shown in FIG. 5, in the fuel cell of the present embodiment, a cooling water inlet 10 a of a cooling water manifold is disposed in a current collecting terminal 5 provided to protrude from the current collector 4. This configuration reduces heat dissipation.

このとき、集電体4の腐食や冷却水の導電率の上昇を防止するため、冷却水と集電体4および集電端子5が直接接触しないように冷却水マニホールドの冷却水入口10aを樹脂配管や樹脂で被覆して構成するのが好ましい。   At this time, in order to prevent corrosion of the current collector 4 and increase in the conductivity of the cooling water, the cooling water inlet 10a of the cooling water manifold is made of resin so that the cooling water does not directly contact the current collector 4 and the current collecting terminal 5. It is preferable to cover and configure with piping or resin.

本実施の形態の構成によれば、集電端子5を直接的に冷却して、集電端子5の温度を低下させる。その結果、集電端子5からの放熱を効率的に抑制して、冷却水の排熱回収効率をさらに向上できる。   According to the configuration of the present embodiment, the current collecting terminal 5 is directly cooled to lower the temperature of the current collecting terminal 5. As a result, heat dissipation from the current collecting terminals 5 can be efficiently suppressed, and the exhaust heat recovery efficiency of the cooling water can be further improved.

なお、実施の形態3および実施の形態4では、集電端子またはその近傍の集電体に冷却
水マニホールドの冷却水入口が貫通する構成を例に説明したが、これに限られない。例えば、図6に示すように、集電端子5の面内に冷却水マニホールドの冷却水入口10aと接続されて通流する冷却水流路10cを設けてもよい。このとき、冷却水流路10cは、密閉空間とする必要がある。これにより、集電端子の全体を効率的に冷却して、冷却水の排熱回収効率をさらに向上し、発電性能に優れ、総合的なエネルギー効率の高い燃料電池を実現できる。また、実施の形態3に冷却水流路を設けても、同様の効果が得られる。
In the third and fourth embodiments, the configuration in which the cooling water inlet of the cooling water manifold penetrates the current collecting terminal or the current collector in the vicinity thereof is described as an example, but the present invention is not limited to this. For example, as shown in FIG. 6, a cooling water flow path 10 c that is connected to the cooling water inlet 10 a of the cooling water manifold and flows therethrough may be provided in the surface of the current collecting terminal 5. At this time, the cooling water flow path 10c needs to be a sealed space. As a result, it is possible to efficiently cool the entire current collecting terminal, further improve the exhaust heat recovery efficiency of the cooling water, and realize a fuel cell with excellent power generation performance and high overall energy efficiency. Moreover, even if the cooling water flow path is provided in the third embodiment, the same effect can be obtained.

また、各実施の形態では、燃料電池の構成を主に説明したが、これに限られず、燃料電池に、燃料処理手段や酸化剤ガス供給手段を設けて燃料電池発電システムを構築することもできる。これにより、発電性能に優れ、排熱回収効率の高い燃料電池発電システムを実現できる。   In each embodiment, the configuration of the fuel cell has been mainly described. However, the present invention is not limited to this, and a fuel cell power generation system can be constructed by providing a fuel cell with a fuel processing unit and an oxidant gas supply unit. . As a result, a fuel cell power generation system having excellent power generation performance and high exhaust heat recovery efficiency can be realized.

本発明は、排熱回収効率の向上が要望される、高分子型固体電解質膜を用いた燃料電池、燃料電池デバイス、定置用燃料電池発電システムなどの技術分野において有用である。   INDUSTRIAL APPLICABILITY The present invention is useful in technical fields such as a fuel cell using a polymer type solid electrolyte membrane, a fuel cell device, and a stationary fuel cell power generation system, where improvement in exhaust heat recovery efficiency is desired.

本発明の実施の形態1における燃料電池を示す概略構成図1 is a schematic configuration diagram showing a fuel cell according to Embodiment 1 of the present invention. 本発明の実施の形態1における燃料電池の冷却水マニホールドの冷却水入口と集電端子の配置関係を示す概略平面図1 is a schematic plan view showing an arrangement relationship between a cooling water inlet and a current collecting terminal of a cooling water manifold of a fuel cell according to Embodiment 1 of the present invention. 本発明の実施の形態2における燃料電池の冷却水マニホールドの冷却水入口と集電端子の配置関係を示す概略平面図Schematic plan view showing the arrangement relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold of the fuel cell according to Embodiment 2 of the present invention. 本発明の実施の形態3における燃料電池の冷却水マニホールドの冷却水入口と集電端子の配置関係を示す概略平面図Schematic plan view showing the arrangement relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold of the fuel cell according to Embodiment 3 of the present invention. 本発明の実施の形態4における燃料電池の冷却水マニホールドの冷却水入口と集電端子の配置関係を示す概略平面図Schematic plan view showing the arrangement relationship between the cooling water inlet and the current collecting terminal of the cooling water manifold of the fuel cell according to Embodiment 4 of the present invention. 本発明の実施の形態4における燃料電池の別の例の集電端子の構造を示す概略平面図Schematic plan view showing the structure of a current collecting terminal of another example of the fuel cell according to Embodiment 4 of the present invention. 従来の燃料電池を示す概略構成図Schematic configuration diagram showing a conventional fuel cell

1a,1b,21a,21b セパレータ
2,22 単電池
3,23 スタック
4,24 集電体
5,25 集電端子
6,26 断熱材
7 電解質
8 燃料極
9 酸化剤極
10a 冷却水入口
10b 冷却水出口
10c 冷却水流路
11a 燃料ガス入口
11b 燃料ガス出口
12a 酸化剤ガス入口
12b 酸化剤ガス出口
DESCRIPTION OF SYMBOLS 1a, 1b, 21a, 21b Separator 2,22 Single cell 3,23 Stack 4,24 Current collector 5,25 Current collecting terminal 6,26 Heat insulating material 7 Electrolyte 8 Fuel electrode 9 Oxidant electrode 10a Cooling water inlet 10b Cooling water Outlet 10c Cooling water flow path 11a Fuel gas inlet 11b Fuel gas outlet 12a Oxidant gas inlet 12b Oxidant gas outlet

Claims (7)

電解質の両面に形成された燃料極および酸化剤極と、前記電解質を挟持した一対のセパレータとからなる単電池、または前記単電池を複数積層したスタックと、前記単電池または前記スタックの両端に配置された集電体と、前記集電体に設けられた集電端子と、前記燃料極に少なくとも水素を含む燃料ガスを供給排出する燃料ガスマニホールドと、前記酸化剤極に少なくとも酸素を含む酸化剤ガスを供給排出する酸化剤ガスマニホールドと、前記単電池または前記スタックで発生する熱を回収する冷却水を供給排出する冷却水マニホールドと、を少なくとも備え、前記集電端子を前記冷却水マニホールドの冷却水入口近傍に配置する燃料電池。 A unit cell composed of a fuel electrode and an oxidant electrode formed on both surfaces of the electrolyte, and a pair of separators sandwiching the electrolyte, or a stack in which a plurality of the unit cells are stacked, and arranged at both ends of the unit cell or the stack Current collector, a current collector terminal provided on the current collector, a fuel gas manifold for supplying and discharging a fuel gas containing at least hydrogen to the fuel electrode, and an oxidizer containing at least oxygen in the oxidizer electrode An oxidant gas manifold that supplies and discharges gas; and a cooling water manifold that supplies and discharges cooling water that recovers heat generated in the single cell or the stack, and the current collector terminal is used to cool the cooling water manifold. A fuel cell placed near the water inlet. 前記集電端子を前記冷却水マニホールドの前記冷却水入口と前記酸化剤ガスマニホールドの前記酸化剤ガス入口との間に配置する請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the current collecting terminal is disposed between the cooling water inlet of the cooling water manifold and the oxidant gas inlet of the oxidant gas manifold. 前記集電端子を前記冷却水マニホールドの前記冷却水入口と前記燃料ガスマニホールドの前記燃料ガス入口との間に配置する請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the current collecting terminal is disposed between the cooling water inlet of the cooling water manifold and the fuel gas inlet of the fuel gas manifold. 前記冷却水マニホールドの前記冷却水入口を前記集電体内の前記集電端子の近傍に配置する請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the cooling water inlet of the cooling water manifold is disposed in the vicinity of the current collecting terminal in the current collector. 前記集電端子内に前記冷却水マニホールドの前記冷却水入口を設けた請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the cooling water inlet of the cooling water manifold is provided in the current collecting terminal. 前記集電端子の面内に前記冷却水マニホールドの前記冷却水入口と接続される冷却水流路を設けた請求項4または5に記載の燃料電池。 6. The fuel cell according to claim 4, wherein a cooling water passage connected to the cooling water inlet of the cooling water manifold is provided in a surface of the current collecting terminal. 請求項1から6までのいずれか1項に記載の燃料電池と、燃料処理手段と、酸化剤ガス供給手段と、を少なくとも備えた燃料電池発電システム。 A fuel cell power generation system comprising at least the fuel cell according to any one of claims 1 to 6, a fuel processing unit, and an oxidant gas supply unit.
JP2009056209A 2009-03-10 2009-03-10 Fuel cell, and fuel cell power generation system equipped with it Pending JP2010212049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056209A JP2010212049A (en) 2009-03-10 2009-03-10 Fuel cell, and fuel cell power generation system equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056209A JP2010212049A (en) 2009-03-10 2009-03-10 Fuel cell, and fuel cell power generation system equipped with it

Publications (1)

Publication Number Publication Date
JP2010212049A true JP2010212049A (en) 2010-09-24

Family

ID=42972007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056209A Pending JP2010212049A (en) 2009-03-10 2009-03-10 Fuel cell, and fuel cell power generation system equipped with it

Country Status (1)

Country Link
JP (1) JP2010212049A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209149A (en) * 2011-03-30 2012-10-25 Toyota Motor Corp Fuel cell stack
JP2016167373A (en) * 2015-03-09 2016-09-15 日本特殊陶業株式会社 Fuel battery stack
US10135078B2 (en) 2014-10-15 2018-11-20 Toyota Jidosha Kabushiki Kaisha Current collector for fuel cell, and fuel cell stack
US10270106B2 (en) 2014-11-14 2019-04-23 Toyota Jidosha Kabushiki Kaisha Terminal plate for fuel cell, and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362943A (en) * 2003-06-05 2004-12-24 Fuji Electric Holdings Co Ltd Fuel cell
JP2007323931A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell stack
JP2008300131A (en) * 2007-05-30 2008-12-11 Panasonic Corp Fuel cell stack
JP2008300121A (en) * 2007-05-30 2008-12-11 Nissan Motor Co Ltd Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362943A (en) * 2003-06-05 2004-12-24 Fuji Electric Holdings Co Ltd Fuel cell
JP2007323931A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell stack
JP2008300131A (en) * 2007-05-30 2008-12-11 Panasonic Corp Fuel cell stack
JP2008300121A (en) * 2007-05-30 2008-12-11 Nissan Motor Co Ltd Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209149A (en) * 2011-03-30 2012-10-25 Toyota Motor Corp Fuel cell stack
US10135078B2 (en) 2014-10-15 2018-11-20 Toyota Jidosha Kabushiki Kaisha Current collector for fuel cell, and fuel cell stack
US10270106B2 (en) 2014-11-14 2019-04-23 Toyota Jidosha Kabushiki Kaisha Terminal plate for fuel cell, and fuel cell
JP2016167373A (en) * 2015-03-09 2016-09-15 日本特殊陶業株式会社 Fuel battery stack

Similar Documents

Publication Publication Date Title
CA2483224C (en) Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
ES2678599T3 (en) Gas distribution element for a fuel cell
US11616249B2 (en) Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor
JP2007128716A (en) Fuel cell
JP4956946B2 (en) Fuel cell
JP5713698B2 (en) Separation and recovery system for CO2 from solid oxide fuel cell and method for operating the same
CA2390293A1 (en) Method and device for improved catalytic activity in the purification of fluids
JP4459926B2 (en) Direct liquid fuel cell system
JP4846883B2 (en) POLYMER ELECTROLYTE FUEL CELL, FUEL CELL STACK HAVING THE SAME, FUEL CELL SYSTEM, AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2006073518A (en) Stack for fuel cell
JP2010212049A (en) Fuel cell, and fuel cell power generation system equipped with it
EP4071867A2 (en) Hydrogen pumping proton exchange membrane electrochemical cell with carbon monoxide tolerant anode and method of making thereof
JP2008117547A (en) Fuel cell
KR101405689B1 (en) Humidifier for fuel cell
JP5470131B2 (en) Household fuel cell system for home use
JP5135823B2 (en) Fuel cell
JP4843907B2 (en) Fuel cell power generator
JP2005294152A (en) Solid oxide fuel cell
JP2014010932A (en) Fuel cell power generation device
JP2012109064A (en) Fuel cell power generation system
JP2007335145A (en) Fuel cell system
JP2010267563A (en) Fuel cell power generation system
KR100570685B1 (en) Carbon monoxide remover, and fuel cell system comprising the carbon monoxide remover
JP4661054B2 (en) Fuel cell power generator
JP2009245630A (en) Reformer and plate type solid oxide fuel cell using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122