JP2010207737A - Particle separation apparatus and separation method - Google Patents

Particle separation apparatus and separation method Download PDF

Info

Publication number
JP2010207737A
JP2010207737A JP2009057233A JP2009057233A JP2010207737A JP 2010207737 A JP2010207737 A JP 2010207737A JP 2009057233 A JP2009057233 A JP 2009057233A JP 2009057233 A JP2009057233 A JP 2009057233A JP 2010207737 A JP2010207737 A JP 2010207737A
Authority
JP
Japan
Prior art keywords
water tank
particles
supply cylinder
particle
particle supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009057233A
Other languages
Japanese (ja)
Other versions
JP5164172B2 (en
Inventor
Tatsuya Oki
達也 大木
Taeko Hasumi
妙子 羽澄
Yoko Umemiya
陽子 梅宮
Mikio Kobayashi
幹男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009057233A priority Critical patent/JP5164172B2/en
Publication of JP2010207737A publication Critical patent/JP2010207737A/en
Application granted granted Critical
Publication of JP5164172B2 publication Critical patent/JP5164172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent decrease of the particle separation precision by using a donut type water tank having no partitioning wall in place of a conventional fan-shaped water tank and installing a curved particle supply cylinder in place of a linear-shaped particle supply cylinder. <P>SOLUTION: The particle separation apparatus has a rotary water tank 2 and a particle supply cylinder installed in the water tank 2 toward the direction of the outer wall 5 of the water tank 2 from the rotary center part of the water tank 2 and separates high specific gravity particles and low specific gravity particles by releasing particles to the water tank 2 through the particle supply cylinder in a state that the rotation speed of the water tank 2 is kept constant or separates particles by moving the same kind particles relatively in contra-rotation directions for every size and suppresses the convection flow of water in the water tank 2 at the time of particle separation by employing a water tank 2 having a donut type inside shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粒子分離装置および分離方法に関する。   The present invention relates to a particle separation apparatus and a separation method.

従来、低比重粒子に比べ高比重粒子を反回転方向に大きく移動させることで粒子を分離する方法及び装置は、公知である(特許文献1参照)。また、高比重粒子に比べ低比重粒子を反回転方向に大きく移動させることで粒子を分離する方法及び装置は、公知である(特許文献2参照)。   Conventionally, a method and an apparatus for separating particles by largely moving a high specific gravity particle in a counter-rotating direction as compared with a low specific gravity particle are known (see Patent Document 1). A method and apparatus for separating particles by moving low specific gravity particles largely in the counter-rotating direction as compared with high specific gravity particles are known (see Patent Document 2).

特開2006−239678号公報JP 2006-239678 A 特開2008−049332号公報JP 2008-049332 A

上記特許文献1、2記載の発明は、いずれも、粒子分離を達成させるためには、回転する水槽内の水は水槽(容器)に対して静止した状態にあり、一定回転数に保たれた状態で、粒子供給筒より粒子を水槽内に放出(投入)することが必要であった。   In the inventions described in Patent Documents 1 and 2, in order to achieve particle separation, the water in the rotating water tank is in a stationary state with respect to the water tank (container) and kept at a constant rotational speed. In the state, it was necessary to discharge (inject) the particles into the water tank from the particle supply cylinder.

これを実現するため、特許文献1、2記載の発明では、図1に示すように、円形の水槽10の中心に同軸で回転軸15が設けられ、このような中心から周方向に渡る隔壁11を設けることで扇形に区切った形状の扇形水槽12を採用していた。扇形水槽12内に水を満たした状態で水槽10を回転させると、水は扇形水槽12内に束縛されるため速やかに水槽10と同じ回転速度を持つようになり、一見して問題がないように見える。   In order to realize this, in the inventions described in Patent Documents 1 and 2, as shown in FIG. 1, a rotating shaft 15 is coaxially provided at the center of the circular water tank 10, and the partition wall 11 extends from such center in the circumferential direction. The fan-shaped water tank 12 having a shape divided into a fan shape by adopting is used. When the water tank 10 is rotated in a state where the water is filled in the fan-shaped water tank 12, the water is constrained in the fan-shaped water tank 12, so that it immediately has the same rotational speed as the water tank 10, so that there is no problem at first glance. Looks like.

しかしながら、例えば1000rpm以上の高速回転をさせると、扇形水槽12の内側(回転軸15寄り)の水と外側の水の回転速度の違いから、緩やかな対流が発生し(図1参照)、粒子供給筒13から放たれた粒子6の軌道が、この対流によって乱されるため、粒子分離精度の低下に繋がっていた。   However, when rotating at a high speed of, for example, 1000 rpm or more, gentle convection occurs due to the difference in rotation speed between the water inside the fan-shaped water tank 12 (near the rotation axis 15) and the water outside (see FIG. 1). Since the trajectory of the particles 6 emitted from the cylinder 13 is disturbed by this convection, the particle separation accuracy is reduced.

そこで、本発明は、扇形水槽に替えて、隔壁のないドーナツ形の水槽を有する分離装置及びそれによる分離方法を実現しようとするものである。   Therefore, the present invention intends to realize a separation apparatus having a donut-shaped water tank without a partition wall and a separation method using the same instead of the fan-shaped water tank.

また、特許文献1、2記載の発明では、回転中心から遠心方向に真っ直ぐ伸びる直線形の粒子供給筒を使用していた。ところが、回転中心から水槽に供給されるまで粒子供給筒内を粒子が移動する間、全ての粒子はコリオリの力を受けているため、粒子は粒子供給筒内をまっすぐ移動せず、粒子供給筒内壁の反回転方向側に偏る。   Further, in the inventions described in Patent Documents 1 and 2, a linear particle supply cylinder that extends straight from the rotation center in the centrifugal direction is used. However, since all particles receive Coriolis force while moving in the particle supply cylinder from the rotation center to the water tank, the particles do not move straight in the particle supply cylinder. It is biased toward the anti-rotation direction side of the inner wall.

水槽に供給される際、粒子は粒子間の相互作用がない分散状態であるのが理想であるが、上記の理由から粒子供給筒内を移動する間に反回転方向側に粒子が集まって押しつけられ、凝集を起こしやすくなる(図3参照)。   When supplied to the water tank, it is ideal that the particles are in a dispersed state where there is no interaction between the particles, but for the above reasons, the particles gather and press against the anti-rotation direction while moving in the particle supply cylinder. And easily agglomerate (see FIG. 3).

一方、凝集を起こさないほど極めて希薄な懸濁液を投入して凝集を免れたとしても、個々の粒子はコリオリの力により粒子供給筒内壁の反回転方向側に押しつけられながら遠心力により遠心方向に進むため、粒子供給筒内を回転しながら(転がりながら)前進する確立が高くなる。   On the other hand, even if a very dilute suspension that does not cause agglomeration is introduced and agglomeration is avoided, the individual particles are pressed by the Coriolis force against the anti-rotation direction side of the inner wall of the particle supply cylinder, and the centrifugal direction due to centrifugal force Therefore, the probability of advancing while rotating (rolling) in the particle supply cylinder becomes high.

そして、回転しながら粒子供給筒より水槽内へ供給されると、粒子毎にばらばらな(予期できぬ)回転揚力が加わり、上記のケースでは粒子は概ね”スライス”して、想定以上に半回転方向の曲がりが大きくなってしまう(図3参照)。   And if it is supplied into the water tank from the particle supply cylinder while rotating, a discrete (unexpected) rotational lift force is applied to each particle, and in the above case, the particle is generally “sliced” and rotated half a turn more than expected. The bending of a direction will become large (refer FIG. 3).

そこで、本発明は、直線形の粒子供給筒に替えて、湾曲形粒子供給筒を有する分離装置とそれによる分離方法を実現するものである。   Therefore, the present invention realizes a separation apparatus having a curved particle supply cylinder instead of a linear particle supply cylinder and a separation method using the separation apparatus.

本発明は、上記課題を解決するために、回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備え、水槽を一定回転数に保たれた状態で、粒子供給筒より粒子を水槽内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に移動させることで、粒子を分離する分離装置において、前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制可能とした構成を特徴とする粒子分離装置を提供する。   In order to solve the above-mentioned problems, the present invention comprises a rotating water tank and a particle supply tube provided in the water tank from the center of rotation of the water tank toward the outer wall of the water tank, and the water tank is maintained at a constant rotational speed. By letting the particles from the particle supply cylinder into the water tank in a leaned state, by moving the high specific gravity particles and the low specific gravity particles or the same kind of particles relative to each other in the anti-rotation direction for each size, In the separation device for separating particles, a particle separation device is provided that has a configuration in which convection of water in the water tank during particle separation can be suppressed by making the inside of the water tank into a donut shape.

本発明は上記課題を解決するために、回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備えた粒子を分離する分離装置により、水槽を一定回転数に保った状態で、粒子供給筒より粒子を水槽内に放出すること、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に移動させて、粒子を分離する分離方法において、前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制することを特徴とする粒子分離方法を提供する。   In order to solve the above-mentioned problems, the present invention provides a separation apparatus that separates particles including a rotating water tank and a particle supply cylinder provided in the water tank toward the outer wall of the water tank from the rotation center of the water tank. With the water tank maintained at a constant rotation speed, particles are discharged from the particle supply cylinder into the water tank, high specific gravity particles and low specific gravity particles, or the same type of particles relative to each other in the counter-rotating direction for each size. In the separation method for separating particles by moving, the particle separation method is characterized in that convection of water in the water tank during particle separation is suppressed by making the shape inside the water tank into a donut shape.

本発明は上記課題を解決するために、回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備え、水槽を一定回転数に保たれた状態で、粒子供給筒より粒子を水槽内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に移動させて、粒子を分離する分離装置において、前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制可能とし、前記粒子供給筒を湾曲形粒子供給筒とすることにより、分離時の粒子の凝集や回転を抑制するとともに、湾曲形粒子供給筒から放出された粒子のポケットへの入射角が30°〜60°となる位置で回収可能な構成としたことを特徴とする粒子分離装置を提供する。   In order to solve the above-mentioned problems, the present invention includes a rotating water tank and a particle supply tube provided in the water tank from the center of rotation of the water tank toward the outer wall of the water tank, and the water tank is maintained at a constant rotational speed. In this state, the particles are discharged from the particle supply cylinder into the water tank, so that the high specific gravity particles and the low specific gravity particles or the same kind of particles are moved relative to each other in the counter-rotating direction for each size. In the separating apparatus for separating, by making the shape inside the water tank a donut shape, it is possible to suppress convection of water in the water tank during particle separation, and by separating the particle supply cylinder from a curved particle supply cylinder, Particles characterized in that the particles can be collected at a position where the incident angle to the pocket of the particles emitted from the curved particle supply cylinder is 30 ° to 60 ° while suppressing aggregation and rotation of the particles at the time A separation device is provided.

本発明は上記課題を解決するために、回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備えた粒子を分離する分離装置により、水槽を一定回転数に保った状態で、粒子供給筒より粒子を水槽内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に大きく移動させて、粒子を分離する分離方法において、前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制し、前記粒子供給筒を湾曲形粒子供給筒とすることにより、分離時の粒子の凝集や回転を抑制するとともに、湾曲形粒子供給筒から放出された粒子のポケットへの入射角が30°〜60°となる位置で回収可能とすることを特徴とする粒子分離方法を提供する。   In order to solve the above-mentioned problems, the present invention provides a separation apparatus that separates particles including a rotating water tank and a particle supply cylinder provided in the water tank toward the outer wall of the water tank from the rotation center of the water tank. With the water tank maintained at a constant rotation speed, particles are discharged from the particle supply cylinder into the water tank, so that high specific gravity particles and low specific gravity particles, or the same type of particles, are relative to each other in the anti-rotation direction. In the separation method in which the particles are separated by separating the particles into a donut shape, the convection of water in the water tank during particle separation is suppressed, and the particle supply cylinder is supplied with curved particles. By using a cylinder, it is possible to suppress the aggregation and rotation of particles during separation, and to collect the particles emitted from the curved particle supply cylinder at a position where the incident angle to the pocket is 30 ° to 60 °. Particle separation method characterized by Provide law.

本発明の粒子分離装置及び分離方法によれば、従来の扇形水槽に替えて、隔壁のないドーナツ形の水槽を使用し、また直線形の粒子供給筒に替えて、湾曲形粒子供給筒を設けたので、粒子分離精度の低下を防止することができる。   According to the particle separation apparatus and separation method of the present invention, a donut-shaped water tank without a partition wall is used instead of a conventional fan-shaped water tank, and a curved particle supply cylinder is provided instead of a linear particle supply cylinder. Therefore, it is possible to prevent a decrease in particle separation accuracy.

従来例の構成、作用を説明する図である。It is a figure explaining the structure and effect | action of a prior art example. 本発明の実施例の粒子分離装置および分離方法の構成、作用を説明する図である。It is a figure explaining the structure of the particle separation apparatus of the Example of this invention, and the effect | action of a separation method. 従来例の構成、作用を説明する図である。It is a figure explaining the structure and effect | action of a prior art example. 本発明の実施例の粒子分離装置および分離方法の構成、作用を説明する図である。It is a figure explaining the structure of the particle separation apparatus of the Example of this invention, and the effect | action of a separation method. 粒子のポケット入射角による分離精度の違いを説明する図である。It is a figure explaining the difference in the separation accuracy by the pocket incident angle of particles.

本発明に係る粒子分離装置および分離方法の実施の形態を実施例に基づいて図面を参照して、以下に説明する。   Embodiments of a particle separation apparatus and a separation method according to the present invention will be described below with reference to the drawings based on examples.

図2は、本発明の粒子分離装置の構成を示す図である。本発明の粒子分離装置1は、回転する水槽2と、該水槽2とともに回転軸15を中心に回転し、粒子6を水槽2内に供給する粒子供給筒3とを備えている。水槽2は、円形の内壁4と外壁5とから成り、ドーナツ形の水槽として構成されている。水槽2内には、水が充填されている。   FIG. 2 is a diagram showing the configuration of the particle separation apparatus of the present invention. The particle separation apparatus 1 of the present invention includes a rotating water tank 2 and a particle supply cylinder 3 that rotates around the rotating shaft 15 together with the water tank 2 and supplies particles 6 into the water tank 2. The water tank 2 includes a circular inner wall 4 and an outer wall 5, and is configured as a donut-shaped water tank. The water tank 2 is filled with water.

このような粒子分離装置1において、粒子供給筒3は、その基端を水槽2の中心部におき、その基端から水槽2の外壁5方向に向けて設置されている。粒子供給筒3は、その先端は、内壁4を通して水槽2内に開口している。   In such a particle separation apparatus 1, the particle supply cylinder 3 is installed with its base end positioned at the center of the water tank 2 and from the base end toward the outer wall 5 of the water tank 2. The tip of the particle supply cylinder 3 opens into the water tank 2 through the inner wall 4.

この水槽2を一定回転数に保たれた状態で、粒子供給筒3より粒子6を水槽2内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的な移動を生ぜしめて、粒子を分離するものである。   By discharging the particles 6 from the particle supply cylinder 3 into the water tank 2 while keeping the water tank 2 at a constant rotational speed, high specific gravity particles and low specific gravity particles, or the same kind of particles, are separated for each size. The particles are separated by causing relative movement in the counter-rotating direction.

上記のとおり、従来の隔壁を有する扇形水槽12(図1参照)では、扇形の内側(内壁側)の水と外側(外壁側)の水の回転速度の違いから、扇形水槽12内をゆっくりとした対流が発生していた。しかしながら、本発明では、ドーナツ形の水槽2を採用することで、このような対流は生じにくい。この点について、さらに詳細に以下説明する。   As described above, in the sector water tank 12 (see FIG. 1) having a conventional partition wall, the inside of the sector water tank 12 is slowly caused by the difference in rotational speed between the water inside the fan shape (inner wall side) and the water outside (outer wall side). Convection occurred. However, in the present invention, such a convection hardly occurs by adopting the donut-shaped water tank 2. This point will be described in more detail below.

図1に示すような隔壁11のないドーナツ形の窪み7(空間)を持つ水槽2に水を満たした状態で回転させると(図2参照)、水は水槽2内に束縛されないため水槽2の回転運動について行けず、回転当初は激しく水槽に対して反回転方向に運動し始める。この状態では一見するとハイドロサイクロンのように水は激しく回転するかのようにみえる。   When the water tank 2 having a donut-shaped depression 7 (space) without a partition wall 11 as shown in FIG. 1 is rotated in a state filled with water (see FIG. 2), the water is not constrained in the water tank 2, so Unable to follow the rotational movement, at the beginning of the rotation it begins to move violently in the counter-rotating direction with respect to the aquarium. At first glance, the water appears to rotate violently like a hydrocyclone.

しかしながら、ドーナツ形の水槽2の内壁4及び外壁5面が、へこみや突起などの凹凸がなく滑らか内表面を有しているならば、水槽2の回転数が一定となると、次第に水の回転は水槽2の回転に追いつき、例えば2000rpmの条件では数分以内にほぼ完全に静止状態に至る。   However, if the inner wall 4 and the outer wall 5 of the donut-shaped water tank 2 have a smooth inner surface without irregularities such as dents and protrusions, the rotation of the water gradually increases when the number of rotations of the water tank 2 becomes constant. It catches up with the rotation of the water tank 2 and, for example, reaches a completely stationary state within a few minutes under the condition of 2000 rpm.

この状態では、水槽2内の水は、水と接する内壁4の各部位の回転速度と完全に同期(一致)するため、内壁4側の水と外壁5側の水の回転速度の違いは、従来の扇形水槽12より明らかに対流が小さくなり、粒子供給筒3から放たれた粒子6の軌道の乱れがなくなって、粒子分離精度の低下を防ぐことが可能である。   In this state, the water in the water tank 2 is completely synchronized (matched) with the rotational speed of each part of the inner wall 4 in contact with the water, so the difference between the rotational speed of the water on the inner wall 4 side and the water on the outer wall 5 side is The convection is clearly smaller than that of the conventional fan-shaped water tank 12, the disturbance of the trajectory of the particles 6 emitted from the particle supply cylinder 3 is eliminated, and the decrease in particle separation accuracy can be prevented.

以上のとおり、本発明ではドーナツ形の水槽2を採用し、その点で、上記のとおりの顕著な作用効果を生じるが、さらに、粒子供給筒3を以下、図4において説明する構成とすることで、相乗的により大きな作用効果が生じる。   As described above, in the present invention, the donut-shaped water tank 2 is adopted, and in this respect, the remarkable operational effects as described above are produced. Further, the particle supply cylinder 3 is configured as described below with reference to FIG. As a result, synergistically greater effects are produced.

即ち、直線形粒子供給筒14(図3参照)では、筒内で粒子6が凝集しやすい、また、筒内で粒子6が回転しやすいという問題があった。そこで、本発明では、湾曲形粒子供給筒8を、コリオリ力によって湾曲する粒子6の軌道に似せた湾曲形の供給筒の構成とする(図4参照)。もちろん、湾曲形粒子供給筒8の曲率は全ての粒子軌道の曲率に合致するものではない。   That is, the linear particle supply cylinder 14 (see FIG. 3) has a problem that the particles 6 tend to aggregate in the cylinder and the particles 6 easily rotate in the cylinder. Therefore, in the present invention, the curved particle supply cylinder 8 is configured as a curved supply cylinder that resembles the trajectory of the particles 6 that are curved by the Coriolis force (see FIG. 4). Of course, the curvature of the curved particle supply cylinder 8 does not match the curvature of all the particle trajectories.

しかしながら、複数種類の曲率を有する湾曲形粒子供給筒8を予め用意したり、湾曲形粒子供給筒8に湾曲率の変更が可能なフレキシブルな素材を使用することで、ある程度コリオリ力によって湾曲する粒子6の軌道に似せた湾曲形の曲率を持たせることにより、湾曲形粒子供給筒8の曲率よりコリオリ力による粒子軌道の曲率が大きな粒子6は、反回転方向側の壁に集まり、湾曲形粒子供給筒8の曲率とコリオリ力による粒子軌道の曲率がほぼ同等の粒子6は、粒子供給筒の中心付近に集まり、湾曲形粒子供給筒8の曲率よりコリオリ力による粒子軌道の曲率が小さな粒子6は、回転方向側の壁に集まる。この結果、全体として粒子6の凝集を緩和する効果が生じる。   However, by preparing the curved particle supply cylinder 8 having a plurality of types of curvature in advance, or by using a flexible material capable of changing the curvature for the curved particle supply cylinder 8, particles that are curved to some extent by Coriolis force. By providing a curved curvature resembling that of the orbit 6, the particles 6 having a larger curvature of the particle orbit due to the Coriolis force than the curvature of the curved particle supply cylinder 8 gather on the wall on the anti-rotation direction side, and bend the curved particles. Particles 6 having substantially the same curvature of the particle trajectory due to the curvature of the supply cylinder 8 and the Coriolis force gather near the center of the particle supply cylinder, and have a smaller curvature of the particle trajectory due to the Coriolis force than the curvature of the curved particle supply cylinder 8. Gather on the wall in the direction of rotation. As a result, the effect of alleviating the aggregation of the particles 6 occurs as a whole.

また、湾曲形粒子供給筒8の内壁4の表面付近の粒子6は、直線形粒子供給筒14に比べれば内壁4の表面に押しつけられる力が軽減されるため、湾曲形粒子供給筒8内で粒子6の回転力が弱まることが期待できる。   Further, since the force of pressing the particles 6 near the surface of the inner wall 4 of the curved particle supply cylinder 8 against the surface of the inner wall 4 is reduced as compared with the linear particle supply cylinder 14, the inside of the curved particle supply cylinder 8 is reduced. It can be expected that the rotational force of the particles 6 is weakened.

湾曲形粒子供給筒8内で粒子の回転力が幾分か残ったとしても、反回転方向側の壁面の粒子6は”スライス”してさらに反回転方向側へ、中心の粒子6は回転せずそのまま水槽2に、回転方向側の壁面の粒子6は”フック”してさらに回転方向側へ曲がる傾向を持つ。その結果、回転揚力自体は、粒子軌道の予期せぬ曲率変化をもたらすため必ずしも歓迎できないが、直線形粒子供給筒14に比べれば、粒子軌道の湾曲度合いが拡大されることになるので、分離精度の低下には繋がりにくくなる。   Even if some rotational force of the particles remains in the curved particle supply cylinder 8, the particles 6 on the wall surface on the anti-rotation direction side are “sliced” and the center particle 6 is further rotated to the anti-rotation direction side. Instead, the particles 6 on the wall surface on the rotation direction side are “hooked” in the water tank 2 as they are and tend to bend further in the rotation direction side. As a result, the rotational lift itself is not always welcome because it causes an unexpected change in the curvature of the particle trajectory. However, the degree of curvature of the particle trajectory is increased compared to the linear particle supply cylinder 14, so that the separation accuracy It becomes difficult to be connected to the decline.

ところで、直線形粒子供給筒14によれば、コリオリの力がほとんど働かない粒子6では、軸心より真っ直ぐ遠心方向に進む。このとき粒子6は、周方向に区画されて複数個備えたポケット9で回収されるから、真っ直ぐ進む粒子6では、図5中の符号(a)で示すように、ポケット9に対する粒子6の入射角が90°付近となり、僅かに軌道の違う粒子も極めて接近した位置での回収となって、同じポケット9に回収されてしまう確率が高い。   By the way, according to the linear particle supply cylinder 14, the particles 6 to which almost no Coriolis force is applied proceed straight in the centrifugal direction from the axis. At this time, since the particles 6 are collected in a plurality of pockets 9 that are divided in the circumferential direction, the particles 6 traveling straightly are incident on the pockets 9 as indicated by reference numeral (a) in FIG. There is a high probability that particles with a slightly different trajectory will be collected at a very close position and collected in the same pocket 9 at an angle of around 90 °.

しかしながら、本発明では、コリオリ力が働いて、軸心より湾曲した軌道を描いてポケット9に回収されるケースでは、ポケット9に対して90°よりも小さな角度(例えば45°)で入射(回収)される。この場合、図5中の符号(b)で示すように、類似した軌道を持つ粒子6もある程度広がりを持ってポケット9に回収されるため、僅かに軌道の違う粒子6が異なるポケット9で回収される確率が高くなる。   However, in the present invention, in the case where the Coriolis force is applied to draw a trajectory curved from the axial center and is collected in the pocket 9, it is incident (collected) at an angle smaller than 90 ° (for example, 45 °) with respect to the pocket 9. ) In this case, as shown by the symbol (b) in FIG. 5, the particles 6 having similar orbits are also collected in the pockets 9 with a certain extent, so that the particles 6 having slightly different orbits are collected in the different pockets 9. The probability that it will be increased.

しかし、さらにコリオリ力が強く働き、軸心から強く湾曲した軌道を描き、例えば時計の12時の方向に発した粒子6が、湾曲して3時の方向でポケット9に回収されるような場合では、ポケット9に対する粒子6の入射角が極めて小さくなり、ポケット9の縁をなぞるような粒子軌道となるため、類似軌道を持つ粒子6があらゆるポケット9に跨って回収される。   However, when the Coriolis force works strongly and draws a strongly curved orbit from the axial center, for example, the particles 6 emitted in the 12 o'clock direction of the watch are bent and collected in the pocket 9 in the 3 o'clock direction. Then, since the incident angle of the particle 6 with respect to the pocket 9 becomes extremely small and the particle trajectory traces the edge of the pocket 9, the particle 6 having a similar trajectory is collected across all the pockets 9.

また、水槽2内の水は対流のない剛体流であるので、粒子6がポケット9に回収されるためには、ポケット9内の水を粒子6の慣性力によって押しのけて行く必要がある。しかしながら、入射角の小さな状態では、ポケット9方向への慣性力は極めて小さいため、想定されるポケット9内への進入が果たせずに、別のポケット9へ格納させるケースが生まれる。   Further, since the water in the water tank 2 is a rigid body flow without convection, in order for the particles 6 to be collected in the pockets 9, it is necessary to push the water in the pockets 9 by the inertial force of the particles 6. However, when the incident angle is small, the inertial force in the direction of the pocket 9 is extremely small, so that the case of entering the pocket 9 without being supposed to enter the pocket 9 is created.

このような理由により、図5中の符号(c)に示すように、粒子6の入射角が極めて小さい場合では、軌道の異なる粒子6と同一のポケット9に回収される確率が高くなる。   For this reason, as indicated by reference numeral (c) in FIG. 5, when the incident angle of the particles 6 is extremely small, the probability of being collected in the same pocket 9 as the particles 6 having different trajectories increases.

このように、粒子6のポケット9に対する入射角(より正確には、ポケット9が配列された円周上のポケットの位置での接線に対する角度)の違いが粒子の回収精度、すなわち分離の精度を左右し、概ね入射角30°〜60°付近で回収できる場合に回収精度が高くなる。   As described above, the difference in the incident angle of the particle 6 with respect to the pocket 9 (more precisely, the angle with respect to the tangent at the position of the pocket on the circumference where the pockets 9 are arranged) improves the particle collection accuracy, that is, the separation accuracy. The recovery accuracy increases when it can be recovered approximately at an incident angle of 30 ° to 60 °.

なお、粒子6のポケット9に対する入射角30°〜60°となる粒子放出条件は、水槽10の直径や回転数、粒子6の粒子径や粒子比重等の条件により異なるが、複数種類の曲率や長さを有する湾曲形粒子供給筒8を予め用意したり、湾曲形粒子供給筒8に湾曲率の変更が可能なフレキシブルな素材を使用して、湾曲形粒子供給筒の曲がり方を調整することで、上記入射角を満たす粒子放出条件を実現することが可能となる。   In addition, although the particle | grain discharge | release conditions used as the incident angle 30 degrees-60 degrees with respect to the pocket 9 of the particle | grains 6 change with conditions, such as the diameter and rotation speed of the water tank 10, and the particle diameter and particle | grain specific gravity of the particle | grains 6, Preparing a curved particle supply cylinder 8 having a length in advance, or using a flexible material capable of changing the curvature of the curved particle supply cylinder 8 to adjust the bending method of the curved particle supply cylinder. Thus, it is possible to realize a particle emission condition that satisfies the incident angle.

分離粒子の粒度幅や比重範囲が比較的狭く、回収が狭いポケット幅で済んでしまう場合などでは、前記の手段、方法により、強制的に入射角30°〜60°となる粒子軌道に促すことが可能であり、それによって分離精度を向上させることが可能となる。   In the case where the particle size width and specific gravity range of the separated particles are relatively narrow and the collection is completed with a narrow pocket width, the particle trajectory is forced to have an incident angle of 30 ° to 60 ° by the above means and method. It is possible to improve the separation accuracy.

すなわち、湾曲度合いを小さくするか、あるいは筒の長さを長くする(軸心から放出点までの距離を長くする)ことにより、粒子6のポケット9への入射角を30°〜60°にすることができる。   That is, by reducing the degree of curvature or increasing the length of the cylinder (increasing the distance from the axis to the emission point), the incident angle of the particles 6 into the pocket 9 is set to 30 ° to 60 °. be able to.

ここで湾曲形粒子供給筒8の曲率を、粒子軌道の曲率に近づけるべきか、強制的に入射角30°〜60°の入射角度で回収する曲率とすべきかは、対象となる粒子の特性によって変わる。   Here, whether the curvature of the curved particle supply cylinder 8 should be close to the curvature of the particle trajectory or forcedly collected at an incident angle of 30 ° to 60 ° depends on the characteristics of the target particles. change.

以上、本発明に係る粒子分離装置及び分離方法の実施の形態及び実施例を図面を参照して説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   The embodiments and examples of the particle separation device and the separation method according to the present invention have been described above with reference to the drawings. However, the present invention is not limited to such examples, and is described in the claims. It goes without saying that there are various embodiments within the technical scope.

以上の構成の本発明に係る粒子分離装置及び分離方法によれば、懸濁液中の粒子を粒径別あるいは比重別によって分離することを必要とする各種産業分野(鉱業ならびに各種産業分野の製造工程、リサイクルおよび環境修復プロセスにおける粒子分離工程等)に適用可能である。   According to the particle separation apparatus and the separation method of the present invention having the above-described configuration, various industrial fields (manufacturing in the mining industry and various industrial fields) that require separation of particles in the suspension by particle size or specific gravity. It can be applied to particle separation process in process, recycling and environmental repair process.

1 粒子分離装置
2 水槽
3 粒子供給筒
4 内壁
5 外壁
6 粒子
7 窪み
8 湾曲形粒子供給筒
9 ポケット
10 円形の水槽
11 隔壁
12 扇形水槽
13 粒子供給筒
14 直線形粒子供給筒
15 回転軸
DESCRIPTION OF SYMBOLS 1 Particle separator 2 Water tank 3 Particle supply cylinder 4 Inner wall 5 Outer wall 6 Particle 7 Depression 8 Curved particle supply cylinder 9 Pocket 10 Circular water tank 11 Bulkhead 12 Fan-shaped water tank 13 Particle supply cylinder 14 Linear particle supply cylinder 15 Rotating shaft

Claims (4)

回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備え、水槽を一定回転数に保たれた状態で、粒子供給筒より粒子を水槽内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に移動させることで、粒子を分離する分離装置において、
前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制可能とした構成を特徴とする粒子分離装置。
A water tank that rotates, and a particle supply cylinder provided in the water tank from the rotation center of the water tank toward the outer wall of the water tank, and in a state where the water tank is maintained at a constant rotation speed, In a separation device that separates particles by releasing the particles into high-density particles and low-density particles, or by moving the same kind of particles relative to each other in the counter-rotating direction for each size,
A particle separator having a configuration in which convection of water in a water tank during particle separation can be suppressed by making the shape inside the water tank into a donut shape.
回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備えた粒子を分離する分離装置により、水槽を一定回転数に保った状態で、粒子供給筒より粒子を水槽内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に移動させて、粒子を分離する分離方法において、
前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制することを特徴とする粒子分離方法。
In a state in which the water tank is maintained at a constant rotation speed by a separation device that separates the particles including a rotating water tank and a particle supply tube provided in the water tank from the rotation center of the water tank toward the outer wall direction of the water tank, Separation method in which particles are separated from each other by moving particles of high specific gravity and low specific gravity particles or particles of the same type relative to each other in the counter-rotating direction by discharging particles into the water tank from the particle supply cylinder In
A particle separation method characterized in that convection of water in the water tank during particle separation is suppressed by making the inside of the water tank into a donut shape.
回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備え、水槽を一定回転数に保たれた状態で、粒子供給筒より粒子を水槽内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に移動させて、粒子を分離する分離装置において、
前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制可能とし、
前記粒子供給筒を湾曲形粒子供給筒とすることにより、分離時の粒子の凝集や回転を抑制するとともに、予め用意された複数種類の曲率や長さを有する湾曲形粒子供給筒を交換したり、湾曲形粒子供給筒に湾曲率の変更が可能なフレキシブルな素材を使用して、湾曲形粒子供給筒の曲がり方を調整することで、湾曲形粒子供給筒から放出された粒子のポケットへの入射角が30°〜60°となる位置で回収可能な構成としたことを特徴とする粒子分離装置。
A water tank that rotates, and a particle supply cylinder provided in the water tank from the rotation center of the water tank toward the outer wall of the water tank, and in a state where the water tank is maintained at a constant rotation speed, In a separation device that separates particles by relatively moving them in the counter-rotating direction for each size of high specific gravity particles and low specific gravity particles, or particles of the same type
By making the shape inside the water tank a donut shape, it is possible to suppress convection of water in the water tank during particle separation,
By making the particle supply cylinder a curved particle supply cylinder, while suppressing aggregation and rotation of particles during separation, the curved particle supply cylinder having a plurality of types of curvatures and lengths prepared in advance can be replaced. By using a flexible material that can change the curvature of the curved particle supply cylinder, the bending of the curved particle supply cylinder is adjusted to adjust the bending of the curved particle supply cylinder to the pocket of particles released from the curved particle supply cylinder. A particle separation device characterized in that it can be collected at a position where the incident angle is 30 ° to 60 °.
回転する水槽と、該水槽の回転中心部から水槽の外壁方向に向けて水槽に設けられた粒子供給筒とを備えた粒子を分離する分離装置により、水槽を一定回転数に保った状態で、粒子供給筒より粒子を水槽内に放出することで、高比重粒子と低比重粒子を、あるいは同一種類の粒子を大きさ毎に反回転方向に相対的に大きく移動させて、粒子を分離する分離方法において、
前記水槽内部の形状をドーナツ形とすることにより、粒子分離時の水槽内の水の対流を抑制し、
前記粒子供給筒を湾曲形粒子供給筒とすることにより、分離時の粒子の凝集や回転を抑制するとともに、予め用意された複数種類の曲率や長さを有する湾曲形粒子供給筒を交換したり、湾曲形粒子供給筒に湾曲率の変更が可能なフレキシブルな素材を使用して、湾曲形粒子供給筒の曲がり方を調整することで、湾曲形粒子供給筒から放出された粒子のポケットへの入射角が30°〜60°となる位置で回収可能な構成としたことを特徴とする粒子分離方法。
In a state in which the water tank is maintained at a constant rotation speed by a separation device that separates the particles including a rotating water tank and a particle supply tube provided in the water tank from the rotation center of the water tank toward the outer wall direction of the water tank, Separation by separating particles by releasing particles from the particle supply cylinder into the water tank, by moving the high specific gravity particles and low specific gravity particles or the same type of particles relatively large in the counter-rotation direction for each size. In the method
By making the shape inside the water tank a donut shape, the convection of water in the water tank during particle separation is suppressed,
By making the particle supply cylinder a curved particle supply cylinder, while suppressing aggregation and rotation of particles during separation, the curved particle supply cylinder having a plurality of types of curvatures and lengths prepared in advance can be replaced. By using a flexible material that can change the curvature of the curved particle supply cylinder and adjusting the bending method of the curved particle supply cylinder, the particles released from the curved particle supply cylinder can be put into the pockets. A particle separation method characterized by having a configuration capable of being collected at a position where the incident angle is 30 ° to 60 °.
JP2009057233A 2009-03-11 2009-03-11 Particle separation apparatus and separation method Active JP5164172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057233A JP5164172B2 (en) 2009-03-11 2009-03-11 Particle separation apparatus and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057233A JP5164172B2 (en) 2009-03-11 2009-03-11 Particle separation apparatus and separation method

Publications (2)

Publication Number Publication Date
JP2010207737A true JP2010207737A (en) 2010-09-24
JP5164172B2 JP5164172B2 (en) 2013-03-13

Family

ID=42968519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057233A Active JP5164172B2 (en) 2009-03-11 2009-03-11 Particle separation apparatus and separation method

Country Status (1)

Country Link
JP (1) JP5164172B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435753A (en) * 1990-05-31 1992-02-06 Kurimoto Ltd Superfine powder classifier
US20030166445A1 (en) * 2000-09-05 2003-09-04 Jean-Denis Rochat Rotatable chamber for separating blood or plasma components
JP2006239678A (en) * 2005-02-02 2006-09-14 National Institute Of Advanced Industrial & Technology Separation device and separation method for particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435753A (en) * 1990-05-31 1992-02-06 Kurimoto Ltd Superfine powder classifier
US20030166445A1 (en) * 2000-09-05 2003-09-04 Jean-Denis Rochat Rotatable chamber for separating blood or plasma components
JP2006239678A (en) * 2005-02-02 2006-09-14 National Institute Of Advanced Industrial & Technology Separation device and separation method for particle

Also Published As

Publication number Publication date
JP5164172B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
CN105383686B (en) Aircraft tire
US9927040B2 (en) Rotary valve
EP3132851B1 (en) Anti-spin dust seal for cone and gyratory crushers
JP2012234153A5 (en)
RU2009130020A (en) SYSTEM, METHOD AND DEVICE FOR COMPONENTS AND ASSEMBLIES OF ROTATING WELL DEVICES WITH A RADIAL BEARING RESISTANT TO FORMATION OF DEPOSITS
JP5164172B2 (en) Particle separation apparatus and separation method
JP4817330B2 (en) Particle separation method
CN109789425A (en) Stage division and device
CN108027018A (en) Device drives gearbox in turbine
CN102284329A (en) Dispersion disk on fine powder ball mill
CN203730529U (en) Spindle
JP2011062578A5 (en)
CN105397702B (en) Screw fastening machine, the adsorption tube of screw fastening machine and screw fastening method
CN205911890U (en) Electric putter lead screw anti -friction structure
EP3695890A1 (en) Solid phase extraction method using micro device
JP2008161823A (en) Classifier
CN203730560U (en) Spindle
CN104859840B (en) Duct power set and aircraft
EP3239552A1 (en) Friction brake structure
CN104438042A (en) Material screening device
US8422910B2 (en) Sealing member for use with a toner or developer supply container
JP6323322B2 (en) Powder feeder
EP3257750A1 (en) Auxiliary rotating structure and tire assembly therewith
JP2016175764A (en) Supply device
CN105392998B (en) The pump of impeller back blade is removed with sundries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250