JP2010208356A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2010208356A
JP2010208356A JP2009053553A JP2009053553A JP2010208356A JP 2010208356 A JP2010208356 A JP 2010208356A JP 2009053553 A JP2009053553 A JP 2009053553A JP 2009053553 A JP2009053553 A JP 2009053553A JP 2010208356 A JP2010208356 A JP 2010208356A
Authority
JP
Japan
Prior art keywords
groove
chamfered
tire
circumferential direction
tire circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009053553A
Other languages
Japanese (ja)
Inventor
Kazuya Ishiguro
和也 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2009053553A priority Critical patent/JP2010208356A/en
Publication of JP2010208356A publication Critical patent/JP2010208356A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of equalizing the rigidity in the tire circumferential direction without dropping the degree of freedom in designing the cross-sectional shape of lug grooves even in a construction in which the groove width of the lug grooves in the tire circumferential direction differs according to the length of blocks in the tire circumferential direction. <P>SOLUTION: Chamfers 7a, 7b, 7c are arranged in corners of blocks 7 with a large pitch A, medium pitch B and small pitch C respectively among blocks 7 facing the lug grooves 6 crossing vertical grooves 5, and formed so that the chamfer volume in the block 7 facing the lug groove 6 with small groove width in the tire circumferential direction becomes larger than the chamfer volume in the block 7 facing the lug groove 6 with large groove width in the tire circumferential direction, thereby, deviation of the volume of the rubber pushed in during vulcanization molding becomes small. In this case, because the volume of the rubber pushed in is equalized due to the difference in the chamfer volume of the chamfers 7a, 7b, 7c, the degree of freedom in designing the cross-sectional shape of the lug grooves 6 is not dropped. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば乗用車、トラック、バス等に用いられる空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire used in, for example, passenger cars, trucks, buses and the like.

従来、この種の空気入りタイヤとしては、タイヤ周方向に延びる縦溝と、タイヤ幅方向に延びるラグ溝と、縦溝とラグ溝との間に形成されるブロックとを有し、タイヤ周方向の長さの異なるブロックをタイヤ周方向に配列する、いわゆるピッチバリエーション手法を採用することにより、ブロックと路面との接触によるノイズが特定の周波数で大きくならないようにして騒音の低減を図るようにしたものが知られている。   Conventionally, this type of pneumatic tire has a longitudinal groove extending in the tire circumferential direction, a lug groove extending in the tire width direction, and a block formed between the longitudinal groove and the lug groove. By adopting a so-called pitch variation method in which blocks with different lengths are arranged in the tire circumferential direction, noise caused by contact between the blocks and the road surface is prevented from increasing at a specific frequency, thereby reducing noise. Things are known.

ところで、前記空気入りタイヤでは、タイヤの加硫時にラグ溝を形成する際、金型の凸部によってトレッド部のゴムが押し込まれるが、押し込まれたゴムは流動してラグ溝の下方に流れ込み、ラグ溝の溝底からタイヤ内面までの厚さが縦溝に近づくほど厚くなる。しかしながら、ラグ溝のタイヤ周方向の溝幅は、ブロックのタイヤ周方向の長さが大きくなるほど広くなるように形成されているため、溝幅の大きいラグ溝と小さいラグ溝では、金型の凸部によって押し込まれるゴムの量に偏りが生じる。このため、ゴムの剛性がタイヤ周方向において不均一になり、偏摩耗の原因になるという問題がある。そこで、ラグ溝の断面積を調整することにより、タイヤ周方向の剛性が均一になるようにしたものが知られている(例えば、特許文献1参照。)。   By the way, in the pneumatic tire, when the lug groove is formed at the time of vulcanization of the tire, the rubber of the tread portion is pushed by the convex portion of the mold, but the pushed rubber flows and flows below the lug groove, The thickness from the bottom of the lug groove to the tire inner surface becomes thicker as it approaches the vertical groove. However, since the groove width in the tire circumferential direction of the lug groove is formed so as to increase as the length of the block in the tire circumferential direction increases, the convexity of the mold is increased between the lug groove having a large groove width and the small lug groove. The amount of rubber pushed in by the part is biased. For this reason, there is a problem that the rigidity of the rubber becomes uneven in the tire circumferential direction, causing uneven wear. Thus, there is known a technique in which the rigidity in the tire circumferential direction is made uniform by adjusting the cross-sectional area of the lug groove (see, for example, Patent Document 1).

特開2004−210133号公報JP 2004-210133 A

しかしながら、ラグ溝の断面積の調整でタイヤ周方向の剛性を均一にする場合には、例えば溝幅の小さいラグ溝の溝壁の傾斜角度を大きく、溝幅の大きいラグ溝の溝壁の傾斜角度を小さくする必要があるなど、ラグ溝の断面形状の設計自由度が大きく損なわれるという問題点があった。   However, if the rigidity in the tire circumferential direction is made uniform by adjusting the cross-sectional area of the lug groove, for example, the inclination angle of the groove wall of the lug groove with a small groove width is increased, and the inclination of the groove wall of the lug groove with a large groove width is increased. There is a problem that the degree of freedom in designing the cross-sectional shape of the lug groove is greatly impaired, such as the need to reduce the angle.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、ラグ溝のタイヤ周方向の溝幅がブロックのタイヤ周方向の長さに応じて異なる構成においても、ラグ溝の断面形状の設計自由度を損なうことなくタイヤ周方向の剛性を均一化することのできる空気入りタイヤを提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to provide a lug groove even in a configuration in which the groove width in the tire circumferential direction of the lug groove differs depending on the length of the block in the tire circumferential direction. An object of the present invention is to provide a pneumatic tire capable of making the rigidity in the tire circumferential direction uniform without impairing the design freedom of the cross-sectional shape.

本発明は前記目的を達成するために、タイヤ周方向に延びる縦溝と、タイヤ幅方向に延びるラグ溝と、縦溝及びラグ溝によって区画形成されるブロックとを備え、タイヤ周方向の長さの異なるブロックをタイヤ周方向に配列するとともに、ラグ溝をタイヤ周方向の溝幅がブロックのタイヤ周方向の長さに応じて異なるように形成した空気入りタイヤにおいて、前記縦溝を横断するラグ溝に面したブロックのうち少なくとも一つのブロックに面取り部を設けるとともに、面取り部を、タイヤ周方向の溝幅の小さいラグ溝に面したブロックにおける面取り体積が、タイヤ周方向の溝幅の大きいラグ溝に面したブロックにおける面取り体積よりも大きくなるように形成している。   In order to achieve the above object, the present invention comprises a longitudinal groove extending in the tire circumferential direction, a lug groove extending in the tire width direction, and a block defined by the longitudinal groove and the lug groove, and has a length in the tire circumferential direction. In a pneumatic tire in which different blocks are arranged in the tire circumferential direction, and the lug groove is formed so that the groove width in the tire circumferential direction varies depending on the length of the block in the tire circumferential direction, the lug crossing the longitudinal groove At least one block facing the groove is provided with a chamfered portion, and the chamfered portion of the block facing the lug groove having a small groove width in the tire circumferential direction is a lug having a large groove width in the tire circumferential direction. It is formed so as to be larger than the chamfered volume in the block facing the groove.

これにより、タイヤ周方向の溝幅の小さいラグ溝に面したブロックにおける面取り部の面取り体積が、タイヤ周方向の溝幅の大きいラグ溝に面したブロックにおける面取り部の面取り体積よりも大きくなるように形成されていることから、互いに溝幅の異なるラグ溝においても、加硫成型時に押し込まれるゴムの量の偏りが小さくなる。この場合、面取り部の面取り体積の大小によりゴムの押し込み量が均一化されることから、ラグ溝の断面形状の設計自由度を損なうことがない。   As a result, the chamfered volume of the chamfered portion in the block facing the lug groove having a small groove width in the tire circumferential direction is larger than the chamfered volume of the chamfered portion in the block facing the lug groove having a large groove width in the tire circumferential direction. Therefore, even in the lug grooves having different groove widths, the amount of rubber pushed in during vulcanization molding is reduced. In this case, the rubber push-in amount is made uniform by the size of the chamfered volume of the chamfered portion, so that the degree of freedom in designing the cross-sectional shape of the lug groove is not impaired.

本発明によれば、互いに溝幅の異なるラグ溝においても、加硫成型時に押し込まれるゴムの量の偏りを小さくすることができるので、タイヤ周方向の剛性を均一化することでき、耐偏摩耗性の向上を図ることができる。この場合、ラグ溝の断面形状の設計自由度を損なうことがないので、例えば溝壁の傾斜角度を他のタイヤ性能向上のために任意に設定することができる。   According to the present invention, even in the lug grooves having different groove widths, it is possible to reduce the bias of the amount of rubber pushed in at the time of vulcanization molding, so that the rigidity in the tire circumferential direction can be made uniform, and uneven wear resistance It is possible to improve the performance. In this case, since the design freedom of the cross-sectional shape of the lug groove is not impaired, for example, the inclination angle of the groove wall can be arbitrarily set to improve other tire performance.

本発明の第1の実施形態を示す空気入りタイヤの部分正面断面図Partial front sectional view of the pneumatic tire showing the first embodiment of the present invention 空気入りタイヤの部分平面図Partial plan view of pneumatic tire 空気入りタイヤの要部斜視図Perspective view of main part of pneumatic tire ゴムの押し込み状態を示す部分側面断面図Partial side sectional view showing the indented state of rubber 面取り位置の変形例を示す空気入りタイヤの要部斜視図The principal part perspective view of the pneumatic tire which shows the modification of a chamfering position 面取り位置の他の変形例を示す空気入りタイヤの要部斜視図The principal part perspective view of the pneumatic tire which shows the other modification of a chamfering position 面取り部の変形例を示す空気入りタイヤの要部斜視図The principal part perspective view of the pneumatic tire which shows the modification of a chamfering part 面取り部の他の変形例を示す空気入りタイヤの要部斜視図The principal part perspective view of the pneumatic tire which shows the other modification of a chamfering part 本発明の第2の実施形態を示す空気入りタイヤの部分平面図The fragmentary top view of the pneumatic tire which shows the 2nd Embodiment of this invention 空気入りタイヤの要部側面断面図Side sectional view of the main part of a pneumatic tire 面取り位置の変形例を示す空気入りタイヤの要部斜視図The principal part perspective view of the pneumatic tire which shows the modification of a chamfering position 面取り部の変形例を示す空気入りタイヤの要部斜視図The principal part perspective view of the pneumatic tire which shows the modification of a chamfering part 面取り部の他の変形例を示す空気入りタイヤの要部斜視図The principal part perspective view of the pneumatic tire which shows the other modification of a chamfering part 試験結果を示す図Diagram showing test results

図1乃至図7は本発明の第1の実施形態を示すもので、図1は空気入りタイヤの部分正面断面図、図2はその部分平面図、図3はその要部斜視図、図4はゴムの押し込み状態を示す部分側面断面図、図5は面取り位置の変形例を示す空気入りタイヤの要部斜視図、図6は面取り位置の他の変形例を示す空気入りタイヤの要部斜視図、図7は面取り部の変形例を示す空気入りタイヤの要部斜視図、図8は面取り部の他の変形例を示す空気入りタイヤの要部斜視図である。   1 to 7 show a first embodiment of the present invention. FIG. 1 is a partial front sectional view of a pneumatic tire, FIG. 2 is a partial plan view thereof, FIG. 3 is a perspective view of essential parts thereof, and FIG. FIG. 5 is a partial perspective view of a pneumatic tire showing a modified example of the chamfered position, and FIG. 6 is a perspective view of the essential part of the pneumatic tire showing another modified example of the chamfered position. FIG. 7 is a perspective view of a main part of a pneumatic tire showing a modified example of the chamfered part, and FIG. 8 is a perspective view of a main part of the pneumatic tire showing another modified example of the chamfered part.

同図に示す空気入りタイヤは、タイヤ外周面側に形成されるトレッド部1と、タイヤ幅方向両側に形成されるサイドウォール部2と、トレッド部1とサイドウォール部2との間に形成されるショルダー部3と、サイドウォール部2のタイヤ径方向内側に形成されるビード部4とを備え、ビード部4にはビードコア4aが埋設されている。   The pneumatic tire shown in the figure is formed between a tread portion 1 formed on the tire outer peripheral surface side, sidewall portions 2 formed on both sides in the tire width direction, and the tread portion 1 and the sidewall portions 2. A shoulder portion 3 and a bead portion 4 formed on the inner side in the tire radial direction of the sidewall portion 2, and a bead core 4 a is embedded in the bead portion 4.

トレッド部1には、タイヤ周方向に延びる複数の縦溝5と、タイヤ幅方向に延びる複数のラグ溝6と、縦溝5とラグ溝6によって区画形成される複数のブロック7が設けられ、各ブロック7はタイヤ周方向の長さが互いに異なる大ピッチA,中ピッチB、小ピッチCの何れかの長さに形成されている。この場合、ラグ溝6は、ブロック7の各ピッチA,B,Cが大きくなるほどタイヤ周方向の溝幅が大きくなるように形成されている。即ち、大ピッチAのブロック7のタイヤ幅方向一方に隣接するラグ溝6のタイヤ周方向の溝幅aと、中ピッチBのブロック7のタイヤ幅方向一方に隣接するラグ溝6のタイヤ周方向の溝幅bと、小ピッチCのブロック7のタイヤ幅方向一方に隣接するラグ溝6のタイヤ周方向の溝幅cは、互いにa>b>cの関係になっている。   The tread portion 1 is provided with a plurality of vertical grooves 5 extending in the tire circumferential direction, a plurality of lug grooves 6 extending in the tire width direction, and a plurality of blocks 7 defined by the vertical grooves 5 and the lug grooves 6. Each block 7 is formed to have a length of any one of a large pitch A, a medium pitch B, and a small pitch C having different lengths in the tire circumferential direction. In this case, the lug grooves 6 are formed such that the groove width in the tire circumferential direction increases as the pitches A, B, and C of the blocks 7 increase. That is, the tire circumferential direction groove width a of the lug groove 6 adjacent to one side in the tire width direction of the large pitch A block 7 and the tire circumferential direction of the lug groove 6 adjacent to one side in the tire width direction of the medium pitch B block 7 And the groove width c in the tire circumferential direction of the lug groove 6 adjacent to one side in the tire width direction of the block 7 having the small pitch C are in a relationship of a> b> c.

また、縦溝5を横断するラグ溝6に面したブロック7のうち一つの角部(接地面とラグ溝6側の溝壁と縦溝5側の溝壁とがなす角部)には面取り部が設けられ、大ピッチAのブロック7の面取り部7aは中ピッチBのブロック7の面取り部7bよりも面取り体積が小さく、中ピッチBのブロック7の面取り部7bは小ピッチCのブロック7の面取り部7cよりも面取り体積が小さくなるように形成されている。この場合、各面取り部7a,7b,7cは、タイヤ周方向及びタイヤ幅方向の長さを変えることにより互いにラグ溝6のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成されている。即ち、各面取り部7a,7b,7cは、図3に示すように互いにタイヤ径方向長さが等しく、大ピッチAのブロック7の面取り部7aはタイヤ周方向長さL1 及びタイヤ幅方向長さW1 が中ピッチBのブロック7の面取り部7bのタイヤ周方向長さL2 及びタイヤ幅方向長さW2 よりも小さく、中ピッチBのブロック7の面取り部7bはタイヤ周方向長さL2 及びタイヤ幅方向長さW2 が小ピッチCのブロック7の面取り部7cのタイヤ周方向長さL3 及びタイヤ幅方向長さW3 よりも小さくなるように形成されている。また、各面取り部7a,7b,7cは、少なくともショルダー部3のブロック7に設けられている。   Further, one corner of the block 7 facing the lug groove 6 crossing the vertical groove 5 (the corner formed by the grounding surface, the groove wall on the lug groove 6 side and the groove wall on the vertical groove 5 side) is chamfered. The chamfered portion 7a of the block 7 with the large pitch A has a smaller chamfered volume than the chamfered portion 7b of the block 7 with the medium pitch B, and the chamfered portion 7b of the block 7 with the medium pitch B is the block 7 with the small pitch C. The chamfered volume is smaller than the chamfered portion 7c. In this case, the chamfered portions 7a, 7b, and 7c are formed to have different chamfered volumes according to the groove width in the tire circumferential direction of the lug groove 6 by changing the length in the tire circumferential direction and the tire width direction. Yes. That is, as shown in FIG. 3, the chamfered portions 7a, 7b, and 7c have the same length in the tire radial direction, and the chamfered portion 7a of the block 7 having the large pitch A has a tire circumferential length L1 and a tire width length. W1 is smaller than the tire circumferential direction length L2 and tire width direction length W2 of the chamfered portion 7b of the medium pitch B block 7, and the chamfered portion 7b of the medium pitch B block 7 has the tire circumferential direction length L2 and tire width. The direction length W2 is formed to be smaller than the tire circumferential direction length L3 and the tire width direction length W3 of the chamfered portion 7c of the block 7 having the small pitch C. Each chamfered portion 7 a, 7 b, 7 c is provided at least on the block 7 of the shoulder portion 3.

前記空気入りタイヤにおいて、加硫成型時にラグ溝5を形成する際には、図4に示すように金型Dの凸部によってトレッド部1のゴムが押し込まれるが、押し込まれたゴムは流動してラグ溝の下方に流れ込み、ラグ溝6の溝底からタイヤ内面までの厚さtが縦溝6に近づくほど厚くなる。この場合、本実施形態では、ブロック7の各面取り部7a,7b,7cがラグ溝6のタイヤ周方向の溝幅a,b,cが小さくなるほど面取り体積が大きくなるように形成されているので、図4(a) に示す大ピッチAのブロック7に隣接するラグ溝6と、図4(b) に示す小ピッチCのブロック7に隣接するラグ溝6の溝幅cの押し込み量との間では、金型Dによって押し込まれるゴムの量の偏りが小さくなり、タイヤ周方向におけるゴムの剛性が均一化される。   In the pneumatic tire, when the lug groove 5 is formed during vulcanization molding, the rubber of the tread portion 1 is pushed in by the convex portion of the mold D as shown in FIG. The thickness t from the bottom of the lug groove 6 to the tire inner surface becomes thicker as it approaches the vertical groove 6. In this case, in this embodiment, the chamfered portions 7a, 7b, 7c of the block 7 are formed such that the chamfered volume increases as the groove widths a, b, c in the tire circumferential direction of the lug groove 6 decrease. 4a, the lug groove 6 adjacent to the large pitch A block 7 shown in FIG. 4 (a), and the pushing amount of the groove width c of the lug groove 6 adjacent to the small pitch C block 7 shown in FIG. 4 (b). In the meantime, the deviation of the amount of rubber pushed by the mold D is reduced, and the rigidity of the rubber in the tire circumferential direction is made uniform.

このように、本実施形態の空気入りタイヤによれば、縦溝5を横断するラグ溝6に面したブロック7のうち、大ピッチA、中ピッチB及び小ピッチCのブロック7の角部にそれぞれ面取り部7a,7b,7cを設けるとともに、面取り部7a,7b,7cを、タイヤ周方向の溝幅の小さいラグ溝6に面したブロック7における面取り体積が、タイヤ周方向の溝幅の大きいラグ溝6に面したブロック7における面取り体積よりも大きくなるように形成したので、互いに溝幅の異なるラグ溝6においても、加硫成型時に押し込まれるゴムの量の偏りを小さくすることができる。これにより、タイヤ周方向の剛性を均一化することでき、耐偏摩耗性の向上を図ることができる。この場合、面取り部7a,7b,7cの面取り体積の大小によりゴムの押し込み量が均一化されるので、ラグ溝6の断面形状の設計自由度を損なうことがなく、例えば溝壁の傾斜角度を他のタイヤ性能向上のために任意に設定することができる。   Thus, according to the pneumatic tire of the present embodiment, among the blocks 7 facing the lug grooves 6 crossing the longitudinal grooves 5, the corners of the large pitch A, medium pitch B, and small pitch C blocks 7. The chamfered portions 7a, 7b, and 7c are respectively provided, and the chamfered volume in the block 7 facing the chamfered portions 7a, 7b, and 7c with the lug groove 6 having a small groove width in the tire circumferential direction is large in the tire circumferential direction. Since it is formed so as to be larger than the chamfered volume in the block 7 facing the lug groove 6, even in the lug grooves 6 having different groove widths, it is possible to reduce the bias of the amount of rubber pushed in during vulcanization molding. Thereby, the rigidity in the tire circumferential direction can be made uniform, and uneven wear resistance can be improved. In this case, the amount of rubber pushed in is uniformed by the chamfered volume of the chamfered portions 7a, 7b, 7c, so that the degree of freedom in designing the cross-sectional shape of the lug groove 6 is not impaired. It can be arbitrarily set to improve other tire performances.

尚、前記実施形態では、縦溝5を横断するラグ溝6に面したブロック7のうち、大ピッチA、中ピッチB及び小ピッチCのブロック7の角部にそれぞれ一つずつ面取り部7a,7b,7cを設けたものを示したが、図5に示すようにラグ溝6と縦溝5の交差部分におけるブロック7の全ての角部にそれぞれ面取り部7a,7b,7cを設けるようにすれば、面取り体積を分散することができ、ブロック7の剛性の偏りを小さくすることができる。   In the embodiment, among the blocks 7 facing the lug grooves 6 crossing the longitudinal grooves 5, one chamfered portion 7a, one at each corner of the block 7 having a large pitch A, a medium pitch B, and a small pitch C. 7b and 7c are shown. However, as shown in FIG. 5, chamfered portions 7a, 7b, and 7c are provided at all corners of the block 7 at the intersection of the lug groove 6 and the longitudinal groove 5, respectively. For example, the chamfered volume can be dispersed and the rigidity deviation of the block 7 can be reduced.

また、図6に示すように、タイヤ周方向の溝幅の小さいラグ溝6と縦溝5の交差部分におけるブロック7の角部に設けられる面取り部7cの数が、タイヤ周方向の溝幅の大きいラグ溝6と縦溝5の交差部分におけるブロック7の角部に設けられる面取り部7aの数よりも多くなるようにすれば、面取り部7a,7b,7cの数でゴムの押し込み量を調整することができ、剛性の均一化を図る上で効果的である。   In addition, as shown in FIG. 6, the number of chamfered portions 7c provided at the corners of the block 7 at the intersection of the lug groove 6 and the vertical groove 5 with a small groove width in the tire circumferential direction is the groove width in the tire circumferential direction. If the number of chamfered portions 7a is larger than the number of chamfered portions 7a provided at the corners of the block 7 at the intersection of the large lug groove 6 and the vertical groove 5, the amount of rubber pushed in is adjusted by the number of chamfered portions 7a, 7b, 7c. This is effective in achieving uniform rigidity.

更に、前記実施形態では、面取り部7a,7b,7cを、タイヤ周方向の長さL1 ,L2 ,L3 及びタイヤ幅方向の長さW1 ,W2 ,W3 を変えることにより互いにラグ溝6のタイヤ周方向の溝幅a,b,cに応じて面取り体積が異なるようにしたものを示したが、図7(a)(b)(c) に示すように面取り部7a,7b,7cのタイヤ径方向の長さH1 ,H2 ,H3 を変えることにより面取り体積が異なるようにしてもよい。また、図8に示すように面取り部7a,7b,7cの面直方向に凹凸をなす形状を変えることにより面取り体積が異なるようにしてもよい。この場合、図8(a) に示すように大ピッチAの溝幅aに対応する面取り部7aは凸面状、図8(b) に示すように中ピッチBの溝幅bに対応する面取り部7bは平面状、図8(c) に示すように小ピッチCの溝幅cに対応する面取り部7cは凹面状に形成されている。   Furthermore, in the above-described embodiment, the chamfered portions 7a, 7b, and 7c are formed by changing the tire circumferential direction lengths L1, L2, and L3 and the tire width direction lengths W1, W2, and W3 to each other. Although the chamfered volume varies depending on the groove widths a, b, and c in the direction, the tire diameters of the chamfered portions 7a, 7b, and 7c are shown in FIGS. 7 (a), (b), and (c). The chamfered volume may be changed by changing the lengths H1, H2, and H3 in the direction. Further, as shown in FIG. 8, the chamfered volume may be changed by changing the shape of the chamfered portions 7a, 7b, 7c in the direction perpendicular to the surface. In this case, the chamfered portion 7a corresponding to the groove width a of the large pitch A is convex as shown in FIG. 8 (a), and the chamfered portion corresponding to the groove width b of the medium pitch B as shown in FIG. 8 (b). The chamfered portion 7c corresponding to the groove width c of the small pitch C is formed in a concave shape as shown in FIG. 8 (c).

図9乃至図13は本発明の第2の実施形態を示すもので、図9は空気入りタイヤの部分平面図、図10はその要部側面断面図、図11は面取り位置の変形例を示す空気入りタイヤの要部斜視図、図12は面取り部の変形例を示す空気入りタイヤの要部斜視図、図13は面取り部の他の変形例を示す空気入りタイヤの要部斜視図である。尚、前記実施形態と同等の構成部分には同一の符号を付して示す。   9 to 13 show a second embodiment of the present invention. FIG. 9 is a partial plan view of a pneumatic tire, FIG. 10 is a side sectional view of an essential part thereof, and FIG. 11 shows a modified example of the chamfering position. FIG. 12 is a perspective view of a main part of a pneumatic tire showing a modified example of the chamfered part, and FIG. 13 is a perspective view of a main part of the pneumatic tire showing another modified example of the chamfered part. . In addition, the same code | symbol is attached | subjected and shown to the component equivalent to the said embodiment.

本実施形態では、縦溝5を横断するラグ溝6に面したブロック7のうち一つの角部(接地面と縦溝5側の溝壁とがなす角部)にタイヤ周方向に延びる面取り部が設けられ、大ピッチAのブロック7の面取り部7dは中ピッチBのブロック7の面取り部7eよりも面取り体積が小さく、中ピッチBのブロック7の面取り部7eは小ピッチCのブロック7の面取り部7fよりも面取り体積が小さくなるように形成されている。この場合、各面取り部7d,7e,7fは、タイヤ幅方向の長さを変えることにより互いにラグ溝6のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成されている。即ち、各面取り部7d,7e,7fは、図10に示すように互いにタイヤ径方向長さが等しく、大ピッチAのブロック7の面取り部7dはタイヤ幅方向長さW1 が中ピッチBのブロック7の面取り部7eのタイヤ幅方向長さW2 よりも小さく、中ピッチBのブロック7の面取り部7eタイヤ幅方向長さW2 が小ピッチCのブロック7の面取り部7fのタイヤ幅方向長さW3 よりも小さくなるように形成されている。また、各面取り部7d,7e,7fは、少なくともショルダー部3のブロック7に設けられている。   In the present embodiment, a chamfered portion extending in the tire circumferential direction at one corner portion (corner portion formed by the ground contact surface and the groove wall on the longitudinal groove 5 side) of the block 7 facing the lug groove 6 crossing the longitudinal groove 5. The chamfered portion 7d of the block 7 with the large pitch A has a smaller chamfered volume than the chamfered portion 7e of the block 7 with the medium pitch B, and the chamfered portion 7e of the block 7 with the medium pitch B The chamfered volume is smaller than the chamfered portion 7f. In this case, the chamfered portions 7d, 7e, and 7f are formed to have different chamfered volumes according to the groove width in the tire circumferential direction of the lug groove 6 by changing the length in the tire width direction. That is, as shown in FIG. 10, the chamfered portions 7d, 7e, and 7f have the same length in the tire radial direction, and the chamfered portion 7d of the block 7 with a large pitch A has a block W1 with a width W1 in the tire width direction. Tire width direction length W3 of chamfered portion 7e of chamfered portion 7e of chamfered portion 7e of chamfered portion 7e of chamfered portion 7e. It is formed to be smaller than that. Further, the chamfered portions 7 d, 7 e, 7 f are provided at least on the block 7 of the shoulder portion 3.

本実施形態の空気入りタイヤによれば、前記実施形態と同様、面取り部7d,7e,7fを、タイヤ周方向の溝幅の小さいラグ溝6に面したブロック7における面取り体積が、タイヤ周方向の溝幅の大きいラグ溝6に面したブロック7における面取り体積よりも大きくなるように形成したので、互いに溝幅の異なるラグ溝6においても、加硫成型時に押し込まれるゴムの量の偏りを小さくすることができる。これにより、タイヤ周方向の剛性を均一化することでき、耐偏摩耗性の向上を図ることができる。また、前記実施形態と同様、ラグ溝6の断面形状の設計自由度を損なうことがないので、例えば溝壁の傾斜角度を他のタイヤ性能向上のために任意に設定することができる。   According to the pneumatic tire of this embodiment, the chamfered volume in the block 7 facing the lug groove 6 having the chamfered portions 7d, 7e, 7f facing the small groove width in the tire circumferential direction is the tire circumferential direction, as in the above embodiment. Since the groove is formed so as to be larger than the chamfered volume in the block 7 facing the lug groove 6, even in the lug grooves 6 having different groove widths, the amount of rubber pushed in at the time of vulcanization molding is reduced. can do. Thereby, the rigidity in the tire circumferential direction can be made uniform, and uneven wear resistance can be improved. Moreover, since the design freedom of the cross-sectional shape of the lug groove 6 is not impaired as in the above embodiment, for example, the inclination angle of the groove wall can be arbitrarily set to improve other tire performance.

尚、前記実施形態では、縦溝5を横断するラグ溝6に面したブロック7のうち、縦溝5の幅方向一方の溝壁に隣接する大ピッチA、中ピッチB及び小ピッチCのブロック7の角部にそれぞれ一つずつ面取り部7d,7e,7fを設けたものを示したが、図11に示すように縦溝5の幅方向両側の溝壁に隣接するブロック7の角部にそれぞれ面取り部7d,7e,7fを設けるようにすれば、面取り体積を分散することができ、ブロック7の剛性の偏りを小さくすることができる。   In the embodiment, among the blocks 7 facing the lug grooves 6 crossing the vertical grooves 5, the large pitch A, medium pitch B and small pitch C blocks adjacent to one groove wall in the width direction of the vertical grooves 5. Although the chamfered portions 7d, 7e, and 7f are respectively provided at the corner portions of the groove 7, as shown in FIG. 11, the corner portions of the block 7 adjacent to the groove walls on both sides in the width direction of the longitudinal groove 5 are shown. If the chamfered portions 7d, 7e, and 7f are provided, the chamfered volume can be dispersed and the rigidity deviation of the block 7 can be reduced.

また、前記実施形態では、面取り部7d,7e,7fを、タイヤ幅方向の長さW1 ,W2 ,W3 を変えることにより互いにラグ溝6のタイヤ周方向の溝幅a,b,cに応じて面取り体積が異なるようにしたものを示したが、図12(a)(b)(c) に示すように面取り部7d,7e,7fのタイヤ径方向の長さH1 ,H2 ,H3 を変えることにより面取り体積が異なるようにしてもよい。また、図13に示すように面取り部7d,7e,7fの面直方向に凹凸をなす形状を変えることにより面取り体積が異なるようにしてもよい。この場合、図13(a) に示すように大ピッチAの溝幅aに対応する面取り部7dは凸面状、図13(b) に示すように中ピッチBの溝幅bに対応する面取り部7eは平面状、図13(c) に示すように小ピッチCの溝幅cに対応する面取り部7fは凹面状に形成されている。   In the embodiment, the chamfered portions 7d, 7e, and 7f are changed according to the groove widths a, b, and c of the lug groove 6 in the tire circumferential direction by changing the lengths W1, W2, and W3 in the tire width direction. Although different chamfered volumes are shown, as shown in FIGS. 12 (a) (b) (c), the lengths H1, H2, and H3 in the tire radial direction of the chamfered portions 7d, 7e, and 7f are changed. The chamfered volume may be made different. Further, as shown in FIG. 13, the chamfered volume may be changed by changing the shape of the chamfered portions 7d, 7e, 7f in the direction perpendicular to the surface. In this case, the chamfered portion 7d corresponding to the groove width a of the large pitch A is convex as shown in FIG. 13 (a), and the chamfered portion corresponding to the groove width b of the medium pitch B as shown in FIG. 13 (b). 7e is a flat surface, and as shown in FIG. 13C, the chamfered portion 7f corresponding to the groove width c of the small pitch C is formed in a concave shape.

尚、前記実施形態では、面取り部7d,7e,7fをそれぞれタイヤ幅方向の長さW1 ,W2 ,W3 がそれぞれタイヤ周方向に亘って均一になるように形成したものを示したが、ラグ溝6のタイヤ周方向の溝幅が大きい方から小さい方に向かって徐々にタイヤ幅方向の長さが大きくなるように形成することも可能である。   In the above embodiment, the chamfered portions 7d, 7e, and 7f are formed so that the lengths W1, W2, and W3 in the tire width direction are uniform along the tire circumferential direction. It is also possible to form the tire 6 in such a manner that the length in the tire width direction gradually increases from the larger groove width in the tire circumferential direction toward the smaller one.

ここで、本発明の実施例1〜3及び従来例について、ユニフォミティ(RFV)及び耐偏摩耗性の試験を行ったところ、図14に示す結果が得られた。従来例には、縦溝とラグ溝の交差部分におけるブロックの接地面とラグ溝側の溝壁と縦溝側の溝壁がなす角部のうち一つの角部に面取り部を設け、ブロックのタイヤ周方向ピッチが小さくなるほど、ラグ溝の溝壁の傾斜角度が大きく、面取り部の幅(タイヤ周方向及びタイヤ幅方向の長さ)が小さくなるものを用いた。実施例1には、縦溝とラグ溝の交差部分におけるブロックの接地面とラグ溝側の溝壁と縦溝側の溝壁がなす角部(第1の実施形態)のうち一つの角部に面取り部を設け、ブロックのタイヤ周方向ピッチが小さくなるほど、ラグ溝の溝壁の傾斜角度が大きく、面取り部の幅(タイヤ周方向及びタイヤ幅方向の長さ)が大きくなるものを用いた。実施例2には、縦溝とラグ溝の交差部分におけるブロックの接地面とラグ溝側の溝壁と縦溝側の溝壁がなす角部(第1の実施形態)のうち縦溝の両側に位置する二つの角部に面取り部を設け、ブロックのタイヤ周方向ピッチが小さくなるほど、ラグ溝の溝壁の傾斜角度が大きく、面取り部の幅(タイヤ周方向及びタイヤ幅方向の長さ)が大きくなるものを用いた。実施例3には、縦溝とラグ溝の交差部分におけるブロックの接地面と縦溝側の溝壁がなす角部(第2の実施形態)のうち縦溝の片側に位置する角部に面取り部を設け、ブロックのタイヤ周方向ピッチが小さくなるほど、ラグ溝の溝壁の傾斜角度が小さく、面取り部の深さ(タイヤ径の長さ)が大きくなるものを用いた。尚、本試験は、タイヤサイズ195/65R15のタイヤを空気圧180kPaの条件の下で行った。   Here, when Examples 1 to 3 of the present invention and the conventional example were tested for uniformity (RFV) and uneven wear resistance, the results shown in FIG. 14 were obtained. In the conventional example, a chamfered portion is provided at one corner of the corner formed by the grounding surface of the block, the groove wall on the lug groove side, and the groove wall on the vertical groove side at the intersection of the vertical groove and the lug groove. The smaller the tire circumferential pitch, the larger the inclination angle of the groove wall of the lug groove and the smaller the chamfered portion width (the length in the tire circumferential direction and the tire width direction). In the first embodiment, one corner of the corner (first embodiment) formed by the grounding surface of the block, the groove wall on the lug groove side, and the groove wall on the vertical groove side at the intersection of the vertical groove and the lug groove. As the chamfered portion is provided in the tire, the inclination angle of the groove wall of the lug groove increases and the width of the chamfered portion (the length in the tire circumferential direction and the tire width direction) increases as the tire circumferential pitch of the block decreases. . In Example 2, both sides of the vertical groove in the corner portion (first embodiment) formed by the grounding surface of the block, the groove wall on the lug groove side, and the groove wall on the vertical groove side at the intersection of the vertical groove and the lug groove are shown. Chamfered portions are provided at the two corners located at, and the inclination angle of the groove wall of the lug groove increases as the tire circumferential pitch of the block decreases, and the width of the chamfered portion (length in the tire circumferential direction and tire width direction) The one that increases is used. In Example 3, the corner portion (second embodiment) formed by the ground contact surface of the block and the groove wall on the longitudinal groove side at the intersection of the longitudinal groove and the lug groove is chamfered at the corner portion located on one side of the longitudinal groove. As the pitch in the tire circumferential direction of the block decreases, the inclination angle of the groove wall of the lug groove decreases and the depth of the chamfered portion (the length of the tire diameter) increases. This test was performed on a tire having a tire size of 195 / 65R15 under the condition of an air pressure of 180 kPa.

ユニフォミティ試験では、JASO C60−87に定める測定方法によりRFVを測定し、タイヤ10本の平均値について従来例を100とした場合の指数を用いて評価し、数値が高い方が優位性ありと判定した。試験の結果、実施例1〜3は従来例に対し、RFVにおいて優れている結果が得られた。   In the uniformity test, RFV is measured by the measurement method defined in JASO C60-87, and the average value of 10 tires is evaluated using an index when the conventional example is set to 100, and it is determined that the higher value is superior. did. As a result of the test, Examples 1 to 3 were superior to the conventional example in RFV.

耐偏摩耗性の試験では、80km走行した後、ブロックの蹴り出し側と踏み込み側のエッジ部おける摩耗量の差を測定してその逆数を指数化し、従来例を100として実施例を評価した。この場合、指数の値が大きいほど優位性があるとして判定した。試験の結果、実施例1〜3は従来例に対し、耐偏摩耗性に優れている結果が得られた。   In the uneven wear resistance test, after running for 80 km, the difference in wear amount between the block kicking side and the stepping side edge portion was measured and its reciprocal number was indexed. In this case, it was determined that the larger the index value, the more superior. As a result of the test, Examples 1 to 3 were excellent in uneven wear resistance compared to the conventional example.

1…トレッド部、3…ショルダー部、5…縦溝、6…ラグ溝、7…ブロック、7a,7b,7c,7d,7e,7f…面取り部。   DESCRIPTION OF SYMBOLS 1 ... Tread part, 3 ... Shoulder part, 5 ... Vertical groove, 6 ... Lug groove, 7 ... Block, 7a, 7b, 7c, 7d, 7e, 7f ... Chamfering part.

Claims (11)

タイヤ周方向に延びる縦溝と、タイヤ幅方向に延びるラグ溝と、縦溝及びラグ溝によって区画形成されるブロックとを備え、タイヤ周方向の長さの異なるブロックをタイヤ周方向に配列するとともに、ラグ溝をタイヤ周方向の溝幅がブロックのタイヤ周方向の長さに応じて異なるように形成した空気入りタイヤにおいて、
前記縦溝を横断するラグ溝に面したブロックのうち少なくとも一つのブロックに面取り部を設けるとともに、
面取り部を、タイヤ周方向の溝幅の小さいラグ溝に面したブロックにおける面取り体積が、タイヤ周方向の溝幅の大きいラグ溝に面したブロックにおける面取り体積よりも大きくなるように形成した
ことを特徴とする空気入りタイヤ。
A longitudinal groove extending in the tire circumferential direction, a lug groove extending in the tire width direction, and a block defined by the longitudinal groove and the lug groove are arranged, and blocks having different lengths in the tire circumferential direction are arranged in the tire circumferential direction. In the pneumatic tire in which the groove width in the tire circumferential direction is different depending on the length in the tire circumferential direction of the block,
A chamfered portion is provided in at least one of the blocks facing the lug groove that crosses the longitudinal groove, and
The chamfered portion is formed so that the chamfered volume in the block facing the lug groove with a small groove width in the tire circumferential direction is larger than the chamfered volume in the block facing the lug groove with a large groove width in the tire circumferential direction. A featured pneumatic tire.
前記面取り部をブロックの接地面とラグ溝側の溝壁と縦溝側の溝壁とがなす角部に形成し、
ラグ溝と縦溝の交差部分における各ブロックの角部のうち少なくとも一つの角部に面取り部を設けた
ことを特徴とする請求項1記載の空気入りタイヤ。
The chamfered portion is formed at the corner formed by the grounding surface of the block, the groove wall on the lug groove side, and the groove wall on the vertical groove side,
The pneumatic tire according to claim 1, wherein a chamfered portion is provided at at least one corner portion of each block at the intersection of the lug groove and the longitudinal groove.
前記面取り部を、タイヤ周方向及びタイヤ幅方向の長さを変えることにより互いにラグ溝のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成した
ことを特徴とする請求項2記載の空気入りタイヤ。
The chamfered portion is formed such that the chamfered volume differs depending on the groove width in the tire circumferential direction of the lug groove by changing the length in the tire circumferential direction and the tire width direction. Pneumatic tire.
前記面取り部を、タイヤ径方向の長さを変えることにより互いにラグ溝のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成した
ことを特徴とする請求項2記載の空気入りタイヤ。
The pneumatic tire according to claim 2, wherein the chamfered portions are formed such that the chamfered volumes differ according to the groove width in the tire circumferential direction of the lug grooves by changing the length in the tire radial direction.
前記面取り部を、面直方向に凹凸をなす形状を変えることにより互いにラグ溝のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成した
ことを特徴とする請求項2記載の空気入りタイヤ。
The pneumatic according to claim 2, wherein the chamfered portions are formed so as to have different chamfered volumes according to the groove width in the tire circumferential direction of the lug grooves by changing the shape of the irregularities in the direction perpendicular to the surface. tire.
前記面取り部を、タイヤ周方向の溝幅の小さいラグ溝と縦溝の交差部分におけるブロックの角部に設けられる面取り部の数が、タイヤ周方向の溝幅の大きいラグ溝と縦溝の交差部分におけるブロックの角部に設けられる面取り部の数よりも多くなるように設けた
ことを特徴とする請求項2記載の空気入りタイヤ。
The number of chamfered portions provided at the corners of the block at the intersection of the lug groove and the vertical groove having a small groove width in the tire circumferential direction is the intersection of the lug groove and the vertical groove having a large groove width in the tire circumferential direction. The pneumatic tire according to claim 2, wherein the pneumatic tire is provided so as to be larger than the number of chamfered portions provided at corner portions of the block in the portion.
前記面取り部をブロックの接地面と縦溝側の溝壁とがなす角部に形成し、
ラグ溝と縦溝の交差部分における各ブロックの角部のうち少なくとも一つの角部に面取り部を設けた
ことを特徴とする請求項1記載の空気入りタイヤ。
Forming the chamfered portion at the corner formed by the grounding surface of the block and the groove wall on the longitudinal groove side;
The pneumatic tire according to claim 1, wherein a chamfered portion is provided at at least one corner portion of each block at the intersection of the lug groove and the longitudinal groove.
前記面取り部を、タイヤ幅方向の長さを変えることにより互いにラグ溝のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成した
ことを特徴とする請求項7記載の空気入りタイヤ。
The pneumatic tire according to claim 7, wherein the chamfered portions are formed so as to have different chamfered volumes depending on the groove width in the tire circumferential direction of the lug grooves by changing the length in the tire width direction.
前記面取り部を、タイヤ径方向の長さを変えることにより互いにラグ溝のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成した
ことを特徴とする請求項7記載の空気入りタイヤ。
The pneumatic tire according to claim 7, wherein the chamfered portions are formed so as to have different chamfered volumes depending on the groove width in the tire circumferential direction of the lug grooves by changing the length in the tire radial direction.
前記面取り部を、面直方向に凹凸をなす形状を変えることにより互いにラグ溝のタイヤ周方向の溝幅に応じて面取り体積が異なるように形成した
ことを特徴とする請求項7記載の空気入りタイヤ。
The pneumatic according to claim 7, wherein the chamfered portions are formed so as to have different chamfered volumes according to the groove width in the tire circumferential direction of the lug grooves by changing the shape that forms irregularities in the direction perpendicular to the surface. tire.
前記面取り部を少なくともショルダー部側のブロックに設けた
ことを特徴とする請求項1、2、3、4、5、6、7、8、9または10記載の空気入りタイヤ。
The pneumatic tire according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, wherein the chamfered portion is provided at least on a shoulder side block.
JP2009053553A 2009-03-06 2009-03-06 Pneumatic tire Withdrawn JP2010208356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053553A JP2010208356A (en) 2009-03-06 2009-03-06 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053553A JP2010208356A (en) 2009-03-06 2009-03-06 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2010208356A true JP2010208356A (en) 2010-09-24

Family

ID=42969037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053553A Withdrawn JP2010208356A (en) 2009-03-06 2009-03-06 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2010208356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017019437A (en) * 2015-07-13 2017-01-26 住友ゴム工業株式会社 Pneumatic tire
CN107206846A (en) * 2015-01-22 2017-09-26 横滨橡胶株式会社 Pneumatic tire
JP2017206143A (en) * 2016-05-19 2017-11-24 住友ゴム工業株式会社 Pneumatic tire and manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206846A (en) * 2015-01-22 2017-09-26 横滨橡胶株式会社 Pneumatic tire
JP2017019437A (en) * 2015-07-13 2017-01-26 住友ゴム工業株式会社 Pneumatic tire
JP2017206143A (en) * 2016-05-19 2017-11-24 住友ゴム工業株式会社 Pneumatic tire and manufacturing method for the same

Similar Documents

Publication Publication Date Title
KR101768883B1 (en) Pneumatic tire
JP5835413B1 (en) Pneumatic tire
KR101552620B1 (en) Pneumatic tire
AU2014388518B2 (en) Pneumatic tire
JP6292067B2 (en) Pneumatic tire
JP5812140B2 (en) Pneumatic tire
JP6394594B2 (en) Pneumatic tire
JP6714985B2 (en) tire
JP2010208356A (en) Pneumatic tire
JP2013244854A (en) Pneumatic tire
JP2007022218A (en) Pneumatic tire and its vulcanizing die
JP2011245996A (en) Pneumatic tire
JP5117238B2 (en) Pneumatic tire
JP2010115973A (en) Pneumatic tire
WO2020170537A1 (en) Pneumatic tire
JP2018184145A (en) Pneumatic tire
JP6098347B2 (en) Pneumatic tire
JP2008114756A (en) Tire for agricultural machine
JP4316268B2 (en) Pneumatic tire
CA2903360C (en) Pneumatic tire
JP5947532B2 (en) Pneumatic tire
JP4893355B2 (en) Pneumatic tire
JP2002002234A (en) Pneumatic tire
JP4742560B2 (en) Tire vulcanization mold
JP2011016490A (en) Pneumatic tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605