JP2010209372A - Method for producing clean steel having excellent sulfide corrosion crack resistance - Google Patents

Method for producing clean steel having excellent sulfide corrosion crack resistance Download PDF

Info

Publication number
JP2010209372A
JP2010209372A JP2009054333A JP2009054333A JP2010209372A JP 2010209372 A JP2010209372 A JP 2010209372A JP 2009054333 A JP2009054333 A JP 2009054333A JP 2009054333 A JP2009054333 A JP 2009054333A JP 2010209372 A JP2010209372 A JP 2010209372A
Authority
JP
Japan
Prior art keywords
molten steel
steel
added
ladle
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009054333A
Other languages
Japanese (ja)
Other versions
JP5458607B2 (en
Inventor
Yoshie Nakai
由枝 中井
Seiji Nabeshima
誠司 鍋島
Takeshi Suzuki
健史 鈴木
Toru Matsuba
透 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009054333A priority Critical patent/JP5458607B2/en
Publication of JP2010209372A publication Critical patent/JP2010209372A/en
Application granted granted Critical
Publication of JP5458607B2 publication Critical patent/JP5458607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a clean steel having a low content of CaO-Al<SB>2</SB>O<SB>3</SB>-based inclusions and having excellent sulfide corrosion crack resistance by Ca addition in two stages with high productivity and with high efficiency. <P>SOLUTION: The method for producing a clean steel having excellent sulfide corrosion crack resistance is characterized in that Al is added to a molten steel upon tapping from a converter to a ladle or after tapping so as to deoxidize the molten steel, first, flux containing CaO is added to the molten steel in the ladle, desulfurization treatment is performed, further, a Ca-containing metal is added upon the desulfurization treatment, next, the molten metal in the ladle is subjected to vacuum degassing treatment, and further, a Ca-containing metal is added to the molten metal in the ladle after the vacuum degassing treatment, and subsequently, the molten steel is cast. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、湿潤硫化水素腐食環境下で使用される耐硫化物腐食割れ性に優れた清浄鋼の製造方法に関するものである。   The present invention relates to a method for producing a clean steel having excellent resistance to sulfide corrosion cracking used in a wet hydrogen sulfide corrosion environment.

一般に、湿潤硫化水素腐食環境下で使用される鋼材には、耐HIC(水素誘起割れ)性能及び耐SSC(硫化物応力腐食割れ)性能、つまり、優れた耐硫化物腐食割れ性が要求されている。鋼中に含有される硫黄(S)は、凝固過程でMnSを生成し、しかも、凝固時の硫黄の偏析により、MnSの濃化した部位が鋳片に形成される。このMnSは圧延時に圧延方向に長く伸び、水素の集積を促進させ、耐HIC性能を低下させる。そこで、この水素誘起割れの発生を抑制する手段として、鋼成分の極低硫化とともに、カルシウム(Ca)添加による硫化物の形態制御が一般的に行われている。ここで、硫化物の形態制御とは、Caを添加することによって硫化物の形態をMnSからCaSに改質することを差す。   In general, steel materials used in a wet hydrogen sulfide corrosion environment are required to have HIC (hydrogen induced cracking) resistance and SSC (sulfide stress corrosion cracking) resistance, that is, excellent sulfide corrosion cracking resistance. Yes. Sulfur (S) contained in the steel generates MnS during the solidification process, and a portion where MnS is concentrated is formed in the slab due to segregation of sulfur during solidification. This MnS extends long in the rolling direction during rolling, promotes hydrogen accumulation, and lowers the HIC resistance. Therefore, as a means for suppressing the occurrence of hydrogen-induced cracking, the form control of sulfides by adding calcium (Ca) is generally performed along with extremely low sulfurization of steel components. Here, the form control of sulfide refers to modifying the form of sulfide from MnS to CaS by adding Ca.

ところで、Caは溶鋼温度域での蒸気圧が高く、溶鋼中への溶解度が低い。そのため、鋳造時の溶鋼中に所定量のCaを残留させるために、Caの添加は、取鍋精錬処理の最終段階或いは連続鋳造設備のタンディッシュ内で行われることが一般的であった。   By the way, Ca has a high vapor pressure in the molten steel temperature range and a low solubility in molten steel. Therefore, in order to leave a predetermined amount of Ca in the molten steel at the time of casting, the addition of Ca is generally performed in the final stage of the ladle refining process or in the tundish of the continuous casting equipment.

しかし、Caは硫黄のみならず酸素との親和力も強く、溶鋼中に添加されたCaは最初に酸素と反応し、CaO系酸化物としてCaO−Al23の脱酸生成物を形成する。つまり、CaはAlで脱酸された溶鋼に添加されても、脱酸生成物であるAl23をCaO−Al23系介在物に改質する。その後、硫黄と反応してCaSを生成し、添加したCaの一部が溶鋼中に溶解した形態で残留する。 However, Ca has a strong affinity not only for sulfur but also for oxygen, and Ca added to molten steel first reacts with oxygen to form a deoxidation product of CaO—Al 2 O 3 as a CaO-based oxide. That is, even if Ca is added to molten steel deoxidized with Al, it modifies Al 2 O 3 that is a deoxidation product into CaO—Al 2 O 3 inclusions. Then, it reacts with sulfur to produce CaS, and a part of the added Ca remains in a dissolved form in the molten steel.

従って、Caの添加歩留まり(残留したCaと添加したCaとの比)は、溶鋼中の酸素濃度や硫黄濃度に左右され、Caの添加量が同一であっても、溶鋼中に溶解して存在するCaの濃度は変化し、前述した従来の添加方法では、溶鋼中の酸素量及び硫黄量によってCa歩留まりが左右され、耐HIC性能の劣化を招くことがあった。   Therefore, the Ca addition yield (ratio of remaining Ca to added Ca) depends on the oxygen concentration and sulfur concentration in the molten steel, and is dissolved in the molten steel even if the amount of Ca is the same. The concentration of Ca to be changed varies, and in the conventional addition method described above, the Ca yield is affected by the amount of oxygen and sulfur in the molten steel, which may lead to deterioration of the HIC resistance.

また、溶鋼中のCaO−Al23系介在物は、Ca添加後の放置時間が長いほど、溶鋼中から浮上・分離しやすくなる。しかし、上述のように、Caの特性上から、精錬工程の最終段階或いは連続鋳造設備のタンディッシュ内でのCa添加を余儀なくされ、十分な浮上・分離の時間を確保できず、Al23をCaO−Al23系介在物に形態制御しても、溶鋼からの除去が進まず、溶鋼中に残留していた。尚、Al23はクラスター状となり、溶鋼からの浮上・分離性が悪いが、CaO−Al23系介在物は、低融点であり、一般的にはクラスターを形成せず、Al23に比較して浮上・分離性が良く、Al23をCaO−Al23系介在物に形態制御することは、溶鋼の清浄度向上に寄与する。 Moreover, the CaO—Al 2 O 3 inclusions in the molten steel are more likely to float and separate from the molten steel as the standing time after Ca addition is longer. However, as described above, due to the characteristics of Ca, it is necessary to add Ca in the final stage of the refining process or in the tundish of the continuous casting equipment, and sufficient flotation and separation time cannot be secured, and Al 2 O 3 Even when the shape was controlled to CaO—Al 2 O 3 inclusions, the removal from the molten steel did not proceed, and it remained in the molten steel. Incidentally, Al 2 O 3 becomes clustered, but poor floating-isolation from the molten steel, CaO-Al 2 O 3 inclusions are low melting point, generally do not form clusters, Al 2 O 3 in good floating and separation resistance than the Al 2 O 3 to form control in CaO-Al 2 O 3 inclusions, which contribute to the cleanliness improvement of the molten steel.

生成したCaO−Al23系介在物の浮上・分離を促進させるために、酸化物系介在物の形態制御のためのCa添加と、硫化物の形態制御のためのCa添加とを、2段階に分けて添加する方法が多数提案されている。 In order to promote the flotation and separation of the generated CaO—Al 2 O 3 inclusions, the addition of Ca for controlling the form of oxide inclusions and the addition of Ca for controlling the form of sulfides Many methods of adding in stages have been proposed.

例えば、特許文献1には、転炉から取鍋へ出鋼された溶鋼をAlで脱酸し、成分を調整した溶鋼にCa−Si合金を添加してCaO−Al23系介在物を生成させ、次いで、RH真空脱ガス装置にて精錬してCaO−Al23系介在物を除去し、脱ガス精錬終了後に、取鍋内にCa−Si合金を添加して硫化物の形態制御を行うことを特徴とする、清浄鋼の製造方法が提案されている。 For example, in Patent Document 1, the molten steel discharged from the converter to the ladle is deoxidized with Al, and a Ca—Si alloy is added to the molten steel whose components are adjusted to add a CaO—Al 2 O 3 inclusion. And then refining with an RH vacuum degassing device to remove CaO-Al 2 O 3 inclusions, and after degassing refining, a Ca-Si alloy is added to the ladle to form a sulfide. There has been proposed a method for producing clean steel characterized by performing control.

特許文献2には、転炉出鋼時若しくは出鋼後にAlなどの還元剤を所定量添加してキルド化した取鍋内溶鋼に、Ca含有合金を添加し、且つ、このCa含有合金の添加の前または後に、該溶鋼を所定温度まで昇温しCaOを含有するフラックスを用いた脱硫処理を施し、次いで、真空脱ガス処理を施し、続いて該溶鋼をタンディッシュを経て連続鋳造する工程でのタンディッシュ内の溶鋼に、連続的若しくは間欠的にCa合金を添加することを特徴とする、Ca添加鋼の製造方法が提案されている。   In Patent Document 2, a Ca-containing alloy is added to molten steel in a ladle that has been killed by adding a predetermined amount of a reducing agent such as Al at the time of or after the steel from the converter, and the addition of this Ca-containing alloy. Before or after the step, the molten steel is heated to a predetermined temperature and subjected to a desulfurization treatment using a flux containing CaO, followed by a vacuum degassing treatment, followed by continuous casting of the molten steel through a tundish. A method for producing Ca-added steel has been proposed, in which a Ca alloy is added continuously or intermittently to molten steel in the tundish.

また、特許文献3には、真空脱ガス設備において、真空槽を減圧するとともに取鍋底部に配置したインジェクションランスから、脱硫剤としてのCaO−CaF2フラックスと、Ca合金としてのCa−Siとの事前混合品を溶鋼中に吹き込んで脱硫処理及び脱水素処理を行い、その後、真空槽を大気圧に戻してから、前記ランスを介して溶鋼中にCa合金またはCa化合物を吹き込むことを特徴とする精錬方法が提案されている。 Patent Document 3 discloses that in a vacuum degassing facility, a vacuum tank is decompressed and an injection lance disposed at the bottom of a ladle is used to make CaO—CaF 2 flux as a desulfurizing agent and Ca—Si as a Ca alloy. The premixed product is blown into molten steel to perform desulfurization treatment and dehydrogenation treatment, and then the vacuum tank is returned to atmospheric pressure, and then Ca alloy or Ca compound is blown into the molten steel through the lance. A refining method has been proposed.

特開昭61−179811号公報Japanese Patent Laid-Open No. 61-179811 特開平8−3620号公報JP-A-8-3620 特開平5−287356号公報JP-A-5-287356

特許文献1〜3などに開示されるCaの2段添加により、Caの1段添加の場合に比較して溶鋼の清浄性は大幅に向上し、耐硫化物腐食割れ性に優れる鋼材の製造が格段に安定化した。しかしながら、上記従来技術には以下の問題点がある。   With the two-stage addition of Ca disclosed in Patent Documents 1 to 3 and the like, the cleanliness of the molten steel is greatly improved compared to the case of the first-stage addition of Ca, and the production of a steel material excellent in resistance to sulfide corrosion cracking can be achieved. Remarkably stabilized. However, the above prior art has the following problems.

即ち、特許文献1及び特許文献2では、転炉出鋼後の溶鋼に先ず脱硫処理を施し、その後、1段目のCa添加を実施するという点である。つまり、真空脱ガス設備における脱ガス精錬までに脱硫処理とCa添加との2回の処理が必要であり、生産性が低いのみならず、処理時間が長くなり溶鋼温度の降下量が大きくなるという問題点がある。特許文献2では、1段目のCa添加の後に脱硫処理を施すことも提案するが、この場合には、溶鋼の硫黄濃度が高い状態でCaを添加することになり、Caは脱硫剤としても機能するので、Caの歩留まりが低下するという問題点も招く。   That is, in Patent Document 1 and Patent Document 2, the molten steel after the converter steel is first subjected to desulfurization treatment, and then the first-stage Ca addition is performed. In other words, two processes of desulfurization and Ca addition are required before degassing and refining in the vacuum degassing equipment, and not only the productivity is low, but the processing time is prolonged and the amount of decrease in molten steel temperature is increased. There is a problem. In Patent Document 2, it is also proposed to perform a desulfurization treatment after the first stage of Ca addition, but in this case, Ca is added in a state where the sulfur concentration of the molten steel is high, and Ca is also used as a desulfurization agent. Since it functions, the problem that the yield of Ca falls will also be caused.

また、特許文献2では、連続鋳造設備のタンディッシュで2段目のCa添加を実施しており、タンディッシュ内の溶鋼は連続的に入れ替わっており、溶鋼中のCa含有量が鋳造方向で変動するという問題点がある。また、タンディッシュ内での添加は添加深さが確保できないために、Ca歩留りが悪く、またばらつきもも大きい。   Further, in Patent Document 2, the second stage of Ca addition is performed in the tundish of the continuous casting equipment, the molten steel in the tundish is continuously replaced, and the Ca content in the molten steel varies in the casting direction. There is a problem of doing. Moreover, since the addition depth in the tundish cannot secure the addition depth, the Ca yield is poor and the variation is large.

特許文献3では、真空脱ガス設備で1段目のCa添加及び脱硫処理を行っており、生産性は優れるが、1段目のCa添加により生成されるCaO−Al23系介在物の浮上・分離の時間が短く、溶鋼中にCaO−Al23系介在物が残留するという問題点がある。 In Patent Document 3, the first stage of Ca addition and desulfurization treatment is performed in a vacuum degassing facility, and although the productivity is excellent, the CaO—Al 2 O 3 inclusions generated by the first stage of Ca addition There is a problem that the floating and separation times are short, and CaO—Al 2 O 3 inclusions remain in the molten steel.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、高い生産性で効率良く、しかも、CaO−Al23系介在物の含有量が少なく、耐硫化物腐食割れ性に優れた清浄鋼を、2段階のCa添加によって製造する方法を提供することである。 The present invention has been made in view of the above circumstances, and its object is to achieve high productivity and efficiency, and a low content of CaO-Al 2 O 3 inclusions, and resistance to sulfide corrosion cracking. It is to provide a method for producing a clean steel excellent in quality by adding Ca in two stages.

本発明者らは、上記課題を解決するべく、試験・検討を行った。   The present inventors have conducted tests and studies to solve the above-described problems.

その結果、転炉からの出鋼後に取鍋内の溶鋼に対して行う脱硫処理において、1段目のCa添加を脱硫処理と同時に実施することで、工程が短縮されることによって生産性が向上するのみならず、脱硫処理後の溶鋼中硫黄濃度が従来に比較して低下するとの知見が得られた。これは、Caは酸素との親和力が極めて強く、Caを添加することにより、脱硫処理時の溶鋼の酸素ポテンシャルが低下し、還元反応である脱硫反応が促進されるためと考えられる。このCa添加を伴う脱硫処理後に、真空脱ガス処理、真空脱ガス処理後に更に2段目のCa添加を実施することで、硫黄濃度が極めて低く、且つ、酸化物系介在物及び硫化物系介在物が極めて少ない、耐硫化物腐食割れ性に優れた清浄鋼を高い生産性で製造できるとの知見を得た。   As a result, in the desulfurization process performed on the molten steel in the ladle after the steel from the converter, the first stage of Ca addition is performed simultaneously with the desulfurization process, thereby improving the productivity by shortening the process. In addition, the knowledge that the sulfur concentration in the molten steel after the desulfurization treatment is lower than the conventional one was obtained. This is presumably because Ca has an extremely strong affinity for oxygen, and the addition of Ca lowers the oxygen potential of the molten steel during the desulfurization treatment and promotes the desulfurization reaction, which is a reduction reaction. After this desulfurization treatment with Ca addition, vacuum degassing treatment, and further adding the second stage of Ca after vacuum degassing treatment, the sulfur concentration is extremely low, and oxide inclusions and sulfide inclusions We have learned that it is possible to produce clean steel with extremely few products and excellent resistance to sulfide corrosion cracking with high productivity.

本発明は、上記知見に基づいてなされたものであり、第1の発明に係る耐硫化物腐食割れ性に優れた清浄鋼の製造方法は、転炉から取鍋への出鋼時または出鋼後に溶鋼にAlを添加して溶鋼を脱酸し、先ず、この取鍋内の溶鋼にCaOを含有するフラックスを添加して脱硫処理を施すとともに、この脱硫処理時にCa含有金属を添加し、次いで、取鍋内の溶鋼に真空脱ガス処理を施し、更に、真空脱ガス処理後の取鍋内の溶鋼にCa含有金属を添加し、その後、該溶鋼を鋳造することを特徴とするものである。   The present invention has been made on the basis of the above knowledge, and the method for producing clean steel excellent in resistance to sulfide corrosion cracking according to the first invention can be obtained at the time of steel output from a converter to a ladle or steel output. Later, Al is added to the molten steel to deoxidize the molten steel. First, a flux containing CaO is added to the molten steel in the ladle to perform a desulfurization treatment, and a Ca-containing metal is added at the time of the desulfurization treatment. The molten steel in the ladle is subjected to vacuum degassing treatment, and further, a Ca-containing metal is added to the molten steel in the ladle after the vacuum degassing treatment, and then the molten steel is cast. .

第2の発明に係る耐硫化物腐食割れ性に優れた清浄鋼の製造方法は、第1の発明において、前記脱硫処理時におけるCa含有金属のCa純分の添加量を、Caの添加歩留まりを100%としたときに溶鋼中のCa濃度が下記の(1)式の範囲内となるように、溶鋼中のAl濃度及びトータル酸素濃度に応じて調整することを特徴とするものである。
[%Ca]≧0.01×[%Al]2/3+0.9×[%T.O]…(1)
但し(1)式において、[%Ca]は溶鋼中のCa濃度(質量%)、[%Al]は溶鋼中のAl濃度(質量%)、[%T.O]は溶鋼中のトータル酸素濃度(質量%)である。
The method for producing clean steel excellent in resistance to sulfide corrosion cracking according to the second invention is the first invention, wherein the amount of pure Ca contained in the Ca-containing metal at the time of the desulfurization treatment is determined by the addition yield of Ca. It is characterized by adjusting according to the Al concentration and the total oxygen concentration in the molten steel so that the Ca concentration in the molten steel falls within the range of the following formula (1) when it is 100%.
[% Ca] ≧ 0.01 × [% Al] 2/3 + 0.9 × [% T. O] ... (1)
However, in the formula (1), [% Ca] is the Ca concentration (mass%) in the molten steel, [% Al] is the Al concentration (mass%) in the molten steel, and [% T.I. O] is the total oxygen concentration (mass%) in the molten steel.

本発明によれば、1段目のCa添加を脱硫処理と同時に実施するので、製造工程が短縮されることによって生産性が向上するのみならず、脱硫処理後の溶鋼中硫黄濃度が従来に比較して低下し、その結果、硫黄濃度が極めて低く、且つ、酸化物系介在物及び硫化物系介在物が極めて少ない、耐硫化物腐食割れ性に優れた清浄鋼を高い生産性で製造することが実現される。   According to the present invention, since the first stage of Ca addition is performed simultaneously with the desulfurization treatment, not only the productivity is improved by shortening the manufacturing process, but also the sulfur concentration in the molten steel after the desulfurization treatment is compared with the conventional one. As a result, it is possible to produce a clean steel with a high productivity, which has a very low sulfur concentration and a very small amount of oxide inclusions and sulfide inclusions and is excellent in resistance to sulfide corrosion cracking. Is realized.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る耐硫化物腐食割れ性に優れた清浄鋼の製造方法は、転炉から取鍋への出鋼時または出鋼後に溶鋼にAlを添加して溶鋼を脱酸し、先ず、この取鍋内の溶鋼にCaOを含有するフラックスを添加して脱硫処理を施すとともに、この脱硫処理時にCa含有金属を添加し、次いで、取鍋内の溶鋼に真空脱ガス処理を施し、更に、真空脱ガス処理後の取鍋内の溶鋼にCa含有金属を添加し、その後、該溶鋼を鋳造することを特徴とする。   The method for producing a clean steel excellent in resistance to sulfide corrosion cracking according to the present invention is to deoxidize the molten steel by adding Al to the molten steel at the time of or after the steel from the converter to the ladle. A flux containing CaO is added to the molten steel in the ladle and subjected to desulfurization treatment. At the time of this desulfurization treatment, a Ca-containing metal is added, and then the molten steel in the ladle is subjected to vacuum degassing treatment, and further, vacuum A Ca-containing metal is added to the molten steel in the ladle after the degassing treatment, and then the molten steel is cast.

耐HIC鋼に必要な特性としては、(a)硫黄含有量が低いこと、(b)酸化物系介在物が少ないこと、及び、(c)CaSが残留しないことが重要である。これらを全て兼ね備えるためには、(1)高効率な溶鋼の脱硫処理により極低硫化すること、(2)酸化物系介在物の組成を浮上・分離しやすい形態に制御して浮上・分離を促進すること、(3)最適なCa添加量によりMnSの生成を防止するとともに、Caの硫化物と酸化物との化合物(「オキシ−サルファイド系介在物」と称す)の生成を抑制することが重要である。   As characteristics required for the HIC-resistant steel, it is important that (a) the sulfur content is low, (b) there are few oxide inclusions, and (c) no CaS remains. In order to combine all of these, (1) ultra-low sulfidation by high-efficiency molten steel desulfurization, (2) control the composition of oxide inclusions to a form that is easy to float and separate, so (3) Preventing the formation of MnS by the optimum amount of Ca addition and suppressing the formation of a compound of Ca sulfide and oxide (referred to as “oxy-sulfide inclusions”). is important.

これらを満足するために、本発明においては、溶鋼に脱硫処理を施して極低硫化を図るとともに、Ca添加を、1段目の酸化物系介在物の形態制御のための添加と、2段目の硫化物形態制御のための添加との2段に分けて添加し、且つ、1段目のCa添加の後に真空脱ガス精錬による強攪拌を溶鋼に施し、酸化物系介在物の浮上・分離を促進させる。また、2段目のCa添加は、溶鋼中のCa濃度を均一化させるためには、取鍋内溶鋼に添加する必要があり、また、凝固過程において溶鋼中にCaを残留させるためには、2段目のCa添加は鋳造開始時期に近い段階が望ましく、従って、2段目のCa添加は真空脱ガス精錬終了後の取鍋内で行うこととした。尚、真空脱ガス精錬中つまり減圧下の溶鋼にCaを添加しても、Caは蒸気圧が高く、溶鋼中に留まるCaは少量であり、効率的ではない。   In order to satisfy these requirements, in the present invention, the molten steel is subjected to desulfurization treatment to achieve extremely low sulfidation, and Ca addition is added for the purpose of controlling the form of oxide inclusions in the first stage and in two stages. Addition in two stages of addition for the sulfide form control of the eyes, and after the addition of Ca in the first stage, the molten steel is subjected to strong agitation by vacuum degassing refining to raise the oxide inclusions Promote separation. In addition, in order to make the Ca concentration in the molten steel uniform, the second stage Ca addition needs to be added to the molten steel in the ladle, and in order to leave Ca in the molten steel in the solidification process, The second stage of Ca addition is preferably at a stage close to the casting start time. Therefore, the second stage of Ca addition is performed in a ladle after completion of vacuum degassing refining. Even if Ca is added to the molten steel during vacuum degassing, that is, under reduced pressure, Ca has a high vapor pressure, and a small amount of Ca remains in the molten steel, which is not efficient.

溶鋼の脱硫処理は還元反応であるので、溶鋼の酸素ポテンシャルは低いほど望ましく、従って、本発明においては、転炉から取鍋への出鋼時または出鋼直後、溶鋼に金属Alを添加して予め溶鋼を脱酸する。この脱酸処理により形成される脱酸生成物はAl23(アルミナ)であり、溶鋼からの浮上・分離性は良くない。本発明ではこのAl23の浮上・分離を促進させるために、出鋼時または出鋼直後にAlで脱酸し、1段目のCa添加までの時間、つまりAl23の浮上・分離のための時間をできるだけ長く確保する。 Since the desulfurization treatment of the molten steel is a reduction reaction, it is desirable that the oxygen potential of the molten steel be as low as possible. Therefore, in the present invention, metal Al is added to the molten steel at the time of steel extraction from the converter to the ladle or immediately after the steel output. Deoxidize the molten steel in advance. The deoxidation product formed by this deoxidation treatment is Al 2 O 3 (alumina), and the floating and separation properties from the molten steel are not good. In the present invention, in order to promote the floating and separation of the Al 2 O 3, deoxidation by Al immediately after tapping or during tapping, time to Ca added in the first stage, ie floating of Al 2 O 3 · Ensure as long as possible the time for separation.

本発明における溶鋼の脱硫処理は、CaO系の安価な脱硫剤であっても極低硫鋼が得られることから、CaOを含有するフラックスを脱硫剤として添加し、この脱硫剤と溶鋼とをインジェクションランスなどから吹き込む希ガスにより強攪拌して脱硫処理する。脱硫剤としてのCaOを含有するフラックスとしては、生石灰(CaO)単独、或いは、生石灰と、CaOの滓化促進剤であるAl23またはSiO2との混合物などを用いることができる。 Since the desulfurization treatment of the molten steel in the present invention can produce an extremely low sulfur steel even with a CaO-based inexpensive desulfurization agent, a flux containing CaO is added as a desulfurization agent, and the desulfurization agent and the molten steel are injected. Desulfurization is performed by vigorous stirring with a rare gas blown from a lance. As the flux containing CaO as a desulfurizing agent, quick lime (CaO) alone or a mixture of quick lime and Al 2 O 3 or SiO 2 which is a CaO hatching accelerator can be used.

溶鋼を効率的に脱硫するには、(1)溶鋼と脱硫剤との攪拌力を強めること、及び、(2)溶鋼の酸素ポテンシャルを低下させることが効果的である。本発明においては、脱硫処理時にCaを添加するので、上記の両者を同時に満足させることができる。   In order to efficiently desulfurize molten steel, it is effective to (1) increase the stirring force between the molten steel and the desulfurizing agent and (2) reduce the oxygen potential of the molten steel. In the present invention, since Ca is added during the desulfurization treatment, both of the above can be satisfied at the same time.

即ち、本発明においては、溶鋼の脱硫処理はインジェクションランス或いは取鍋底部のポーラス煉瓦などからの攪拌用ガス(Arガスなどの希ガス)の吹き込みによって脱硫剤と溶鋼とを強攪拌して行うが、インジェクションランスからの攪拌用ガスを搬送用ガスとして攪拌用ガスの吹き込みとともにCa合金の粉末を吹き込むか、或いは、その内部にCa合金を充填した鉄被覆ワイヤーを溶鋼中に添加することで、添加されるCaが溶鋼中の酸素と反応して溶鋼が脱酸され、溶鋼の酸素ポテンシャルが低下すると同時、吹き込まれるCaの一部は蒸気となり、これによって溶鋼の攪拌力が強化される。この2つの現象により、溶鋼の脱硫反応が促進される。また、Ca添加により生成するCaOは、溶鋼中のAl23と反応して、低融点のCaO−Al23系介在物を形成する。 That is, in the present invention, the desulfurization treatment of the molten steel is performed by strongly stirring the desulfurizing agent and the molten steel by blowing a stirring gas (rare gas such as Ar gas) from an injection lance or a porous brick at the bottom of the ladle. , By adding the stirring gas from the injection lance as the carrier gas and blowing in the Ca alloy powder, or by adding an iron-coated wire filled with the Ca alloy into the molten steel When the molten Ca reacts with oxygen in the molten steel to deoxidize the molten steel and the oxygen potential of the molten steel decreases, a portion of the Ca that is blown becomes steam, thereby strengthening the stirring power of the molten steel. By these two phenomena, the desulfurization reaction of molten steel is accelerated. Further, CaO produced by addition of Ca reacts with Al 2 O 3 in the molten steel to form a CaO-Al 2 O 3 inclusions having a low melting point.

このCa添加を伴う溶鋼の脱硫処理後、取鍋に収容された溶鋼をRH真空脱ガス装置などの真空脱ガス設備に搬送し、真空脱ガス設備で溶鋼に真空脱ガス精錬を施す。この真空脱ガス精錬による溶鋼の強攪拌によって、CaO−Al23系介在物の浮上分離が促進される。 After the desulfurization treatment of the molten steel accompanied by the addition of Ca, the molten steel accommodated in the ladle is transported to a vacuum degassing facility such as an RH vacuum degassing apparatus, and the molten steel is subjected to vacuum degassing refining in the vacuum degassing facility. Due to the strong stirring of the molten steel by this vacuum degassing refining, the floating separation of CaO—Al 2 O 3 inclusions is promoted.

つまり、このようにして溶鋼を処理することで、上記の耐HIC鋼に必要な特性のうちの(a)の「硫黄含有量が低いこと」、及び(b)の「酸化物系介在物の個数が少ないこと」の両者を満足することができる。尚、溶鋼に真空脱ガス精錬を施すことで、溶鋼中に溶解していたCaの大部分は気化・蒸発してしまい、そのままでは硫化物の形態制御は期待できない。   That is, by treating the molten steel in this manner, among the characteristics required for the above-mentioned HIC steel, (a) “low sulfur content” and (b) “of oxide inclusions” Both “small number” can be satisfied. In addition, by performing vacuum degassing to the molten steel, most of Ca dissolved in the molten steel is vaporized and evaporated, and as it is, control of the form of sulfide cannot be expected.

ここで、1段目のCa添加は、溶鋼中のAl23をCaO−Al23系介在物に形態制御することを目的としており、従って、溶鋼中に懸濁しているAl23の量に応じてCaの添加量を決定することが好ましい。但し、溶鋼中に懸濁しているAl23の量をリアルタイムで測定することは困難である。本発明者らは、溶鋼中に懸濁しているAl23の量をリアルタイムで推定することのできる要素を検討した結果、溶鋼中に懸濁しているAl23の量はトータル酸素濃度と強い相関があることを確認した。尚、トータル酸素濃度とは、溶鋼中に溶解している酸素と、酸化物として溶鋼中に存在する酸素との合計の酸素濃度である。 Here, the first stage of Ca addition aims at controlling the form of Al 2 O 3 in the molten steel into CaO—Al 2 O 3 inclusions, and therefore, Al 2 O suspended in the molten steel. It is preferable to determine the addition amount of Ca according to the amount of 3 . However, it is difficult to measure the amount of Al 2 O 3 suspended in the molten steel in real time. The present inventors have made study elements which can estimate the amount of Al 2 O 3 suspended in the molten steel in real time, the amount total oxygen concentration of Al 2 O 3 in suspension in the molten steel It was confirmed that there is a strong correlation. The total oxygen concentration is the total oxygen concentration of oxygen dissolved in the molten steel and oxygen present in the molten steel as an oxide.

即ち、溶鋼中のトータル酸素濃度からCaの添加量を設定できることが分かった。また、溶鋼中に溶存するCaの量は、溶鋼中のAlとの平衡によって定まる。これらから、1段目のCa添加量は、化学量論的な検討及び実際の反応効率を詳細に検討した結果、Caの添加歩留まりを100%としたときに溶鋼中のCa濃度が下記の(1)式の範囲内となるように、溶鋼中のAl濃度及びトータル酸素濃度に応じて調整することが好ましいことが確認できた。
[%Ca]≧0.01×[%Al]2/3+0.9×[%T.O]…(1)
但し(1)式において、[%Ca]は溶鋼中のCa濃度(質量%)、[%Al]は溶鋼中のAl濃度(質量%)、[%T.O]は溶鋼中のトータル酸素濃度(質量%)である。
That is, it was found that the amount of Ca added can be set from the total oxygen concentration in the molten steel. The amount of Ca dissolved in the molten steel is determined by the equilibrium with Al in the molten steel. From these results, the Ca addition amount in the first stage was determined based on the stoichiometric and actual reaction efficiency. As a result, when the Ca addition yield was 100%, the Ca concentration in the molten steel was as follows ( It has been confirmed that it is preferable to adjust according to the Al concentration and the total oxygen concentration in the molten steel so as to be within the range of the formula 1).
[% Ca] ≧ 0.01 × [% Al] 2/3 + 0.9 × [% T. O] ... (1)
However, in the formula (1), [% Ca] is the Ca concentration (mass%) in the molten steel, [% Al] is the Al concentration (mass%) in the molten steel, and [% T.I. O] is the total oxygen concentration (mass%) in the molten steel.

また、溶鋼の脱硫処理と同時に1段目のCa添加を実施することで、上記のように効率的に溶鋼を脱硫処理することが可能になるとともに、従来のようにそれぞれを独立して実施していた場合に比較して、脱硫処理及び1段目のCa添加に費やす合計の処理時間を大幅に短縮することができ、高い生産性を確保することができる。   Also, by performing the first stage of Ca addition simultaneously with the desulfurization treatment of the molten steel, it becomes possible to efficiently desulfurize the molten steel as described above, and each is carried out independently as in the past. Compared with the case where it was, the total processing time spent for a desulfurization process and Ca addition of the 1st step | paragraph can be reduced significantly, and high productivity can be ensured.

2段目の硫化物の形態制御のためのCa添加は、真空脱ガス精錬後の取鍋内の溶鋼に対して実施する。2段目のCa添加は、インジェクションランスを介して搬送用ガスとともにCa合金の粉末を吹き込むか、或いは、その内部にCa合金を充填した鉄被覆ワイヤーを溶鋼中に添加して実施する。2段目のCa添加は、添加対象の溶鋼の硫黄濃度が低く且つ酸化物系介在物も少ないので、溶鋼中にCaが0.0010〜0.0030質量%程度残留するように、Ca純分の添加量を設定すればよい。これにより、耐HIC鋼に必要な特性である(c)の「CaSが残留しないこと」が達成される。   The Ca addition for controlling the form of the second stage sulfide is performed on the molten steel in the ladle after vacuum degassing refining. The second stage of Ca addition is performed by blowing Ca alloy powder together with the carrier gas through the injection lance, or by adding an iron-coated wire filled with Ca alloy into the molten steel. Since the second stage of Ca addition has a low sulfur concentration in the molten steel to be added and a small amount of oxide inclusions, the pure Ca content is such that about 0.0010 to 0.0030 mass% of Ca remains in the molten steel. What is necessary is just to set the addition amount of. As a result, “CaS does not remain” of (c), which is a characteristic required for the HIC steel, is achieved.

以上説明したように、上記構成の本発明によれば、1段目のCa添加を脱硫処理と同時に実施するので、製造工程が短縮されることによって生産性が向上するのみならず、脱硫処理後の溶鋼中硫黄濃度が従来に比較して低下し、硫黄濃度が極めて低く、且つ、酸化物系介在物及び硫化物系介在物が極めて少ない、耐硫化物腐食割れ性に優れた清浄鋼を高い生産性で製造することが実現される。   As described above, according to the present invention having the above-described configuration, since the first stage of Ca addition is performed simultaneously with the desulfurization treatment, not only the productivity is improved by shortening the manufacturing process, but also after the desulfurization treatment. Highly clean steel with excellent resistance to sulfide corrosion cracking, with low sulfur concentration in molten steel compared to conventional steel, extremely low sulfur concentration, and extremely low oxide inclusions and sulfide inclusions Manufacturing with productivity is realized.

転炉から出鋼された、C:0.02〜0.1質量%、Mn:0.5〜1.2質量%、P:0.01質量%以下、S:0.0025〜0.005質量%、Al:0.02〜0.04質量%を含有する200〜260トンの取鍋内溶鋼に対し、本発明による製造方法(本発明例)及び従来法による製造方法(比較例1〜4)を適用して耐HIC鋼を製造した。   Steel is produced from the converter, C: 0.02 to 0.1 mass%, Mn: 0.5 to 1.2 mass%, P: 0.01 mass% or less, S: 0.0025 to 0.005 With respect to 200 to 260 tons of molten steel in a ladle containing mass% and Al: 0.02 to 0.04 mass%, the production method according to the present invention (example of the present invention) and the production method according to the conventional method (comparative examples 1 to 2) 4) was applied to produce HIC steel.

本発明例及び比較例1〜4の何れの場合も、転炉出鋼直後に金属Alを添加して溶鋼を脱酸し、脱硫処理工程においては、CaO−Al23−SiO2系のフラックスを脱硫剤として用い、黒鉛電極からのアーク加熱により溶鋼を昇温し、前記脱硫剤を滓化させ、溶鋼に浸漬させたインジェクションランスから100〜150Nm3/hrのArガスを攪拌用ガスとして吹き込み、溶鋼及び脱硫剤を攪拌して脱硫した。この脱硫処理の後に、RH真空脱ガス装置を用いて、脱ガス処理、溶鋼成分の調整、攪拌による介在物の浮上・分離を行った。真空脱ガス精錬の処理時間は20分間とし、何れの場合も同一とした。溶鋼へのCaの添加方法はそれぞれ異なるので、以下に、本発明例及び比較例1〜4の各製造方法を説明する。 In any case of the present invention example and Comparative Examples 1 to 4, the molten steel is deoxidized by adding metal Al immediately after the converter steel, and in the desulfurization treatment step, the CaO—Al 2 O 3 —SiO 2 type is used. Using a flux as a desulfurizing agent, the molten steel is heated by arc heating from a graphite electrode, the desulfurizing agent is hatched, and Ar gas of 100 to 150 Nm 3 / hr is used as a stirring gas from an injection lance immersed in the molten steel. The molten steel and the desulfurizing agent were stirred and desulfurized. After this desulfurization treatment, degassing treatment, adjustment of molten steel components, and floating and separation of inclusions by stirring were performed using an RH vacuum degassing apparatus. The processing time for the vacuum degassing refining was 20 minutes and was the same in all cases. Since the method of adding Ca to the molten steel is different, each method of the present invention and Comparative Examples 1 to 4 will be described below.

本発明例では、脱硫処理時、インジェクションランスからのArガスとともにCa−Si合金粉末(Ca:30質量%、Si:70質量%)を1分間あたり20〜30kgで吹き込み、その吹き込み量は1チャージあたり150〜250kgとした。脱硫処理後、RH真空脱ガス装置で20分間の脱ガス精錬を実施した後、取鍋をRH真空脱ガス装置から払い出し、ワイヤーフィーダー装置を用い、Ca−Si合金(Ca:30質量%、Si:70質量%)を、その内部に充填した鉄被覆ワイヤーを1分間あたり20〜30kgの添加速度で溶鋼の硫黄濃度に応じて1チャージあたり30〜70kg添加した。その後、この溶鋼を連続鋳造設備に搬送し、連続鋳造した。   In the present invention example, during the desulfurization treatment, Ca—Si alloy powder (Ca: 30% by mass, Si: 70% by mass) is injected at 20-30 kg per minute together with Ar gas from the injection lance, and the injection amount is 1 charge. 150 to 250 kg per unit. After desulfurization treatment, after performing degassing refining for 20 minutes with an RH vacuum degassing apparatus, the ladle is discharged from the RH vacuum degassing apparatus, and a Ca-Si alloy (Ca: 30% by mass, Si is used) using a wire feeder apparatus. : 70 mass%) of the iron-coated wire filled therein was added at 30 to 70 kg per charge at a rate of 20 to 30 kg per minute depending on the sulfur concentration of the molten steel. Thereafter, the molten steel was conveyed to a continuous casting facility and continuously cast.

比較例1では、真空脱ガス精錬後、取鍋をRH真空脱ガス装置から払い出し、ワイヤーフィーダー装置を用い、前述の鉄被覆ワイヤーを1分間あたり20〜30kgの添加速度で溶鋼の硫黄濃度に応じて1チャージあたり70〜110kg添加した。その後、この溶鋼を連続鋳造設備に搬送し、連続鋳造した。   In Comparative Example 1, after the vacuum degassing refining, the ladle is discharged from the RH vacuum degassing apparatus, and the above iron-coated wire is used at a rate of addition of 20 to 30 kg per minute depending on the sulfur concentration of the molten steel using a wire feeder apparatus. 70 to 110 kg was added per charge. Thereafter, the molten steel was conveyed to a continuous casting facility and continuously cast.

比較例2では、脱硫処理終了後に、取鍋内溶鋼に浸漬させたインジェクションランスからArガスを搬送用ガスとして前述のCa−Si合金粉末を1分間あたり20〜30kgで、1チャージあたり150〜250kg、溶鋼中へ吹き込んだ。その後、RH真空脱ガス装置で20分間の脱ガス精錬を実施した後、取鍋を連続鋳造設備に搬送し、連続鋳造中、連続鋳造設備のタンディッシュ内の溶鋼に、ワイヤーフィーダー装置を用いて前述の鉄被覆ワイヤーを1分間あたり0.7〜1.0kgの添加速度で溶鋼の硫黄濃度に応じて1チャージあたり70〜110kg添加した。   In Comparative Example 2, after completion of the desulfurization treatment, the above-described Ca—Si alloy powder was used at 20 to 30 kg per minute from the injection lance soaked in the molten steel in the ladle as the carrier gas, and 150 to 250 kg per charge. And blown into the molten steel. Then, after carrying out degassing refining for 20 minutes with the RH vacuum degassing device, the ladle is transported to the continuous casting equipment, and during continuous casting, the molten steel in the tundish of the continuous casting equipment is used with a wire feeder device. The above iron-coated wire was added at 70 to 110 kg per charge at a rate of 0.7 to 1.0 kg per minute depending on the sulfur concentration of the molten steel.

比較例3では、真空脱ガス精錬後、取鍋内溶鋼に浸漬させたインジェクションランスからArガスを搬送用ガスとして前述のCa−Si合金粉末を1分間あたり20〜30kgで、1チャージあたり150〜250kg、溶鋼中へ吹き込んだ。その後、取鍋を連続鋳造設備に搬送し、連続鋳造中、連続鋳造設備のタンディッシュ内の溶鋼に、ワイヤーフィーダー装置を用いて前述の鉄被覆ワイヤーを1分間あたり0.7〜1.0kgの添加速度で溶鋼の硫黄濃度に応じて1チャージあたり70〜110kg添加した。   In Comparative Example 3, after vacuum degassing and refining, 20 to 30 kg of the above-mentioned Ca—Si alloy powder was used per minute from an injection lance dipped in molten steel in the ladle, and Ar gas was used as a carrier gas. 250 kg was blown into the molten steel. Thereafter, the ladle is conveyed to a continuous casting facility. During continuous casting, the above iron-coated wire is 0.7 to 1.0 kg per minute using molten wire in the tundish of the continuous casting facility using a wire feeder device. Depending on the sulfur concentration of the molten steel at an addition rate, 70 to 110 kg was added per charge.

比較例4では、減圧下での真空脱ガス精錬時、取鍋内溶鋼に浸漬させたインジェクションランスからArガスを搬送用ガスとして前述のCa−Si合金粉末を1分間あたり20〜30kgで、1チャージあたり150〜250kg、溶鋼中へ吹き込んだ。更に、RH真空脱ガス装置の真空槽を大気圧に戻した後、取鍋内溶鋼に浸漬させたインジェクションランスからArガスを搬送用ガスとして前述のCa−Si合金粉末を1分間あたり20〜30kgで、1チャージあたり70〜110kg、溶鋼中へ吹き込んだ。その後、この溶鋼を連続鋳造設備に搬送し、連続鋳造した。   In Comparative Example 4, at the time of vacuum degassing refining under reduced pressure, the aforementioned Ca—Si alloy powder was used at 20 to 30 kg per minute using Ar gas as a transfer gas from an injection lance immersed in molten steel in the ladle. 150-250 kg per charge was blown into the molten steel. Furthermore, after returning the vacuum tank of the RH vacuum degassing apparatus to atmospheric pressure, 20 to 30 kg of the above-mentioned Ca—Si alloy powder per minute is used with Ar gas as a carrier gas from an injection lance immersed in molten steel in the ladle. Then, 70 to 110 kg per charge was blown into the molten steel. Thereafter, the molten steel was conveyed to a continuous casting facility and continuously cast.

それぞれの製造方法において、各製造工程での溶鋼の成分を調査した。また、連続鋳造により得られた鋳片の幅中央で厚み方向1/4の位置から採取した試験片について、S及びCaの含有量を調査するとともに、介在物の個数判定並びにCaO−Al23系介在物におけるCaO/Al23の質量比率を調査した。 In each manufacturing method, the component of the molten steel in each manufacturing process was investigated. In addition, for the test piece collected from the position in the thickness direction 1/4 at the center of the width of the slab obtained by continuous casting, the contents of S and Ca were investigated, the number of inclusions was determined, and CaO-Al 2 O The mass ratio of CaO / Al 2 O 3 in the 3 system inclusions was investigated.

それらの結果を表1に示す。表1では、脱硫処理工程の処理時間を併せて示している。尚、脱硫処理時間は、従来の脱硫処理方法である比較例1〜4の処理時間を1.0として指数化して表示し、また、鋳片の介在物個数は、Caの1段添加である比較例1を基準として指数化して表示している。   The results are shown in Table 1. Table 1 also shows the treatment time of the desulfurization treatment process. Note that the desulfurization treatment time is expressed by indexing the treatment time of Comparative Examples 1 to 4 as a conventional desulfurization treatment method as 1.0, and the number of inclusions in the slab is one-stage addition of Ca. Indexed with the comparative example 1 as a reference.

