JP2006239678A - Separation device and separation method for particle - Google Patents

Separation device and separation method for particle Download PDF

Info

Publication number
JP2006239678A
JP2006239678A JP2006003044A JP2006003044A JP2006239678A JP 2006239678 A JP2006239678 A JP 2006239678A JP 2006003044 A JP2006003044 A JP 2006003044A JP 2006003044 A JP2006003044 A JP 2006003044A JP 2006239678 A JP2006239678 A JP 2006239678A
Authority
JP
Japan
Prior art keywords
particle
particles
separation
specific gravity
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006003044A
Other languages
Japanese (ja)
Other versions
JP4803426B2 (en
Inventor
Tatsuya Oki
達也 大木
Koki Yotsumoto
弘毅 四元
Mikio Kobayashi
幹男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006003044A priority Critical patent/JP4803426B2/en
Publication of JP2006239678A publication Critical patent/JP2006239678A/en
Application granted granted Critical
Publication of JP4803426B2 publication Critical patent/JP4803426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of separating fine particles by particle size regardless of specific gravity by applying a centrifugal force under specific conditions. <P>SOLUTION: The separation device for particles comprises a base stand 11, a disc-type vessel 13 rotating on the base stand 11 and a suspension liquid supply tank 15. The disc-type vessel 13 is provided with a plurality of fan-shaped centrifugal separating tanks 14 arranged at regular intervals in the peripheral direction around the rotation center and a particle supply cylinder 21. The plurality of fan-shaped centrifugal separating tanks 14 are formed as cavities independent to one another which are respectively composed of peripheral side walls 16 and bottom walls 17. The particle supply cylinder 21 is disposed so as to discharge the suspension liquid toward the fan-shaped centrifugal separating tanks 14 from the center part of the disc-type vessel 13, and particles included in the suspension liquid supplied from the suspension liquid supply tank 15 are fractionated into a plurality of particle recovery pockets 22 which are divided in the peripheral direction on the inner surface of the outer side wall of the centrifugal separating tanks. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、懸濁液中の粒子を粒径別あるいは比重別によって分離する粒子分離装置及び分離方法に関する。   The present invention relates to a particle separation apparatus and a separation method for separating particles in a suspension by particle size or specific gravity.

比重の異なる2種以上の粒子に対し、水中運動の速度差を利用して比重別あるいは粒径別に分離する装置(ジグ、テーブル、サイクロン等およびその改良装置)が産業分野の各所で利用されている。   Devices that separate two or more types of particles with different specific gravity by specific gravity or particle size using the difference in speed of underwater motion (jigs, tables, cyclones, etc. and their improved devices) are used in various places in the industrial field. Yes.

本出願人は、すでに、粒子の比重の大小による沈降速度差を利用し、高比重粒子と低比重粒子を比重分離する粒子の比重分離方法において、粒子の沈降方向に振動を与え、粒子の比重、振動の周波数、振幅に応じて低比重粒子の沈降遅延を高比重粒子よりも大きくして、同速度で沈降する異比重粒子の粒径比である等速沈降比を拡大する粒子の比重分離方法を提案している(特許文献1参照)。   The present applicant has already used a specific gravity separation method for separating specific gravity of high specific gravity particles and low specific gravity particles by utilizing the difference in sedimentation velocity depending on the specific gravity of the particles, and applied vibration in the sedimentation direction of the particles, Gravity separation of particles to increase the constant velocity sedimentation ratio, which is the particle size ratio of different density particles that settle at the same speed, by increasing the sedimentation delay of low density particles according to the frequency and amplitude of vibration, greater than that of high density particles A method is proposed (see Patent Document 1).

又、微粒子を液体から固液分離する遠心分離装置では、モータで隔壁が回転するような構成は知られている(特許文献2参照)。
特開2003−340314号公報 特開昭63−62562号公報
Further, in a centrifugal separator that separates fine particles from a liquid into a solid and liquid, a configuration in which a partition is rotated by a motor is known (see Patent Document 2).
JP 2003-340314 A Japanese Unexamined Patent Publication No. 63-62562

比重の異なる2種以上の粒子に対し、水中運動の速度差を利用して比重別あるいは粒径別に分離する装置において、沈降速度に代表される水中の粒子運動速度は、粒子の比重と粒径(投影断面積)の両方に依存するため、大比重-小粒径の粒子と、小比重-大粒径粒子では同じ速度で運動するものや、小比重の方が速い速度で運動するものなどが存在する。   In an apparatus that separates two or more kinds of particles with different specific gravities by specific gravity or by particle size using the difference in the speed of underwater motion, the particle motion speed in water represented by sedimentation speed is the specific gravity and particle size of the particles. Because it depends on both (projected cross-sectional area), particles with large specific gravity-small particle size and those with small specific gravity-large particle size move at the same speed, and those with small specific gravity moving at a faster speed, etc. Exists.

したがって、これら粒子群を比重別に精度良く分離するには、大小比重粒子相互の混入を防止するため、大比重粒子より速度が速い大粒径の小比重粒子や、小比重粒子より速度が遅い小粒径の大比重粒子を事前に除いておかなければならない。   Therefore, in order to accurately separate these particle groups according to specific gravity, in order to prevent the mixing of large and small specific gravity particles, small specific gravity particles having a large particle size that is faster than large specific gravity particles or small particles that are slower than small specific gravity particles. Large specific gravity particles having a particle size must be removed in advance.

これら特定の粒径の粒子を事前に比重別に取り除くことはできないので、通常は、篩い分けなど、比重に無関係に粒径別分離できる方法で特定の粒度幅に調整される。事前の粒度調整は数mm〜数cm程度の粒子では容易であるが、50〜100μmより小さな微粒子を特定粒度幅に調整することは、工業的には極めて困難である。   Since particles having a specific particle size cannot be removed by specific gravity in advance, the particle size is usually adjusted to a specific particle size width by a method that allows separation by particle size regardless of specific gravity, such as sieving. Prior particle size adjustment is easy for particles of several millimeters to several centimeters, but it is extremely difficult industrially to adjust fine particles smaller than 50 to 100 μm to a specific particle size range.

従来の微粒子用分離装置では、遠心場を付与して粒子速度を増大させる仕組みが備わっているものが多い。しかし、遠心力は重力と同様に粒子の比重と粒径の両方に依存する力であり、分離に要する時間の短縮はできるが、事前調整すべき粒度幅を広げるなどの効果はほとんどない。   Many conventional separation devices for fine particles have a mechanism for increasing the particle velocity by applying a centrifugal field. However, the centrifugal force is a force that depends on both the specific gravity and the particle size of particles as in the case of gravity, and the time required for separation can be shortened, but there is little effect such as widening the particle size width to be pre-adjusted.

したがって、従来技術では、特に多分散系(粒度幅の広い)微粒子の高精度な比重別分離(あるいは粒径別分離)は不可能であった。このような多分散系微粒子に対し、水中運動の差を利用して高精度に比重別分離をするには、
(1)比重分離時の粒子運動を制御して、事前調整すべき粒度幅を拡大させることで、事実上、事前の粒度調整を不要にする。
(2)比重分離で要求される粒度幅に事前調整可能な、粒子比重とは無関係に微粒子を精度良く粒径別分離できる技術を確立する。
のいずれかが必要である。
Therefore, in the prior art, it has been impossible to separate polydispersed particles (with a wide particle size range) fine particles by specific gravity (or separation by particle size) with high accuracy. For such polydisperse fine particles, separation by specific gravity with high accuracy using the difference in underwater motion,
(1) By controlling the particle motion during the specific gravity separation and expanding the particle size width to be adjusted in advance, the particle size adjustment in advance is virtually eliminated.
(2) Establish a technology capable of preliminarily adjusting the particle size range required for specific gravity separation and capable of accurately separating fine particles by particle size regardless of particle specific gravity.
Either is required.

本出願人が提案した前述の特許文献に記載発明では、水に特定の鉛直振動を付与することによって粒子運動を制御し、事前調整すべき粒度幅を拡大する方法(上記(1)に相当)である。しかし、この方法では拡大幅に限界があるため、粒度調整を完全に不要にすることは難しい。   In the invention described in the above-mentioned patent document proposed by the present applicant, a method of controlling particle motion by applying a specific vertical vibration to water and expanding the particle size width to be pre-adjusted (corresponding to (1) above) It is. However, since this method has a limit on the enlargement width, it is difficult to completely eliminate the particle size adjustment.

本発明は、このような従来の問題を解決することを目的とするもので、上記(2)に相当する技術で、特定の条件下で遠心力を付与することにより、比重に関係なく微粒子を粒径別に分離可能とする技術の実現を図ることを課題とするものである。   The present invention aims to solve such a conventional problem, and by applying a centrifugal force under a specific condition with a technique corresponding to the above (2), fine particles can be obtained regardless of specific gravity. An object of the present invention is to realize a technique that enables separation according to particle size.

上記課題を解決するために、基台と、該基台上で回転する円盤型容器と、懸濁液供給タンクを有し、円盤型容器の回転数が一定回転数になったのちに、該懸濁液供給タンクから供給される懸濁液に含まれる粒子を予め水で満たされた前記円盤型容器内で分別する粒子分離装置であって、前記円盤型容器は、その回転中心の周囲に周方向に配設された複数の遠心分離槽と、粒子供給筒と、蓋を備えて成り、前記複数の遠心分離槽は、それぞれ内周壁と底壁とから成り互いに独立したくぼみとして形成されており、前記粒子供給筒は、前記円盤型容器の中心部から前記遠心分離槽に向けて前記懸濁液中の粒子を放出するように設けられていることを特徴とする粒子分離装置を提供する。   In order to solve the above problems, a base, a disk-shaped container that rotates on the base, and a suspension supply tank are provided, and after the number of rotations of the disk-shaped container reaches a certain number of rotations, A particle separator for separating particles contained in a suspension supplied from a suspension supply tank in a disk-shaped container previously filled with water, wherein the disk-shaped container is disposed around a rotation center thereof. A plurality of centrifuge tanks arranged in the circumferential direction, a particle supply cylinder, and a lid are provided. Each of the plurality of centrifuge tanks includes an inner peripheral wall and a bottom wall, and is formed as an independent recess. And the particle supply cylinder is provided so as to discharge particles in the suspension from the center of the disk-shaped container toward the centrifugal separation tank. .

前記遠心分離槽の内周壁の外側壁の内面には、周方向に区画されて成り、分別された粒子を受ける複数のポケットが形成されている構成としてもよい。   A plurality of pockets may be formed on the inner surface of the outer wall of the inner peripheral wall of the centrifugal separation tank, which are divided in the circumferential direction and receive the separated particles.

上記課題を解決するために基台上で回転する円盤型容器に、懸濁液供給タンクから粒子を供給し、前記円盤型容器内で分別する粒子分離方法であって、前記円盤型容器は、その回転中心の周囲に周方向に配設された複数の遠心分離槽と、粒子供給筒と、蓋を備え、前記複数の遠心分離槽は、それぞれ内周側壁と底壁とから成り互いに独立したくぼみとして形成されており、前記懸濁液を前記粒子供給筒を通して、前記円盤型容器の中心部から前記遠心分離槽に向けて放出することを特徴とする粒子分離方法を提供する。   In order to solve the above problems, a particle separation method for supplying particles from a suspension supply tank to a disk-shaped container that rotates on a base and separating the particles in the disk-shaped container, wherein the disk-shaped container includes: A plurality of centrifuge tanks disposed in the circumferential direction around the rotation center, a particle supply cylinder, and a lid, each of the centrifuge tanks including an inner peripheral side wall and a bottom wall and independent of each other A particle separation method is provided, wherein the particle separation method is formed as a depression, and the suspension is discharged from the center of the disk-shaped container toward the centrifuge tank through the particle supply cylinder.

従来の水中粒子の運動差を利用した分離技術では、比重別分離を行なう際には対象粒子の粒径が揃っている必要があり、粒径別分離を行なう際は多くは比重差のない単一種粒子群のみが分離対象となっていた。本発明の方法によれば、比重や粒径に幅のある粒子群について比重別、粒径別の高精度な分離が可能となる。また、「粒子の比重分離方法」特願2002-151669は本件と同目的の技術であるが、この方法が効果を示す粒径は10〜100μmの間の一部の粒径領域に限られ、また、振動による沈降遅延効果を応用したものであるため分離速度が著しく遅いなどの欠点があった。本発明による方法では、適用粒度下限に理論上の制限はなく、また、遠心場を応用したことにより分離速度も極めて早い特徴を有する。   In the conventional separation technology using the difference in motion of underwater particles, the particle size of the target particles needs to be uniform when performing the separation by specific gravity. Only one type of particles was targeted for separation. According to the method of the present invention, high-precision separation can be performed for each specific gravity and particle size with respect to a group of particles having a wide specific gravity and particle size. In addition, “Particle Gravity Separation Method” Japanese Patent Application No. 2002-151669 is a technique of the same purpose as the present case, but the particle size for which this method is effective is limited to a partial particle size region between 10 and 100 μm, Further, since the effect of delaying sedimentation due to vibration is applied, there are disadvantages such as extremely low separation speed. In the method according to the present invention, there is no theoretical limit to the lower limit of the applied particle size, and the separation speed is extremely fast due to the application of the centrifugal field.

本発明に係る懸濁液中の粒子を粒径別あるいは比重別によって分離する粒子分離装置及び分離方法の実施の形態を実施例に基づいて図面を参照して、以下に説明する。   Embodiments of a particle separation apparatus and a separation method for separating particles in a suspension according to the present invention by particle size or specific gravity will be described below with reference to the drawings based on the examples.

(基本構成)
本発明の基本的な構成及び原理について説明する。通常の遠心分離機あるいはサイクロンなどでは、容器内は懸濁液状の粒子で満たされ、また、その水は回転方向へ移動が可能であるので、水および粒子の両者に対し回転から遅れをとる方向にコリオリ力(回転により回転方向に作用する「みかけ」の力)が生じる。このコリオリ力は、遠心分離速度の低下に繋がるものとしてその対策が検討されてきた。
(Basic configuration)
The basic configuration and principle of the present invention will be described. In a normal centrifuge or cyclone, the container is filled with suspension-like particles, and the water can move in the direction of rotation, so that both water and particles are delayed from rotation. Coriolis force (an “apparent” force acting in the direction of rotation by rotation) is generated. Countermeasures for this Coriolis force have been studied as being linked to a decrease in the centrifugation speed.

円盤型容器内に放射状の隔壁を設ける(特許文献2参照)と、水の回転が防止されるため遠心力が粒子に効率的に作用し、遠心分離速度が低下しないことが既に知られている。本発明に係る分離装置も外見上はこの隔壁を持つタイプの遠心分離機と似ているが、分離の概念は異なり、水の往来を完全に遮断するとともに、粒子の供給方法、回収方法などを変えることにより、粒径別分離を可能にするものである。この点を、概念図である図1と、作用を説明する図2で説明する。   It is already known that when a radial partition wall is provided in a disk-shaped container (see Patent Document 2), rotation of water is prevented, so that centrifugal force acts efficiently on the particles and the centrifugation speed does not decrease. . The separation device according to the present invention is similar in appearance to the centrifugal separator of this type having a partition wall, but the concept of separation is different, completely blocking the passage of water, and the method for supplying and recovering particles. By changing, separation by particle size is made possible. This point will be described with reference to FIG. 1 which is a conceptual diagram and FIG.

図1に概念図を示すように、円盤型の容器1内に清澄水を満たし、円盤型の容器1の回転軸2を中心とした放射状の隔壁3により水の往来が完全にできない扇形の部屋4を設け、軸2を中心に一方向に回転させる。あるいは、任意形状の容器内に清澄水を満たし、容器外の位置に回転軸を設けて容器を一方向に回転させる。   As shown in the conceptual diagram of FIG. 1, a disc-shaped container 1 is filled with clarified water, and a fan-shaped room in which the water is not completely transported by a radial partition wall 3 centering on the rotating shaft 2 of the disk-shaped container 1. 4 is provided and rotated in one direction around the shaft 2. Alternatively, clear water is filled in an arbitrarily shaped container, and a rotating shaft is provided at a position outside the container to rotate the container in one direction.

任意の回転速度で容器1の回転を維持した状態で、粒子供給筒5から扇形の部屋4内に遠心力のかかる方向で粒子6を解き放つ。清澄水は、隔壁3によって、部屋4内に完全に拘束されているため、清澄水内を移動可能な粒子6にのみコリオリ力が働く。コリオリ力は見かけ上の力で、その大きさ、つまり回転方向からの遅れの度合いは、粒子6の慣性と回転する水の粘性のバランスによって決まる。   In a state where the rotation of the container 1 is maintained at an arbitrary rotational speed, the particles 6 are released from the particle supply cylinder 5 into the fan-shaped chamber 4 in a direction in which centrifugal force is applied. Since the clarified water is completely restrained in the room 4 by the partition walls 3, the Coriolis force acts only on the particles 6 that can move in the clarified water. The Coriolis force is an apparent force, and its magnitude, that is, the degree of delay from the rotation direction, is determined by the balance between the inertia of the particles 6 and the viscosity of the rotating water.

外部からみれば、粒子6は容器1の軸を中心に回転しながら、遠心作用により徐々に外側に移動する。すなわち、粒子6は渦巻き状の軌跡を描きながら外側へ移動する。ここで遠心方向に作用する遠心力は、重力と同様に粒子6の比重と粒径の両者に依存する。   When viewed from the outside, the particles 6 gradually move outward by centrifugal action while rotating around the axis of the container 1. That is, the particles 6 move outward while drawing a spiral trajectory. Here, the centrifugal force acting in the centrifugal direction depends on both the specific gravity and the particle size of the particles 6 as in the case of gravity.

一方、回転方向に作用する力は、水の圧力勾配である。これは水が回転することによって、粒子にかかる水の圧力に勾配が生じ、水の回転と同方向に粒子6を動かそうとする力である。言い換えれば、粒子周辺の水が、粒子の存在している体積分の水を動かすのに作用する力である。すなわち、圧力勾配は粒子6の比重に無関係で、粒子体積だけに依存する力である。   On the other hand, the force acting in the rotation direction is a water pressure gradient. This is a force that attempts to move the particles 6 in the same direction as the rotation of the water by causing a gradient in the pressure of the water applied to the particles as the water rotates. In other words, the water around the particle is the force that acts to move the volume of water in which the particle exists. That is, the pressure gradient is independent of the specific gravity of the particle 6 and is a force that depends only on the particle volume.

遠心場(遠心作用が働く場)では、粒子6は回転方向に水を追随しながら、外側に行くに従って回転方向の速度を増大させるので、すなわち、粒子6に圧力勾配が加わることになる。ここで、同一粒径粒子では、比重に無関係に同じ圧力勾配を受けるが、同じ力を受ければ質量の小さい小比重粒子の方が運動は大きくなる。つまり、同一時間内の運動を比較すると、小比重粒子は水を良く追随し、大比重粒子になるほど水から遅れるようになる。   In the centrifugal field (the field where the centrifugal action works), the particles 6 follow the water in the rotation direction and increase the speed in the rotation direction toward the outside, that is, a pressure gradient is applied to the particles 6. Here, particles having the same particle diameter are subjected to the same pressure gradient regardless of the specific gravity. However, if the same force is applied, the movement of the small specific gravity particles having a smaller mass becomes larger. That is, when the movements within the same time are compared, the small specific gravity particles follow the water well, and the larger the specific gravity particles, the longer the delay.

しかし、この間、遠心方向の運動は小比重粒子の方が小さく、大比重粒子の方が大きくなる。すなわち、図2に示すように、比重の異なる同一粒径粒子の場合、同じ圧力勾配を受けることによって生じる回転方向の運動差と、異なる遠心力を受けることによって生じる遠心方向の運動差が加味されることにより、移動速度は小比重粒子ほど遅く、大比重粒子ほど速くなるものの、運動の軌跡、すなわち移動方向はほぼ同じとなる。   However, during this time, the movement in the centrifugal direction is smaller for small specific gravity particles and larger for large specific gravity particles. That is, as shown in FIG. 2, in the case of particles of the same particle size having different specific gravities, the difference in motion in the rotational direction caused by receiving the same pressure gradient and the difference in motion in the centrifugal direction caused by receiving different centrifugal forces are taken into account. As a result, the moving speed is slower for the small specific gravity particles and is faster for the large specific gravity particles, but the movement trajectory, that is, the moving direction is substantially the same.

全ての粒子がこの条件に従えば、図3Bのような粒子配列となるが、実際には遠心方向の加速度が一定ではないために、微粒子のみがこのような配列となり、粒径が大きくなるにしたがって、例えば1mm以上の粒子においては、この通りの配列とはならない。   If all the particles obey this condition, the particle arrangement is as shown in FIG. 3B. However, since the acceleration in the centrifugal direction is actually not constant, only the fine particles have such an arrangement and the particle size becomes large. Therefore, for example, in the case of particles of 1 mm or more, this arrangement is not achieved.

以上説明した原理を、粒子分離装置及び分離方法として採用すれば、種々の比重粒子が混在した多分散系微粒子の高精度な粒径別分離が可能である。また、この原理に基づく粒子分離装置及び方法を比重分離の事前粒径調整手段と位置づければ、この手段により粒径別に分離したのち、通常の微粒子用比重分離装置を利用することにより、高精度な比重別分離が可能である。   If the principle explained above is adopted as a particle separation device and a separation method, it is possible to separate the polydisperse fine particles mixed with various specific gravity particles with high accuracy by particle size. In addition, if the particle separation apparatus and method based on this principle are positioned as a prior particle size adjusting means for specific gravity separation, after separating by particle diameter by this means, by using a normal specific gravity separation apparatus for fine particles, Separation by specific gravity is possible.

さらに、この分離手段で粒径別に搬送したのち、同装置内に既存の固体と固体を分離する固−固分離用遠心分離機の機能を付加すれば、1つの装置で高精度な比重別、粒径別分離を同時に行なうことも可能となる。   Furthermore, after transporting by particle size with this separation means, if the function of a solid-solid separation centrifuge that separates existing solids and solids is added in the same device, high-precision specific gravity can be separated with one device, Separation by particle size can be performed simultaneously.

図4は、本発明に係る粒子分離装置及び分離方法の実施例を説明する図である。この粒子分離装置10は、定置された基台11上に、基台11から突設した支持軸12を中心に円盤型容器13が、図示しないモータ等の駆動装置により、回転可能に配置されている。   FIG. 4 is a diagram for explaining an embodiment of the particle separation apparatus and separation method according to the present invention. In this particle separation device 10, a disk-shaped container 13 is rotatably disposed on a stationary base 11 around a support shaft 12 protruding from the base 11 by a driving device such as a motor (not shown). Yes.

円盤型容器13には扇形遠心分離槽14が支持軸12を中心に対称的に一対設けられている。なお、円盤型容器13における扇形遠心分離槽14の設置数、設置箇所は、1つでもよいし、複数でもよく、円盤型容器13の規模、分離処理量等により適宜、設計されるべき設計事項である。   The disc-shaped container 13 is provided with a pair of fan-shaped centrifuge tanks 14 symmetrically about the support shaft 12. The number and location of the fan-shaped centrifuge tanks 14 in the disk-shaped container 13 may be one or more, and design items to be appropriately designed depending on the scale of the disk-shaped container 13 and the amount of separation processing. It is.

円盤型容器13の中心部において、支持軸12の周囲には、分離されるべき粒子が液体中に混合された状態で含まれる懸濁液を収容し、扇形遠心分離槽14(前記基本構成における「扇形の部屋4」に相当する。)に供給する懸濁液供給タンク15が設けられている。   In the central part of the disk-shaped container 13, a suspension containing particles to be separated mixed in a liquid is accommodated around the support shaft 12, and a fan-shaped centrifuge tank 14 (in the basic configuration described above). A suspension supply tank 15 is provided for supply to “fan-shaped room 4”.

扇形遠心分離槽14は、内周壁16と底壁17とからくぼみとして構成されている。内周壁16は、内側壁18、円周方向に区画する隔壁(側壁)19及び外側壁20が一体的に連続して形成されている。扇形遠心分離槽14内には、水等の液体が充填されており、円盤型容器13が回転しても扇形遠心分離槽14内に拘束され、流れ出ないように構成されている。   The fan-shaped centrifuge tank 14 is configured as a hollow from the inner peripheral wall 16 and the bottom wall 17. The inner peripheral wall 16 includes an inner side wall 18, a partition wall (side wall) 19 and an outer side wall 20 that are partitioned in the circumferential direction, and are integrally formed. The fan-shaped centrifuge tank 14 is filled with a liquid such as water, and is configured to be restrained in the fan-shaped centrifuge tank 14 and not flow out even when the disk-shaped container 13 rotates.

扇形遠心分離槽14の内側壁18には懸濁液供給タンク15と連通する粒子供給筒(ノズル)21が設けられている。懸濁液供給タンク15内に充填された懸濁液中の粒子は、この粒子供給筒21から扇形遠心分離槽14に供給可能である。   A particle supply cylinder (nozzle) 21 communicating with the suspension supply tank 15 is provided on the inner wall 18 of the fan-shaped centrifuge tank 14. The particles in the suspension filled in the suspension supply tank 15 can be supplied from the particle supply cylinder 21 to the fan-shaped centrifuge tank 14.

扇形遠心分離槽14の外側壁20の内面には、周方向に複数の粒子回収ポケット22が配列されている。各ポケット22は、周方向に隣接する別のポケット22と区画壁23で区画されている。この一連の複数のポケット22のそれぞれに、分離された粒子が収容されることとなる。   A plurality of particle recovery pockets 22 are arranged in the circumferential direction on the inner surface of the outer wall 20 of the fan-shaped centrifuge tank 14. Each pocket 22 is partitioned by another pocket 22 adjacent to the circumferential direction and a partition wall 23. The separated particles are accommodated in each of the series of the plurality of pockets 22.

扇形遠心分離槽14は、上部開口は蓋24で閉じることができるが、この蓋に空気抜き孔25が設けられている。この空気抜き孔25を通して、扇形遠心分離槽14は大気と連通している。   The fan-shaped centrifuge tank 14 has an upper opening that can be closed with a lid 24, and an air vent hole 25 is provided in the lid. Through the air vent hole 25, the fan-shaped centrifuge tank 14 communicates with the atmosphere.

(作用)
上記構成から成る粒子分離装置及び分離方法の作用を以下に説明する。扇形遠心分離槽14内の水の乱れを防ぐため、懸濁液供給タンク15内にあらかじめ水を仕込み、空気抜き孔25より気泡を開放後、空気抜き孔25の栓を閉じ、懸濁液供給タンク15の懸濁液投入口(図示しない。)だけが開栓した状態で全ての栓を閉じ密閉状態にする。
(Function)
The operation of the particle separation apparatus and the separation method having the above configuration will be described below. In order to prevent disturbance of the water in the fan-shaped centrifuge tank 14, water is charged in the suspension supply tank 15 in advance, air bubbles are released from the air vent hole 25, the stopper of the air vent hole 25 is closed, and the suspension supply tank 15 With all the suspension inlets (not shown) open, all the stoppers are closed and sealed.

円盤型容器13を回転させ始め一定回転数で安定したならば、懸濁液供給タンク15と粒子供給筒21を遮断していた弁(図示しない。)を開放し、粒子供給筒21を経て、扇形遠心分離槽14 (図3の装置例では2槽型となっている)へ粒子を放つ。   When the disk-shaped container 13 starts to rotate and stabilizes at a constant rotational speed, the valve (not shown) that shuts off the suspension supply tank 15 and the particle supply cylinder 21 is opened, and after passing through the particle supply cylinder 21, Particles are released into a fan-shaped centrifuge tank 14 (in the example of the apparatus shown in FIG. 3, it is a two-tank type).

なお、懸濁液の供給については、特に図示はしないが、懸濁液供給タンクを円盤型容器13の上方に設け、円盤型容器13の中心部に供給室を設け、懸濁液供給タンクからこの供給室に通じるパイプを設け、このパイプを通して懸濁液中の粒子を供給室内に落とし込むように構成するとよい。そして、粒子回収ポケット22内の粒子を含む水を粒子とともに装置外に排出する構成としてもよい。   The suspension supply is not particularly shown, but the suspension supply tank is provided above the disk-shaped container 13, the supply chamber is provided at the center of the disk-shaped container 13, and the suspension supply tank is A pipe communicating with the supply chamber may be provided, and the particles in the suspension may be dropped into the supply chamber through the pipe. And it is good also as a structure which discharges the water containing the particle | grains in the particle | grain collection | recovery pocket 22 with the particle | grains out of an apparatus.

また、分離槽に供給する際には、粒子は粒子供給筒21を通じて極力同じ点から放たれることが重要である。このとき、粒子供給筒21が非常に太かったり、あるいは、遠心分離槽内の水の乱れが大きかったりすると、遠心分離槽に放たれた粒子群は容易に拡散してしまい、粒径別分離の効果は失われる。すなわち、粒子供給筒21の内径は細いほど分離精度が良くなり、また、遠心分離槽内の水は分離槽に対してなるべく静止していることが望ましい。   Further, when supplying to the separation tank, it is important that the particles are released from the same point as much as possible through the particle supply cylinder 21. At this time, if the particle supply cylinder 21 is very thick or the water in the centrifuge tank is greatly disturbed, the particles released to the centrifuge tank easily diffuse and are separated by particle size. The effect is lost. That is, it is desirable that the smaller the inner diameter of the particle supply cylinder 21, the better the separation accuracy, and the water in the centrifuge tank be as stationary as possible with respect to the separation tank.

分離可能な最小粒子径は、回転体の直径、回転数、粒子回収ポケット22の間隔、ならびに液体の粘度に依存する。これらの分離条件の結果として、粒子供給筒21から遠心方向に最も真っ直ぐ移動した粒子が回収されるポケット22、すなわち、最小粒径粒子群が回収されるポケット22内の粒子の分布が分離下限を決める。   The minimum particle size that can be separated depends on the diameter of the rotating body, the number of rotations, the interval between the particle collection pockets 22 and the viscosity of the liquid. As a result of these separation conditions, the distribution of the particles in the pocket 22 where the particles moved most straight in the centrifugal direction from the particle supply cylinder 21 are collected, that is, the distribution of the particles in the pocket 22 where the smallest particle size group is collected, has a lower separation limit. Decide.

各ポケット22に回収される粒径の上限と下限は分離条件によって決まってくるが、このポケット22だけは下限粒径はなく、上限粒径以下の粒子はすべて回収される。そして、この上限粒径が、その後の比重分離における分離下限粒径を決める因子となる。   The upper and lower limits of the particle size collected in each pocket 22 are determined by the separation conditions, but only the pocket 22 has no lower limit particle size, and all particles having an upper limit particle size or less are collected. And this upper limit particle diameter becomes a factor which determines the separation lower limit particle diameter in subsequent specific gravity separation.

例えば、液体に水を用い、回転体の半径400mm、ポケット22の間隔を20mmとし、比重2.5の小比重粒子と、ある比重を持つ大比重粒子の分離を考えたとき、最小粒径粒子群が回収されるポケット22内の粒子の最大粒径と、回転数の関係を図5に示す。最小粒径粒子群が回収されるポケット22内の粒子の最大粒径は回転数2500rpmで約7μm、6000rpmで約5μmとなる。   For example, when water is used as the liquid, the radius of the rotating body is 400 mm, the interval between the pockets 22 is 20 mm, and separation of small specific gravity particles with a specific gravity of 2.5 and large specific gravity particles with a specific gravity is considered. FIG. 5 shows the relationship between the maximum particle size of the particles in the pocket 22 where the group is collected and the number of rotations. The maximum particle size of the particles in the pocket 22 in which the minimum particle size group is collected is about 7 μm at a rotational speed of 2500 rpm and about 5 μm at 6000 rpm.

このとき、このポケット22に回収された粒子群をさらに比重分離することを考えれば、これらの最大粒径に対応する分離下限粒径は、大比重粒子の比重に応じて図6のような値となる。例えば回転数5000rpmで分離を行った場合、比重分離の理論的分離下限粒径は、大比重粒子の比重3の場合約5μm、比重12の場合には約2μm程度となる。   At this time, considering that the particles collected in the pocket 22 are further separated by specific gravity, the lower limit separation particle size corresponding to these maximum particle sizes is a value as shown in FIG. 6 according to the specific gravity of the large specific gravity particles. It becomes. For example, when the separation is performed at a rotational speed of 5000 rpm, the theoretical separation lower limit particle size of the specific gravity separation is about 5 μm when the specific gravity of the large specific gravity particle is 3 and about 2 μm when the specific gravity is 12.

以上のように本件の分離法によれば、従来では分離できない粒度幅を持つ数μm以上の多分散系微粒子の比重分離を、理論上ほぼ完璧に(分離効率100%近くで)行うことが可能である。   As described above, according to the separation method of the present invention, it is theoretically possible to perform the specific gravity separation of polydisperse fine particles of several μm or more having a particle size width that cannot be separated conventionally (with a separation efficiency of nearly 100%). It is.

以上、本発明に係る粒子の粒子分離装置および分離方法を実施例挙げて説明したが、本発明の実施例は上記実施例に限定されることはなく、特許請求の範囲の技術的範囲内でいろいろな態様があることは言うまでもない。   The particle separation apparatus and the separation method for particles according to the present invention have been described with reference to the embodiments. However, the embodiments of the present invention are not limited to the above-described embodiments, and are within the technical scope of the claims. Needless to say, there are various modes.

産業上の利用の可能性Industrial applicability

本発明に係る懸濁液中の粒子を粒径別あるいは比重別によって分離する粒子分離装置及び分離方法は、懸濁液中の粒子を粒径別あるいは比重別によって分離することを必要とする各種産業分野(鉱業ならびに各種産業分野の製造工程、リサイクルおよび環境修復プロセスにおける粒子分離工程等)に適用可能である。   The particle separation apparatus and separation method for separating particles in suspension according to particle size or specific gravity according to the present invention require various types of particles that require separation of particles in suspension by particle size or specific gravity. Applicable to industrial fields (manufacturing processes in mining and various industrial fields, particle separation processes in recycling and environmental restoration processes, etc.).

本発明に係る粒子分離装置及び分離方法の基本的な構成及び方法を説明する図である。It is a figure explaining the fundamental composition and method of a particle separation device and a separation method concerning the present invention. 本発明に係る粒子分離装置及び分離方法の基本的な構成及び方法の作用(円盤型容器内の遠心分離槽を上部から見た図で分離槽内の粒子の動きを説明)を説明する図である。FIG. 3 is a diagram for explaining the basic configuration of the particle separation apparatus and the separation method according to the present invention and the operation of the method (the movement of the particles in the separation tank is explained with a view of the centrifugal separation tank in the disk-shaped container as viewed from above). is there. 本発明に係る粒子分離装置及び分離方法の基本的な構成及び方法の作用(円盤型容器内の遠心分離槽を上部から見た図で分離槽内の粒子の動きを説明)を説明する図である。FIG. 3 is a diagram for explaining the basic configuration of the particle separation apparatus and the separation method according to the present invention and the operation of the method (the movement of the particles in the separation tank is explained with a view of the centrifugal separation tank in the disk-shaped container as viewed from above). is there. 本発明に係る粒子分離装置及び分離方法の実施例1を説明する図である。It is a figure explaining Example 1 of a particle separation device and a separation method concerning the present invention. 本発明に係る粒子分離装置及び分離方法の作用を説明する図であり、最小粒径粒子群が回収されるポケット内に回収される小比重粒子の最大粒径と、回転数の関係 (分離下限粒径を決める因子である、最小粒群回収ポケット22内の小比重粒子の最大粒径に関する理論的計算値) を示す図である。It is a figure explaining the operation of the particle separation device and the separation method according to the present invention, and the relationship between the maximum particle size of small specific gravity particles recovered in the pocket where the minimum particle size particle group is recovered and the rotational speed (separation lower limit). It is a figure which shows the theoretical calculation value regarding the largest particle size of the small specific gravity particle | grains in the minimum particle group collection | recovery pocket 22 which is a factor which determines a particle size. 本発明に係る粒子分離装置及び分離方法の作用を説明する図であり、各回転数でポケット内に回収された粒子群に対する、大比重粒子の比重と比重分離下限 (図5の条件で分離した最小粒群回収ポケット22内の粒子群を、比重分離した際の分離粒径下限を、大比重粒子の比重ごとに計算した理論値)を示す図である。It is a figure explaining the effect | action of the particle | grain separator which concerns on this invention, and the separation method, and with respect to the particle group collect | recovered in the pocket at each rotation speed, the specific gravity and specific gravity separation lower limit (separated on the conditions of FIG. 5). It is a figure which shows the separated particle diameter lower limit at the time of carrying out the specific gravity separation of the particle group in the minimum particle group collection pocket 22 for every specific gravity of a large specific gravity particle).

符号の説明Explanation of symbols

1 円盤型の容器
2 容器の回転軸
3 隔壁
4 扇形の部屋
5 粒子供給筒
6 粒子
7 大きな比重の粒子
8 小さな比重の粒子
10 粒径別分離装置
11 基台
12 支持軸
13 円盤型容器
14 扇形遠心分離槽
15 懸濁液供給タンク
16 内周壁
17 底壁
18 内側壁
19 隔壁(側壁)
20 外側壁
21 粒子供給筒
22 粒子回収ポケット
23 区画壁
24 蓋
25 空気抜き孔
DESCRIPTION OF SYMBOLS 1 Disc type container 2 Container rotation axis 3 Bulkhead 4 Fan-shaped room 5 Particle supply cylinder 6 Particle 7 Particle with large specific gravity 8 Particle with small specific gravity 10 Separating device by particle size 11 Base 12 Support shaft 13 Disk type container 14 Fan shape Centrifugal separator 15 Suspension supply tank 16 Inner wall 17 Bottom wall 18 Inner wall 19 Partition wall (side wall)
20 Outer wall 21 Particle supply cylinder 22 Particle recovery pocket 23 Partition wall 24 Lid 25 Air vent hole

Claims (3)

基台と、該基台上で一定回転する円盤型容器と、懸濁液供給タンクを有し、該懸濁液供給タンクから供給される懸濁液に含まれる粒子を前記円盤型容器内で分別する粒子分離装置であって、
前記円盤型容器は、その回転中心の周囲に周方向に配設された複数の遠心分離槽と、粒子供給筒と、蓋を備えて成り、
前記複数の遠心分離槽は、それぞれ内周壁と底壁とから成り互いに独立したくぼみとして形成されており、
前記粒子供給筒は、前記円盤型容器の中心部から予め水で満たされた前記遠心分離槽に向けて前記懸濁液中の粒子を放出するように設けられていることを特徴とする粒子分離装置。
A base, a disk-shaped container that rotates on the base, and a suspension supply tank, and particles contained in the suspension supplied from the suspension supply tank in the disk-shaped container A particle separation device for sorting,
The disk-shaped container comprises a plurality of centrifuge tanks arranged in the circumferential direction around the center of rotation, a particle supply cylinder, and a lid,
The plurality of centrifuge tanks are each formed of an inner peripheral wall and a bottom wall and are formed as indents independent of each other,
The particle supply cylinder is provided so as to discharge particles in the suspension from the center of the disk-shaped container toward the centrifuge tank filled with water in advance. apparatus.
前記遠心分離槽の内周壁の外側壁の内面には、周方向に区画されて成り、分別された粒子を受ける複数のポケットが形成されていることを特徴とする請求項1記載の粒子分離装置。   2. The particle separator according to claim 1, wherein a plurality of pockets are formed on the inner surface of the outer wall of the inner peripheral wall of the centrifugal separation tank and are divided in the circumferential direction to receive the separated particles. . 基台上で一定回転する円盤型容器に、懸濁液供給タンクから懸濁液を供給し、該懸濁液に含まれる粒子を、前記円盤型容器内で分別する粒子分離方法であって、
前記円盤型容器は、その回転中心の周囲に周方向に等間隔で配設された複数の遠心分離槽と、粒子供給筒と、蓋を備え、前記複数の遠心分離槽は、それぞれ内周側壁と底壁とから成り互いに独立したくぼみとして形成されており、
前記懸濁液中粒子を前記粒子供給筒を通して、前記円盤型容器の中心部から予め水で満たされた前記遠心分離槽に向けて放出することを特徴とする粒子分離方法。
A particle separation method in which a suspension is supplied from a suspension supply tank to a disk-shaped container that rotates constantly on a base, and particles contained in the suspension are separated in the disk-shaped container,
The disk-shaped container includes a plurality of centrifuge tanks, particle supply cylinders, and lids arranged at equal intervals in the circumferential direction around a rotation center thereof, and the centrifuge tanks each have an inner peripheral side wall. And the bottom wall are formed as indents independent of each other,
A particle separation method, wherein the particles in the suspension are discharged from the central part of the disk-shaped container through the particle supply cylinder toward the centrifuge tank filled with water in advance.
JP2006003044A 2005-02-02 2006-01-10 Particle separator Expired - Fee Related JP4803426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003044A JP4803426B2 (en) 2005-02-02 2006-01-10 Particle separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005027006 2005-02-02
JP2005027006 2005-02-02
JP2006003044A JP4803426B2 (en) 2005-02-02 2006-01-10 Particle separator

Publications (2)

Publication Number Publication Date
JP2006239678A true JP2006239678A (en) 2006-09-14
JP4803426B2 JP4803426B2 (en) 2011-10-26

Family

ID=37046593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003044A Expired - Fee Related JP4803426B2 (en) 2005-02-02 2006-01-10 Particle separator

Country Status (1)

Country Link
JP (1) JP4803426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049332A (en) * 2006-07-25 2008-03-06 National Institute Of Advanced Industrial & Technology Particle separation apparatus and method
DE102008005063A1 (en) 2007-07-13 2009-01-15 National Institute Of Advanced Industrial Science And Technology Particle e.g. jigs, separation apparatus for use in e.g. mining industry, has particle supply cylinders with valve for discharging particles in suspension towards centrifugation vessel filled beforehand with water
JP2010207737A (en) * 2009-03-11 2010-09-24 National Institute Of Advanced Industrial Science & Technology Particle separation apparatus and separation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091989A (en) * 1977-01-04 1978-05-30 Schlutz Charles A Continuous flow fractionation and separation device and method
JPS5471894A (en) * 1977-11-01 1979-06-08 Union Carbide Corp Consumable rotary star enclosure adapted for use with blood cleaning unit
WO1998008611A1 (en) * 1996-08-26 1998-03-05 Aribert Komanns Sorting centrifuging system
JP2003340314A (en) * 2002-05-27 2003-12-02 National Institute Of Advanced Industrial & Technology Gravity separation method for particles
JP2004314068A (en) * 2003-03-31 2004-11-11 National Institute Of Advanced Industrial & Technology Method and device for classifying particulate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091989A (en) * 1977-01-04 1978-05-30 Schlutz Charles A Continuous flow fractionation and separation device and method
JPS5471894A (en) * 1977-11-01 1979-06-08 Union Carbide Corp Consumable rotary star enclosure adapted for use with blood cleaning unit
WO1998008611A1 (en) * 1996-08-26 1998-03-05 Aribert Komanns Sorting centrifuging system
JP2003340314A (en) * 2002-05-27 2003-12-02 National Institute Of Advanced Industrial & Technology Gravity separation method for particles
JP2004314068A (en) * 2003-03-31 2004-11-11 National Institute Of Advanced Industrial & Technology Method and device for classifying particulate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049332A (en) * 2006-07-25 2008-03-06 National Institute Of Advanced Industrial & Technology Particle separation apparatus and method
US7988610B2 (en) 2006-07-25 2011-08-02 National Institute Of Advanced Industrial Science And Technology Particle separation apparatus and method
DE102008005063A1 (en) 2007-07-13 2009-01-15 National Institute Of Advanced Industrial Science And Technology Particle e.g. jigs, separation apparatus for use in e.g. mining industry, has particle supply cylinders with valve for discharging particles in suspension towards centrifugation vessel filled beforehand with water
JP2010207737A (en) * 2009-03-11 2010-09-24 National Institute Of Advanced Industrial Science & Technology Particle separation apparatus and separation method

Also Published As

Publication number Publication date
JP4803426B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4817330B2 (en) Particle separation method
JP4509096B2 (en) Balancer for vertical rotor and centrifuge using the same
US1358375A (en) Apparatus for separating particles of varying size or density
CN106975576B (en) Adjustable cyclone separator
JP4803426B2 (en) Particle separator
US5582724A (en) Centrifuge and rotor for use therein
US20130072369A1 (en) Centrifugal separator
JPS6057366B2 (en) centrifugation method
CN108697951A (en) Centrifugal beneficiation method and device using vibration surface and the rotor drum that uses wherein
JPH07155638A (en) Method and device for separating finely divided solid into two particle group
US20210197212A1 (en) Multi-axis centrifuge
HU198862B (en) Mantle screen device for sorting granules advantageously in size range of 20-300 micrometers
JP6078315B2 (en) Hydrocyclone classifier
US2860776A (en) Classifying apparatus
JP2946231B2 (en) Ultra fine powder classifier
US10940491B1 (en) Centrifuge operating with sinusoidal motion
JPS5926642A (en) Fluid flywheel
CN207770064U (en) A kind of anti-back-mixing structure of centrifuge
RU2668616C1 (en) Centrifugal concentrator of chamber type
JP2000070863A (en) Classification device for powder and grain
JPH03207476A (en) Classifier for superfine powder
CN117654124A (en) Method and device for separating and classifying particles
RU2170621C1 (en) Magnetohydrostatic centrifugal separator
KR101127911B1 (en) A centrifugal separator
JP2014226579A (en) Separation device and rotary blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4803426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees