JP2010209835A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2010209835A
JP2010209835A JP2009058110A JP2009058110A JP2010209835A JP 2010209835 A JP2010209835 A JP 2010209835A JP 2009058110 A JP2009058110 A JP 2009058110A JP 2009058110 A JP2009058110 A JP 2009058110A JP 2010209835 A JP2010209835 A JP 2010209835A
Authority
JP
Japan
Prior art keywords
fuel
exhaust
air
amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009058110A
Other languages
Japanese (ja)
Other versions
JP5104789B2 (en
Inventor
Atsushi Kawamura
淳 川村
Masakuni Yokoyama
正訓 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009058110A priority Critical patent/JP5104789B2/en
Priority to DE102010002735A priority patent/DE102010002735A1/en
Publication of JP2010209835A publication Critical patent/JP2010209835A/en
Application granted granted Critical
Publication of JP5104789B2 publication Critical patent/JP5104789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/102Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance after addition to exhaust gases, e.g. by a passively or actively heated surface in the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of learning a deposit ratio and an evaporation rate, and more appropriately adding fuel according to the geometric machine difference of a vehicle and fuel property. <P>SOLUTION: The exhaust emission control device for the internal combustion engine includes: a NOx storage reduction catalyst 34 provided in an exhaust flow passage 26 from the internal combustion engine 1 to purify exhaust gas and also regenerating an emission control function; and a fuel adding valve 21 adding fuel to the exhaust flow passage 26 upstream of the NOx storage reduction catalyst 34. An air-fuel ratio sensor 58 is provided for detecting an air-fuel ratio in the exhaust flow passage 26 downstream of the NOx storage reduction catalyst 34. The evaporation rate is calculated based on a reaching fuel estimated mode using two pairs of displacement, air-fuel ratio and cylinder injection quantity detected at time intervals after the fuel is added, and also the deposit ratio is calculated based on the minimum peak value of the air-fuel ratio by the air-fuel ratio sensor 58 after the fuel is added, displacement at that time, and a cylinder injection quantity (S170-S210). The amount of fuel added from the fuel adding valve 21 to the exhaust flow passage 26 is calculated based on the calculated deposit ratio and evaporation rate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気流路に燃料を添加する燃料添加弁を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine provided with a fuel addition valve for adding fuel to an exhaust passage.

従来より、リーンバーンガソリンエンジンやディーゼルエンジンといった理論空燃比よりも空気過剰なリーン燃焼を行う内燃機関では、排気中の窒素酸化物(NOx)の浄化に際し、例えばNOx吸蔵還元型触媒が用いられる。NOx吸蔵還元型触媒においては、リーン雰囲気においてNOxが吸蔵され、リッチ雰囲気に切り替えられることにより吸蔵されたNOxが還元されて無害な窒素となり排出されて、NOx吸蔵還元型触媒が再生される。このリッチ雰囲気を作るために、排気中に直接燃料を添加する燃料添加弁を設け、排気流路中に燃料を添加している。   2. Description of the Related Art Conventionally, in an internal combustion engine that performs lean combustion in which the air is in excess of the stoichiometric air-fuel ratio, such as a lean burn gasoline engine or a diesel engine, for example, a NOx occlusion reduction type catalyst is used for purifying nitrogen oxide (NOx) in exhaust gas. In the NOx occlusion reduction type catalyst, NOx is occluded in a lean atmosphere, and the NOx occluded is reduced by being switched to the rich atmosphere and is discharged as harmless nitrogen, whereby the NOx occlusion reduction type catalyst is regenerated. In order to create this rich atmosphere, a fuel addition valve for directly adding fuel to the exhaust is provided, and the fuel is added to the exhaust passage.

また、内燃機関の排気中に含まれる粒子状物質が大気へ放出されないように、内燃機関の排気流路にパティキュレートフィルタを設けている。このフィルタにより排気中の粒子状物質が一旦捕集されるが、フィルタに捕集された粒子状物質の量が多くなるとフィルタ上流の排気の圧力が上昇するため、内燃機関の出力低下や燃費の悪化を誘発する。このようなときには、燃料添加弁から排気中に燃料を添加することでフィルタの温度を上昇させ、フィルタに堆積した粒子状物質を酸化させることにより粒子状物質を除去するフィルタの再生を行なう。   Further, a particulate filter is provided in the exhaust flow path of the internal combustion engine so that particulate matter contained in the exhaust gas of the internal combustion engine is not released to the atmosphere. The particulate matter in the exhaust gas is once collected by this filter, but if the amount of the particulate matter collected in the filter increases, the pressure of the exhaust gas upstream of the filter will rise, so that the output of the internal combustion engine and fuel consumption will be reduced. Induces deterioration. In such a case, the fuel is added to the exhaust gas from the fuel addition valve to raise the temperature of the filter, and the particulate matter deposited on the filter is oxidized to regenerate the filter that removes the particulate matter.

この燃料の添加を適切に行うために、例えば、特許文献1には、排気系への燃料添加に際し、排気流量、排気温度及び排気流路内壁の温度に基づいて、予め設定されたマップから燃料の蒸発量を推定し、この蒸発量を加味して、燃料添加弁から添加する燃料量を算出する排気浄化装置が記載されている。   In order to perform this fuel addition appropriately, for example, Patent Document 1 discloses that fuel is added from a preset map based on the exhaust flow rate, the exhaust temperature, and the temperature of the inner wall of the exhaust passage when adding fuel to the exhaust system. An exhaust purification device is described that estimates the amount of evaporation and calculates the amount of fuel added from the fuel addition valve in consideration of the amount of evaporation.

また、特許文献2には、燃料添加弁から燃料添加することにより排気系内の燃料堆積量が基準堆積量より大きくなったときには燃料添加を禁止し、白煙発生を防止する排気浄化装置が記載されている。その際、添加した燃料の内で排気系内に付着する燃料の付着率や、添加燃料や付着燃料から蒸気となる蒸発率を、吸入空気量と排気温度に基づいて予め設定されたマップから算出し、この付着率、蒸発率や燃料添加量により燃料堆積量を算出している。   Further, Patent Document 2 describes an exhaust purification device that prohibits fuel addition when the fuel accumulation amount in the exhaust system becomes larger than a reference accumulation amount by adding fuel from a fuel addition valve, and prevents white smoke generation. Has been. At that time, the rate of fuel adhering to the exhaust system among the added fuel and the evaporation rate of vapor from the added fuel and adhering fuel are calculated from a preset map based on the intake air amount and the exhaust temperature. The fuel accumulation amount is calculated from the adhesion rate, evaporation rate, and fuel addition amount.

特開2002−038939号公報JP 2002-038939 A 特開2005−180290号公報JP 2005-180290 A

こうした従来の装置では、予め設定されたマップに基づいて燃料添加量を算出するオープン制御であり、車両の幾何的機差や燃料性状に関わりなく、排気流量や吸入空気量、排気温度等に基づいて蒸発量、付着率や蒸発率が算出される。しかしながら、実際には車両の幾何的機差により付着度合いが変わり、あるいは燃料性状によって蒸発速度が変わることにより、目標通りの制御性能が得られないという問題があった。   Such a conventional apparatus is an open control that calculates the fuel addition amount based on a preset map, and is based on the exhaust flow rate, the intake air amount, the exhaust temperature, etc., irrespective of the geometrical difference of the vehicle and the fuel properties. Thus, the evaporation amount, the adhesion rate, and the evaporation rate are calculated. However, in actuality, there is a problem that the control performance according to the target cannot be obtained because the degree of adhesion varies depending on the geometrical difference of the vehicle, or the evaporation speed varies depending on the fuel properties.

本発明の課題は、付着率や蒸発率を学習して、車両の幾何的機差や燃料性状に応じてより適切な燃料添加を行なうことができる内燃機関の排気浄化装置を提供することにある。   An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that learns the adhesion rate and the evaporation rate and can perform more appropriate fuel addition according to the geometrical difference of the vehicle and the fuel properties. .

かかる課題を達成すべく、本発明は課題を解決するため次の手段を取った。即ち、
内燃機関からの排気流路に設けられ排気を浄化すると共に、浄化機能を再生可能な排気浄化部材と、
前記排気浄化部材より上流の前記排気流路に燃料を添加する燃料添加弁と、
前記燃料添加弁の添加パターンと添加燃料の前記排気流路への付着率及び付着燃料の前記排気流路からの蒸発率に基づき、前記排気浄化部材に到達する燃料を推定する到達燃料推定モデルとを備え、添加した前記燃料により前記排気浄化部材を再生する内燃機関の排気浄化装置において、
前記排気浄化部材より下流の前記排気流路の空燃比を検出する空燃比検出手段と、
前記燃料添加後に前記空燃比検出手段により検出された空燃比及びそのときの排気量、筒内噴射量を用い到達燃料推定モデルに基づいて前記付着率及び前記蒸発率を算出する学習手段とを備えたことを特徴とする内燃機関の排気浄化装置がそれである。
In order to achieve this problem, the present invention has taken the following measures in order to solve the problem. That is,
An exhaust purification member provided in an exhaust passage from the internal combustion engine to purify exhaust and regenerate the purification function;
A fuel addition valve for adding fuel to the exhaust passage upstream of the exhaust purification member;
An arrival fuel estimation model for estimating the fuel reaching the exhaust purification member based on an addition pattern of the fuel addition valve, an adhesion rate of the added fuel to the exhaust passage, and an evaporation rate of the attached fuel from the exhaust passage; An exhaust gas purification apparatus for an internal combustion engine that regenerates the exhaust gas purification member with the added fuel,
Air-fuel ratio detection means for detecting an air-fuel ratio of the exhaust flow path downstream from the exhaust purification member;
Learning means for calculating the adhesion rate and the evaporation rate based on the arrived fuel estimation model using the air-fuel ratio detected by the air-fuel ratio detection means after the fuel addition, the exhaust amount at that time, and the in-cylinder injection amount. This is an exhaust emission control device for an internal combustion engine.

前記付着率の学習は、前記蒸発率の学習終了後に実行する構成としてもよい。また、前記蒸発率を算出する前記学習手段は、前記燃料添加後に時間間隔をあけて検出した少なくとも2組の排気量、空燃比、筒内噴射量を用い前記到達燃料推定モデルに基づいて前記蒸発率を算出する構成としてもよい。あるいは、前記付着率を算出する前記学習手段は、前記燃料添加後の前記空燃比検出手段により検出された空燃比の最小ピーク値とそのときの排気量、空燃比、筒内噴射量を用い前記到達燃料推定モデルに基づいて前記付着率を算出する構成としてもよい。更に、前記学習手段は、算出した前記付着率及び前記蒸発率をそのときの排気量と排気温度とに関連付けて記憶する構成としてもよい。前記排気浄化部材は、窒素酸化物を吸蔵するNOx触媒、あるいは粒子状物質を捕集するフィルタの少なくともどちらか一つである構成でもよい。   The learning of the adhesion rate may be performed after the learning of the evaporation rate is completed. Further, the learning means for calculating the evaporation rate uses the at least two sets of exhaust amount, air-fuel ratio, and in-cylinder injection amount detected at intervals after the fuel addition, based on the reached fuel estimation model. The rate may be calculated. Alternatively, the learning means for calculating the adhesion rate uses the minimum peak value of the air-fuel ratio detected by the air-fuel ratio detection means after the fuel addition and the exhaust amount, air-fuel ratio, and in-cylinder injection amount at that time. The adhesion rate may be calculated based on the reached fuel estimation model. Further, the learning means may store the calculated adhesion rate and evaporation rate in association with the exhaust amount and the exhaust temperature at that time. The exhaust purification member may be configured to be at least one of a NOx catalyst that stores nitrogen oxides and a filter that collects particulate matter.

本発明の内燃機関の排気浄化装置は、蒸発率及び付着率を学習するので、車両毎の蒸発率及び付着率が得られ、車両の幾何的機差に応じた蒸発率及び付着率が得られ、また、燃料性状に応じた蒸発率及び付着率を学習するので、適切な燃料添加を行なうことができるという効果を奏する。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention learns the evaporation rate and the adhesion rate, so that the evaporation rate and the adhesion rate for each vehicle can be obtained, and the evaporation rate and the adhesion rate corresponding to the geometrical difference of the vehicle can be obtained. Moreover, since the evaporation rate and the adhesion rate according to the fuel properties are learned, there is an effect that appropriate fuel addition can be performed.

本発明の一実施形態としての内燃機関の排気浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine as one embodiment of the present invention. 本実施形態の排気浄化部材に到達する燃料の推定モデルの説明図である。It is explanatory drawing of the estimation model of the fuel which reaches | attains the exhaust gas purification member of this embodiment. 本実施形態の添加信号と付着燃料との関係を示すグラフである。It is a graph which shows the relationship between the addition signal and adhesion fuel of this embodiment. 本実施形態の電子制御回路において行われる付着率・蒸発率学習処理の一例を示すフローチャートである。It is a flowchart which shows an example of the adhesion rate / evaporation rate learning process performed in the electronic control circuit of this embodiment. 本実施形態の電子制御回路において行われる添加制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the addition control process performed in the electronic control circuit of this embodiment. 本実施形態の添加信号とカウンタ値と空燃比センサ出力との関係を示すグラフである。It is a graph which shows the relationship between the addition signal of this embodiment, a counter value, and an air fuel ratio sensor output. 本実施形態の添加信号と付着燃料の平均値との関係を示すグラフである。It is a graph which shows the relationship between the addition signal of this embodiment, and the average value of attached fuel. 本実施形態の触媒到達燃料量と添加インターバルの関係を示すグラフである。It is a graph which shows the relationship between the catalyst arrival fuel amount and addition interval of this embodiment. 本実施形態の添加信号と空燃比と付着燃料量との関係を示すグラフである。It is a graph which shows the relationship between the addition signal of this embodiment, an air fuel ratio, and the amount of adhesion fuel.

以下本発明を実施するための形態を図面に基づいて詳細に説明する。図1は本発明の一実施形態としての内燃機関の排気浄化装置の概略構成図である。図1に示すように、内燃機関1は多気筒、本実施例では、例えば、4気筒のディーゼルエンジンで、シリンダ2、ピストン4及びシリンダヘッド6から燃焼室8を形成している。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine as one embodiment of the present invention. As shown in FIG. 1, the internal combustion engine 1 is a multi-cylinder, for example, a four-cylinder diesel engine in this embodiment, and a combustion chamber 8 is formed from a cylinder 2, a piston 4, and a cylinder head 6.

内燃機関1の吸気系には、燃焼室8と吸気バルブ12を介して連通する吸気ポート14、吸気流路16、吸入空気量を調節するスロットルバルブ20が配設されている。また、内燃機関1の気筒毎の各燃焼室8に燃料を噴射する燃料噴射弁21がシリンダヘッド6に設けられている。尚、内燃機関1はディーゼル機関に限らず、ガソリン機関であってもよい。   The intake system of the internal combustion engine 1 is provided with an intake port 14 that communicates with the combustion chamber 8 via an intake valve 12, an intake passage 16, and a throttle valve 20 that adjusts the intake air amount. A fuel injection valve 21 that injects fuel into each combustion chamber 8 for each cylinder of the internal combustion engine 1 is provided in the cylinder head 6. The internal combustion engine 1 is not limited to a diesel engine, and may be a gasoline engine.

内燃機関1の排気系には、燃焼室8と排気バルブ22を介して連通する排気ポート24、排気流路26が配設されている。吸気流路16と排気流路26とを連通する再循環流路28が設けられており、再循環流路28の吸気流路16側には制御弁30が介装されている。   The exhaust system of the internal combustion engine 1 is provided with an exhaust port 24 and an exhaust passage 26 that communicate with the combustion chamber 8 via an exhaust valve 22. A recirculation flow path 28 that connects the intake flow path 16 and the exhaust flow path 26 is provided, and a control valve 30 is interposed on the intake flow path 16 side of the recirculation flow path 28.

排気流路26には、排気浄化部材が内装された排気浄化装置32が介装されており、本実施形態では、排気浄化部材としてのNOx吸蔵還元型触媒(以下、LNTという。)34が内装されている。LNT34は、排気の空燃比がリーン状態のときにはNOxを吸蔵し、排気中の空燃比が小さくなり(もしくは酸素濃度が低くなり)、かつ排気中にHCやCO等の還元剤が存在していれば吸蔵したNOxを離脱させ還元浄化する作用を有する。   The exhaust passage 26 is provided with an exhaust purification device 32 in which an exhaust purification member is internally provided. In this embodiment, a NOx occlusion reduction type catalyst (hereinafter referred to as LNT) 34 as an exhaust purification member is provided in the interior. Has been. The LNT 34 occludes NOx when the air-fuel ratio of the exhaust is lean, the air-fuel ratio in the exhaust becomes small (or the oxygen concentration becomes low), and a reducing agent such as HC or CO exists in the exhaust. In this case, the stored NOx is removed and reduced and purified.

この作用を利用して、排気の空燃比がリーン状態のときに排気中のNOxをNOx吸蔵剤に吸蔵させ、一定期間使用してNOx吸蔵剤の吸蔵効率が低下したときにNOx吸蔵剤の上流側において燃料を添加する等してNOx吸蔵剤に吸蔵したNOxを離脱させると共に、NOxを排気中のHCやCOと反応させることによってさらに還元させ、無害な窒素として排出させる。HCやCOは、NOxを還元することで、自身は酸化されて水や二酸化炭素となり、LNT34は再生される。   By utilizing this action, NOx in the exhaust is stored in the NOx storage agent when the air-fuel ratio of the exhaust is in a lean state, and when the storage efficiency of the NOx storage agent decreases after a certain period of use, the upstream of the NOx storage agent The NOx occluded in the NOx occlusion agent is removed by adding fuel or the like on the side, and NOx is further reduced by reacting with HC or CO in the exhaust gas and discharged as harmless nitrogen. By reducing NOx, HC and CO themselves are oxidized to water and carbon dioxide, and the LNT 34 is regenerated.

また、排気浄化装置32に内装される排気浄化部材としては、ディーゼル・パティキュレート・フィルタ(以下、DPFという。)でもよい。排気には、炭素を主成分とするパティキュレート(粒子状物質)が多く含まれており、排気黒煙の原因となる。DPFは、例えば、多孔質セラミック等からなるハニカム状フィルタで、長手方向に沿って多数の通路が形成されると共に、貴金属触媒、及び周囲に過剰酸素が存在すると酸素を取り込んで酸素を保持しかつ周囲の酸素濃度が低下すると保持した酸素を活性酸素の形で放出する活性酸素放出剤が担持されている。   Further, the exhaust purification member installed in the exhaust purification device 32 may be a diesel particulate filter (hereinafter referred to as DPF). Exhaust gas contains a large amount of particulates (particulate matter) mainly composed of carbon, and causes exhaust black smoke. The DPF is, for example, a honeycomb filter made of porous ceramic or the like, and has a large number of passages formed along the longitudinal direction. The DPF takes in oxygen and retains oxygen when excess oxygen is present in the surroundings, and An active oxygen release agent that releases retained oxygen in the form of active oxygen when the surrounding oxygen concentration is lowered is supported.

DPFは、このようなパティキュレートを捕集して燃焼させる周知のものである。捕集したパティキュレートを燃焼させるが、パティキュレートに含まれる不純物(オイルや燃料等に含まれる添加物等)が灰状の燃えカスとなって付着するため、長期間使用すると目詰まりを起こし、内燃機関1の運転状態に悪影響を及ぼすおそれがある。   The DPF is a well-known one that collects and burns such particulates. The collected particulates are burned, but the impurities contained in the particulates (additives contained in oil, fuel, etc.) adhere as ash-like burning residue, causing clogging when used for a long time, There is a risk of adversely affecting the operating state of the internal combustion engine 1.

そこで、例えば、DPFの両側の排気圧力差が所定値以上となったときに、燃料をDPFに供給し、この燃料がDPF内で燃焼して、DPFが高温となり、デポジットが燃焼されて、DPFを再生することができる。排気浄化部材としては、LNT34またはDPFでもよく、少なくとも一方が設けられていればよいが、LNT34とDPFとの両方が設けられていてもよい。   Therefore, for example, when the exhaust pressure difference between both sides of the DPF becomes a predetermined value or more, the fuel is supplied to the DPF, the fuel burns in the DPF, the DPF becomes high temperature, the deposit is burned, and the DPF Can be played. The exhaust purification member may be LNT34 or DPF, and at least one may be provided, but both LNT34 and DPF may be provided.

内燃機関1の燃料系には、高圧燃料を蓄えるコモンレール36と、燃料タンク37からの燃料を加圧してコモンレール36に供給する高圧燃料供給ポンプ38とが設けられている。コモンレール36は、運転状態等に基づいて目標圧が設定され、高圧燃料供給ポンプ38から供給された高圧燃料を目標圧に蓄圧する。燃料噴射弁21は、コモンレール36より供給される高圧燃料を内燃機関1の気筒内の燃焼室8に噴射する。   The fuel system of the internal combustion engine 1 is provided with a common rail 36 that stores high-pressure fuel, and a high-pressure fuel supply pump 38 that pressurizes fuel from the fuel tank 37 and supplies the pressurized fuel to the common rail 36. The common rail 36 has a target pressure set based on the operating state and the like, and accumulates the high-pressure fuel supplied from the high-pressure fuel supply pump 38 to the target pressure. The fuel injection valve 21 injects high-pressure fuel supplied from the common rail 36 into the combustion chamber 8 in the cylinder of the internal combustion engine 1.

また、LNT34よりも上流側の排気流路26に高圧燃料供給ポンプ38から燃料を添加する燃料添加弁41が設けられている。燃料添加弁41は、入力される添加信号に応じて、後述する添加期間T、添加インターバルINTや添加回数n等を変えて、排気流路26の空燃比を調整する。   Further, a fuel addition valve 41 for adding fuel from the high-pressure fuel supply pump 38 is provided in the exhaust passage 26 upstream of the LNT 34. The fuel addition valve 41 adjusts the air-fuel ratio of the exhaust passage 26 by changing an addition period T, an addition interval INT, the number n of additions, and the like, which will be described later, in accordance with an input addition signal.

内燃機関1の検出系には、スロットルバルブ20の開度を検出するスロットルセンサ46、内燃機関1の回転数を検出する回転数センサ48、吸気流路16への吸入空気量を検出する吸入空気量センサ50、アクセルペダル52の踏込量を検出するアクセル開度センサ54、LNT34の上流側の排気温度を検出する排気温センサ56、LNT34の下流側の排気の酸素濃度に基づいて空燃比を検出する空燃比センサ58が配設されている。   The detection system of the internal combustion engine 1 includes a throttle sensor 46 that detects the opening of the throttle valve 20, a rotation speed sensor 48 that detects the rotation speed of the internal combustion engine 1, and intake air that detects the amount of intake air into the intake passage 16. The air-fuel ratio is detected based on the oxygen concentration of the exhaust gas downstream of the amount sensor 50, the accelerator opening sensor 54 that detects the depression amount of the accelerator pedal 52, the exhaust gas temperature sensor 56 that detects the exhaust gas temperature upstream of the LNT 34, and the LNT 34. An air-fuel ratio sensor 58 is disposed.

本実施形態では、吸入空気量センサ50により検出される吸入空気量に基づいて、排気流路26の後述する排気量を算出しているが、排気流路26に排気量を検出する排気量センサを設けてもよい。また、燃焼に供される混合気の酸素濃度は、そのまま燃焼に供された酸素を差し引いて排気中の酸素濃度に反映され、混合気中の酸素濃度(空燃比)が高ければ、排気中の酸素濃度(空燃比)も基本的には同様に高くなる。尚、排気温センサ56をLNT34の上流側に設けているが、これに限らず、排気温は運転状態から推定するようにしてもよく、また、LNT34の温度を検出するセンサから排気温を推定するようにしてもよい。   In the present embodiment, the exhaust amount described later of the exhaust passage 26 is calculated based on the intake air amount detected by the intake air amount sensor 50. However, the exhaust amount sensor that detects the exhaust amount in the exhaust passage 26 is calculated. May be provided. Further, the oxygen concentration of the air-fuel mixture used for combustion is reflected on the oxygen concentration in the exhaust gas by subtracting the oxygen supplied for combustion as it is. If the oxygen concentration (air-fuel ratio) in the air-fuel mixture is high, The oxygen concentration (air / fuel ratio) basically increases as well. Although the exhaust temperature sensor 56 is provided on the upstream side of the LNT 34, the exhaust temperature may be estimated from the operating state without being limited to this, and the exhaust temperature is estimated from a sensor that detects the temperature of the LNT 34. You may make it do.

前記各センサ等は電子制御回路60に接続されており、電子制御回路60は、周知のCPU62、ROM64、RAM66等を中心に論理演算回路として構成され、外部と入出力を行う入出力回路68とコモンバス70を介して相互に接続されている。   Each of the sensors is connected to an electronic control circuit 60. The electronic control circuit 60 is configured as a logical operation circuit centering on a well-known CPU 62, ROM 64, RAM 66, etc., and an input / output circuit 68 for inputting / outputting from / to the outside. They are connected to each other via a common bus 70.

CPU62は、スロットルセンサ46、回転数センサ48、吸入空気量センサ50、アクセル開度センサ54、排気温センサ56、空燃比センサ58等からの入力信号を入出力回路68を介して入力し、これらの信号及びROM64、RAM66内のデータや予め記憶された制御プログラムに基づいてCPU62は、入出力回路68を介して燃料噴射弁21、燃料添加弁41等に信号を出力する。   The CPU 62 inputs input signals from the throttle sensor 46, the rotational speed sensor 48, the intake air amount sensor 50, the accelerator opening sensor 54, the exhaust temperature sensor 56, the air-fuel ratio sensor 58, etc. via the input / output circuit 68, and these The CPU 62 outputs a signal to the fuel injection valve 21, the fuel addition valve 41, and the like via the input / output circuit 68 based on the above signal, data in the ROM 64 and RAM 66 and a control program stored in advance.

LNT34に対して適正量の燃料添加を行なうために、LNT34に流入する燃料量を推定している。この燃料添加時に排気浄化装置32へ流入する燃料には、燃料添加弁41から添加された燃料が蒸発、微粒化して直接到達する分と、一旦排気流路26の壁面に付着した燃料が蒸発して到達する分とがある。そして、燃料添加時において、直接到達する分と付着した燃料が蒸発して到達する分との両方を考慮してLNT34に流入する燃料量を推定することにより、適正量の燃料を添加する。   In order to add an appropriate amount of fuel to the LNT 34, the amount of fuel flowing into the LNT 34 is estimated. The fuel that flows into the exhaust purification device 32 at the time of fuel addition evaporates and atomizes the fuel added from the fuel addition valve 41, and the fuel once attached to the wall surface of the exhaust passage 26 evaporates. There is a minute to reach. At the time of fuel addition, an appropriate amount of fuel is added by estimating the amount of fuel flowing into the LNT 34 in consideration of both the amount that directly reaches and the amount that the attached fuel evaporates and reaches.

図2に燃料添加弁41から排気流路26内に添加され、LNT34へ到達する燃料の推定モデルを示す。図2に示すように、燃料添加弁41から排気流路26内に燃料が添加されると、添加された燃料のうち、蒸発分や微粒化分の燃料はそのままLNT34に到達し、他の一部の燃料は排気流路26の壁面に付着する。一旦壁面に付着した燃料からの蒸発燃料もその後LNT34に到達する。   FIG. 2 shows an estimation model of fuel that is added from the fuel addition valve 41 into the exhaust passage 26 and reaches the LNT 34. As shown in FIG. 2, when fuel is added from the fuel addition valve 41 into the exhaust flow path 26, the evaporated or atomized fuel of the added fuel reaches the LNT 34 as it is, and the other one is added. Part of the fuel adheres to the wall surface of the exhaust passage 26. The evaporated fuel from the fuel once attached to the wall surface also reaches the LNT 34 after that.

ここで、壁面に付着している付着燃料量をQa 、付着率をα、蒸発率をβ、燃料添加弁41からの添加量をqとすると、壁面に付着する燃料変化量は下記(1)式で示される。尚、付着燃料量Qa 、添加量qは、単位時間あたりの量や、後述する処理をするに当たっての一周期(一定時間)あたりの量である。   Here, if the amount of fuel adhering to the wall surface is Qa, the adhesion rate is α, the evaporation rate is β, and the addition amount from the fuel addition valve 41 is q, the amount of change in the fuel adhering to the wall surface is (1) It is shown by the formula. The attached fuel amount Qa and the added amount q are an amount per unit time and an amount per one period (fixed time) in performing a process described later.

dQa/dt=αq−βQa … (1)
また、燃料添加弁41から燃料を添加している添加時に、LNT34へ到達する燃料には、添加された燃料が蒸発、微粒化して直接到達する分と、排気流路26の壁面に付着した燃料が蒸発して到達する分とがある。燃料添加弁41から燃料を添加していない非添加時に、LNT34へ到達する燃料には、排気流路26の壁面に付着した燃料が蒸発して到達する分がある。このことから、添加時のLNT34に到達する燃料量Qは下記(2)式で示され、非添加時のLNT34に到達する燃料量Qは下記(3)式で示される。
dQa / dt = αq-βQa (1)
In addition, when fuel is added from the fuel addition valve 41, the fuel that reaches the LNT 34 includes the amount that the added fuel directly reaches after evaporation and atomization, and the fuel that has adhered to the wall surface of the exhaust passage 26. There is a part to evaporate. When the fuel is not added from the fuel addition valve 41, the fuel that reaches the LNT 34 has the amount that the fuel attached to the wall surface of the exhaust passage 26 evaporates. From this, the fuel amount Q reaching the LNT 34 at the time of addition is expressed by the following equation (2), and the fuel amount Q reaching the LNT 34 at the time of non-addition is expressed by the following equation (3).

Q=(1−α)q+βQa … (2)
Q=βQa … (3)
図3にこの到達燃料推定モデルでの燃料添加弁41への添加信号と付着燃料との関係を示す。図3(a)に示すように、1回の添加時に添加期間Tと添加インターバルINTとが繰り返される信号が添加信号として入力される。図3(b)に示すように、燃料添加弁41から添加期間Tに応じて開弁されて燃料が添加されると、排気流路26の壁面への付着燃料量Qa は指数関数的に増加し、添加インターバルINTの間では燃料が蒸発して付着燃料量Qa は指数関数的に減少する。添加期間Tが終了したときに付着燃料量Qa が多くなり、添加インターバルINTが終了したときに付着燃料量Qa が少なくなる。
Q = (1−α) q + βQa (2)
Q = βQa (3)
FIG. 3 shows the relationship between the addition signal to the fuel addition valve 41 and the adhered fuel in this ultimate fuel estimation model. As shown in FIG. 3A, a signal in which the addition period T and the addition interval INT are repeated at the time of one addition is input as the addition signal. As shown in FIG. 3 (b), when the fuel is added from the fuel addition valve 41 according to the addition period T and fuel is added, the amount Qa of fuel adhering to the wall surface of the exhaust passage 26 increases exponentially. During the addition interval INT, the fuel evaporates and the attached fuel amount Qa decreases exponentially. The adhering fuel amount Qa increases when the addition period T ends, and the adhering fuel amount Qa decreases when the addition interval INT ends.

添加時期T、添加インターバルINT、添加回数n等から、n回目の添加期間Tが終了したときの付着燃料量Qa#max(n)は下記(4)式により算出でき、n−1回目の添加インターバルINTが終了したときの付着燃料量Qa#min(n-1)は下記(5)式により算出できる。   From the addition time T, the addition interval INT, the number n of additions, etc., the adhered fuel amount Qa # max (n) at the end of the nth addition period T can be calculated by the following equation (4). The attached fuel amount Qa # min (n-1) at the end of the interval INT can be calculated by the following equation (5).

Figure 2010209835
次に、前述した電子制御回路60において行われる付着率・蒸発率学習処理について、図4のフローチャートによって説明する。
Figure 2010209835
Next, the adhesion rate / evaporation rate learning process performed in the electronic control circuit 60 will be described with reference to the flowchart of FIG.

内燃機関1の運転状態としての、スロットルセンサ46により検出されるスロットル開度と、回転数センサ48により検出される回転数とに基づいて、予め記憶されたマップ等から噴射量指令値が算出され、この噴射量指令値に基づいて、燃料噴射弁21から燃料が噴射されて、内燃機関1が運転される。   An injection amount command value is calculated from a previously stored map or the like based on the throttle opening detected by the throttle sensor 46 and the rotation speed detected by the rotation speed sensor 48 as the operating state of the internal combustion engine 1. Based on this injection amount command value, fuel is injected from the fuel injection valve 21 and the internal combustion engine 1 is operated.

前述したように、LNT34は排気中の酸素濃度が高ければNOxを吸収し、低ければNOxをNO2若しくはNOに還元して放出する特性を有するため、排気中の酸素が高濃度状態にある限りNOxを吸収することとなる。ただし、LNT34のNOx吸収量に限界量が存在し、LNT34が限界量のNOxを吸収した状態では排気中のNOxが同触媒に吸収されずLNT34を素通りする。   As described above, the LNT 34 has a characteristic of absorbing NOx if the oxygen concentration in the exhaust gas is high and reducing NOx to NO2 or NO if the oxygen concentration is low. Therefore, as long as the oxygen in the exhaust gas is in a high concentration state, the LNT 34 has NOx. Will be absorbed. However, there is a limit amount in the NOx absorption amount of the LNT 34, and when the LNT 34 absorbs the limit amount of NOx, NOx in the exhaust gas is not absorbed by the catalyst and passes through the LNT 34.

燃料添加は、例えば以下の条件(1)〜(3)が全て成立したときに行う。
(1)機関回転数Ne及びアクセルの踏み込み量の関係等から内燃機関1の運転状態が燃料添加に適していると判断される。これは、内燃機関1の運転状態が、燃料添加を実行してもトルク変動等の不具合が生じない領域にある条件にあたる。例えば減速時がこの条件に該当する。
(2)排気温度Texが所定温度(例えば250℃)を上回っていること。これは、NOx触媒が十分に活性化する条件にあたる。
(3)NOx触媒のNOx吸収量が所定量を上回っていること。NOx触媒によるNOx吸収量がその限界値にある程度まで近づいたことを意味する。この吸収量は、前回の燃料添加終了からの経過時間や、空燃比及び排気温度の履歴等に基づいて推定すればよい。
The fuel addition is performed, for example, when all of the following conditions (1) to (3) are satisfied.
(1) It is determined that the operation state of the internal combustion engine 1 is suitable for fuel addition from the relationship between the engine speed Ne and the accelerator depression amount. This corresponds to a condition in which the operating state of the internal combustion engine 1 is in a region where trouble such as torque fluctuation does not occur even when fuel addition is executed. For example, this condition is satisfied when decelerating.
(2) The exhaust temperature Tex is higher than a predetermined temperature (for example, 250 ° C.). This corresponds to a condition that the NOx catalyst is sufficiently activated.
(3) The NOx absorption amount of the NOx catalyst exceeds a predetermined amount. This means that the amount of NOx absorbed by the NOx catalyst has approached its limit value to some extent. This absorption amount may be estimated based on the elapsed time from the end of the previous fuel addition, the history of the air-fuel ratio and the exhaust temperature, and the like.

電子制御回路60は、前記条件(1)〜(3)全てが成立しているときには、燃料添加を実行すべきと判断する。
付着率・蒸発率学習処理は、排気浄化装置32の再生処理にともなって、一定時間毎の割り込みにより処理され、まず、燃料添加弁41による排気流路26への燃料の添加開始直後か否かを判断する(ステップ100。以下、S100という。以下同様。)。
The electronic control circuit 60 determines that fuel addition should be executed when all of the conditions (1) to (3) are satisfied.
The adherence rate / evaporation rate learning process is performed by interruption every predetermined time with the regeneration process of the exhaust purification device 32. First, whether or not the fuel addition valve 41 has just started the addition of fuel to the exhaust passage 26 is determined. (Step 100, hereinafter referred to as S100, and so on).

燃料添加弁41による添加開始直後であれば(S100:YES)、まず、カウンタC_OFFをクリアして(S110)、一旦本制御処理を終了し、一定時間毎に繰り返し実行して、S100の処理により、次に、燃料添加弁41により添加開始直後でないと判断されると(S100:NO)、カウンタC_OFFが閾値DELY_AF以下か否かを判断する(S120)。   If it is immediately after the start of addition by the fuel addition valve 41 (S100: YES), first, the counter C_OFF is cleared (S110), and this control process is once ended and executed repeatedly at regular intervals. Next, when it is determined by the fuel addition valve 41 that it is not immediately after the start of addition (S100: NO), it is determined whether or not the counter C_OFF is equal to or less than the threshold value DELY_AF (S120).

カウンタC_OFFが設定された閾値DELY_AF以下のときには(S120:YES)、空燃比センサ58により検出される排気流路26の空燃比をピーク値に更新する(S130)。即ち、今回の処理により検出された空燃比が前回の処理により検出された空燃比よりも小さいときには、空燃比を更新する。   When the counter C_OFF is equal to or less than the set threshold value DELY_AF (S120: YES), the air-fuel ratio of the exhaust passage 26 detected by the air-fuel ratio sensor 58 is updated to the peak value (S130). That is, when the air-fuel ratio detected by the current process is smaller than the air-fuel ratio detected by the previous process, the air-fuel ratio is updated.

次に、燃料添加弁41により燃料を添加中か否かを判断し(S140)、燃料添加弁41により燃料を添加中のときには(S140:YES)、一旦本制御処理を終了する。繰り返し本制御処理を繰り返し実行して、S140の処理により燃料を添加中でないと判断したときには(S140:NO)、カウンタC_OFFが予め設定された上限値Te以下か否かを判断する(S150)。上限値Teは閾値DELY_AFよりも十分に大きな値である。カウンタC_OFFが上限値Teを越えるまで(S150:YES)、カウンタC_OFFのカウントアップを続ける(S160)。   Next, it is determined whether or not fuel is being added by the fuel addition valve 41 (S140). When fuel is being added by the fuel addition valve 41 (S140: YES), this control process is once ended. This control process is repeatedly executed, and when it is determined that the fuel is not being added by the process of S140 (S140: NO), it is determined whether or not the counter C_OFF is equal to or less than a preset upper limit value Te (S150). The upper limit value Te is a value sufficiently larger than the threshold value DELY_AF. The counter C_OFF continues to be counted up (S160) until the counter C_OFF exceeds the upper limit value Te (S150: YES).

S100からS160の処理を繰り返し実行することにより、図6(a)に示すように、燃料添加弁41から燃料の添加が開始された直後には(S100:YES)、図6(b)に示すように、カウンタC_OFFをクリアする(S110)。   By repeatedly executing the processing from S100 to S160, as shown in FIG. 6A, immediately after the addition of fuel from the fuel addition valve 41 is started (S100: YES), it is shown in FIG. 6B. As described above, the counter C_OFF is cleared (S110).

そして、本制御処理を繰り返し実行することにより、カウンタC_OFFが閾値DELY_AFを越えるまで、図6(c)に示すように、空燃比のピーク値を更新する。燃料添加弁41からn回の開閉駆動により燃料が排気流路26に添加されると、リッチ状態となり、LNT34の再生が行われる。尚、図9には、添加信号と空燃比と付着燃料量との関係を示す。   Then, by repeatedly executing this control process, the peak value of the air-fuel ratio is updated as shown in FIG. 6C until the counter C_OFF exceeds the threshold value DELY_AF. When fuel is added to the exhaust passage 26 by the opening / closing drive of n times from the fuel addition valve 41, a rich state is established and the LNT 34 is regenerated. FIG. 9 shows the relationship among the addition signal, the air-fuel ratio, and the amount of attached fuel.

また、空燃比センサ58の出力は、遅れ時間をもって、燃料の添加に応じてリッチ状態の空燃比となる。空燃比が最小のピーク値AFpeakを更新するのは、燃料添加弁41が燃料添加を終了した後の遅れ時間が経過してからのタイミングとなる。同時に、空燃比がピーク値AFpeakをとるときの燃料噴射弁21からの筒内噴射量Qe、空燃比がピーク値AFpeakをとるときの吸入空気量センサ50により検出される吸入空気量から算出される排気量Gaを記憶する。   The output of the air-fuel ratio sensor 58 becomes a rich air-fuel ratio with a delay time according to the addition of fuel. The peak value AFpeak at which the air-fuel ratio is minimum is updated after the delay time after the fuel addition valve 41 finishes adding fuel. At the same time, the in-cylinder injection amount Qe from the fuel injection valve 21 when the air-fuel ratio takes the peak value AFpeak and the intake air amount detected by the intake air amount sensor 50 when the air-fuel ratio takes the peak value AFpeak are calculated. The displacement Ga is stored.

空燃比がピーク値AFpeakを更新した後に、カウンタC_OFFが閾値DELY_AFを越えるように、閾値DELY_AFが設定され、本実施形態では、閾値DELY_AFは、排気量に応じて図示しないマップから設定するようにしている。   After the air-fuel ratio updates the peak value AFpeak, the threshold value DELY_AF is set so that the counter C_OFF exceeds the threshold value DELY_AF. In this embodiment, the threshold value DELY_AF is set from a map (not shown) according to the exhaust amount. Yes.

S120の処理により、カウンタC_OFFが閾値DELY_AFを越えたと判断すると(S120:NO)、カウンタC_OFFが第1設定値T0 または第2設定値T1 であるか否かを判断する(S170)。第1設定値T0 と第2設定値T1 とは、図6(c)に示すように、燃料添加後に空燃比がリッチ状態からリーン状態に戻るまでの途中の時間が予め実験等により設定され、閾値DELY_AFよりも大きく、上限値Teよりも小さな値である。第1設定値T0 と第2設定値T1 とは、所定の時間間隔△tでもって設定される。   If it is determined by the process of S120 that the counter C_OFF has exceeded the threshold value DELY_AF (S120: NO), it is determined whether or not the counter C_OFF is the first set value T0 or the second set value T1 (S170). As shown in FIG. 6 (c), the first set value T0 and the second set value T1 are set in advance by experiments or the like in the middle of the air-fuel ratio returning from the rich state to the lean state after fuel addition. The value is larger than the threshold value DELY_AF and smaller than the upper limit value Te. The first set value T0 and the second set value T1 are set with a predetermined time interval Δt.

カウンタC_OFFが第1設定値T0 または第2設定値T1 のときには(S170:YES)、蒸発率推定用データのサンプルを取得する(S180)。本実施形態では、カウンタC_OFFが第1設定値T0 または第2設定値T1 のときの、空燃比センサ58により検出される空燃比AF0 ,AF1 と、吸入空気量センサ50により検出される吸入空気量に基づいて算出される排気量Ga0 ,Ga1 と、燃料噴射弁21による筒内への燃料噴射量Qe0 ,Qe1 とがデータとして取得される。   When the counter C_OFF is the first set value T0 or the second set value T1 (S170: YES), a sample of evaporation rate estimation data is acquired (S180). In the present embodiment, when the counter C_OFF is the first set value T0 or the second set value T1, the air-fuel ratios AF0 and AF1 detected by the air-fuel ratio sensor 58 and the intake air amount detected by the intake air amount sensor 50 are used. The exhaust amounts Ga0 and Ga1 calculated based on the above and the fuel injection amounts Qe0 and Qe1 into the cylinder by the fuel injection valve 21 are acquired as data.

次に、空燃比のピーク値AFpeak及び蒸発率推定用の空燃比AF0 ,AF1 が更新されたか否かを判断する(S190)。更新されているときには(S190:YES)、蒸発率βを算出すると共に(S200)、付着率αを算出する(S210)。   Next, it is determined whether or not the air-fuel ratio peak value AFpeak and the evaporation ratio estimation air-fuel ratios AF0 and AF1 have been updated (S190). When updated (S190: YES), the evaporation rate β is calculated (S200), and the adhesion rate α is calculated (S210).

蒸発率βは、前述したLNT34に到達する燃料の推定モデルに基づいて、第1設定値T0 と第2設定値T1 とのそれぞれの時間でのLNT34に到達する燃料量Q0 ,Q1 から下記(6)式から導かれる下記(7)式により算出される。   The evaporation rate β is calculated from the fuel amounts Q0 and Q1 reaching the LNT 34 at the respective times of the first set value T0 and the second set value T1 based on the estimation model of the fuel reaching the LNT 34 described above (6 ) Is calculated by the following equation (7) derived from the equation.

Figure 2010209835
また、到達燃料量Q0 ,Q1 は、空燃比の定義から、下記(8)(9)式により算出される。
Figure 2010209835
Further, the reached fuel amounts Q0 and Q1 are calculated by the following equations (8) and (9) from the definition of the air-fuel ratio.

Figure 2010209835
ここで、Qe0 ,Qe1 は、前述した第1設定値T0 または第2設定値T1 のときの燃料噴射弁21による筒内への燃料噴射量である。Ga0 ,Ga1 は、前述した第1設定値T0 または第2設定値T1 のときの吸入空気量センサ50により検出される吸入空気量に基づいて算出される排気量である。
Figure 2010209835
Here, Qe0 and Qe1 are the amounts of fuel injected into the cylinder by the fuel injection valve 21 at the first set value T0 or the second set value T1 described above. Ga0 and Ga1 are exhaust amounts calculated based on the intake air amount detected by the intake air amount sensor 50 at the first set value T0 or the second set value T1 described above.

付着率αの算出では、図7に示すように、n回目の燃料添加に関し、簡単化のため、付着燃料量の添加期間の平均値QT を下記(10)式、付着燃料量の添加期間外の平均値QINT を下記(11)式のように考える。   In the calculation of the adhesion rate α, as shown in FIG. 7, the average value QT of the addition period of the adhered fuel amount is expressed by the following equation (10) for the sake of simplification regarding the nth fuel addition, outside the addition period of the adhered fuel amount. The average value QINT of is considered as the following equation (11).

Figure 2010209835
このとき、n回目の添加によるLNT34への到達燃料量は、添加期間Tと非添加期間INTの時間比から求まると考えると、付着率αは下記(12)式から導かれる下記(13)式により算出される。
Figure 2010209835
At this time, assuming that the amount of fuel reaching the LNT 34 by the n-th addition is obtained from the time ratio between the addition period T and the non-addition period INT, the adhesion rate α is derived from the following expression (12), the following expression (13) Is calculated by

Figure 2010209835
この最大到達燃料量Qmax が空燃比センサ58により検出される空燃比が最小となるときのLNT34に到達する燃料量であると考えれば、下記(14)式から、空燃比のピーク値AFpeakから最大到達燃料量Qmax を算出できる。よって、付着率αは下記(14)を前記(13)式に代入して算出できる。
Figure 2010209835
Assuming that this maximum fuel amount Qmax is the amount of fuel that reaches the LNT 34 when the air-fuel ratio detected by the air-fuel ratio sensor 58 is minimum, the maximum value from the peak value AFpeak of the air-fuel ratio is obtained from the following equation (14). The reached fuel amount Qmax can be calculated. Therefore, the adhesion rate α can be calculated by substituting the following (14) into the equation (13).

Figure 2010209835
ここで、Qeは空燃比がピーク値AFpeakをとるときの燃料噴射弁21からの筒内噴射量、Gaは空燃比がピーク値AFpeakをとるときの吸入空気量センサ50により検出される吸入空気量に基づいて算出される排気量である。
Figure 2010209835
Here, Qe is the in-cylinder injection amount from the fuel injection valve 21 when the air-fuel ratio takes the peak value AFpeak, and Ga is the intake air amount detected by the intake air amount sensor 50 when the air-fuel ratio takes the peak value AFpeak. The exhaust amount calculated based on

算出した蒸発率β及び付着率αは、排気量Ga及び排気温度の2次元マップとしてそれぞれ記憶される。本付着率・蒸発率学習処理を繰り返し実行することにより、排気量Ga及び排気温度毎の蒸発率β及び付着率αが得られるので、車両毎の蒸発率β及び付着率αが得られ、車両の幾何的機差に応じた蒸発率β及び付着率αが得られる。また、給油した燃料の性状に応じた蒸発率β及び付着率αが得られる。   The calculated evaporation rate β and adhesion rate α are stored as two-dimensional maps of the exhaust amount Ga and the exhaust temperature, respectively. By repeatedly performing this adhesion rate / evaporation rate learning process, the evaporation rate β and the adhesion rate α for each exhaust amount Ga and the exhaust temperature are obtained, so that the evaporation rate β and the adhesion rate α for each vehicle are obtained. The evaporation rate β and the deposition rate α corresponding to the geometric machine difference are obtained. Further, an evaporation rate β and an adhesion rate α corresponding to the properties of the fuel supplied are obtained.

尚、S170の処理により、カウンタC_OFFが第1設定値T0 または第2設定値T1 ではないと判断すると(S170:NO)、サンプルを取得せず、また、空燃比が更新されていないときには(S190:NO)、蒸発率β及び付着率αを算出せずに、本制御処理を繰り返し実行する。   If it is determined in the process of S170 that the counter C_OFF is not the first set value T0 or the second set value T1 (S170: NO), no sample is acquired and the air-fuel ratio is not updated (S190). : NO), this control process is repeatedly executed without calculating the evaporation rate β and the adhesion rate α.

次に、蒸発率β及び付着率αを用いて、燃料添加弁41を制御して、排気流路26へ燃料を添加させる添加制御処理について、図5のフローチャートによって説明する。
まず、現在の空燃比AFと排気量Gaとに基づく排気状態と、目標空燃比AF_TRGとにより、LNT34に供給すべき要求触媒到達燃料量Qreq を下記(15)式から算出する。目標空燃比AF_TRGはLNT34に吸蔵されているNOxを処理して再生するためにリッチ状態とする空燃比であり、要求触媒到達燃料量Qreq はそのときにLNT34の再生に必要とする燃料量である。
Next, an addition control process in which the fuel addition valve 41 is controlled using the evaporation rate β and the adhesion rate α to add fuel to the exhaust passage 26 will be described with reference to the flowchart of FIG.
First, the required catalyst reaching fuel amount Qreq to be supplied to the LNT 34 is calculated from the following equation (15) based on the exhaust state based on the current air-fuel ratio AF and the exhaust amount Ga and the target air-fuel ratio AF_TRG. The target air-fuel ratio AF_TRG is an air-fuel ratio that is brought into a rich state in order to process and regenerate NOx stored in the LNT 34, and the required catalyst arrival fuel amount Qreq is a fuel amount that is required for regeneration of the LNT 34 at that time .

Figure 2010209835
次に、要求触媒到達燃料量Qreq に基づいて、基本添加パラメータを算出する(S310)。基本添加パラメータとして、燃料添加弁41を駆動する際の添加期間Tと添加回数nとを算出する。これらの基本添加パラメータは、例えば、内燃機関の回転数とアクセル開度の2次元マップにより補間計算する。
Figure 2010209835
Next, a basic addition parameter is calculated based on the required catalyst reaching fuel amount Qreq (S310). As basic addition parameters, an addition period T and the number n of additions when the fuel addition valve 41 is driven are calculated. These basic addition parameters are calculated by interpolation using, for example, a two-dimensional map of the rotational speed of the internal combustion engine and the accelerator opening.

次に、添加インターバルINTの最大値INT_MAXと最小値INT_MINとを算出する(S320)。最大値INT_MAXと最小値INT_MINとは、予め設定された値であり、燃料添加弁41の制御許容範囲を示す値である。   Next, the maximum value INT_MAX and the minimum value INT_MIN of the addition interval INT are calculated (S320). The maximum value INT_MAX and the minimum value INT_MIN are preset values, and are values indicating the control allowable range of the fuel addition valve 41.

そして、添加インターバルINTが最大値INT_MAXのときの触媒到達燃料量Q#minと、添加インターバルINTが最小値INT_MINのときの触媒到達燃料量Q#maxとを前述した(12)式から算出する。   Then, the catalyst reaching fuel amount Q # min when the addition interval INT is the maximum value INT_MAX and the catalyst reaching fuel amount Q # max when the addition interval INT is the minimum value INT_MIN are calculated from the above-described equation (12).

即ち、付着率・蒸発率学習処理により算出された蒸発率β及び付着率αのマップから、そのときの排気量Ga及び排気温度に応じて蒸発率β及び付着率αを読み出す。そして、S310により算出した添加期間Tと添加インターバルINTが最大値INT_MAXのときの、触媒到達燃料量Q#minを(12)式から算出する。同様に、添加インターバルINTが最小値INT_MINのときの触媒到達燃料量Q#maxを(12)式から算出する。   That is, the evaporation rate β and the adhesion rate α are read from the map of the evaporation rate β and the adhesion rate α calculated by the adhesion rate / evaporation rate learning process according to the exhaust amount Ga and the exhaust temperature at that time. Then, the amount of fuel reaching the catalyst Q # min when the addition period T and the addition interval INT calculated in S310 are the maximum value INT_MAX is calculated from the equation (12). Similarly, the catalyst reaching fuel amount Q # max when the addition interval INT is the minimum value INT_MIN is calculated from the equation (12).

そして、図8に示すように、要求触媒到達燃料量Qreq で触媒到達燃料量Q#maxと触媒到達燃料量Q#minとを補間計算することにより、添加インターバルINTの最大値INT_MAXと最小値INT_MINとから補正後添加インターバルINTFを算出する(S340)。次に、添加期間T、添加回数n、補正後添加インターバルINTFに基づいて、燃料添加弁41を駆動して、燃料を排気流路26に添加する(S350)。   Then, as shown in FIG. 8, the maximum value INT_MAX and the minimum value INT_MIN of the addition interval INT are calculated by interpolating the catalyst arrival fuel amount Q # max and the catalyst arrival fuel amount Q # min with the required catalyst arrival fuel amount Qreq. Then, the corrected addition interval INTF is calculated (S340). Next, based on the addition period T, the number n of additions, and the corrected addition interval INTF, the fuel addition valve 41 is driven to add fuel to the exhaust passage 26 (S350).

本付着率・蒸発率学習処理を繰り返し実行することにより、算出した蒸発率β及び付着率αが、排気量Ga及び排気温度の2次元マップとしてそれぞれ記憶される。よって、付着率・蒸発率学習処理により蒸発率β及び付着率αを学習するので、車両毎の蒸発率β及び付着率αが得られ、車両の幾何的機差に応じた蒸発率β及び付着率αが得られる。   By repeatedly executing this adhesion rate / evaporation rate learning process, the calculated evaporation rate β and adhesion rate α are stored as two-dimensional maps of the exhaust amount Ga and the exhaust temperature, respectively. Therefore, since the evaporation rate β and the adhesion rate α are learned by the adhesion rate / evaporation rate learning process, the evaporation rate β and the adhesion rate α for each vehicle are obtained, and the evaporation rate β and the adhesion corresponding to the geometrical difference of the vehicle are obtained. The rate α is obtained.

また、燃料には、沸点の異なる複数の成分が混在しており、給油する燃料によってはその割合が多少異なる場合がある。割合が異なると、蒸発率β及び付着率αが異なるが、付着率・蒸発率学習処理により蒸発率β及び付着率αを学習するので、燃料性状に応じて、適正量の燃料添加が行われ、NOx還元率の低下や、白煙の発生を防止できる。   In addition, a plurality of components having different boiling points are mixed in the fuel, and the ratio may be slightly different depending on the fuel to be supplied. When the ratio is different, the evaporation rate β and the adhesion rate α are different, but the evaporation rate β and the adhesion rate α are learned by the adhesion rate / evaporation rate learning process, so an appropriate amount of fuel is added according to the fuel properties. It is possible to prevent the NOx reduction rate from decreasing and the generation of white smoke.

以上本発明はこの様な実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。   The present invention is not limited to such embodiments as described above, and can be implemented in various modes without departing from the gist of the present invention.

1…内燃機関 2…シリンダ
4…ピストン 6…シリンダヘッド
8…燃焼室 16…吸気流路
20…スロットルバルブ 21…燃料噴射弁
26…排気流路 28…再循環流路
30…制御弁 32…排気浄化装置
34…NOx吸蔵還元型触媒(LNT)
36…コモンレール 37…燃料タンク
38…高圧燃料供給ポンプ
41…燃料添加弁 46…スロットルセンサ
48…回転数センサ 50…吸入空気量センサ
52…アクセルペダル 54…アクセル開度センサ
56…排気温センサ 58…空燃比センサ
60…電子制御回路
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 4 ... Piston 6 ... Cylinder head 8 ... Combustion chamber 16 ... Intake flow path 20 ... Throttle valve 21 ... Fuel injection valve 26 ... Exhaust flow path 28 ... Recirculation flow path 30 ... Control valve 32 ... Exhaust Purification device 34 ... NOx storage reduction catalyst (LNT)
36 ... Common rail 37 ... Fuel tank 38 ... High pressure fuel supply pump 41 ... Fuel addition valve 46 ... Throttle sensor 48 ... Revolution sensor 50 ... Intake air amount sensor 52 ... Accelerator pedal 54 ... Accelerator opening sensor 56 ... Exhaust temperature sensor 58 ... Air-fuel ratio sensor 60 ... Electronic control circuit

Claims (6)

内燃機関からの排気流路に設けられ排気を浄化すると共に、浄化機能を再生可能な排気浄化部材と、
前記排気浄化部材より上流の前記排気流路に燃料を添加する燃料添加弁と、
前記燃料添加弁の添加パターンと添加燃料の前記排気流路への付着率及び付着燃料の前記排気流路からの蒸発率に基づき、前記排気浄化部材に到達する燃料を推定する到達燃料推定モデルとを備え、添加した前記燃料により前記排気浄化部材を再生する内燃機関の排気浄化装置において、
前記排気浄化部材より下流の前記排気流路の空燃比を検出する空燃比検出手段と、
前記燃料添加後に前記空燃比検出手段により検出された空燃比及びそのときの排気量、筒内噴射量を用い到達燃料推定モデルに基づいて前記付着率及び前記蒸発率を算出する学習手段とを備えたことを特徴とする内燃機関の排気浄化装置。
An exhaust purification member provided in an exhaust passage from the internal combustion engine to purify exhaust and regenerate the purification function;
A fuel addition valve for adding fuel to the exhaust passage upstream of the exhaust purification member;
An arrival fuel estimation model for estimating the fuel reaching the exhaust purification member based on an addition pattern of the fuel addition valve, an adhesion rate of the added fuel to the exhaust passage, and an evaporation rate of the attached fuel from the exhaust passage; An exhaust gas purification apparatus for an internal combustion engine that regenerates the exhaust gas purification member with the added fuel,
Air-fuel ratio detection means for detecting an air-fuel ratio of the exhaust flow path downstream from the exhaust purification member;
Learning means for calculating the adhesion rate and the evaporation rate based on the arrived fuel estimation model using the air-fuel ratio detected by the air-fuel ratio detection means after the fuel addition, the exhaust amount at that time, and the in-cylinder injection amount. An exhaust emission control device for an internal combustion engine, characterized by comprising:
前記付着率の学習は、前記蒸発率の学習終了後に実行することを特徴とする請求項1に記載の内燃機関の排気浄化装置。 The exhaust purification device for an internal combustion engine according to claim 1, wherein the learning of the adhesion rate is executed after the learning of the evaporation rate is completed. 前記蒸発率を算出する前記学習手段は、前記燃料添加後に時間間隔をあけて検出した少なくとも2組の排気量、空燃比、筒内噴射量を用い前記到達燃料推定モデルに基づいて前記蒸発率を算出することを特徴とする請求項1に記載の内燃機関の排気浄化装置。 The learning means for calculating the evaporation rate uses the at least two sets of exhaust amount, air-fuel ratio, and in-cylinder injection amount detected at intervals after the fuel addition to calculate the evaporation rate based on the reached fuel estimation model. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is calculated. 前記付着率を算出する前記学習手段は、前記燃料添加後の前記空燃比検出手段により検出された空燃比の最小ピーク値とそのときの排気量、空燃比、筒内噴射量を用い前記到達燃料推定モデルに基づいて前記付着率を算出することを特徴とする請求項1に記載の内燃機関の排気浄化装置。 The learning means for calculating the adhesion rate uses the minimum peak value of the air-fuel ratio detected by the air-fuel ratio detection means after the addition of fuel and the exhaust amount, air-fuel ratio, and in-cylinder injection amount at that time to reach the reached fuel. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the adhesion rate is calculated based on an estimation model. 前記学習手段は、算出した前記付着率及び前記蒸発率をそのときの排気量と排気温度とに関連付けて記憶することを特徴とする請求項1又は請求項3又は請求項4のいずれかに記載の内燃機関の排気浄化装置。 The said learning means memorize | stores the calculated said adhesion rate and the said evaporation rate in correlation with the exhaust_gas | exhaustion amount and exhaust_gas | exhaustion temperature at that time, The said any one of Claim 3 or Claim 4 characterized by the above-mentioned. Exhaust gas purification device for internal combustion engine. 前記排気浄化部材は、窒素酸化物を吸蔵するNOx触媒、あるいは粒子状物質を捕集するフィルタの少なくともどちらか一つであることを特徴とする請求項1ないし請求項5のいずれかに記載の内燃機関の排気浄化装置。 6. The exhaust purification member according to claim 1, wherein the exhaust purification member is at least one of a NOx catalyst that stores nitrogen oxides and a filter that collects particulate matter. An exhaust purification device for an internal combustion engine.
JP2009058110A 2009-03-11 2009-03-11 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5104789B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009058110A JP5104789B2 (en) 2009-03-11 2009-03-11 Exhaust gas purification device for internal combustion engine
DE102010002735A DE102010002735A1 (en) 2009-03-11 2010-03-10 An exhaust emission control system having improved ability to regenerate an exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058110A JP5104789B2 (en) 2009-03-11 2009-03-11 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010209835A true JP2010209835A (en) 2010-09-24
JP5104789B2 JP5104789B2 (en) 2012-12-19

Family

ID=42558095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058110A Expired - Fee Related JP5104789B2 (en) 2009-03-11 2009-03-11 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5104789B2 (en)
DE (1) DE102010002735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172518A (en) * 2011-02-17 2012-09-10 Denso Corp Exhaust emission control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9003776B2 (en) * 2012-07-30 2015-04-14 Ford Global Technologies, Llc Method for regenerating an exhaust after treatment device
FR2997999B1 (en) * 2012-11-13 2014-11-21 Peugeot Citroen Automobiles Sa EXHAUST GAS DEPOLLUTION DEVICE HAVING IMPROVED EFFICIENCY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242445A (en) * 1990-02-19 1991-10-29 Japan Electron Control Syst Co Ltd Condition learning device and correction device for wall flow in fuel supply control device of internal combustion engine
JPH11324782A (en) * 1998-05-14 1999-11-26 Yamaha Motor Co Ltd Learning method in air-fuel ratio control device of internal combustion engine
JP2002038939A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007154822A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367123B2 (en) 2003-12-18 2009-11-18 トヨタ自動車株式会社 Catalyst control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242445A (en) * 1990-02-19 1991-10-29 Japan Electron Control Syst Co Ltd Condition learning device and correction device for wall flow in fuel supply control device of internal combustion engine
JPH11324782A (en) * 1998-05-14 1999-11-26 Yamaha Motor Co Ltd Learning method in air-fuel ratio control device of internal combustion engine
JP2002038939A (en) * 2000-07-24 2002-02-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007154822A (en) * 2005-12-07 2007-06-21 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172518A (en) * 2011-02-17 2012-09-10 Denso Corp Exhaust emission control device

Also Published As

Publication number Publication date
DE102010002735A1 (en) 2010-09-16
JP5104789B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5644164B2 (en) Exhaust gas purification device
CN101892891B (en) Exhaust emission control device
JP6384196B2 (en) Exhaust purification device regenerator
US20110219750A1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2006348792A (en) Lubricating oil consumption estimation device and exhaust emission control device for internal combustion engine
JP2003254038A (en) Exhaust emission control device for internal combustion engine
JP5104789B2 (en) Exhaust gas purification device for internal combustion engine
JP2013044238A (en) Exhaust emission control device
JP4692376B2 (en) Exhaust gas purification device for internal combustion engine
JP4008867B2 (en) Exhaust purification equipment
JP6515576B2 (en) Exhaust purification system
JP2019167919A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP2008138547A (en) Exhaust emission control device for internal combustion engine
JP6183659B2 (en) Exhaust gas purification device
CN109915243B (en) Method for catalyst purification control and vehicle using the same
JP7151119B2 (en) Engine catalyst abnormality determination method and engine catalyst abnormality determination device
JP2010196704A (en) Method for regenerating exhaust gas post-treatment device
JP6769281B2 (en) Internal combustion engine system
JP2016223336A (en) Exhaust emission control device, control device and control method
JP2007032533A (en) Control device for internal combustion engine exhaust emission control device
WO2017047678A1 (en) Catalyst deterioration degree estimation device
JP7147214B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7159584B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106922B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5104789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees