JP2010207999A - Single crystal diamond tool - Google Patents

Single crystal diamond tool Download PDF

Info

Publication number
JP2010207999A
JP2010207999A JP2009059580A JP2009059580A JP2010207999A JP 2010207999 A JP2010207999 A JP 2010207999A JP 2009059580 A JP2009059580 A JP 2009059580A JP 2009059580 A JP2009059580 A JP 2009059580A JP 2010207999 A JP2010207999 A JP 2010207999A
Authority
JP
Japan
Prior art keywords
single crystal
crystal diamond
groove
shank
diamond tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009059580A
Other languages
Japanese (ja)
Other versions
JP5279561B2 (en
Inventor
Yoichiro Shimoda
陽一朗 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2009059580A priority Critical patent/JP5279561B2/en
Publication of JP2010207999A publication Critical patent/JP2010207999A/en
Application granted granted Critical
Publication of JP5279561B2 publication Critical patent/JP5279561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide further excellent machining accuracy when highly accurate machining such as mirror finishing is performed by a dry method by using a single crystal diamond tool. <P>SOLUTION: A plurality of annular grooves 30 as grooves for heat radiation are provided on an outer peripheral surface of a body 12, and thereby a temperature rise of the body 12 due to heating generated in cutting edges 24 and 26 and a rake face 22, etc. during cutting and further thermal expansion of the body 12 according to the temperature rise are suppressed. As a result, position changes of cutting edges 24 and 26 of the single crystal diamond 14 caused by the thermal expansion of the body 12, that is, displacement to an axial direction distal end side is suppressed, to obtain further excellent machining accuracy, even when the highly accurate machining such as mirror finishing is performed by the dry method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は単結晶ダイヤモンド工具に係り、特に、乾式で鏡面仕上げ等の高精度加工を行う際に一層優れた加工精度が得られるようにする技術に関するものである。   The present invention relates to a single crystal diamond tool, and more particularly to a technique for obtaining a further excellent machining accuracy when performing a high precision machining such as a mirror finish in a dry method.

切れ刃を有する単結晶ダイヤモンドが超硬合金のボデーに一体的に固設され、その切れ刃によって切削加工を行う単結晶ダイヤモンド工具、例えば単結晶ダイヤモンドエンドミルや単結晶ダイヤモンドバイトが提案されている(特許文献1、2参照)。   Single crystal diamond tools, such as a single crystal diamond end mill and a single crystal diamond tool, in which single crystal diamond having a cutting edge is integrally fixed to a cemented carbide body and cutting is performed with the cutting edge have been proposed ( (See Patent Documents 1 and 2).

特開2004−148471号公報JP 2004-148471 A 特開2006−35359号公報JP 2006-35359 A

このような単結晶ダイヤモンド工具は、小さな切込み量(例えば数μm)で早送りされることにより鏡面仕上げ等の高精度加工を行う際に好適に用いられ、そのような高精度加工では切削油剤を使用しない乾式で使用されることが多い。その場合に、図2に示すようにダイヤモンドの熱伝導率は5程度であるのに対し、ボデーを構成している超硬合金の熱伝導率は0.08〜0.29程度と小さいため、切削加工の際に単結晶ダイヤモンドの切れ刃やすくい面等に生じた熱は速やかにボデーに伝達されるとともに、そのボデーに蓄積されて温度が上昇する。超硬合金の熱膨張係数は5.1〜7.6程度であり、温度上昇に伴ってボデーが膨張しても、通常の加工であれば殆ど問題になることはないが、鏡面仕上げ等の高精度加工では、ボデーの熱膨張による単結晶ダイヤモンドの切れ刃の僅かな位置変化に起因して加工精度が影響を受けることがあった。   Such a single crystal diamond tool is suitably used for high precision machining such as mirror finish by being fast-fed with a small depth of cut (for example, several μm), and cutting oil is used in such high precision machining. It is often used dry. In that case, as shown in FIG. 2, the thermal conductivity of diamond is about 5, whereas the thermal conductivity of the cemented carbide constituting the body is as small as about 0.08 to 0.29. The heat generated on the surface of the single crystal diamond that is easy to cut during the cutting process is quickly transferred to the body, and is accumulated in the body to increase the temperature. The thermal expansion coefficient of cemented carbide is about 5.1 to 7.6, and even if the body expands as the temperature rises, there is almost no problem if it is normal processing. In high-precision machining, the machining accuracy may be affected by a slight change in the position of the cutting edge of the single crystal diamond due to the thermal expansion of the body.

本発明は以上の事情を背景として為されたもので、その目的とするところは、単結晶ダイヤモンド工具を用いて乾式で鏡面仕上げ等の高精度加工を行う際に一層優れた加工精度が得られるようにすることにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to obtain even higher processing accuracy when performing high-precision processing such as mirror finish in a dry process using a single crystal diamond tool. There is in doing so.

かかる目的を達成するために、第1発明は、切れ刃を有する単結晶ダイヤモンドが超硬合金のボデーに一体的に固設され、その切れ刃によって切削加工を行う単結晶ダイヤモンド工具において、前記ボデーの外周面には放熱用溝が設けられていることを特徴とする。   In order to achieve such an object, the first invention provides a single crystal diamond tool in which a single crystal diamond having a cutting edge is integrally fixed to a cemented carbide body, and cutting is performed by the cutting edge. A heat dissipation groove is provided on the outer peripheral surface of the slab.

第2発明は、第1発明の単結晶ダイヤモンド工具において、(a) 前記ボデーは、軸心Oまわりに回転駆動されるシャンクと前記単結晶ダイヤモンドが一体的に固設されるダイヤ取付部とを一体に有するエンドミル用のもので、(b) 前記放熱用溝は、前記シャンクの外周面に軸心Oに対して直角に全周に設けられた環状溝であることを特徴とする。   A second invention is the single crystal diamond tool according to the first invention, wherein (a) the body includes a shank that is rotationally driven around an axis O and a diamond attachment portion on which the single crystal diamond is integrally fixed. (B) The heat radiating groove is an annular groove provided on the outer peripheral surface of the shank at a right angle to the axis O on the entire circumference.

第3発明は、第2発明の単結晶ダイヤモンド工具において、前記環状溝は、前記シャンクの軸方向に所定の間隔を隔てて複数設けられていることを特徴とする。   According to a third aspect of the present invention, in the single crystal diamond tool of the second aspect, a plurality of the annular grooves are provided at predetermined intervals in the axial direction of the shank.

第4発明は、第2発明または第3発明の単結晶ダイヤモンド工具において、(a) 前記環状溝の溝深さおよび溝幅は、何れも0.3mm〜1.0mmの範囲内で、(b) その環状溝は前記ボデーの先端から20mm以下の範囲内に設けられていることを特徴とする。   4th invention is the single crystal diamond tool of 2nd invention or 3rd invention, (a) The groove depth and groove width of the said annular groove are all in the range of 0.3 mm-1.0 mm, (b The annular groove is provided within a range of 20 mm or less from the tip of the body.

このような単結晶ダイヤモンド工具においては、ボデーの外周面に放熱用溝が設けられているため、切削加工の際に切れ刃やすくい面等に生じる発熱によるボデーの温度上昇、更にはその温度上昇に伴うボデーの熱膨張が抑制される。これにより、乾式で鏡面仕上げ等の高精度加工を行う場合でも、ボデーの熱膨張に起因する単結晶ダイヤモンドの切れ刃の位置変化が抑制されて、一層優れた加工精度が得られるようになる。また、このようにボデーの温度上昇が抑制されると、単結晶ダイヤモンドそのものの温度上昇も軽減されるため、黒鉛化による寿命低下が抑制される。   In such a single crystal diamond tool, since a heat radiating groove is provided on the outer peripheral surface of the body, the temperature of the body rises due to heat generated on a surface that is easy to cut during cutting, and further, the temperature rises. The thermal expansion of the body accompanying the is suppressed. Thereby, even when performing high precision processing such as mirror finish by dry processing, the position change of the cutting edge of the single crystal diamond due to the thermal expansion of the body is suppressed, so that further excellent processing accuracy can be obtained. In addition, when the temperature rise of the body is suppressed in this way, the temperature rise of the single crystal diamond itself is also reduced, so that the lifetime reduction due to graphitization is suppressed.

第2発明は単結晶ダイヤモンドエンドミルに関するもので、シャンクの外周面に軸心Oに対して直角に設けられた環状溝が放熱用溝として用いられるため、シャンクが軸心Oまわりに回転駆動される際に環状溝内の空気が良好に入れ替えられて優れた放熱性能が得られ、ボデーの温度上昇が効果的に抑制される。   The second invention relates to a single crystal diamond end mill, and an annular groove provided at a right angle to the axis O on the outer peripheral surface of the shank is used as a heat radiating groove, so that the shank is rotationally driven around the axis O. At the same time, the air in the annular groove is exchanged well to obtain excellent heat dissipation performance, and the temperature rise of the body is effectively suppressed.

第3発明では、上記環状溝がシャンクの軸方向に所定の間隔を隔てて複数設けられているため、放熱性能が更に向上してボデーの温度上昇が一層効果的に抑制される。   In the third invention, since the plurality of the annular grooves are provided at predetermined intervals in the axial direction of the shank, the heat dissipation performance is further improved and the temperature rise of the body is further effectively suppressed.

第4発明では、上記環状溝の溝深さおよび溝幅が何れも0.3mm〜1.0mmの範囲内であるため、シャンクの剛性や強度を維持しつつ所定の放熱性能が得られる。すなわち、単結晶ダイヤモンドエンドミルは、一般に切れ刃(外周刃)の径寸法が3mm程度以下の小径で、シャンク径はそれよりも大きいとともに、小さな切込み量で使用されるため切削負荷が小さく、環状溝の溝深さおよび溝幅が1.0mm以下であれば、シャンクの剛性や強度には殆ど影響しないのである。また、環状溝はボデーの先端から20mm以下の範囲内に設けられているため、単結晶ダイヤモンドからボデーへ伝達された熱が環状溝によって良好に放熱され、ボデーの熱膨張に起因する単結晶ダイヤモンドの切れ刃の位置変化や単結晶ダイヤモンドそのものの温度上昇が一層効果的に抑制される。   In the fourth aspect of the invention, since the groove depth and groove width of the annular groove are both in the range of 0.3 mm to 1.0 mm, predetermined heat dissipation performance can be obtained while maintaining the rigidity and strength of the shank. That is, a single crystal diamond end mill generally has a small diameter of the cutting edge (outer peripheral edge) of about 3 mm or less, a shank diameter larger than that, and a small cutting amount so that the cutting load is small, and the annular groove If the groove depth and groove width are 1.0 mm or less, the rigidity and strength of the shank are hardly affected. Also, since the annular groove is provided within a range of 20 mm or less from the tip of the body, the heat transferred from the single crystal diamond to the body is well dissipated by the annular groove, and the single crystal diamond resulting from the thermal expansion of the body The position change of the cutting edge and the temperature rise of the single crystal diamond itself are further effectively suppressed.

本発明の一実施例である単結晶ダイヤモンドエンドミルを示す図で、(a) は軸心Oと直角方向から見た平面図、(b) は単結晶ダイヤモンドが設けられた先端部分の拡大図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the single crystal diamond end mill which is one Example of this invention, (a) is the top view seen from the axial center O, (b) is an enlarged view of the front-end | tip part in which the single crystal diamond was provided. is there. ダイヤモンドおよび超硬合金の熱伝導率、熱膨張係数を示す図である。It is a figure which shows the thermal conductivity of a diamond and a cemented carbide, and a thermal expansion coefficient.

本発明の単結晶ダイヤモンド工具は、単結晶ダイヤモンドエンドミルや単結晶ダイヤモンドバイトに好適に適用される。また、単結晶ダイヤモンドエンドミルとしては、切れ刃として外周刃および底刃を有するスクエアエンドミルやラジアスエンドミルに好適に適用されるが、切れ刃としてボール刃を有するボールエンドミルにも適用され得る。   The single crystal diamond tool of the present invention is suitably applied to a single crystal diamond end mill or a single crystal diamond tool. The single crystal diamond end mill is preferably applied to a square end mill or a radius end mill having an outer peripheral edge and a bottom edge as a cutting edge, but can also be applied to a ball end mill having a ball edge as a cutting edge.

単結晶ダイヤモンドとしては、人工ダイヤモンドでも天然ダイヤモンドでも良い。人工ダイヤモンドの場合、基本的に6つの{100}面(ミラー指数)を備える六面体形状、すなわち隣接する面が互いに直角な立方体や直方体で、一般に天然ダイヤモンドに比べて耐摩耗性は劣るものの、個々のばらつきが小さく、安定した品質が得られる。その立方体や直方体の人工ダイヤモンドの稜線をそのまま切れ刃として使用し、{100}面をすくい面として使用することもできるが、人工ダイヤモンドの一部を研磨除去するなどして{100}面から所定角度傾斜した面や他の結晶面をすくい面としても良いなど種々の態様が可能である。   The single crystal diamond may be artificial diamond or natural diamond. In the case of an artificial diamond, it is basically a hexahedral shape having six {100} faces (Miller indices), that is, a cube or a rectangular parallelepiped whose adjacent faces are perpendicular to each other. The dispersion of is small, and stable quality can be obtained. The ridgeline of the cubic or rectangular parallelepiped artificial diamond can be used as a cutting edge as it is, and the {100} plane can be used as a rake face. Various modes are possible, such as a surface that is inclined at an angle or another crystal plane may be used as a rake face.

単結晶ダイヤモンドは、例えば活性金属ロウによるロウ接等によりボデーのダイヤ取付部に接着されるが、ねじ等を用いた機械的なクランプ手段により一体的に固設することもできる。活性金属ロウによる接着は、脱酸素雰囲気中で単結晶ダイヤモンドを加熱することによりチタン(Ti)やクロム(Cr)等の活性金属の膜を表面に生じさせ(メタライズ)、銀および銅を含む銀ロウでその単結晶ダイヤモンドを超硬合金のボデーに対して直接接着するものである。   The single crystal diamond is bonded to the body diamond mounting portion by, for example, brazing with an active metal braze or the like, but can be integrally fixed by mechanical clamping means using screws or the like. Adhesion with active metal brazing produces a film of active metal such as titanium (Ti) or chromium (Cr) on the surface by heating single crystal diamond in a deoxygenated atmosphere (metallized), and silver containing silver and copper The single crystal diamond is directly bonded to the cemented carbide body by brazing.

放熱用溝は複数本設けることが望ましいが、少なくとも1本設けられれば良い。放熱用溝の形状は、ボデーの形状に応じて適宜定められ、ボデーの長手方向と平行に設けたり、その長手方向と直角な方向に設けたりするなど種々の態様が可能である。放熱用溝の断面形状は、角形やV字形、半円弧形、U字形など種々の態様が可能である。   Although it is desirable to provide a plurality of heat dissipation grooves, it is sufficient to provide at least one groove. The shape of the heat radiating groove is appropriately determined according to the shape of the body, and various modes are possible such as being provided in parallel to the longitudinal direction of the body or in a direction perpendicular to the longitudinal direction. The cross-sectional shape of the heat radiating groove may be various forms such as a square shape, a V shape, a semicircular arc shape, and a U shape.

第2発明のエンドミル用のボデーは、円柱形状のシャンクの先端にダイヤ取付部が直接設けられても良いが、径寸法が漸減するテーパ部等を介してその先端にダイヤ取付部が設けられても良い。放熱用溝としての環状溝は、円柱形状部分に設けることもできるし、テーパ部等の径寸法が漸減する部分に設けることもできる。   The end mill body of the second invention may be provided with a diamond attachment portion directly at the tip of the cylindrical shank, but with a diamond attachment portion provided at the tip via a taper portion or the like whose diameter is gradually reduced. Also good. The annular groove as the heat radiating groove can be provided in a cylindrical portion, or can be provided in a portion where the diameter dimension is gradually reduced, such as a tapered portion.

放熱用溝の溝深さおよび溝幅は、例えば0.3mm〜1.0mm程度の範囲内で設定することが望ましいが、ボデーの大きさに応じて1.0mmを超える溝深さや溝幅で放熱用溝を形成することも可能である。単結晶ダイヤモンドエンドミルにおいて放熱用溝として環状溝を設ける場合、溝底径が単結晶ダイヤモンドの外周刃の径寸法以上となるように溝深さを設定することが望ましい。   The groove depth and groove width of the heat dissipating groove are preferably set within a range of, for example, about 0.3 mm to 1.0 mm. However, depending on the size of the body, the groove depth and groove width exceed 1.0 mm. It is also possible to form a heat dissipation groove. When an annular groove is provided as a heat dissipation groove in a single crystal diamond end mill, it is desirable to set the groove depth so that the groove bottom diameter is equal to or larger than the diameter of the outer peripheral edge of the single crystal diamond.

第4発明では、環状溝がボデーの先端から20mm以下の範囲内に設けられるが、20mm以下の範囲内に少なくとも1本の環状溝が設けられれば良く、20mmを超えた位置まで環状溝を設けることも可能である。また、ボデーの先端から10mm以下など、できるだけ単結晶ダイヤモンドに近い部分に設けることが望ましい。   In the fourth invention, the annular groove is provided within a range of 20 mm or less from the front end of the body. However, it is sufficient that at least one annular groove is provided within a range of 20 mm or less, and the annular groove is provided up to a position exceeding 20 mm. It is also possible. Moreover, it is desirable to provide it as close to the single crystal diamond as possible, such as 10 mm or less from the tip of the body.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である単結晶ダイヤモンドエンドミル10を示す図で、(a) は軸心Oと直角方向から見た平面図、(b) は工具先端部分の拡大図である。この単結晶ダイヤモンドエンドミル10は、超硬合金製の軸状のボデー12と、そのボデー12の先端に一体的に固設された単結晶ダイヤモンド14とを備えている。ボデー12は、円柱形状のシャンク16の先端にダイヤ取付部18が同心に一体に設けられたもので、円柱形状のダイヤ取付部18の一部を研磨除去するなどして形成された取付座20に単結晶ダイヤモンド14が活性金属ロウによるロウ接等により一体的に接着(固設)されている。シャンク16は、径寸法(シャンク径)Dが約4mmで、先端部には先端側程小径となるテーパ部16tが設けられており、そのテーパ部16tの先端にダイヤ取付部18が設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A and 1B are diagrams showing a single crystal diamond end mill 10 according to an embodiment of the present invention, in which FIG. 1A is a plan view seen from a direction perpendicular to an axis O, and FIG. 1B is an enlarged view of a tool tip portion. . This single crystal diamond end mill 10 includes a cemented carbide shaft-shaped body 12 and a single crystal diamond 14 integrally fixed to the tip of the body 12. The body 12 has a diamond mounting portion 18 provided concentrically and integrally at the tip of a cylindrical shank 16, and a mounting seat 20 formed by polishing and removing a part of the cylindrical diamond mounting portion 18. The single crystal diamond 14 is integrally bonded (fixed) by brazing with an active metal braze or the like. The shank 16 has a diameter (shank diameter) D of about 4 mm, and has a tapered portion 16t having a smaller diameter on the distal end side, and a diamond mounting portion 18 is provided on the distal end of the tapered portion 16t. Yes.

単結晶ダイヤモンド14は直方体形状の人工ダイヤモンドで、ダイヤ取付部18の先端から所定寸法だけ突き出すように設けられており、シャンク16が工作機械の主軸等に把持されて軸心Oまわりに回転駆動されることにより、その突出部分で切削加工が行われる。単結晶ダイヤモンド14は、例えば外周面を構成している{100}面の一つがそのまますくい面22として用いられるとともに、そのすくい面22の一方の側端縁が外周刃24として機能し、すくい面22の前端縁が底刃26として機能するようになっていて、スクエアエンドミルとして用いられる。軸心Oを挟んで底刃26と反対側の部分には、干渉を避けるために逃げ28が設けられている。外周刃24および底刃26にも必要に応じて逃げが設けられる。外周刃24および底刃26は切れ刃に相当し、外周刃24の径寸法は3mm以下の小径で、本実施例では約1mmである。なお、図1における各部の寸法は、必ずしも正確な比率で図示したものではない。   The single crystal diamond 14 is a rectangular parallelepiped artificial diamond provided so as to protrude from the tip of the diamond mounting portion 18 by a predetermined dimension, and the shank 16 is gripped by the spindle of the machine tool and rotated around the axis O. Thus, cutting is performed at the protruding portion. In the single crystal diamond 14, for example, one of the {100} faces constituting the outer peripheral surface is used as the rake face 22 as it is, and one side edge of the rake face 22 functions as the outer peripheral blade 24. The front edge of 22 functions as the bottom blade 26, and is used as a square end mill. An escape 28 is provided in a portion opposite to the bottom blade 26 across the axis O to avoid interference. The outer peripheral blade 24 and the bottom blade 26 are provided with relief as required. The outer peripheral edge 24 and the bottom edge 26 correspond to cutting edges, and the diameter of the outer peripheral edge 24 is a small diameter of 3 mm or less, and is about 1 mm in this embodiment. In addition, the dimension of each part in FIG. 1 is not necessarily shown in an exact ratio.

ここで、このような単結晶ダイヤモンドエンドミル10は、小さな切込み量(例えば数μm)で早送りされることにより鏡面仕上げ等の高精度加工を行う際に好適に用いられ、そのような高精度加工では切削油剤を使用しない乾式で使用されることが多い。その場合に、図2に示すようにダイヤモンドの熱伝導率は5程度であるのに対し、ボデー12を構成している超硬合金の熱伝導率は0.08〜0.29程度と小さいため、切削加工の際に単結晶ダイヤモンド14の切れ刃24、26やすくい面22等に生じた熱は速やかにボデー12に伝達されるとともに、そのボデー12に蓄積されて温度が上昇する。超硬合金の熱膨張係数は5.1〜7.6程度で、温度上昇に伴ってボデー12が膨張しても、通常の加工であれば殆ど問題にならないが、鏡面仕上げ等の高精度加工では、ボデー12の熱膨張による単結晶ダイヤモンド14の切れ刃24、26の僅かな位置変化(主に軸方向先端側への変位)に起因して加工精度が影響を受けることがある。これを防止するために、本実施例の単結晶ダイヤモンドエンドミル10には、放熱用溝として多数の環状溝30がシャンク16の先端部外周面に設けられている。   Here, such a single crystal diamond end mill 10 is suitably used when performing high-precision processing such as mirror finish by being fast-forwarded with a small depth of cut (for example, several μm). In such high-precision processing, It is often used in a dry method that does not use cutting fluid. In this case, as shown in FIG. 2, the thermal conductivity of diamond is about 5, whereas the thermal conductivity of the cemented carbide forming the body 12 is as small as about 0.08 to 0.29. The heat generated on the cutting surfaces 24, 26 of the single crystal diamond 14 during the cutting process is quickly transferred to the body 12, and is accumulated in the body 12 to increase the temperature. Cemented carbide has a thermal expansion coefficient of about 5.1 to 7.6, and even if the body 12 expands as the temperature rises, there is almost no problem with normal processing, but high-precision processing such as mirror finishing. Then, the processing accuracy may be affected by a slight change in the position of the cutting edges 24 and 26 of the single crystal diamond 14 due to the thermal expansion of the body 12 (mainly displacement toward the tip end in the axial direction). In order to prevent this, the single crystal diamond end mill 10 of the present embodiment is provided with a large number of annular grooves 30 on the outer peripheral surface of the tip of the shank 16 as heat radiating grooves.

上記環状溝30は、シャンク16の円柱形状部分の先端部すなわちテーパ部16tのすぐ後の部分に、砥石等による研削加工によって設けられており、その断面形状は略四角形の角形で、軸心Oに対して直角にシャンク16の全周に設けられているとともに、シャンク16の軸方向に所定の間隔w2を隔てて5本設けられている。環状溝30の溝深さdは0.3mm〜1.0mmの範囲内で、本実施例では約0.5mmであり、その溝底径は約3mmである。環状溝30の溝幅w1は0.3mm〜1.0mmの範囲内で、本実施例では約0.5mmであり、間隔w2も0.3mm〜1.0mmの範囲内で、本実施例では約0.5mmである。最も先端側の環状溝30は、ボデー12の先端からの寸法Lgが20mm以下で、本実施例では寸法Lgが約8mmの付近に設けられており、そこから約4.5mmの範囲内、すなわちボデー12の先端から約12.5mmまでの範囲内に、計5本の環状溝30が等間隔で設けられている。なお、このような環状溝30をテーパ部16tに設けることも可能である。   The annular groove 30 is provided by grinding with a grindstone or the like at the tip portion of the cylindrical portion of the shank 16, that is, the portion immediately behind the tapered portion 16t, and the cross-sectional shape thereof is a substantially rectangular square, and the axis O Are provided at right angles to the entire circumference of the shank 16, and five are provided in the axial direction of the shank 16 with a predetermined interval w2. The groove depth d of the annular groove 30 is in the range of 0.3 mm to 1.0 mm, and is about 0.5 mm in this embodiment, and the groove bottom diameter is about 3 mm. The groove width w1 of the annular groove 30 is in the range of 0.3 mm to 1.0 mm, about 0.5 mm in this embodiment, and the interval w2 is also in the range of 0.3 mm to 1.0 mm. About 0.5 mm. The annular groove 30 on the most distal side has a dimension Lg from the tip of the body 12 of 20 mm or less, and is provided in the vicinity of the dimension Lg of about 8 mm in this embodiment, and is within a range of about 4.5 mm therefrom, that is, A total of five annular grooves 30 are provided at equal intervals within a range from the tip of the body 12 to about 12.5 mm. Such an annular groove 30 can be provided in the tapered portion 16t.

このように、本実施例の単結晶ダイヤモンドエンドミル10は、ボデー12の外周面に放熱用溝として環状溝30が設けられているため、切削加工の際に切れ刃24、26やすくい面22等に生じる発熱によるボデー12の温度上昇、更にはその温度上昇に伴うボデー12の熱膨張が抑制される。これにより、乾式で鏡面仕上げ等の高精度加工を行う場合でも、ボデー12の熱膨張に起因する単結晶ダイヤモンド14の切れ刃24、26の位置変化、すなわち軸方向の先端側への変位が抑制されて、一層優れた加工精度が得られるようになる。また、このようにボデー12の温度上昇が抑制されると、単結晶ダイヤモンド14そのものの温度上昇も軽減されるため、黒鉛化による寿命低下が抑制される。   As described above, the single crystal diamond end mill 10 of the present embodiment is provided with the annular groove 30 as the heat radiating groove on the outer peripheral surface of the body 12, and therefore the cutting edges 24 and 26 which are easy to cut during the cutting process 22 and the like. The temperature rise of the body 12 due to the heat generated in the body, and the thermal expansion of the body 12 accompanying the temperature rise are suppressed. As a result, even when high precision machining such as mirror finishing is performed by dry processing, the positional change of the cutting edges 24 and 26 of the single crystal diamond 14 due to the thermal expansion of the body 12, that is, the displacement toward the tip side in the axial direction is suppressed. As a result, even better processing accuracy can be obtained. In addition, when the temperature increase of the body 12 is suppressed in this way, the temperature increase of the single crystal diamond 14 itself is also reduced, so that the lifetime reduction due to graphitization is suppressed.

また、本実施例ではシャンク16の外周面に軸心Oに対して直角に設けられた環状溝30が放熱用溝として用いられるため、シャンク16が軸心Oまわりに回転駆動される際に環状溝30内の空気が良好に入れ替えられて優れた放熱性能が得られ、ボデー12の温度上昇が効果的に抑制される。   Further, in the present embodiment, the annular groove 30 provided at a right angle to the axis O on the outer peripheral surface of the shank 16 is used as a heat radiating groove. Therefore, when the shank 16 is rotationally driven around the axis O, The air in the groove 30 is satisfactorily replaced to obtain excellent heat dissipation performance, and the temperature rise of the body 12 is effectively suppressed.

また、本実施例では環状溝30がシャンク16の軸方向に所定の間隔w2を隔てて複数設けられているため、放熱性能が更に向上してボデー12の温度上昇が一層効果的に抑制される。   Further, in the present embodiment, since the plurality of annular grooves 30 are provided in the axial direction of the shank 16 with a predetermined interval w2, the heat dissipation performance is further improved and the temperature rise of the body 12 is further effectively suppressed. .

また、本実施例では、上記環状溝30の溝深さdおよび溝幅w1が何れも0.3mm〜1.0mmの範囲内で本実施例では約0.5mmであるため、シャンク16の剛性や強度を維持しつつ所定の放熱性能が得られる。すなわち、本実施例の単結晶ダイヤモンドエンドミル10は、外周刃24の径寸法が約1mmの小径で、シャンク径D(実施例では約4mm)はそれよりも十分に大きいとともに、小さな切込み量で使用されるため切削負荷が小さく、環状溝30の溝深さdおよび溝幅w1が0.5mmであれば、シャンク16の剛性や強度には殆ど影響しないのである。   In the present embodiment, the groove depth d and the groove width w1 of the annular groove 30 are both within the range of 0.3 mm to 1.0 mm and are approximately 0.5 mm in the present embodiment. In addition, a predetermined heat dissipation performance can be obtained while maintaining the strength. That is, the single crystal diamond end mill 10 of the present embodiment has a small diameter of the outer peripheral blade 24 of about 1 mm, the shank diameter D (about 4 mm in the embodiment) is sufficiently larger than that, and is used with a small depth of cut. Therefore, if the cutting load is small and the groove depth d and the groove width w1 of the annular groove 30 are 0.5 mm, the rigidity and strength of the shank 16 are hardly affected.

また、環状溝30はボデー12の先端から20mm以下の範囲内、実施例では約8mmから12.5mmまでの範囲内に設けられているため、単結晶ダイヤモンド14からボデー12へ伝達された熱が環状溝30によって良好に放熱され、ボデー12の熱膨張に起因する単結晶ダイヤモンド14の切れ刃24、26の位置変化や単結晶ダイヤモンド14そのものの温度上昇が一層効果的に抑制される。   Further, since the annular groove 30 is provided within a range of 20 mm or less from the front end of the body 12, in the embodiment, within a range of about 8 mm to 12.5 mm, the heat transferred from the single crystal diamond 14 to the body 12 is transmitted. Heat is dissipated satisfactorily by the annular groove 30, and the position change of the cutting edges 24 and 26 of the single crystal diamond 14 and the temperature rise of the single crystal diamond 14 itself due to the thermal expansion of the body 12 are further effectively suppressed.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

10:単結晶ダイヤモンドエンドミル(単結晶ダイヤモンド工具) 12:ボデー 14:単結晶ダイヤモンド 16:シャンク 18:ダイヤ取付部 24:外周刃(切れ刃) 26:底刃(切れ刃) 30:環状溝(放熱用溝) O:軸心 w1:溝幅 w2:環状溝の間隔 d:溝深さ   10: Single crystal diamond end mill (single crystal diamond tool) 12: Body 14: Single crystal diamond 16: Shank 18: Diamond mounting portion 24: Outer peripheral edge (cutting edge) 26: Bottom edge (cutting edge) 30: Annular groove (heat dissipation) Groove: O: axial center w1: groove width w2: spacing between annular grooves d: groove depth

Claims (4)

切れ刃を有する単結晶ダイヤモンドが超硬合金のボデーに一体的に固設され、該切れ刃によって切削加工を行う単結晶ダイヤモンド工具において、
前記ボデーの外周面には放熱用溝が設けられている
ことを特徴とする単結晶ダイヤモンド工具。
In a single crystal diamond tool in which a single crystal diamond having a cutting edge is integrally fixed to a cemented carbide body, and cutting is performed by the cutting edge,
A single crystal diamond tool, wherein a heat radiating groove is provided on an outer peripheral surface of the body.
前記ボデーは、軸心Oまわりに回転駆動されるシャンクと前記単結晶ダイヤモンドが一体的に固設されるダイヤ取付部とを一体に有するエンドミル用のもので、
前記放熱用溝は、前記シャンクの外周面に軸心Oに対して直角に全周に設けられた環状溝である
ことを特徴とする請求項1に記載の単結晶ダイヤモンド工具。
The body is for an end mill that integrally includes a shank that is rotationally driven around an axis O and a diamond mounting portion on which the single crystal diamond is integrally fixed.
2. The single crystal diamond tool according to claim 1, wherein the heat radiating groove is an annular groove provided on the outer peripheral surface of the shank at a right angle with respect to the axis O on the entire circumference.
前記環状溝は、前記シャンクの軸方向に所定の間隔を隔てて複数設けられている
ことを特徴とする請求項2に記載の単結晶ダイヤモンド工具。
The single crystal diamond tool according to claim 2, wherein a plurality of the annular grooves are provided at predetermined intervals in the axial direction of the shank.
前記環状溝の溝深さおよび溝幅は、何れも0.3mm〜1.0mmの範囲内で、
該環状溝は前記ボデーの先端から20mm以下の範囲内に設けられている
ことを特徴とする請求項2または3に記載の単結晶ダイヤモンド工具。
The groove depth and groove width of the annular groove are both in the range of 0.3 mm to 1.0 mm,
The single crystal diamond tool according to claim 2 or 3, wherein the annular groove is provided within a range of 20 mm or less from the tip of the body.
JP2009059580A 2009-03-12 2009-03-12 Single crystal diamond tool Expired - Fee Related JP5279561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059580A JP5279561B2 (en) 2009-03-12 2009-03-12 Single crystal diamond tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059580A JP5279561B2 (en) 2009-03-12 2009-03-12 Single crystal diamond tool

Publications (2)

Publication Number Publication Date
JP2010207999A true JP2010207999A (en) 2010-09-24
JP5279561B2 JP5279561B2 (en) 2013-09-04

Family

ID=42968746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059580A Expired - Fee Related JP5279561B2 (en) 2009-03-12 2009-03-12 Single crystal diamond tool

Country Status (1)

Country Link
JP (1) JP5279561B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102228999A (en) * 2011-04-01 2011-11-02 浙江恒成硬质合金有限公司 Cutter for cutting hard alloy
CN102513583A (en) * 2011-12-01 2012-06-27 深圳市世工科技有限公司 Method and equipment for machining outer contour mirror surface of workpiece
CN112935299A (en) * 2019-12-10 2021-06-11 深圳市誉和光学精密刀具有限公司 Single crystal round nose cutter and processing technology thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636715U (en) * 1992-06-17 1994-05-17 株式会社牧野フライス製作所 Cutting tools
JP2003062713A (en) * 2001-08-21 2003-03-05 Osg Corp Straight shank rotary working tool
JP2003127019A (en) * 2001-10-23 2003-05-08 Micro Diamond Kk Endmill having single-crystal diamond provided at its top
JP2005034988A (en) * 2003-07-16 2005-02-10 Sandvik Ab Support pad suitable for using an oblong hole machining drill head, method of manufacturing the same, and oblong hole machining drill head
JP2005144657A (en) * 2003-10-23 2005-06-09 Allied Material Corp Monocrystal diamond end mill and cutting method of hard fragile material
JP2005342805A (en) * 2004-05-31 2005-12-15 Ricoh Co Ltd Radius end mill and cutting method using it
JP2007015085A (en) * 2005-07-11 2007-01-25 Konica Minolta Opto Inc Cutting tool
JP2007030048A (en) * 2005-07-22 2007-02-08 Yunitakku Kk Deep hole drilling apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636715U (en) * 1992-06-17 1994-05-17 株式会社牧野フライス製作所 Cutting tools
JP2003062713A (en) * 2001-08-21 2003-03-05 Osg Corp Straight shank rotary working tool
JP2003127019A (en) * 2001-10-23 2003-05-08 Micro Diamond Kk Endmill having single-crystal diamond provided at its top
JP2005034988A (en) * 2003-07-16 2005-02-10 Sandvik Ab Support pad suitable for using an oblong hole machining drill head, method of manufacturing the same, and oblong hole machining drill head
JP2005144657A (en) * 2003-10-23 2005-06-09 Allied Material Corp Monocrystal diamond end mill and cutting method of hard fragile material
JP2005342805A (en) * 2004-05-31 2005-12-15 Ricoh Co Ltd Radius end mill and cutting method using it
JP2007015085A (en) * 2005-07-11 2007-01-25 Konica Minolta Opto Inc Cutting tool
JP2007030048A (en) * 2005-07-22 2007-02-08 Yunitakku Kk Deep hole drilling apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102228999A (en) * 2011-04-01 2011-11-02 浙江恒成硬质合金有限公司 Cutter for cutting hard alloy
CN102228999B (en) * 2011-04-01 2012-10-17 浙江恒成硬质合金有限公司 Cutter for cutting hard alloy
CN102513583A (en) * 2011-12-01 2012-06-27 深圳市世工科技有限公司 Method and equipment for machining outer contour mirror surface of workpiece
CN112935299A (en) * 2019-12-10 2021-06-11 深圳市誉和光学精密刀具有限公司 Single crystal round nose cutter and processing technology thereof
CN112935299B (en) * 2019-12-10 2024-04-09 深圳市誉和光学精密刀具有限公司 Single-wafer nose knife and processing technology thereof

Also Published As

Publication number Publication date
JP5279561B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP6347258B2 (en) Radius end mill and cutting method
JPWO2007039944A1 (en) Cutting tool for high-quality and high-efficiency machining and cutting method using the same
JP6657547B2 (en) Cutting tool and manufacturing method thereof
JP2014000663A (en) Cutting tool
JP4860882B2 (en) Milling tools
JP2007075944A (en) Ball end mill
JPWO2009096516A1 (en) Cutting insert, cutting tool, and cutting method
JP5279561B2 (en) Single crystal diamond tool
JP7128339B2 (en) chamfering tool
JP4878517B2 (en) Diamond tools
US20100329805A1 (en) Diamond tool
JP2008183657A (en) Single crystal diamond multi-cutting tool and its manufacturing method
JP2005161462A (en) Throw-away drill
JP2004268165A (en) Deep hole machining drill
JP2008207334A (en) Single crystal diamond cutting tool and its manufacturing method
JP5301307B2 (en) Single crystal diamond end mill and manufacturing method thereof
JP2009291864A (en) Diamond cutting tool
JP5031500B2 (en) Manufacturing method of diamond cutting member
US11059110B2 (en) Mirror finishing method and mirror finishing tool
JP6335654B2 (en) Fine tool
KR102019084B1 (en) End Mill Improving Rigidity by Comprising Flat Reliefs
JP5110400B2 (en) Replaceable cutting tool
JP5365300B2 (en) Cutting tools
JP2001269810A (en) Throwaway tip
JP2010240839A (en) Single crystal diamond cutting tool for ultra-precision machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees