JP2010208080A - Molding method and molding apparatus - Google Patents

Molding method and molding apparatus Download PDF

Info

Publication number
JP2010208080A
JP2010208080A JP2009054951A JP2009054951A JP2010208080A JP 2010208080 A JP2010208080 A JP 2010208080A JP 2009054951 A JP2009054951 A JP 2009054951A JP 2009054951 A JP2009054951 A JP 2009054951A JP 2010208080 A JP2010208080 A JP 2010208080A
Authority
JP
Japan
Prior art keywords
mold
molding
core
transfer surface
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009054951A
Other languages
Japanese (ja)
Inventor
Yasuhiro Saiki
泰宏 齋木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2009054951A priority Critical patent/JP2010208080A/en
Publication of JP2010208080A publication Critical patent/JP2010208080A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method and a molding apparatus suppressing defects in molding. <P>SOLUTION: When a first mold 10 and a second mold 20 are relatively moved to open and at the same time, a core 30 is shifted into a drawn state of being drawn to the second mold 20, air is caused to flow into a space between the core 30 and a molded optical element OE from the outside through a gap between an opening 20a and the core 30. That is, since one face molded by an optical face transfer face 10a and a flange part transfer face 10b in the optical element OE, and the other face molded by a optical transfer face 30a and a flange part transfer face 20b simultaneously come into contact with air and cooled, the cooling states of both faces become equal, thereby allowing highly precise molding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、成形方法及び成形装置に関し、光学素子の射出成形等に好適な成形方法及び成形装置に関する。   The present invention relates to a molding method and a molding apparatus, and more particularly to a molding method and a molding apparatus suitable for injection molding of an optical element.

樹脂の射出成形に光学素子を成形すると、高精度な形状を有する光学素子を大量生産できるというメリットがある。ここで、型締めされた一対の型内で樹脂が固化した成形品は、離型時に一方の型に貼り付いてしまうことが多く、これを型から引き剥がす何らかの工夫が必要になる場合がある。これに対し特許文献1には、離型後に、イジェクトピンを用いて成形品のゲート付近を押し出すことで、型に貼り付いた成形品を引き剥がすようにしている。   When an optical element is formed by resin injection molding, there is an advantage that optical elements having a highly accurate shape can be mass-produced. Here, the molded product in which the resin is solidified in a pair of molds that are clamped often sticks to one mold at the time of mold release, and some contrivance may be required to peel it off from the mold. . On the other hand, in Patent Document 1, after the mold release, the molded product attached to the mold is peeled off by pushing the vicinity of the gate of the molded product using an eject pin.

特開2008−165019号公報JP 2008-165019 A

しかしながら、成形品のゲート付近は一般的には面積が小さいので、細いイジェクトピンを用いる必要があり、更に成形品と型との接着力が高いと、イジェクトピンの押し出しでゲート付近を折損させたりして、成形品の品質を悪化させる恐れがある。また、イジェクトピンも高精度に形成しなくてはならず、それによりコスト高を招く恐れがある。   However, since the area near the gate of the molded product is generally small, it is necessary to use a thin eject pin, and if the adhesive force between the molded product and the mold is high, the vicinity of the gate may be broken by extrusion of the eject pin. As a result, the quality of the molded product may be deteriorated. In addition, the eject pin must be formed with high accuracy, which may increase the cost.

これに対し、型に対して可動のコアを設け、離型後に型に対してコアを突き出すことで、成形品を取り出す技術も開発されている。しかしながら、かかる技術によれば、型に対してコアを突き出す場合、コアにより成形品の表面(例えば光学素子の光学面)を押圧することとなるので、型とコアとの接着力が高いと、押圧により表面が変形する恐れがあり、それにより所望の光学特性等を得られなくなるという問題がある。又、成形後において、型開き時に一方の型は樹脂に貼り付いたままとなるため、冷却状態が両面で均一とならず、例えば光学素子において設計通りの光学特性を得ることが難しいといった問題もある。   On the other hand, a technique for taking out a molded product by providing a movable core with respect to a mold and protruding the core with respect to the mold after mold release has been developed. However, according to such a technique, when the core is protruded from the mold, the surface of the molded product (for example, the optical surface of the optical element) is pressed by the core. There is a possibility that the surface may be deformed by the pressing, and thereby it becomes impossible to obtain desired optical characteristics and the like. In addition, after molding, one mold remains attached to the resin when the mold is opened, so that the cooling state is not uniform on both sides, and it is difficult to obtain optical characteristics as designed in, for example, an optical element. is there.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、成形時の不具合を抑制できる成形方法及び成形装置を提供することを目的とする。   The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a molding method and a molding apparatus that can suppress problems during molding.

請求項1に記載の成形方法は、第1の成形転写面を備えた第1の型と、前記第1の成形転写面に対向して第2の成形転写面を備え前記第1の型に対して相対的に移動可能な第2の型と、前記第2の成形転写面の少なくとも一部を形成し前記第2の型に対して相対的に移動可能なコアとを有する成形装置を用いた成形方法において、
前記第1の型と前記第2の型とを型締めした後に、前記第1の成形転写面と前記第2の成形転写面との間に樹脂を注入するステップと、
前記樹脂が固化した後に、前記第1の型と前記第2の型とを離れる方向に相対的に移動させるステップと、を有し、
前記第1の型と前記第2の型とを離れる方向に相対的に移動させる前もしくはそれと同時に、前記第2の型に対して前記コアを、前記第1の型から離れる方向に移動させることを特徴とする。
The molding method according to claim 1 includes a first mold having a first molding transfer surface, and a second molding transfer surface facing the first molding transfer surface. A molding apparatus having a second mold relatively movable with respect to the core and a core that forms at least a part of the second molding transfer surface and is relatively movable with respect to the second mold is used. In the molding method
Injecting a resin between the first molding transfer surface and the second molding transfer surface after clamping the first mold and the second mold; and
Moving the first mold and the second mold in a direction away from each other after the resin has solidified,
Before or at the same time as moving the first mold and the second mold relatively away from each other, the core is moved relative to the second mold in a direction away from the first mold. It is characterized by.

本発明によれば、前記第1の型と前記第2の型とを離れる方向に相対的に移動させる前に、前記第2の型に対して前記コアを、前記第1の型から離れる方向に移動させるので、前記第2の成形転写面の残りが、固化した樹脂から離れることとなり、それにより型と接着力が低下するため、固化した樹脂を前記第2の型より取り出すことが容易になる。又、本発明によれば、前記第1の型と前記第2の型とを離れる方向に相対的に移動させるのと同時に、前記第2の型に対して前記コアを、前記第1の型から離れる方向に移動させるので、固化した樹脂の一方の面が前記第1の転写成形面から離れると同時に、固化した樹脂の他方の面が前記第2の成形転写面の残りから離れるので、その後両面における冷却状態の差が従来より縮まり、それにより高精度の成形を行うことができる。   According to the present invention, the core is moved away from the first mold with respect to the second mold before the first mold and the second mold are moved relative to each other. Therefore, the remainder of the second molding transfer surface is separated from the solidified resin, thereby reducing the adhesive strength with the mold, so that the solidified resin can be easily taken out from the second mold. Become. According to the present invention, the first mold and the second mold are relatively moved in a direction away from each other, and at the same time, the core is moved with respect to the second mold. Since the one surface of the solidified resin is separated from the first transfer molding surface, the other surface of the solidified resin is separated from the rest of the second molding transfer surface. The difference in the cooling state on both sides is reduced as compared with the conventional case, whereby high-precision molding can be performed.

請求項2に記載の成形方法は、請求項1に記載の発明において、前記成形装置は前記第2の型に対して突き出し可能なイジェクトピンを有し、前記第2の型に対して前記コアを前記第1の型から離れる方向に移動させた後もしくはそれと同時に、前記イジェクトピンを固化した樹脂に向かって突き出すことを特徴とするので、前記イジェクトピンを用いてより容易に成形品を型から引き剥がすことができる。   According to a second aspect of the present invention, in the molding method according to the first aspect, the molding device includes an eject pin that can be protruded with respect to the second mold, and the core with respect to the second mold. Since the eject pin is protruded toward the solidified resin after or simultaneously with the movement of the mold away from the first mold, the molded product can be more easily removed from the mold using the eject pin. Can be peeled off.

請求項3に記載の成形方法は、請求項1に記載の発明において、前記第2の型に対して前記コアを、前記第1の型から離れる方向に移動させる際に、前記コアと、固化した樹脂との間に空気を導入することを特徴とするので、より容易に成形品を型から取り出すことができる。   According to a third aspect of the present invention, there is provided the molding method according to the first aspect, wherein the core is solidified when the core is moved in a direction away from the first mold with respect to the second mold. Since air is introduced between the molded resin and the molded resin, the molded product can be taken out of the mold more easily.

請求項4に記載の成形装置は、
第1の成形転写面を備えた第1の型と、
開口と、前記第1の成形転写面に対向する第2の成形転写面の一部とを備え、前記第1の型に対して相対的に移動可能な第2の型と、
前記第2の成形転写面の残りを形成し、前記第2の型の開口内に配置されて前記第2の型に対して相対的に移動可能なコアと、を有し、
前記第2の型は、前記開口と外部とを連通するための通気口を設けており、前記通気口は、前記コアが成形位置にあるときには遮蔽されているが、前記コアが前記成形位置よりも前記第1の型から離れた引き込み位置側に移動したときに開放するようになっていることを特徴とする。
The molding apparatus according to claim 4 is:
A first mold with a first molding transfer surface;
A second mold that includes an opening and a part of the second molding transfer surface facing the first molding transfer surface, and is movable relative to the first mold;
A core that forms the remainder of the second mold transfer surface and is disposed within the opening of the second mold and is movable relative to the second mold;
The second mold is provided with a vent for communicating the opening and the outside. The vent is shielded when the core is in the molding position, but the core is more than the molding position. Is also opened when moved to the retracted position side away from the first mold.

本発明によれば、前記第2の型が、前記開口と外部とを連通するための通気口を設けており、前記通気口は、前記コアが成形位置にあるときには遮蔽されているが、前記コアが前記成形位置よりも前記第1の型から離れた引き込み位置側に移動したときに開放するようになっているので、成形時には、前記通気口が遮蔽されるためキャビティから樹脂が漏れ出ることを有効に抑制できる。一方、成形後には、前記第2の型に対して前記コアを、前記第1の型から離れる方向に移動させる際に、開放した前記通気口を介して外部より空気を導入することで、固化した樹脂からコアを容易に引き剥がすことができると共に、前記通気口を介して流入する外部の冷たい空気によって、固化した樹脂を有効に冷却することができる。   According to the present invention, the second mold is provided with a vent for communicating the opening and the outside, and the vent is shielded when the core is in the molding position. Since the core is opened when the core moves to the retracted position side farther from the first mold than the molding position, the resin leaks out of the cavity during molding because the vent is shielded. Can be effectively suppressed. On the other hand, after the molding, when the core is moved in the direction away from the first mold with respect to the second mold, air is introduced from the outside through the opened vent to solidify. The core can be easily peeled off from the resin, and the solidified resin can be effectively cooled by the external cold air flowing in through the vent.

本発明によれば、成形時の不具合を抑制できる成形方法及び成形装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the shaping | molding method and shaping | molding apparatus which can suppress the malfunction at the time of shaping | molding can be provided.

以下、図面を参照して本発明の実施の形態について説明する。図1は、光学素子としてのレンズを、成形装置を用いて成形する工程を示す図である。成形装置は、第1の型10と第2の型20とコア30とを含む。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a process of molding a lens as an optical element using a molding apparatus. The molding apparatus includes a first mold 10, a second mold 20, and a core 30.

第1の型10は、光学面転写面10aとフランジ部転写面10bとを有する。第2の型20は、中央に形成された円筒状の開口20aと、開口20aの周囲において第1の型10のフランジ部転写面10bに対向するフランジ部転写面20bを有する。円筒状の開口20a内には、円筒状のコア30が相対摺動可能に配置されている。コア30は、第1の型10の光学面転写面10aに対向して、光学面転写面30aを有する。第1の型10の光学面転写面20aとフランジ部転写面10bとで、第1の成形転写面を構成し、コア30の光学面転写面30aと第2の型20のフランジ部転写面20bとで、第2の成形転写面を構成する。尚、第1の型10の光学面転写面10aよりも、コア30の光学面転写面30aの曲率を大きくすると良い。   The first mold 10 has an optical surface transfer surface 10a and a flange portion transfer surface 10b. The second mold 20 has a cylindrical opening 20a formed at the center and a flange part transfer surface 20b facing the flange part transfer surface 10b of the first mold 10 around the opening 20a. A cylindrical core 30 is slidably disposed in the cylindrical opening 20a. The core 30 has an optical surface transfer surface 30 a facing the optical surface transfer surface 10 a of the first mold 10. The optical surface transfer surface 20a of the first mold 10 and the flange portion transfer surface 10b constitute a first molding transfer surface. The optical surface transfer surface 30a of the core 30 and the flange portion transfer surface 20b of the second die 20 are formed. And constitutes a second molding transfer surface. The curvature of the optical surface transfer surface 30a of the core 30 is preferably larger than that of the optical surface transfer surface 10a of the first mold 10.

第1の型10は固定され、第2の型20は不図示の油圧シリンダ等により第1の型10に対して光軸方向(図1で左右方向)に相対移動可能となっている。コア30は、ボールガイドBGに支持されて、第2の型20に対して高精度に光軸方向に移動可能となっている。   The first mold 10 is fixed, and the second mold 20 can be moved relative to the first mold 10 in the optical axis direction (left-right direction in FIG. 1) by a hydraulic cylinder (not shown) or the like. The core 30 is supported by the ball guide BG and can move in the optical axis direction with high accuracy with respect to the second mold 20.

第2の型20は、開口20aを挟んで両側に一対の小開口20c、20cを形成している。フランジ部転写面20bに開口した小開口20c、20c内には、イジェクトピン21,21が配置されており、不図示の油圧シリンダ等によってフランジ部転写面20bから突き出し、或いは小開口20c、20c内に引き込むように構成されている。   The second mold 20 has a pair of small openings 20c and 20c on both sides of the opening 20a. Eject pins 21 and 21 are disposed in the small openings 20c and 20c opened on the flange transfer surface 20b, and protrude from the flange transfer surface 20b by a hydraulic cylinder (not shown) or in the small openings 20c and 20c. It is configured to be pulled into.

(第1の成形方法)
次に、光学素子の第1の成形方法について説明する。まず、第2の型20に対向するようにして第1の型10をセットする。かかる初期状態で、コア30は第2の型20の成形位置(図1(a)に示す位置)にあり、イジェクトピン21,21は小開口20c、20c内に引き込まれている。その後、図1(a)に示すように、第2の型20に対して第1の型10を相対的に接近させ密着させて、所定の保圧にて型締めを行う。
(First molding method)
Next, a first molding method of the optical element will be described. First, the first mold 10 is set so as to face the second mold 20. In such an initial state, the core 30 is at the molding position of the second mold 20 (position shown in FIG. 1A), and the eject pins 21 and 21 are drawn into the small openings 20c and 20c. Thereafter, as shown in FIG. 1A, the first mold 10 is relatively approached and brought into close contact with the second mold 20, and the mold is clamped with a predetermined holding pressure.

更に第1の型10と第2の型20とを不図示のヒータにより加熱することにより、型締め時点での光学面転写面10a、30aを所定温度まで加熱した後、不図示のノズルからゲートGTを介して任意の圧力に加圧された状態で樹脂を供給する。   Further, by heating the first mold 10 and the second mold 20 with a heater (not shown), the optical surface transfer surfaces 10a and 30a at the time of mold clamping are heated to a predetermined temperature, and then the nozzle (not shown) gates. Resin is supplied in a state of being pressurized to an arbitrary pressure via GT.

次に、溶融した樹脂が光学面転写面10a、30a,フランジ部転写面10b、20bの形状を転写した状態で固化した後、型温度を低下させて樹脂を冷却して固化させる。   Next, after the molten resin is solidified in a state where the shapes of the optical surface transfer surfaces 10a and 30a and the flange portion transfer surfaces 10b and 20b are transferred, the mold temperature is lowered to cool and solidify the resin.

その後、図1(b)において、第1の型10と第2の型20とを相対的に移動させて型開きを行う前に、コア30を第2の型20に対して引き込まれた引き込み位置へと移動させる。このときコア30の光学面転写面30aと、成形された光学素子OEとの接着力に関わらず、光学素子OEはフランジ部を第2の型20のフランジ部転写面20bにより支持されているので、コア30に追従することなくその位置に留まり、効率的にコア30と光学素子OEとの分離を行える。更に、コア30と、成形された光学素子OEとの間の空間には、開口20aとコア30との間の隙間を介して外部から空気が流入するので、コア30の引き込みが阻害されることはない。以上により、コア30を第1の型10側に押し出す場合に比べ、コア30が光学素子OEの光学面を変形させる恐れがなく、より高精度な成形を行うことができる。   Thereafter, in FIG. 1B, the core 30 is drawn into the second mold 20 before the mold is opened by relatively moving the first mold 10 and the second mold 20. Move to position. At this time, the optical element OE is supported by the flange portion transfer surface 20b of the second mold 20 regardless of the adhesive force between the optical surface transfer surface 30a of the core 30 and the molded optical element OE. The core 30 stays at that position without following the core 30, and the core 30 and the optical element OE can be efficiently separated. Furthermore, since air flows from the outside into the space between the core 30 and the molded optical element OE through the gap between the opening 20a and the core 30, the pull-in of the core 30 is hindered. There is no. By the above, compared with the case where the core 30 is extruded to the 1st type | mold 10 side, there is no possibility that the core 30 may deform | transform the optical surface of the optical element OE, and more highly accurate shaping | molding can be performed.

かかる状態では、成形された光学素子OEは、殆ど、そのフランジ部のみが第2の型20のフランジ部転写面20bに貼り付いた状態となり、その接着力は弱いといえる。よって、図1(c)に示すように、イジェクトピン21,21を小開口20c、20cから突き出すようにすると、その先端が、光学素子OEの光学面以外のフランジ部を押圧するので、軽い突き出し力で容易に第2の型20から光学素子OEを引き剥がすことができる。この方法により通常のピン突き出し方法やコア突き出し方法に比べ、光学面の離型のための力と成形品の取り出しのための力を分散することができるため、従来より高精度な面成形と容易な取り出しとが可能となる。尚、イジェクトピン21,21は第1の型10の型開きと同時に突き出しても良い。又、イジェクトピンを用いず、作業者がピンセットなどで光学素子OEを取り出しても良い。   In such a state, the molded optical element OE is almost in a state where only its flange portion is attached to the flange portion transfer surface 20b of the second mold 20, and it can be said that the adhesive force is weak. Therefore, as shown in FIG. 1 (c), when the eject pins 21 and 21 are projected from the small openings 20c and 20c, the tip presses the flange portion other than the optical surface of the optical element OE. The optical element OE can be easily peeled off from the second mold 20 by force. Compared with the normal pin extrusion method and core extrusion method, this method can disperse the force for releasing the optical surface and the force for taking out the molded product. Can be removed. The eject pins 21 and 21 may protrude at the same time as the mold opening of the first mold 10. Further, the operator may take out the optical element OE with tweezers or the like without using the eject pin.

(第2の成形方法)
次に、光学素子の第2の成形方法について説明する。上述した成形方法に対して、図1(b)に示すように、第1の型10と第2の型20とを相対的に移動させて型開きを行うと同時に、コア30を第2の型20に対して引き込まれた引き込み位置へと移動させる点のみが異なる。このときコア30と、成形された光学素子OEとの間の空間には、開口20aとコア30との間の隙間を介して外部から空気が流入する。即ち、光学素子OEにおける光学面転写面10aとフランジ部転写面10bにより成形された一方の面と、光学面転写面30aとフランジ部転写面20bにより成形された他方の面とは、同時に空気に触れて冷却されるので、両面での冷却状態の差が従来より縮まり、それにより高精度な成形を行うことができる。
(Second molding method)
Next, a second molding method of the optical element will be described. In contrast to the molding method described above, as shown in FIG. 1B, the first mold 10 and the second mold 20 are moved relatively to perform mold opening, and at the same time, the core 30 is moved to the second mold. The only difference is that the mold 20 is moved to the retracted position. At this time, air flows from the outside into the space between the core 30 and the molded optical element OE through the gap between the opening 20 a and the core 30. That is, one surface formed by the optical surface transfer surface 10a and the flange portion transfer surface 10b and the other surface formed by the optical surface transfer surface 30a and the flange portion transfer surface 20b in the optical element OE are simultaneously exposed to air. Since it is touched and cooled, the difference in the cooling state on both sides is reduced as compared with the conventional case, whereby high-precision molding can be performed.

図2は、変形例にかかる成形装置の概略断面図である。変形例にかかる成形装置は、図1の成形装置に対して、第2の型20の側壁に、開口20aに連通する通気口20dを形成している点が異なる。それ以外の構成は共通するので説明を省略する。   FIG. 2 is a schematic cross-sectional view of a molding apparatus according to a modification. The molding apparatus according to the modified example is different from the molding apparatus of FIG. 1 in that a vent 20d communicating with the opening 20a is formed on the side wall of the second mold 20. Since the other configuration is common, the description thereof is omitted.

通気口20dは、コア30が第2の型20に対して成形位置(点線)にあるときには、コア30の外周面によって遮蔽されているが、コア30が第2の型20に対して成形位置から引き込み位置(実線)へと移動を開始した直後に、コア30と、成形された光学素子OEとの間の空間に連通する位置に設けられている。通気口20dは、小開口20c、20cと異なる位相(例えば光軸回りに90度位相)で配置されていると好ましい。   The vent 20 d is shielded by the outer peripheral surface of the core 30 when the core 30 is in the molding position (dotted line) with respect to the second mold 20, but the core 30 is molded with respect to the second mold 20. Immediately after starting to move from the position to the retracted position (solid line), it is provided at a position communicating with the space between the core 30 and the molded optical element OE. The vent 20d is preferably arranged with a phase different from that of the small openings 20c and 20c (for example, 90 degrees around the optical axis).

本変形例によれば、成形時には、成形位置にあるコア30により通気口20dが遮蔽されるため、それを介してキャビティ側から樹脂が漏れ出ることを有効に抑制できる。一方、第1の型10と第2の型20とを相対的に移動させて型開きを行う前或いは同時に、コア30を第2の型20に対して引き込まれた引き込み状態へと移動させると、通気口20dが開放し、それによりコア30と成形された光学素子OEとの間の空間には、通気口20dを介して外部から空気が流入するので、コア30の引き込みをより迅速に行うことができる。   According to the present modification, the vent 20d is shielded by the core 30 at the molding position during molding, so that it is possible to effectively prevent the resin from leaking from the cavity side via the vent 20d. On the other hand, when the core 30 is moved to the retracted state with respect to the second mold 20 before or simultaneously with the relative movement of the first mold 10 and the second mold 20 to perform mold opening. The air vent 20d is opened, so that air flows into the space between the core 30 and the molded optical element OE from the outside through the air vent 20d, so that the core 30 is pulled in more quickly. be able to.

本発明によれば、成形時の不具合を抑制できる成形方法及び成形装置を提供することができるが、成形の対象は光学素子に限られず、種々の製品が対象になる。   According to the present invention, it is possible to provide a molding method and a molding apparatus that can suppress problems during molding, but the object of molding is not limited to optical elements, and various products are targeted.

光学素子としてのレンズを、成形装置を用いて成形する工程を示す図である。It is a figure which shows the process of shape | molding the lens as an optical element using a shaping | molding apparatus. 変形例にかかる成形装置の概略断面図である。It is a schematic sectional drawing of the shaping | molding apparatus concerning a modification.

10 第1の型
10a 光学面転写面
10b フランジ部転写面
20 第2の型
20a 光学面転写面
20a 開口
20b フランジ部転写面
20c 小開口
20d 通気口
21 イジェクトピン
30 コア
30a 光学面転写面
BG ボールガイド
GT ゲート
OE 光学素子
DESCRIPTION OF SYMBOLS 10 1st type | mold 10a Optical surface transfer surface 10b Flange part transfer surface 20 2nd type | mold 20a Optical surface transfer surface 20a Opening 20b Flange part transfer surface 20c Small opening 20d Vent 21 Eject pin 30 Core 30a Optical surface transfer surface BG Ball Guide GT Gate OE Optical element

Claims (4)

第1の成形転写面を備えた第1の型と、前記第1の成形転写面に対向して第2の成形転写面の一部を備え前記第1の型に対して相対的に移動可能な第2の型と、前記第2の成形転写面の残りを形成し前記第2の型に対して相対的に移動可能なコアとを有する成形装置を用いた成形方法において、
前記第1の型と前記第2の型とを型締めした後に、前記第1の成形転写面と前記第2の成形転写面との間に樹脂を注入するステップと、
前記樹脂が固化した後に、前記第1の型と前記第2の型とを離れる方向に相対的に移動させるステップと、を有し、
前記第1の型と前記第2の型とを離れる方向に相対的に移動させる前もしくはそれと同時に、前記第2の型に対して前記コアを、前記第1の型から離れる方向に移動させることを特徴とする成形方法。
A first mold having a first molding transfer surface and a part of a second molding transfer surface opposite to the first molding transfer surface and movable relative to the first mold. In a molding method using a molding apparatus having a second mold and a core that forms the remainder of the second molding transfer surface and is movable relative to the second mold,
Injecting a resin between the first molding transfer surface and the second molding transfer surface after clamping the first mold and the second mold; and
Moving the first mold and the second mold in a direction away from each other after the resin has solidified,
Before or at the same time as moving the first mold and the second mold relatively away from each other, the core is moved relative to the second mold in a direction away from the first mold. A molding method characterized by the above.
前記成形装置は前記第2の型に対して突き出し可能なイジェクトピンを有し、前記第2の型に対して前記コアを前記第1の型から離れる方向に移動させた後もしくはそれと同時に、前記イジェクトピンを固化した樹脂に向かって突き出すことを特徴とする請求項1に記載の成形方法。   The molding apparatus has an eject pin that can be protruded with respect to the second mold, and after or simultaneously with moving the core away from the first mold with respect to the second mold, The molding method according to claim 1, wherein the eject pin protrudes toward the solidified resin. 前記第2の型に対して前記コアを、前記第1の型から離れる方向に移動させる際に、前記コアと、固化した樹脂との間に空気を導入することを特徴とする請求項1又は2に記載の成形方法。   The air is introduced between the core and the solidified resin when the core is moved away from the first mold with respect to the second mold. 2. The molding method according to 2. 第1の成形転写面を備えた第1の型と、
開口と、前記第1の成形転写面に対向する第2の成形転写面の一部とを備え、前記第1の型に対して相対的に移動可能な第2の型と、
前記第2の成形転写面の残りを形成し、前記第2の型の開口内に配置されて前記第2の型に対して相対的に移動可能なコアと、を有し、
前記第2の型は、前記開口と外部とを連通するための通気口を設けており、前記通気口は、前記コアが成形位置にあるときには遮蔽されているが、前記コアが前記成形位置よりも前記第1の型から離れた引き込み位置側に移動したときに開放するようになっていることを特徴とする成形装置。
A first mold with a first molding transfer surface;
A second mold that includes an opening and a part of the second molding transfer surface facing the first molding transfer surface, and is movable relative to the first mold;
A core that forms the remainder of the second mold transfer surface and is disposed within the opening of the second mold and is movable relative to the second mold;
The second mold is provided with a vent for communicating the opening and the outside. The vent is shielded when the core is in the molding position, but the core is more than the molding position. The molding apparatus is also configured to open when moved to the retracted position side away from the first mold.
JP2009054951A 2009-03-09 2009-03-09 Molding method and molding apparatus Withdrawn JP2010208080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054951A JP2010208080A (en) 2009-03-09 2009-03-09 Molding method and molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054951A JP2010208080A (en) 2009-03-09 2009-03-09 Molding method and molding apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013063921A Division JP2013126774A (en) 2013-03-26 2013-03-26 Molding apparatus

Publications (1)

Publication Number Publication Date
JP2010208080A true JP2010208080A (en) 2010-09-24

Family

ID=42968810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054951A Withdrawn JP2010208080A (en) 2009-03-09 2009-03-09 Molding method and molding apparatus

Country Status (1)

Country Link
JP (1) JP2010208080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037038A1 (en) * 2009-09-28 2011-03-31 コニカミノルタオプト株式会社 Die and molding method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155935A (en) * 1995-12-04 1997-06-17 Hoya Corp Ejecting method of molding in injection molding device
JPH09216263A (en) * 1995-12-04 1997-08-19 Hoya Corp Injection compression molding of glasses lens
JPH1110684A (en) * 1997-06-23 1999-01-19 Ricoh Co Ltd Mold for injection molding
JPH1142685A (en) * 1997-07-28 1999-02-16 Canon Inc Releasing mechanism for mold for molding and method for molding
JP2001047456A (en) * 1999-08-10 2001-02-20 Honda Motor Co Ltd Device and method for manufacturing fresnel lens
JP2002326260A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and mold for molding plastic molded product
JP2008044124A (en) * 2006-08-11 2008-02-28 Nikon Corp Mold and manufacturing method of optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155935A (en) * 1995-12-04 1997-06-17 Hoya Corp Ejecting method of molding in injection molding device
JPH09216263A (en) * 1995-12-04 1997-08-19 Hoya Corp Injection compression molding of glasses lens
JPH1110684A (en) * 1997-06-23 1999-01-19 Ricoh Co Ltd Mold for injection molding
JPH1142685A (en) * 1997-07-28 1999-02-16 Canon Inc Releasing mechanism for mold for molding and method for molding
JP2001047456A (en) * 1999-08-10 2001-02-20 Honda Motor Co Ltd Device and method for manufacturing fresnel lens
JP2002326260A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and mold for molding plastic molded product
JP2008044124A (en) * 2006-08-11 2008-02-28 Nikon Corp Mold and manufacturing method of optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037038A1 (en) * 2009-09-28 2011-03-31 コニカミノルタオプト株式会社 Die and molding method

Similar Documents

Publication Publication Date Title
TWI258763B (en) Molding method and mold
JP2009255468A (en) Two-color molding die and two-color molding method
JP2006264192A (en) Plastic optical element and method for molding the same
JP2007301861A (en) Injection molding method
JP3867966B2 (en) OPTICAL ELEMENT, MOLD FOR MOLDING, AND METHOD FOR PRODUCING OPTICAL ELEMENT
JP2010208080A (en) Molding method and molding apparatus
JP5479704B2 (en) Two-color molded product and its manufacturing method
JP2017213683A (en) Film in-mold injection molding die assembly and injection molding method
JP2013126774A (en) Molding apparatus
JP2008230005A (en) Plastic lens molding method and lens preform
JP2010269532A (en) Resin lens molding method and resin lens die
JP5103772B2 (en) Optical lens injection mold
JP2010083025A (en) Method for manufacturing optical element and metallic mold for molding optical element
JP2010234637A (en) Molding apparatus
KR100818580B1 (en) Disc molding die, mirror-surface plate and molded object
JP2002187160A (en) Molding tool and moldings
JP2008087407A (en) Injection-molding method
JP4936935B2 (en) Plastic molding device for plastic optical element and resin molding method
JP2008238687A (en) Mold device, injection molding method, and optical element
JP4203903B2 (en) Valve gate type mold equipment
WO2013146871A1 (en) Method and device for manufacturing thermoplastic resin product
JP2007260916A (en) Mold for injection-molding optical lens
JP2020069772A (en) Injection molding method
JP4242621B2 (en) Injection molding method for plastic optical components
JP2008055712A (en) Transfer method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130508

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130508