Figure 2010209372
Figure 2010209372

表1から明らかなように、本発明例では、脱硫処理時間を2割程度短縮することができた。更に、脱硫処理後の溶鋼中硫黄濃度は比較例1〜4に比べて低く、極低硫鋼が得られることが分かった。また、鋳片のCa濃度を比較すると、一段のCa添加である比較例1では、10〜35ppmとばらつきが大きいのに対し、Caを2段添加した比較例2〜4では、鋳片のCa濃度のばらつき幅は15〜19ppmと低下していた。なかでも、2段目のCaを取鍋で添加した比較例4では、Ca濃度のばらつき幅が小さくなっていた。   As is apparent from Table 1, in the present invention example, the desulfurization treatment time could be shortened by about 20%. Furthermore, it was found that the sulfur concentration in the molten steel after the desulfurization treatment was lower than those in Comparative Examples 1 to 4, and an extremely low sulfur steel was obtained. Further, when the Ca concentration of the slab is compared, in Comparative Example 1 in which Ca is added in one stage, the variation is large as 10 to 35 ppm, whereas in Comparative Examples 2 to 4 in which Ca is added in two stages, Ca in the slab is increased. The variation width of the concentration was reduced to 15 to 19 ppm. Especially, in the comparative example 4 which added the 2nd step | paragraph Ca with the ladle, the dispersion | variation width of Ca density | concentration was small.

本発明例では、鋳片のCa濃度のばらつき幅は10ppmであり、比較例4よりも更に鋳片のCa濃度のばらつき幅が低下した。   In the example of the present invention, the variation width of the Ca concentration of the slab was 10 ppm, and the variation width of the Ca concentration of the slab was further reduced as compared with Comparative Example 4.

また、指数化した鋳片の介在物個数は、2段のCa添加である比較例2〜4では0.75〜0.98であるのに対し、本発明例では0.66〜0.72であり、同じ2段のCa添加でありながら、本発明例の優位性が確認できた。これは、本発明例においては介在物の浮上時間が長くなることに基づいている。   The number of inclusions in the slab indexed is 0.75 to 0.98 in Comparative Examples 2 to 4 in which Ca is added in two stages, while 0.66 to 0.72 in the present invention. Thus, the superiority of the present invention example could be confirmed while the same two-stage Ca addition. This is based on the fact that the floating time of inclusions becomes longer in the present invention example.

上記の調査結果に基づき、脱硫処理時間、低硫化度合い、工程数、酸化物系介在物組成制御の精度、酸化物系介在物浮上効率、酸化物系介在物浮上時間、Ca歩留りの7つの項目について、本発明例及び比較例1〜4の各製造方法の優位性を比較・評価した結果を表2に示す。尚、表2の◎印は極めて良好、○は良好、△はやや不良、×は不良を表している。   Based on the above survey results, seven items of desulfurization treatment time, degree of low sulfidation, number of steps, oxide inclusion composition control accuracy, oxide inclusion flotation efficiency, oxide inclusion flotation time, and Ca yield Table 2 shows the results of comparing and evaluating the superiority of the production methods of the present invention and Comparative Examples 1 to 4. In Table 2, “◎” indicates extremely good, “◯” indicates good, “Δ” indicates slightly poor, and “×” indicates poor.

Figure 2010209372
Figure 2010209372

本発明例では、脱硫処理と同時にCaを添加するので、それによる強攪拌及び脱酸効果により、脱硫処理時間及び低硫化度合いが比較例1〜4に比べて優れている。   In the example of the present invention, Ca is added at the same time as the desulfurization treatment, and therefore the desulfurization treatment time and the degree of low sulfidation are superior to those of Comparative Examples 1 to 4 due to the strong stirring and the deoxidation effect.

また、本発明例では、脱硫処理と同時に1段目のCa添加を実施するので、1段目のCa添加のための工程を必要とせず、1段添加の比較例1と同等の工程で処理することができる。これに対して、比較例2は、1段目のCa添加の工程が別途必要であり、更に、タンディッシュにおいてもCaを添加する必要があり、比較例3は、タンディッシュにおいてもCaを添加する必要がある。比較例4は、工程的には本発明例と同等である。   Further, in the present invention example, the first-stage Ca addition is performed simultaneously with the desulfurization treatment, so that the process for the first-stage Ca addition is not required, and the process is performed in the same process as the first-stage addition Comparative Example 1. can do. In contrast, Comparative Example 2 requires a separate step of adding Ca in the first stage, and further needs to add Ca in the tundish, and Comparative Example 3 adds Ca also in the tundish. There is a need to. Comparative Example 4 is equivalent in process to the inventive example.

また、Ca添加が1段のみである比較例1に比べて、Ca添加が2段である本発明例及び比較例2〜4では、酸化物系介在物組成の形態制御と、硫化物の形態制御のためのCaを分割し、2段に分けて添加したことで、酸化物系介在物組成制御の精度が向上する。その中でも特に、本発明例では1段目のCa添加量を最適に制御できるので、溶鋼中のAl23のほとんどを形態制御することが可能であり、酸化物系介在物組成制御の精度がより高い。 In addition, compared to Comparative Example 1 in which only one stage of Ca is added, in the present invention example and Comparative Examples 2 to 4 in which Ca is added in two stages, the form control of oxide inclusion composition and the form of sulfide By dividing Ca for control and adding it in two stages, the accuracy of the oxide inclusion composition control is improved. In particular, in the present invention example, since the amount of Ca added in the first stage can be optimally controlled, it is possible to control the form of almost all Al 2 O 3 in the molten steel, and the accuracy of the oxide inclusion composition control. Is higher.

また、各処理工程に要する時間及び処理間の所要時間を同じとした場合、酸化物系介在物の浮上時間を、酸化物系介在物形態制御のためのCa添加から鋳造までの時間と定義すると、本発明例が最も浮上時間が長く、これは、本発明例において酸化物系介在物が少ないことと一致する。   In addition, when the time required for each treatment step and the time required for the treatment are the same, the floating time of the oxide inclusions is defined as the time from Ca addition to casting for oxide inclusion form control. The example of the present invention has the longest rise time, which is consistent with the fact that there are few oxide inclusions in the example of the present invention.

また更に、鋳片のCa濃度のばらつき幅は、Caを2段に分けて添加することで少なくなるが、特に、2段目のCaを取鍋内の溶鋼に添加することで、Ca濃度が均一化されることが分かる。   Furthermore, the variation width of the Ca concentration of the slab is reduced by adding Ca in two stages, and in particular, by adding the second stage Ca to the molten steel in the ladle, the Ca concentration is reduced. It turns out that it is equalized.

このように、本発明方法は、脱硫処理時間、低硫化度合い、工程数、酸化物系介在物組成制御の精度、酸化物系介在物浮上効率、酸化物系介在物浮上時間、Ca歩留りの7つの全ての項目から見て、優れた製造方法であることが確認できた。   As described above, the method of the present invention has a desulfurization treatment time, a low degree of sulfidation, the number of steps, the accuracy of oxide inclusion composition control, the oxide inclusion flotation efficiency, the oxide inclusion flotation time, and the Ca yield. From all three items, it was confirmed that this was an excellent manufacturing method.

実施例1に記載した本発明例において、1段目のCa添加のCa−Si合金の添加量を溶鋼中のAl濃度及びトータル酸素濃度に対して変更し、鋳片の酸化物系介在物に及ぼす影響を調査した。鋳片の酸化物系介在物の調査方法は実施例1と同様の方法で実施した。   In the present invention example described in Example 1, the amount of Ca-Si alloy added in the first stage of Ca was changed with respect to the Al concentration and the total oxygen concentration in the molten steel, so that the oxide inclusions in the slab The effect was investigated. The method for investigating oxide inclusions in the slab was carried out in the same manner as in Example 1.

調査結果を表3に示す。尚、表3において、鋳片の酸化物系介在物の個数は、実施例1と同様に、Caを1段で添加した、実施例1の比較例1を基準として、指数化して示している。   The survey results are shown in Table 3. In Table 3, the number of oxide inclusions in the slab is shown as an index on the basis of Comparative Example 1 of Example 1 in which Ca is added in one stage, as in Example 1. .

Figure 2010209372
Figure 2010209372

表3に示すように、(1)式で定まる範囲内のCaを添加した試験1〜4は、Ca添加量が(1)式で定まる範囲よりも少ない試験5〜8に比べて、鋳片のCa濃度が高く、且つ、鋳片の酸化物系介在物個数が少なくなっており、酸化物系介在物の低減効果が顕著であることが分かった。   As shown in Table 3, Tests 1 to 4 in which Ca within the range determined by Equation (1) was added, compared to Tests 5 to 8 where the amount of Ca addition is less than the range determined by Equation (1). It was found that the Ca concentration was high and the number of oxide inclusions in the slab was small, and the effect of reducing oxide inclusions was remarkable.

Claims (2)

転炉から取鍋への出鋼時または出鋼後に溶鋼にAlを添加して溶鋼を脱酸し、先ず、この取鍋内の溶鋼にCaOを含有するフラックスを添加して脱硫処理を施すとともに、この脱硫処理時にCa含有金属を添加し、次いで、取鍋内の溶鋼に真空脱ガス処理を施し、更に、真空脱ガス処理後の取鍋内の溶鋼にCa含有金属を添加し、その後、該溶鋼を鋳造することを特徴とする、耐硫化物腐食割れ性に優れた清浄鋼の製造方法。   At the time of steel output from the converter to the ladle or after steel output, Al is added to the molten steel to deoxidize the molten steel. First, a flux containing CaO is added to the molten steel in the ladle and subjected to desulfurization treatment. In addition, a Ca-containing metal is added during the desulfurization treatment, and then vacuum degassing treatment is performed on the molten steel in the ladle. Further, the Ca-containing metal is added to molten steel in the ladle after the vacuum degassing treatment, and then A method for producing clean steel excellent in resistance to sulfide corrosion cracking, wherein the molten steel is cast. 前記脱硫処理時におけるCa含有金属のCa純分の添加量を、Caの添加歩留まりを100%としたときに溶鋼中のCa濃度が下記の(1)式の範囲内となるように、溶鋼中のAl濃度及びトータル酸素濃度に応じて調整することを特徴とする、請求項1に記載の耐硫化物腐食割れ性に優れた清浄鋼の製造方法。
[%Ca]≧0.01×[%Al]2/3+0.9×[%T.O]…(1)
但し(1)式において、[%Ca]は溶鋼中のCa濃度(質量%)、[%Al]は溶鋼中のAl濃度(質量%)、[%T.O]は溶鋼中のトータル酸素濃度(質量%)である。
In the molten steel, the Ca concentration in the molten steel is within the range of the following formula (1) when the addition amount of pure Ca of the Ca-containing metal during the desulfurization treatment is 100%. The method for producing clean steel excellent in resistance to sulfide corrosion cracking according to claim 1, wherein the adjustment is made in accordance with the Al concentration and the total oxygen concentration.
[% Ca] ≧ 0.01 × [% Al] 2/3 + 0.9 × [% T. O] ... (1)
However, in the formula (1), [% Ca] is the Ca concentration (mass%) in the molten steel, [% Al] is the Al concentration (mass%) in the molten steel, and [% T.I. O] is the total oxygen concentration (mass%) in the molten steel.
JP2009054333A 2009-03-09 2009-03-09 Manufacturing method of clean steel with excellent resistance to sulfide corrosion cracking Expired - Fee Related JP5458607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054333A JP5458607B2 (en) 2009-03-09 2009-03-09 Manufacturing method of clean steel with excellent resistance to sulfide corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054333A JP5458607B2 (en) 2009-03-09 2009-03-09 Manufacturing method of clean steel with excellent resistance to sulfide corrosion cracking

Publications (2)

Publication Number Publication Date
JP2010209372A true JP2010209372A (en) 2010-09-24
JP5458607B2 JP5458607B2 (en) 2014-04-02

Family

ID=42969843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054333A Expired - Fee Related JP5458607B2 (en) 2009-03-09 2009-03-09 Manufacturing method of clean steel with excellent resistance to sulfide corrosion cracking

Country Status (1)

Country Link
JP (1) JP5458607B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515541A (en) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド Non-oriented electrical steel sheet with excellent magnetic properties and calcium treatment method thereof
JP2018168454A (en) * 2017-03-30 2018-11-01 Jfeスチール株式会社 Production method of high cleanliness steel
WO2019182056A1 (en) 2018-03-23 2019-09-26 Jfeスチール株式会社 Method for manufacturing high-purity steel
JP2020180341A (en) * 2019-04-25 2020-11-05 日本製鉄株式会社 Melting method of ultra-low nitrogen steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197231A (en) * 1982-05-14 1983-11-16 Showa Denko Kk Metal refining agent and its manufacture
JPH0873923A (en) * 1994-06-29 1996-03-19 Sumitomo Metal Ind Ltd Production of clean steel having excellent hydrogen induced crack resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197231A (en) * 1982-05-14 1983-11-16 Showa Denko Kk Metal refining agent and its manufacture
JPH0873923A (en) * 1994-06-29 1996-03-19 Sumitomo Metal Ind Ltd Production of clean steel having excellent hydrogen induced crack resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515541A (en) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド Non-oriented electrical steel sheet with excellent magnetic properties and calcium treatment method thereof
JP2018168454A (en) * 2017-03-30 2018-11-01 Jfeスチール株式会社 Production method of high cleanliness steel
WO2019182056A1 (en) 2018-03-23 2019-09-26 Jfeスチール株式会社 Method for manufacturing high-purity steel
JP6648866B1 (en) * 2018-03-23 2020-02-14 Jfeスチール株式会社 Manufacturing method of high cleanliness steel
KR20200124753A (en) 2018-03-23 2020-11-03 제이에프이 스틸 가부시키가이샤 Manufacturing method of high-definition steel
JP2020180341A (en) * 2019-04-25 2020-11-05 日本製鉄株式会社 Melting method of ultra-low nitrogen steel
JP7265136B2 (en) 2019-04-25 2023-04-26 日本製鉄株式会社 Melting method of ultra-low nitrogen steel

Also Published As

Publication number Publication date
JP5458607B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5832675B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and calcium treatment method thereof
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP2013049908A (en) Method for producing high-purity steel by electroslag remelting method
JP5151448B2 (en) Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel
JP5458607B2 (en) Manufacturing method of clean steel with excellent resistance to sulfide corrosion cracking
JP2014509345A (en) Steel desulfurization method
JP6642174B2 (en) Continuous casting method of high carbon molten steel
KR102565782B1 (en) Ca addition method to molten steel
JP2999671B2 (en) Melting method of Ca-added steel
JP5332568B2 (en) Denitrification method for molten steel
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP4648820B2 (en) Method for producing extremely low sulfur chromium-containing molten steel
EP3505650A1 (en) Method for producing alloy steel
JPH08333619A (en) Production of steel excellent in hydrogen induced cracking resistance
JP5157228B2 (en) Desulfurization method for molten steel
JP3870627B2 (en) Method for producing high phosphorus extra low carbon steel
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
JP6451363B2 (en) Desulfurization method for molten steel
JP4180971B2 (en) Method of adding Ca in billet continuous casting
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
JP5712945B2 (en) Method for melting low-sulfur steel
JP5387045B2 (en) Manufacturing method of bearing steel
JP3697987B2 (en) Desulfurization agent for molten steel desulfurization
JP2976849B2 (en) Method for producing HIC-resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees