JP2010209405A - Stainless steel having excellent surface electric conductivity, and method for manufacturing the same - Google Patents

Stainless steel having excellent surface electric conductivity, and method for manufacturing the same Download PDF

Info

Publication number
JP2010209405A
JP2010209405A JP2009056532A JP2009056532A JP2010209405A JP 2010209405 A JP2010209405 A JP 2010209405A JP 2009056532 A JP2009056532 A JP 2009056532A JP 2009056532 A JP2009056532 A JP 2009056532A JP 2010209405 A JP2010209405 A JP 2010209405A
Authority
JP
Japan
Prior art keywords
stainless steel
moo
less
hmoo
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009056532A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Nishida
義勝 西田
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009056532A priority Critical patent/JP2010209405A/en
Publication of JP2010209405A publication Critical patent/JP2010209405A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide stainless steel having high surface electric conductivity in a solid state, and mass-producible. <P>SOLUTION: The stainless steel contains Mo in a coating film on a surface of base steel. In the Mo content in the coating film, the ratio of Mo occupied in Cr, Al, Si, Fe and Mo by the X-ray photoelectron spectroscopy analytical method (XPS) is ≥10 atom%, the Mo content is the index indicating the ratio of Mo and MoO<SB>2</SB>out of Mo component present in the coating film. The stainless steel has excellent surface electric conductivity in which the value A by the formula: =(hMo+hMoO<SB>2</SB>)/(hMo+hMoO<SB>2</SB>+hMoO<SB>3</SB>) is ≥0.3, where hMo, hMoO<SB>2</SB>and hMoO<SB>3</SB>denote the peak intensity attributable to the bond energy of Mo, MoO<SB>2</SB>and MoO<SB>3</SB>in the XPS spectrum of the coating film, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼素地表面に導電性の良い表面皮膜を有するステンレス鋼材およびその製造方法に関する。   The present invention relates to a stainless steel material having a surface film with good conductivity on the surface of a steel substrate and a method for producing the same.

ステンレス鋼は、鋼素地表面にクロム酸化物・水酸化物を主成分とする薄い保護性の酸化皮膜(不動態皮膜)を有することにより優れた耐食性を維持する材料である。しかし、この不動態皮膜は電気抵抗が高いことから、表面接触抵抗の低い材料が求められる燃料電池関連の部材や電気接点などの用途にステンレス鋼を無垢のままで適用することは、従来困難であった。これらの導電部材用途では、電気めっきや物理蒸着などの手段によりSn、Ni、Au、Pt、カーボンなどを鋼素地表面に被覆したステンレス鋼を適用しようという試みもなされている。しかしこれらの方法は、工程の煩雑化、製造コストの増大を伴い、工業的な大量生産には種々問題がある。   Stainless steel is a material that maintains excellent corrosion resistance by having a thin protective oxide film (passive film) mainly composed of chromium oxide / hydroxide on the steel substrate surface. However, since this passive film has high electrical resistance, it has been difficult to apply stainless steel as it is for applications such as fuel cell-related parts and electrical contacts that require materials with low surface contact resistance. there were. In these conductive member applications, attempts have been made to apply stainless steel in which Sn, Ni, Au, Pt, carbon, etc. are coated on the surface of the steel substrate by means such as electroplating or physical vapor deposition. However, these methods involve complicated processes and increase in manufacturing costs, and there are various problems in industrial mass production.

−方、ステンレス鋼の耐食性を向上させるためには鋼成分としてMoを含有させることが有効であり、SUS316に代表されるMo含有鋼種が実用化されている。Mo含有鋼種では不動態皮膜中にCrとともにMoが含まれ、この種の皮膜は腐食環境において優れた保護性を発揮する。しかし、この皮膜も電気抵抗が高いことには変わりない。   On the other hand, in order to improve the corrosion resistance of stainless steel, it is effective to contain Mo as a steel component, and Mo-containing steel types represented by SUS316 have been put into practical use. In the Mo-containing steel type, Mo is contained together with Cr in the passive film, and this type of film exhibits excellent protection in a corrosive environment. However, this film also has a high electrical resistance.

特許文献1には、ステンレス鋼をモリブデン酸塩の水溶液で陽極電解および陰極電解することにより耐食性を向上させる手法が開示されている。しかし、この手法によって得られるステンレス鋼の表面は半導体的性質を示すMoO3に覆われており、表面電気伝導性の改善は見られない。 Patent Document 1 discloses a technique for improving corrosion resistance by anodic and cathodic electrolysis of stainless steel with an aqueous molybdate solution. However, the surface of the stainless steel obtained by this method is covered with MoO 3 exhibiting semiconducting properties, and no improvement in surface electrical conductivity is observed.

特許文献2には、ステンレス鋼基板上に親水性電気伝導性被覆を堆積させることによりステンレス鋼の表面電気伝導性を向上させる手法が開示されている。親水性物質として二酸化シリコンを使用し、導電性粒子として金粒子を使用した実施例が示されている。他の親水性物質として二酸化チタンをはじめとする多くの金属酸化物が列挙されており、その中に二酸化モリブデンの記載もある。しかし、特許文献2の手法はゾルゲル法等を利用してステンレス鋼基板表面に親水性物質を堆積させるものであり、不動態皮膜そのものを改質するものでなない。このため、表面堆積物を剥落させない取り扱いが要求される。また連続ラインによる大量生産は難しく、製造コストも高くなる。   Patent Document 2 discloses a technique for improving the surface electrical conductivity of stainless steel by depositing a hydrophilic electrical conductive coating on the stainless steel substrate. An example is shown in which silicon dioxide is used as the hydrophilic substance and gold particles are used as the conductive particles. As other hydrophilic substances, many metal oxides including titanium dioxide are listed, and molybdenum dioxide is also described therein. However, the method of Patent Document 2 uses a sol-gel method or the like to deposit a hydrophilic substance on the surface of a stainless steel substrate, and does not modify the passive film itself. For this reason, the handling which does not peel off a surface deposit is requested | required. In addition, mass production using a continuous line is difficult and the manufacturing cost is high.

特開平8−176891号公報Japanese Patent Laid-Open No. 8-176891 特開2008−21647号公報JP 2008-21647 A

ステンレス鋼は、金属マトリクスと、その表面に形成された不動態皮膜によって構成されている。本明細書ではその金属マトリクスの部分を「鋼素地」と呼んでいる。また、その鋼素地の上に、不動態皮膜または不動態皮膜を改質してなる皮膜を持つ「鋼素地+当該皮膜」からなるものを「無垢のステンレス鋼」と呼ぶことがある。
本発明は、無垢のままで高い表面電気伝導性を呈する大量生産可能なステンレス鋼材を提供することを目的とする。
Stainless steel is composed of a metal matrix and a passive film formed on the surface of the metal matrix. In this specification, the portion of the metal matrix is called a “steel substrate”. Moreover, what consists of "steel substrate + the said film | membrane" which has a film formed by modifying a passive film or a passive film on the steel substrate may be called "solid stainless steel".
An object of the present invention is to provide a stainless steel material that can be mass-produced and exhibits high surface electrical conductivity while remaining pure.

上記目的は、鋼素地の上に、Mo成分がMoまたはMoO2の形で存在する皮膜を有するステンレス鋼材によって達成される。MoおよびMoO2は導電性を有し、これが本来導電性に乏しい不動態皮膜の電気抵抗を大幅に低減させる。 The above object is achieved by a stainless steel material having a coating on which a Mo component is present in the form of Mo or MoO 2 on a steel substrate. Mo and MoO 2 have electrical conductivity, which greatly reduces the electrical resistance of the passive film which is inherently poor in electrical conductivity.

すなわち本発明では、鋼素地表面の皮膜中にMoを含有するステンレス鋼材であって、その皮膜中においてX線光電子分光分析法(XPS)によるCr、Al、Si、Fe、Moの5元素に占めるMo含有率が10原子%以上であり、かつ、その皮膜中に存在するMo成分(ここではMo、MoO2、MoO3)に占めるMoとMoO2の相対的な存在割合を表す指標である下記(1)式のA値が0.3以上である表面電気伝導性に優れたステンレス鋼材が提供される。
A値=(hMo+hMoO2)/(hMo+hMoO2+hMoO3) …(1)
ここで、hMo、hMoO2およびhMoO3は、それぞれ当該皮膜についてのMo3d5/2軌道のXPSスペクトル(横軸に結合エネルギー、縦軸に光電子強度をとったもの)における、Mo、MoO2およびMoO3の結合エネルギーに起因するピーク強度である。
That is, in this invention, it is a stainless steel material containing Mo in the film on the surface of the steel substrate, and occupies the five elements of Cr, Al, Si, Fe, and Mo by X-ray photoelectron spectroscopy (XPS) in the film. The Mo content is 10 atomic% or more and is an index representing the relative abundance ratio of Mo and MoO 2 in the Mo components (Mo, MoO 2 , MoO 3 here) present in the film. A stainless steel material excellent in surface electrical conductivity having an A value in the formula (1) of 0.3 or more is provided.
A value = (hMo + hMoO 2 ) / (hMo + hMoO 2 + hMoO 3 ) (1)
Here, hMo, hMoO 2, and hMoO 3 are Mo, MoO 2, and MoO 3 in the XPS spectrum of the Mo3d5 / 2 orbit for the film (the horizontal axis indicates the binding energy and the vertical axis indicates the photoelectron intensity), respectively. It is a peak intensity resulting from the binding energy.

図1に、Mo含有皮膜を有するステンレス鋼材において観測される当該皮膜についての典型的なMgKα線励起Mo3d5/2軌道のXPSスペクトルを模式的に例示する。ここで、Mo、MoO2およびMoO3に相当する各ピークを、それぞれ「Moピーク」、「MoO2ピーク」および「MoO3ピーク」と呼ぶ。これらのピーク位置は皮膜の構造に応じて若干変動する。なお、Mo3d5/2軌道に起因するMoO3ピークの高エネルギー側(図の左側)には、Mo3d3/2軌道に起因するピークが観測される。
各ピーク強度hMo、hMoO2、hMoO3は以下のようにして求める。
FIG. 1 schematically illustrates a typical MgKα ray-excited Mo3d5 / 2 orbital XPS spectrum of the coating observed in a stainless steel material having a Mo-containing coating. Here, the peaks corresponding to Mo, MoO 2 and MoO 3 are referred to as “Mo peak”, “MoO 2 peak” and “MoO 3 peak”, respectively. These peak positions vary slightly depending on the structure of the film. Note that the MoO 3 peak on the high energy side of due to Mo3d5 / 2 orbital (the left side in the figure), a peak attributable to Mo3d3 / 2 orbital is observed.
The peak intensities hMo, hMoO 2 and hMoO 3 are obtained as follows.

Mo3d3/2軌道に起因するピークの高エネルギー側(図の左側)の裾野に相当する結合エネルギー239eVにおけるXPSスペクトル曲線上の点をP0とする。点P0を通る直線のうち、MoO3ピークよりも低エネルギー側(図の右側)においてXPSスペクトル曲線(以下単に「曲線」という)と交わらず、かつMoO3ピークよりも低エネルギー側(図の右側)で当該曲線と接する直線を想定し、その接点をP1とする。図1(b)、(c)の例において、点P0を通りMoO3ピークのすぐ右側に見られる谷の部分で接点を持つ直線は、それより右側で曲線と交わることになるので、このような直線はP1を定めるための直線として採用されない。P1が定まれば、線分P01の属する結合エネルギーの範囲に存在するMoO3ピーク、MoO2ピークおよびMoピークについて、線分P01を基準としたピーク高さを求め、その値(cps)をそれぞれhMoO3、hMoO2およびhMoとする。図1(a)の例では線分P01を基準としてhMoO3が定まり、同様に(b)の例ではhMoO3とhMoO2が定まり、(c)の例ではhMoO3とhMoが定まる。 Let P 0 be a point on the XPS spectrum curve at a binding energy of 239 eV corresponding to the high energy side (left side of the figure) base of the peak due to the Mo3d3 / 2 orbit. Of the straight line passing through the point P 0, than MoO 3 peak lower energy not intersect the XPS spectrum curve (hereinafter simply referred to as "curve") in (the right side in the figure), and than MoO 3 peak on the low energy side (FIG. assuming a straight line on the right side) in contact with the curve, to the contact point between P 1. In the example of FIGS. 1B and 1C, a straight line having a contact at a valley portion that passes through the point P 0 and is located on the right side of the MoO 3 peak intersects with the curve on the right side. Such a straight line is not adopted as a straight line for determining P 1 . If P 1 is Sadamare, MoO 3 peaks present in the range of binding energy Field of the line segment P 0 P 1, the MoO 2 peak and Mo peak, determine the peak height relative to the line segment P 0 P 1, The values (cps) are hMoO 3 , hMoO 2 and hMo, respectively. In the example of FIG. 1A, hMoO 3 is determined based on the line segment P 0 P 1. Similarly, in the example of FIG. 1B, hMoO 3 and hMoO 2 are determined, and in the example of FIG. 1C, hMoO 3 and hMo are determined. .

線分P01よりも低エネルギー側(図の右側)にMoO2ピーク、あるいはMoピークが存在する場合は、点P1の属する谷において接点Q0を持ち、かつ、Moピーク(Moピークが観測されない場合はMoO2ピーク)の低エネルギー側(右側)直近にある谷において接点Q1を持つ直線を想定する。そして、線分Q01の属する結合エネルギーの範囲に存在するMoO2ピークおよびMoピークについて、線分Q01を基準としたピーク高さを求め、その値(cps)をそれぞれhMoO2およびhMoとする。図1(a)の例では線分Q01を基準としてhMoが定まる。 When the MoO 2 peak or Mo peak is present on the lower energy side (right side in the figure) than the line segment P 0 P 1 , it has the contact Q 0 in the valley to which the point P 1 belongs, and the Mo peak (Mo peak). Is not observed, a straight line having a contact point Q 1 is assumed in the valley on the low energy side (right side) of the MoO 2 peak). Then, for the MoO 2 peak and the Mo peak existing in the range of the binding energy to which the line segment Q 0 Q 1 belongs, the peak height with respect to the line segment Q 0 Q 1 is obtained, and the value (cps) is set to hMoO 2. And hMo. In the example of FIG. 1A, hMo is determined based on the line segment Q 0 Q 1 .

図1(a)、(c)の例ではMoO2に相当するピークが観測されないので、hMoO2はゼロとする。同様に(b)の例ではMoに相当するピークが観測されないので、hMoはゼロとする。このようにして得られたhMo、hMoO2、hMoO3の値を上記(1)式に代入することにより、A値が定まる。図1の例では(b)、(c)の場合にA値が0.3以上を満たす。 In the example of FIGS. 1A and 1C, no peak corresponding to MoO 2 is observed, so hMoO 2 is set to zero. Similarly, in the example of (b), no peak corresponding to Mo is observed, so hMo is set to zero. The value A is determined by substituting the values of hMo, hMoO 2 , and hMoO 3 thus obtained into the above equation (1). In the example of FIG. 1, the value A satisfies 0.3 or more in the cases (b) and (c).

「ステンレス鋼」とはJIS G0203:2000の番号4201に記載されるように、Cr含有量が10.5%以上の鋼であり、種々の鋼種が適用対象となる。
例えばフェライト系鋼種の鋼素地の組成範囲としては、質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:10.5〜35%、Mo:0〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなる組成範囲が挙げられる。
“Stainless steel” is steel having a Cr content of 10.5% or more as described in JIS G0203: 2000, number 4201, and various steel types are applicable.
For example, the composition range of the ferritic steel grade is as follows: mass: C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S : 0.03% or less, Ni: 0.6% or less, Cr: 10.5 to 35%, Mo: 0 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1 %, Al: 0 to 0.2%, N: 0.025% or less, B: 0 to 0.01%, the balance Fe and unavoidable impurities.

またオーステナイト系鋼種の鋼素地の組成範囲としては、質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:15〜26%、Mo:0〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部がFeおよび不可避的不純物からなる組成範囲が挙げられる。   The composition range of the steel base of the austenitic steel grade is, in mass%, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0 0.03% or less, Ni: 6 to 28%, Cr: 15 to 26%, Mo: 0 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al : 0 to 0.1%, N: 0.3% or less, B: 0 to 0.01%, and a composition range in which the balance is Fe and inevitable impurities.

上記の表面電気伝導性に優れたステンレス鋼材の製造方法として、不動態皮膜を有するステンレス鋼材をモリブデン酸イオン含有水溶液中で陰極電解することにより、表面にMoO3含有皮膜を形成させる工程(陰極電解工程)、
前記MoO3含有皮膜を有するステンレス鋼材を例えば水素ガスなどの還元性ガス雰囲気中で熱処理することにより、当該皮膜中のMoO3の一部を還元させ、MoおよびMoO2の1種以上を含有した皮膜とする工程(還元工程)、
を有する製造方法が提供される。この場合、露点D(℃)と温度T(℃)が下記(2)式および(3)式を満たす還元性ガスを使用することが好ましい。
0.105T−115≦D≦30 …(2)
250≦T≦1300 …(3)
As a method of producing a stainless steel material having excellent surface electrical conductivity, a step of forming a MoO 3 -containing film on the surface by cathodic electrolysis of a stainless steel material having a passive film in an aqueous solution containing molybdate ions (cathodic electrolysis) Process),
By heat-treating the stainless steel material having the MoO 3 containing film in a reducing gas atmosphere such as hydrogen gas, a part of MoO 3 in the film was reduced, and one or more of Mo and MoO 2 were contained. Process (reduction process) to form a film,
A manufacturing method is provided. In this case, it is preferable to use a reducing gas whose dew point D (° C.) and temperature T (° C.) satisfy the following formulas (2) and (3).
0.105T-115 ≦ D ≦ 30 (2)
250 ≦ T ≦ 1300 (3)

本発明によれば、ステンレス鋼の鋼素地表面に存在する酸化物皮膜そのものを導電性に優れたものに改質したステンレス鋼材が提供可能となった。このステンレス鋼材は、無垢のままで優れた表面電気伝導性を呈するので、一般的なステンレス鋼材と同様に所定の形状に成形したのち、そのまま導電部材として適用できる。また、このステンレス鋼材は例えばステンレス鋼板製造設備を利用して工業的に安価かつ大量に生産することができる。ステンレス鋼種も用途に応じて種々のものが選択可能である。したがって本発明は、固体高分子型燃料電池の集電材(セパレータなど)や、電気接点材料に適した新たな金属材料を提供するものである。   ADVANTAGE OF THE INVENTION According to this invention, it became possible to provide the stainless steel material which improved the oxide film itself which exists in the steel base surface of stainless steel into what was excellent in electroconductivity. Since this stainless steel material exhibits excellent surface electrical conductivity as it is, it can be applied as a conductive member as it is after being formed into a predetermined shape in the same manner as a general stainless steel material. Further, this stainless steel material can be produced industrially at low cost and in large quantities using, for example, a stainless steel plate manufacturing facility. Various types of stainless steel can be selected depending on the application. Accordingly, the present invention provides a new metal material suitable for a current collector (such as a separator) and an electrical contact material of a polymer electrolyte fuel cell.

ステンレス鋼材表面に形成されたMo含有皮膜のXPSスペクトルを模式的に例示した図。The figure which illustrated typically the XPS spectrum of Mo content coat formed on the stainless steel material surface. 本発明のステンレス鋼材を得るための工程および皮膜構成を模式的に示した図。The figure which showed typically the process and film structure for obtaining the stainless steel material of this invention. A値と接触抵抗の関係を表すグラフ。The graph showing the relationship between A value and contact resistance.

図2に、本発明のステンレス鋼材を得るための工程および皮膜構成を模式的に示す。(a)は、出発材料である通常のステンレス鋼である。鋼素地の表面に不動態皮膜を有している。このステンレス鋼に、モリブデン酸イオンを含有する水溶液中で陰極電解を施すと、液中のMo成分は鋼素地上にMoO3として被着する(b)。MoO3は半導体的性質を有し、この段階では皮膜の導電性改善には至らない。このMoO3含有皮膜を有するステンレス鋼を、還元性ガス雰囲気中で熱処理すると、MoO3の一部がMoO2あるいはさらにMoに還元される。MoおよびMoO2は導電性を有することから、鋼素地上にMoまたはMoO2含有皮膜を有するステンレス鋼は、無垢のままで表面電気伝導性を有する(c)。このようにして本発明のステンレス鋼材が得られる。 FIG. 2 schematically shows a process and a film configuration for obtaining the stainless steel material of the present invention. (A) is the usual stainless steel which is a starting material. It has a passive film on the surface of the steel substrate. When this stainless steel is subjected to cathodic electrolysis in an aqueous solution containing molybdate ions, the Mo component in the liquid is deposited as MoO 3 on the steel substrate (b). MoO 3 has semiconducting properties and does not lead to an improvement in film conductivity at this stage. When the stainless steel having the MoO 3 -containing film is heat-treated in a reducing gas atmosphere, a part of MoO 3 is reduced to MoO 2 or further Mo. Since Mo and MoO 2 have electrical conductivity, stainless steel having a Mo or MoO 2 -containing coating on the steel substrate remains pure and has surface electrical conductivity (c). In this way, the stainless steel material of the present invention is obtained.

〔皮膜中におけるMo含有率〕
ステンレス鋼の不動態皮膜中には金属元素としてCr、Feが含まれており、その他、鋼素地の成分組成に応じてSi、Al、Moなどが含まれる。陰極電解によりMoO3を被着させた後、還元性ガス中で熱処理することによって得られた皮膜中には、通常のMo含有鋼種の不動態皮膜よりもさらに多量のMoが存在していることになる。発明者らの検討によれば、表面電気伝導性に優れた皮膜を実現するためには、上記5元素(Cr、Fe、Si、Al、Mo)に占める皮膜中のMo含有率は、10原子%以上であることが極めて有効である。Mo含有率がそれより少ないと、Cr、Fe、Si、Alの1種以上を成分とする絶縁性酸化物の存在が優勢となり、還元処理によってMo成分の大部分を導電性のMoあるいはMoO2とした皮膜を構築した場合であっても、その皮膜は絶縁性が高いものとなり、表面電気伝導性を十分に向上させることは難しい。ここで、上記5元素に占めるMoの含有率は、XPSによる上記各元素のスペクトルの積分面積に基づいた定量値から算出される。
[Mo content in film]
The passive film of stainless steel contains Cr and Fe as metal elements, and additionally contains Si, Al, Mo, etc. depending on the composition of the steel substrate. In the film obtained by applying MoO 3 by cathodic electrolysis and then heat-treating in a reducing gas, a larger amount of Mo is present than in a passive film of a normal Mo-containing steel type. become. According to the study by the inventors, in order to realize a film excellent in surface electrical conductivity, the Mo content in the film in the five elements (Cr, Fe, Si, Al, Mo) is 10 atoms. % Or more is extremely effective. When the Mo content is less than that, the presence of an insulating oxide containing one or more of Cr, Fe, Si, and Al becomes dominant, and most of the Mo component is made conductive Mo or MoO 2 by reduction treatment. Even when the film is constructed, the film has high insulation, and it is difficult to sufficiently improve the surface electrical conductivity. Here, the Mo content in the five elements is calculated from a quantitative value based on the integrated area of the spectrum of each element by XPS.

〔皮膜中のMo、MoO2
本発明では、ステンレス鋼の鋼素地上に存在する皮膜中に、導電性のMoおよびMoO2の1種以上を存在させることによって当該皮膜の導電性を改善する。したがって、皮膜中におけるMoおよびMoO2の存在量が十分に確保されることが必要である。発明者らの検討によれば、上述のようにCr、Fe、Si、Al、Moに占める皮膜中のMo元素の含有率を10原子%以上とした上で、さらに、Mo成分の中でもMoまたはMoO2の存在量を高めることが重要である。すなわち、酸化皮膜を構成するMo成分としては、Mo、MoO2、MoO3があり、そのなかで、半導体的性質のMoO3の存在割合をできるだけ低減することが必要である。発明者らは詳細な検討の結果、皮膜中に存在するMo成分のうちMoとMoO2の占める相対的な割合を評価する指標として、下記(1)式のA値を採用することが極めて有効であることを見出した。
A値=(hMo+hMoO2)/(hMo+hMoO2+hMoO3) …(1)
ここで、hMo、hMoO2、hMoO3は前述のようにXPSスペクトルから求められる。
[Mo and MoO 2 in the film]
In the present invention, the conductivity of the coating is improved by allowing at least one of conductive Mo and MoO 2 to be present in the coating existing on the surface of the stainless steel. Therefore, it is necessary to ensure a sufficient amount of Mo and MoO 2 in the film. According to the study by the inventors, the Mo element content in the film in Cr, Fe, Si, Al, and Mo as described above is set to 10 atomic% or more, and further, Mo or Mo among Mo components. It is important to increase the amount of MoO 2 present. That is, the Mo component constituting the oxide film includes Mo, MoO 2 , and MoO 3 , and among them, it is necessary to reduce the existing ratio of MoO 3 having semiconducting properties as much as possible. As a result of detailed studies, the inventors have found that it is extremely effective to adopt the A value of the following formula (1) as an index for evaluating the relative proportion of Mo and MoO 2 in the Mo component present in the film. I found out.
A value = (hMo + hMoO 2 ) / (hMo + hMoO 2 + hMoO 3 ) (1)
Here, hMo, hMoO 2 and hMoO 3 are determined from the XPS spectrum as described above.

上記5元素中に占める皮膜中のMo元素の含有率が10原子%以上である場合において、このA値を増大させていくと、A値が0.3に近づくときに表面電気伝導性は急激に向上し、0.3以上の領域では安定して優れた表面電気伝導性が維持されるのである。
なお、優れた表面電気伝導性を呈する本発明のステンレス鋼材における皮膜厚さは5〜50nm程度である。
In the case where the content of Mo element in the film in the five elements is 10 atomic% or more, when the A value is increased, the surface electrical conductivity rapidly increases when the A value approaches 0.3. In the region of 0.3 or more, excellent surface electrical conductivity is stably maintained.
In addition, the film thickness in the stainless steel material of the present invention exhibiting excellent surface electrical conductivity is about 5 to 50 nm.

〔ステンレス鋼種〕
本発明では種々のステンレス鋼が適用対象となる。一般的なステンレス鋼の分類によるオーステナイト系、フェライト系、マルテンサイト系、フェライト+マルテンサイト系、オーステナイト+フェライト系、高Mnオーステナイト系などのいずれを採用してもよい。
[Stainless steel grade]
In the present invention, various stainless steels are applicable. Any of austenite, ferrite, martensite, ferrite + martensite, austenite + ferrite, high Mn austenite, etc. according to general stainless steel classification may be adopted.

フェライト系を採用する場合の組成範囲としては、質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:10.5〜35%、Mo:0〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなる組成範囲が挙げられる。
またオーステナイト系鋼種の鋼素地の組成範囲としては、質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:15〜26%、Mo:0〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部がFeおよび不可避的不純物からなる組成範囲が挙げられる。
規格鋼種としては、例えばJIS G4305:2005や、JIS G4312−1991に規定される鋼種を例示することができる。
The composition range in the case of adopting a ferrite system is, in mass%, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Cr: 10.5 to 35%, Mo: 0 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1% , Al: 0 to 0.2%, N: 0.025% or less, B: 0 to 0.01%, remaining Fe and inevitable impurities.
The composition range of the steel base of the austenitic steel grade is, in mass%, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0 0.03% or less, Ni: 6 to 28%, Cr: 15 to 26%, Mo: 0 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al : 0 to 0.1%, N: 0.3% or less, B: 0 to 0.01%, and the balance is composed of Fe and inevitable impurities.
Examples of standard steel types include steel types defined in JIS G4305: 2005 and JIS G4312-1991.

〔陰極電解工程〕
陰極電解工程では、上記のような化学組成を有する一般的なステンレス鋼を出発材料として用いる。出発材料のステンレス鋼を、モリブデン酸イオンを含む水溶液中で陰極電解することにより、MoO3が主体のMo酸化物をステンレス鋼板表面に析出させる。モリブデン酸イオンを供給するための電解質としては、モリブデン酸アンモニウム、モリブデン酸ナトリウムをはじめとするモリブデン酸塩が使用できる。水溶液中のMo含有量は0.01〜0.5mol/Lとすればよい。Mo酸化物の付着量はMo換算で5×10-3〜0.5g/m2とすることが望ましい。Mo酸化物の付着量が少なすぎると、前述の5元素中に占める皮膜中のMo元素の含有率を10原子%以上とすることが難しくなる。付着量が多すぎると、Moの消費量が過剰となり不経済であり、また後工程での還元熱処理時間が長くなり実用できでない。Mo酸化物の付着量は陰極電解の通電量によってコントロールすることができる。
[Cathode electrolysis process]
In the cathode electrolysis process, general stainless steel having the above chemical composition is used as a starting material. Cathodic electrolysis of the starting stainless steel in an aqueous solution containing molybdate ions causes MoO 3 -based Mo oxide to precipitate on the stainless steel plate surface. As an electrolyte for supplying molybdate ions, molybdates such as ammonium molybdate and sodium molybdate can be used. The Mo content in the aqueous solution may be 0.01 to 0.5 mol / L. The adhesion amount of Mo oxide is preferably 5 × 10 −3 to 0.5 g / m 2 in terms of Mo. When there is too little adhesion amount of Mo oxide, it will become difficult to make content rate of Mo element in the film | membrane occupied in the above-mentioned 5 element into 10 atomic% or more. If the amount of adhesion is too large, the amount of Mo consumed becomes excessive, which is uneconomical, and the reduction heat treatment time in the subsequent process becomes long, making it impractical. The amount of Mo oxide attached can be controlled by the amount of cathodic electrolysis.

〔還元工程〕
陰極電解によって表面に析出させたMo酸化物は、半導体的性質を有するMoO3を主体とするものであり、この状態では皮膜の電気抵抗は高いままである。そこで、この材料に対して、還元性ガス雰囲気中での熱処理を施すことによりMoO3の還元反応を進行させ、導電性のMoまたはMoO2を生成させる。還元性ガスとしては、水素ガス、アンモニア分解ガス、水素と窒素の混合ガス等が使用でき、水素100%のガスがより好ましい。なお、MoO3の全部をMoまたはMoO2に還元することは困難であるが、前述のように(1)式のA値が0.3以上となれば十分である。
[Reduction process]
The Mo oxide deposited on the surface by cathodic electrolysis is mainly composed of MoO 3 having semiconducting properties, and the electrical resistance of the film remains high in this state. Therefore, by subjecting this material to heat treatment in a reducing gas atmosphere, the reduction reaction of MoO 3 proceeds to generate conductive Mo or MoO 2 . As the reducing gas, hydrogen gas, ammonia decomposition gas, a mixed gas of hydrogen and nitrogen, or the like can be used, and a gas of 100% hydrogen is more preferable. Although it is difficult to reduce all of MoO 3 to Mo or MoO 2 , it is sufficient that the A value in the formula (1) is 0.3 or more as described above.

露点D(℃)と温度T(℃)が下記(2)式および(3)式を満たすようにしたとき、良好な特性を有する導電性皮膜が得られやすい。
0.105T−115≦D≦30 …(2)
250≦T≦1300 …(3)
露点Dが低くなるとMoO3がMoやMoO2に還元されにくくなる。温度Tが低くなると還元反応の進行が遅くなり、熱処理に長時間を要する場合がある。また露点Dが0.105T−115より低い条件で熱処理すると、MoO3が昇華しやすくなり、前述の5元素中に占める皮膜中のMo元素の含有率を10原子%以上とすることが難しくなる場合がある。0.105T−106.5≦Dを満たすことがより好ましい。熱処理時間(在炉時間)は温度Tにもよるが、3〜120秒の範囲で最適条件を見出すことができる。板厚0.5〜1mm程度の鋼板であれば5〜30秒の範囲とすればよい。
When the dew point D (° C.) and the temperature T (° C.) satisfy the following formulas (2) and (3), a conductive film having good characteristics can be easily obtained.
0.105T-115 ≦ D ≦ 30 (2)
250 ≦ T ≦ 1300 (3)
When the dew point D is lowered, MoO 3 is not easily reduced to Mo or MoO 2 . When the temperature T is lowered, the progress of the reduction reaction is slow, and the heat treatment may take a long time. Further, when heat treatment is performed under conditions where the dew point D is lower than 0.105T-115, MoO 3 is likely to sublimate, making it difficult to set the content of Mo element in the film in the above five elements to 10 atomic% or more. There is a case. It is more preferable to satisfy 0.105T-106.5 ≦ D. The heat treatment time (in-furnace time) depends on the temperature T, but the optimum condition can be found in the range of 3 to 120 seconds. In the case of a steel plate having a plate thickness of about 0.5 to 1 mm, the range may be 5 to 30 seconds.

市販のSUS430フェライト系ステンレス鋼板(Cr:17質量%、板厚0.5mm、No.2D仕上)を用意し、以下の条件で陰極電解を施した。
(陰極電解条件)
・電解液;0.05モル/Lのモリブデン酸アンモニウム水溶液、50℃
・電流密度;0.01A/dm2
・通電量;0.5C/dm2
この条件にてMo酸化物をMo換算付着量0.05g/m2で被覆した。この段階で皮膜中のMo成分は大部分がMoO3であり、わずかにMoO2が検出され、Moは検出されなかった(後述表1のNo.17)。
A commercially available SUS430 ferritic stainless steel plate (Cr: 17% by mass, plate thickness 0.5 mm, No. 2D finish) was prepared, and cathodic electrolysis was performed under the following conditions.
(Cathode electrolysis conditions)
Electrolyte solution: 0.05 mol / L ammonium molybdate aqueous solution, 50 ° C.
・ Current density: 0.01 A / dm 2
・ Energization amount: 0.5 C / dm 2
Under these conditions, the Mo oxide was coated with an Mo conversion adhesion amount of 0.05 g / m 2 . At this stage, most of the Mo component in the film was MoO 3 , a slight amount of MoO 2 was detected, and Mo was not detected (No. 17 in Table 1 described later).

次いで上記陰極電解後の鋼板を以下の条件で還元処理に供した(No.17を除く)。
(還元処理条件)
・雰囲気ガス;水素100%
・露点;−75〜50℃(表1に記載)
・温度;100〜1300℃(表1に記載)
・熱処理時間;在炉10秒
Subsequently, the steel plate after the cathodic electrolysis was subjected to a reduction treatment under the following conditions (excluding No. 17).
(Reduction treatment conditions)
・ Atmospheric gas: 100% hydrogen
Dew point: -75 to 50 ° C (described in Table 1)
Temperature: 100-1300 ° C. (described in Table 1)
・ Heat treatment time: 10 seconds in furnace

このようにして得られた各試料の表面皮膜について光電子分光分析装置(CRATOS社製;ESCA−3400)を用いてX線源MgKαにて分析し、Cr、Al、Si、Fe、Moの結合エネルギーに起因するXPSスペクトルを測定し、各スペクトルの積分面積に基づく上記5元素に占めるMoの含有率(原子%)を算出した。また、Mo3d5/2軌道のXPSスペクトルから、前述の方法にてMo、MoO2およびMoO3の結合エネルギーに起因するピーク強度hMo、hMoO2およびhMoO3を求め、A値=(hMo+hMoO2)/(hMo+hMoO2+hMoO3)を算出した。併せてhMo/hMoO3の値およびhMoO2/hMoO3の値も算出した。 The surface film of each sample thus obtained was analyzed with an X-ray source MgKα using a photoelectron spectroscopic analyzer (manufactured by CRATOS; ESCA-3400), and the binding energy of Cr, Al, Si, Fe, Mo The XPS spectrum resulting from was measured, and the Mo content (atomic%) in the five elements based on the integrated area of each spectrum was calculated. Further, from the XPS spectrum of the Mo3d5 / 2 orbit, the peak intensities hMo, hMoO 2 and hMoO 3 resulting from the binding energy of Mo, MoO 2 and MoO 3 are obtained by the above-described method, and A value = (hMo + hMoO 2 ) / ( hMo + hMoO 2 + hMoO 3 ) was calculated. In addition, the value of hMo / hMoO 3 and the value of hMoO 2 / hMoO 3 were also calculated.

また、上記試料の表面に、直径15mmの円形カーボンペーパーを面圧1MPaで接触させ、接触面での電流密度Iが1A/cm2となるように試料/カーボンペーパー間に直流電圧Eを印加し、電圧Eを四端子法にて測定して、接触抵抗R(mΩ・cm2)=E/Iを求めた。
これらの結果を表1に示す。
Further, a circular carbon paper having a diameter of 15 mm is brought into contact with the surface of the sample at a surface pressure of 1 MPa, and a DC voltage E is applied between the sample and the carbon paper so that the current density I at the contact surface is 1 A / cm 2. The voltage E was measured by the four probe method, and the contact resistance R (mΩ · cm 2 ) = E / I was determined.
These results are shown in Table 1.

Figure 2010209405
Figure 2010209405

表1からわかるように、本発明例のものはいずれも、皮膜中のCr、Fe、Al、Si,Moの5元素に占めるMo含有率が10原子%以上、かつ当該皮膜についてのA値が0.3以上であり、Mo成分のうち導電性のMoおよびMoO2の1種以上が多く含まれる皮膜が形成された。その結果、接触抵抗は安定して50mΩ・cm2以下の低い値を示した。 As can be seen from Table 1, in all of the examples of the present invention, the Mo content in the five elements of Cr, Fe, Al, Si, and Mo in the film is 10 atomic% or more, and the A value for the film is A film containing 0.3 or more and one or more of conductive Mo and MoO 2 among the Mo components was formed. As a result, the contact resistance stably showed a low value of 50 mΩ · cm 2 or less.

これに対し、比較例No.10は還元処理の温度が低すぎ、またNo.11は還元処理の露点が高すぎたので、いずれも未還元のMoO3が多く残留してA値が低くなり、接触抵抗はかなり高い値であった。No.12〜16は露点Dが0.105T−115より低いため皮膜中のAl含有率が高くなったものである。これらのうちNo.12では、皮膜中のMo含有率は10原子%以上であったものの結果的にA値が低くなって接触抵抗の低減効果が不十分であった。No.13〜16では、皮膜中のMo含有率が10原子%を下回り、接触抵抗はかなり高い値となった。No.17は陰極電解を行ったままの皮膜を有する試料であり、この段階で皮膜中のMo成分はほとんど全部がMoO3であることがわかる。 In contrast, Comparative Examples No.10 is too low temperature of the reduction treatment, and because No.11 dew point reduction treatment was too high, both the A value is lowered by the residual many MoO 3 unreduced The contact resistance was considerably high. In Nos. 12 to 16, since the dew point D is lower than 0.105T-115, the Al content in the film is high. Among these, in No. 12, although the Mo content in the film was 10 atomic% or more, the A value was lowered as a result, and the effect of reducing contact resistance was insufficient. In Nos. 13 to 16, the Mo content in the film was less than 10 atomic%, and the contact resistance was considerably high. No. 17 is a sample having a film as it is subjected to cathodic electrolysis, and it can be seen that almost all of the Mo component in the film is MoO 3 at this stage.

図3に、A値と接触抵抗の関係を示す。A値が0.3以上になると極めて安定して低い接触抵抗を呈するようになることがわかる。   FIG. 3 shows the relationship between the A value and the contact resistance. It can be seen that when the A value is 0.3 or more, the contact resistance becomes extremely stable and low.

Claims (6)

鋼素地表面の皮膜中にMoを含有するステンレス鋼材であって、その皮膜中においてX線光電子分光分析法(XPS)によるCr、Al、Si、Fe、Moの5元素に占めるMo含有率が10原子%以上であり、かつ、その皮膜中に存在するMo成分に占めるMoとMoO2の相対的な存在割合を表す指標である下記(1)式のA値が0.3以上である表面電気伝導性に優れたステンレス鋼材。
A値=(hMo+hMoO2)/(hMo+hMoO2+hMoO3) …(1)
ここで、hMo、hMoO2およびhMoO3は、当該皮膜についてのMo3d5/2軌道のXPSスペクトル(横軸に結合エネルギー、縦軸に光電子強度をとったもの)において、それぞれMo、MoO2およびMoO3の結合エネルギーに起因するピーク強度である。
A stainless steel material containing Mo in the coating on the surface of the steel substrate, and the Mo content in the five elements of Cr, Al, Si, Fe, and Mo by X-ray photoelectron spectroscopy (XPS) in the coating is 10 Surface electricity having an atomic value of not less than atomic% and an A value of the following formula (1) which is an index representing the relative abundance ratio of Mo and MoO 2 in the Mo component present in the film is 0.3 or more. Stainless steel material with excellent conductivity.
A value = (hMo + hMoO 2 ) / (hMo + hMoO 2 + hMoO 3 ) (1)
Here, hMo, hMoO 2, and hMoO 3 are Mo, MoO 2, and MoO 3 , respectively, in the XPS spectrum of the Mo3d5 / 2 orbit of the coating (the horizontal axis represents the binding energy and the vertical axis represents the photoelectron intensity). It is a peak intensity resulting from the binding energy.
ステンレス鋼材は、鋼素地の組成が、質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:10.5〜35%、Mo:0〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼種の組成である請求項1に記載の表面電気伝導性に優れたステンレス鋼材。   In the stainless steel material, the composition of the steel base is, by mass%, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.0. 03% or less, Ni: 0.6% or less, Cr: 10.5 to 35%, Mo: 0 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al The surface electric conduction according to claim 1, which is a composition of a ferritic stainless steel type consisting of: 0 to 0.2%, N: 0.025% or less, B: 0 to 0.01%, the balance Fe and unavoidable impurities. Stainless steel with excellent properties. ステンレス鋼材は、鋼素地の組成が、質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:15〜26%、Mo:0〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部がFeおよび不可避的不純物からなるオーステナイト系ステンレス鋼種の組成である請求項1に記載の表面電気伝導性に優れたステンレス鋼材。   The stainless steel material has a composition of steel body in mass%, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% Hereinafter, Ni: 6 to 28%, Cr: 15 to 26%, Mo: 0 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0% 2. The surface electrical conductivity according to claim 1, which is a composition of an austenitic stainless steel grade consisting of 0.1%, N: 0.3% or less, B: 0-0.01%, the balance being Fe and inevitable impurities. Excellent stainless steel material. 不動態皮膜を有するステンレス鋼材をモリブデン酸イオン含有水溶液中で陰極電解することにより、表面にMoO3含有皮膜を形成させる工程(陰極電解工程)、
前記MoO3含有皮膜を有するステンレス鋼材を還元性ガス雰囲気中で熱処理することにより、当該皮膜中のMoO3の一部を還元させ、MoおよびMoO2の1種以上を含有した皮膜とする工程(還元工程)、
を有する請求項1〜3のいずれかに記載の表面電気伝導性に優れたステンレス鋼材の製造方法。
Forming a MoO 3 containing film on the surface by cathodic electrolysis of a stainless steel material having a passive film in a molybdate-containing aqueous solution (cathodic electrolysis process);
A process of reducing a part of MoO 3 in the film by heat-treating the stainless steel material having the MoO 3 -containing film in a reducing gas atmosphere to form a film containing one or more of Mo and MoO 2 ( Reduction process),
The manufacturing method of the stainless steel material excellent in surface electrical conductivity in any one of Claims 1-3 which has these.
還元工程において、還元性ガスを、露点D(℃)と温度T(℃)が下記(2)式および(3)式を満たすものとする請求項4に記載のステンレス鋼材の製造方法。
0.105T−115≦D≦30 …(2)
250≦T≦1300 …(3)
5. The method for producing a stainless steel material according to claim 4, wherein in the reducing step, the reducing gas is such that a dew point D (° C.) and a temperature T (° C.) satisfy the following formulas (2) and (3).
0.105T-115 ≦ D ≦ 30 (2)
250 ≦ T ≦ 1300 (3)
還元性ガスが水素ガスである請求項5に記載のステンレス鋼材の製造方法。   The method for producing a stainless steel material according to claim 5, wherein the reducing gas is hydrogen gas.
JP2009056532A 2009-03-10 2009-03-10 Stainless steel having excellent surface electric conductivity, and method for manufacturing the same Withdrawn JP2010209405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056532A JP2010209405A (en) 2009-03-10 2009-03-10 Stainless steel having excellent surface electric conductivity, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056532A JP2010209405A (en) 2009-03-10 2009-03-10 Stainless steel having excellent surface electric conductivity, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010209405A true JP2010209405A (en) 2010-09-24

Family

ID=42969874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056532A Withdrawn JP2010209405A (en) 2009-03-10 2009-03-10 Stainless steel having excellent surface electric conductivity, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010209405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118751A1 (en) * 2016-01-07 2017-07-13 Hille & Müller GMBH Method for producing a corrosion resistant metal substrate and corrosion resistant metal substrate provided thereby
WO2019011932A1 (en) * 2017-07-12 2019-01-17 Hille & Müller GMBH Low interfacial contact resistance material, use thereof and method of producing said material
JP2020066794A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118751A1 (en) * 2016-01-07 2017-07-13 Hille & Müller GMBH Method for producing a corrosion resistant metal substrate and corrosion resistant metal substrate provided thereby
US9951674B2 (en) 2016-01-07 2018-04-24 Hille & Müller GMBH Method for producing a corrosion resistant steel and corrosion resistant steel provided thereby
CN108699719A (en) * 2016-01-07 2018-10-23 希勒及穆勒有限公司 Method for manufacturing corrosion resistant metal base material and the corrosion resistant metal base material thus provided
US10337388B2 (en) 2016-01-07 2019-07-02 Hille & Müller GMBH Corrosion resistant metal substrate
CN108699719B (en) * 2016-01-07 2020-05-12 希勒及穆勒有限公司 Method for manufacturing a corrosion-resistant metal substrate and corrosion-resistant metal substrate provided thereby
WO2019011932A1 (en) * 2017-07-12 2019-01-17 Hille & Müller GMBH Low interfacial contact resistance material, use thereof and method of producing said material
US11732324B2 (en) 2017-07-12 2023-08-22 Hille & Müller GMBH Low interfacial contact resistance material, use thereof and method of producing said material
JP2020066794A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member
JP7224141B2 (en) 2018-10-26 2023-02-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member

Similar Documents

Publication Publication Date Title
JP5591302B2 (en) Stainless steel separator for fuel cell and manufacturing method thereof
Lu et al. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium
EP2168189B1 (en) Stainless steel separator for fuel cell having m/mnx and moynz layer and method for manufacturing the same
JP5831670B1 (en) Titanium material or titanium alloy material having surface conductivity, manufacturing method thereof, and fuel cell separator and fuel cell using the same
JP2018170291A (en) Separator material for fuel cell and method for producing the same
TWI472088B (en) Stainless steel for fuel cell with excellent corrosion resistance and a method for manufacturing the same
JP6726735B2 (en) Stainless steel for fuel cell separator and method of manufacturing the same
JP5790906B1 (en) Titanium material or titanium alloy material having surface conductivity, fuel cell separator and fuel cell using the same
JP6521203B1 (en) Method of manufacturing stainless steel plate for fuel cell separator
JPWO2018198685A1 (en) Stainless steel plate for fuel cell separator and method of manufacturing the same
Li et al. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell
JP6763501B1 (en) Austenitic stainless steel sheet for fuel cell separator and its manufacturing method
WO2018225861A1 (en) Multilayer structure and method for producing multilayer structure
JP2008285731A (en) Stainless steel sheet having excellent surface electrical conductivity, and method for producing the same
CN110249462B (en) Base stainless steel sheet of steel sheet for separator of fuel cell and method for producing same
JP2008176988A (en) Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
TW200810198A (en) Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
JP2007027032A (en) Stainless steel separator for solid polymer type fuel cell, and fuel cell
JP2010209405A (en) Stainless steel having excellent surface electric conductivity, and method for manufacturing the same
JP7226648B2 (en) Stainless steel plates for fuel cell separators
JP5229563B2 (en) Corrosion-resistant conductive film, corrosion-resistant conductive material, polymer electrolyte fuel cell and separator thereof, and method for producing corrosion-resistant conductive material
KR100635300B1 (en) Method of preparing crystalline molybdenium-cobalt alloy thin film using electrodeposition
KR102068479B1 (en) Manufacturing method of ferritic stainless steel for proton exchange membrane fuel cell separator with excellent surface contact resistance
JP7281929B2 (en) Stainless steel sheet and method for manufacturing stainless steel sheet
KR100867819B1 (en) Surface layer of metal bipolar plate for fuel cell and method for creating the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605