JP2010206967A - Motor overload detecting device - Google Patents

Motor overload detecting device Download PDF

Info

Publication number
JP2010206967A
JP2010206967A JP2009050515A JP2009050515A JP2010206967A JP 2010206967 A JP2010206967 A JP 2010206967A JP 2009050515 A JP2009050515 A JP 2009050515A JP 2009050515 A JP2009050515 A JP 2009050515A JP 2010206967 A JP2010206967 A JP 2010206967A
Authority
JP
Japan
Prior art keywords
phase coil
value
integrated value
motor
coil current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009050515A
Other languages
Japanese (ja)
Inventor
Makoto Miyajima
誠 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2009050515A priority Critical patent/JP2010206967A/en
Publication of JP2010206967A publication Critical patent/JP2010206967A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a conventional motor overload detection device, wherein since overloading is detected based on a value which is determined by integrating a current value command by using the thermal time constant for the coils of all the phases, the single-phase coil is burnt during the stall state. <P>SOLUTION: In the motor overload detecting device, an all-phase coil overheat detection unit 12 detects the overheating state of the coils of all phases of a motor 30 by utilizing a first thermal time constant τ1, which is the thermal time constant of the coils of all phases, and a single-phase coil overheat detecting unit 13 detects the overheating state of the single-phase coil of the motor 30, by utilizing a second thermal time constant τ2 which is the thermal time constant of the single-phase coil. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、モータの過負荷状態を検出するモータ過負荷検出装置に関し、特に、モータの全相のコイルが過熱されている状態とモータの単相のコイルが過熱されている状態とを並列に検出できるように構成することで、モータのパフォーマンスを維持しつつ、より確実にモータを過熱から保護できる新規な改良に関するものである。   The present invention relates to a motor overload detection device that detects an overload state of a motor, and in particular, a state in which all phases of a motor coil are overheated and a state in which a single phase coil of a motor is overheated are paralleled. It is related with the novel improvement which can protect a motor from overheating more reliably, maintaining the performance of a motor by comprising so that it can detect.

従来用いられていたこの種のモータ過負荷検出装置としては、以下の特許文献1等に記載された構成が例示される。図6は、従来のモータ過負荷検出装置を示すブロック図である。図において、モータドライバ10は、駆動回路20を介してモータ30に接続されるとともに、アラーム報知器40に接続されている。モータドライバ10には、駆動制御部11と全相コイル過熱検出部12とが設けられており、駆動制御部11は、駆動回路20に対して電流値指令Icmdと回転数指令Rcmdとを入力することで、モータ30の駆動方向、駆動力、及び回転数を制御する。   As this type of motor overload detection device that has been conventionally used, the configuration described in Patent Document 1 below is exemplified. FIG. 6 is a block diagram showing a conventional motor overload detection device. In the figure, the motor driver 10 is connected to a motor 30 via a drive circuit 20 and is also connected to an alarm notification device 40. The motor driver 10 is provided with a drive control unit 11 and an all-phase coil overheat detection unit 12, and the drive control unit 11 inputs a current value command Icmd and a rotation speed command Rcmd to the drive circuit 20. Thus, the driving direction, driving force, and rotation speed of the motor 30 are controlled.

全相コイル過熱検出部12は、駆動制御部11から出力される電流値指令Icmdを検出するとともに、モータ30に含まれる全相のコイルの熱時定数(モータ全体としての熱時定数)を利用して電流値指令Icmdを積分し、この積分値が所定のオーバロードレベルに達した際に、モータ30の全相のコイルが過熱されている状態を検出して過負荷アラーム12aを発する。アラーム報知器40は、全相コイル過熱検出部12からの過負荷アラーム12aを検出した際に過負荷状態を報知する。   The all-phase coil overheat detection unit 12 detects the current value command Icmd output from the drive control unit 11 and uses the thermal time constant of all-phase coils included in the motor 30 (the thermal time constant of the entire motor). Then, the current value command Icmd is integrated, and when this integrated value reaches a predetermined overload level, the state where the coils of all the phases of the motor 30 are overheated is detected and an overload alarm 12a is issued. The alarm notification device 40 notifies the overload state when the overload alarm 12a from the all-phase coil overheat detection unit 12 is detected.

特開2008−48577号公報JP 2008-48577 A

ところで、モータ30の駆動状態には、モータ30の駆動軸を回転させるために全相のコイルに満遍なく順に電流を流す回転状態と、モータ30の駆動軸を停止保持するために1相のコイルに集中して電流(ストール電流)を流し続けるストール状態とが含まれる。ストール状態では、全相のコイルが熱せられるのではなく、特定の単相のコイルのみが熱せられる。ストール電流による単相コイルの温度上昇は、全相のコイルが熱せられる場合よりも急となる。
上記のような従来のモータ過負荷検出装置では、全相のコイルの熱時定数を利用して
全相コイルの過熱状態を検出するので、ストール状態時に単相のコイルが過熱状態となることを検出できず、この単相のコイルが焼損されてしまう可能性がある。単相のコイルが焼損する問題は、放熱効率が低い小径モータにおいて特に顕著となる。
また、ストール状態を考慮して、全相のコイルの熱時定数の代わりに、単相のコイルの熱時定数を利用することも考えられるが、全相のコイルとしては過熱状態になっていないにも拘わらず、積分値がオーバロードレベルに達してしまい、モータ30の動作領域(ワット数)を有効に利用できなくなる。
By the way, the driving state of the motor 30 includes a rotating state in which current flows uniformly through all the coils in order to rotate the driving shaft of the motor 30, and a one-phase coil in order to stop and hold the driving shaft of the motor 30. And a stalled state in which current (stall current) continues to flow in a concentrated manner. In the stalled state, the coils of all phases are not heated, but only a specific single-phase coil is heated. The temperature increase of the single-phase coil due to the stall current is more rapid than when all the phase coils are heated.
In the conventional motor overload detection device as described above, since the overheating state of the all-phase coil is detected using the thermal time constant of the all-phase coil, the single-phase coil becomes overheated in the stall state. There is a possibility that this single-phase coil may be burned out. The problem that the single-phase coil burns out is particularly noticeable in small-diameter motors with low heat dissipation efficiency.
In consideration of the stall condition, it is possible to use the thermal time constant of the single-phase coil instead of the thermal time constant of the coil of all phases, but the coil of all phases is not overheated. Nevertheless, the integral value reaches the overload level, and the operating area (wattage) of the motor 30 cannot be used effectively.

本発明は、上記のような課題を解決するためになされたものであり、その目的は、モータのパフォーマンスを維持しつつ、より確実にモータを過熱から保護できるモータ過負荷検出装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a motor overload detection device that can more reliably protect the motor from overheating while maintaining the performance of the motor. It is.

本発明に係るモータ過負荷検出装置は、モータの全相のコイルの熱時定数である第1熱時定数を用いて前記モータへの電流値指令Icmdの積算値である全相コイル電流積算値Y1を求め、前記全相コイル電流積算値Y1がオーバロードレベルO.Lに達した場合に、前記モータの全相のコイルが過熱されている状態を検出して過負荷アラームを出力する全相コイル過熱検出部と、前記モータのストール状態時の発熱を監視するために、前記モータの単相のコイルの熱時定数である第2熱時定数τ2を用いて前記電流値指令Icmdの積算値である単相コイル電流積算値Y2を求め、前記単相コイル電流積算値Y2がオーバロードレベルO.Lに達した場合に、前記モータの単相のコイルが過熱されている状態を検出して過負荷アラームを出力する単相コイル過熱検出部とを備える。
また、前記単相コイル過熱検出部は、前記モータへの回転数指令Rcmdを検出し、前記回転数指令Rcmdが所定の閾値Th以下である場合に積算用電流値Iを前記電流値指令Icmdとするとともに前記回転数指令Rcmdが前記閾値Thよりも大きい場合に前記積算用電流値Iを0として、Y2={1−e(−t/τ2)}×{I−Y2(n−1)}+Y2(n−1)(但し、tは時間、τ2は前記第2熱時定数、Iは積算用電流値、Y2(n−1)は積算用電流値Iが変化する直前の単相コイル電流積算値)により、単相コイル電流積算値Y2を求める。
また、前記単相コイル過熱検出部は、前記全相コイル過熱検出部によって求められた前記全相コイル電流積算値Y1が前記単相コイル電流積算値Y2よりも小さいか否かを判定し、前記全相コイル電流積算値Y1が前記単相コイル電流積算値Y2よりも小さい場合に、求めた前記単相コイル電流積算値Y2の値を維持するとともに、前記全相コイル電流積算値Y1が前記単相コイル電流積算値Y2以上である場合に、前記単相コイル電流積算値Y2の値を前記全相コイル電流積算値Y1の値に書き換え、値を維持した前記単相コイル電流積算値Y2又は値を書き換えた前記単相コイル電流積算値Y2がオーバロードレベルO.Lに達したか否かを判定する。
The motor overload detection device according to the present invention uses an all-phase coil current integrated value that is an integrated value of a current value command Icmd to the motor using a first thermal time constant that is a thermal time constant of coils of all phases of the motor. Y1 is obtained, and the all-phase coil current integrated value Y1 is an overload level O.I. In order to monitor the heat generation in the stall state of the motor, and the all-phase coil overheat detection unit that detects the state that the coils of all phases of the motor are overheated and outputs an overload alarm when L is reached. In addition, a single-phase coil current integrated value Y2 that is an integrated value of the current value command Icmd is obtained using a second thermal time constant τ2 that is a thermal time constant of the single-phase coil of the motor, and the single-phase coil current integrated The value Y2 is the overload level O.D. And a single-phase coil overheat detection unit that detects an overheated state of the single-phase coil of the motor and outputs an overload alarm when the motor reaches L.
The single-phase coil overheat detection unit detects a rotational speed command Rcmd to the motor, and when the rotational speed command Rcmd is equal to or less than a predetermined threshold Th, the current value I for integration is referred to as the current value command Icmd. In addition, when the rotational speed command Rcmd is larger than the threshold Th, the current value I for accumulation is set to 0, and Y2 = {1-e (−t / τ2) } × {I−Y2 (n−1) } + Y2 (n-1) (where t is the time, τ2 is the second thermal time constant, I is the current value for integration, Y2 (n-1) is the single-phase coil current immediately before the current value for integration I changes ) The single-phase coil current integrated value Y2 is obtained from the integrated value).
In addition, the single-phase coil overheat detection unit determines whether the all-phase coil current integrated value Y1 obtained by the all-phase coil overheat detection unit is smaller than the single-phase coil current integrated value Y2, When the all-phase coil current integrated value Y1 is smaller than the single-phase coil current integrated value Y2, the obtained single-phase coil current integrated value Y2 is maintained, and the all-phase coil current integrated value Y1 is When the phase coil current integrated value Y2 is equal to or greater than the single phase coil current integrated value Y2, the single phase coil current integrated value Y2 is rewritten to the all phase coil current integrated value Y1, and the value is maintained. The single-phase coil current integrated value Y2 with the overload level O.I. It is determined whether or not L has been reached.

本発明のモータ過負荷検出装置によれば、全相のコイルの熱時定数である第1熱時定数τ1を利用して、モータの全相のコイルが過熱されている状態を全相コイル過熱検出部が検出するとともに、単相のコイルの熱時定数である第2熱時定数τ2と前記モータへの回転数指令Rcmdとを利用して、モータの単相のコイルが過熱されている状態を単相コイル過熱検出部が検出するので、第1及び第2熱時定数のいずれか一方のみを使用する場合に比べて、モータのパフォーマンスを維持しつつ、より確実にモータを過熱から保護できる。放熱効率が低い小径モータでは単相のコイルが焼損する可能性が高いので、本願発明は、そのような小径モータに特に有用である。
また、単相コイル過熱検出部は、前記回転数指令Rcmdが所定の閾値Th以下である場合に積算用電流値Iを前記電流値指令Icmdとするとともに前記回転数指令Rcmdが前記閾値Thよりも大きい場合に前記積算用電流値Iを0として、Y2={1−e(−t/τ2)}×{I−Y2(n−1)}+Y2(n−1)により、単相コイル電流積算値Y2を求めるので、より確実にモータのストール状態時の発熱を監視するための指標を得ることができ、単相コイルの過熱検出の信頼性を向上できる。
また、単相コイル過熱検出部は、前記全相コイル電流積算値Y1が前記単相コイル電流積算値Y2以上である場合に、前記単相コイル電流積算値Y2の値を前記全相コイル電流積算値Y1の値に書き換えるので、単相のコイルの熱変動をより確実に連続的に監視でき、単相コイルの過熱検出の信頼性を向上できる。
According to the motor overload detection device of the present invention, a state in which the coils of all phases of the motor are overheated is detected using the first thermal time constant τ1, which is the thermal time constant of the coils of all phases. A state in which the single-phase coil of the motor is overheated using the second thermal time constant τ2, which is the thermal time constant of the single-phase coil, and the rotational speed command Rcmd to the motor, as detected by the detection unit Since the single-phase coil overheat detection unit detects the motor, the motor can be more reliably protected from overheating while maintaining the performance of the motor as compared with the case where only one of the first and second thermal time constants is used. . Since a small-diameter motor with low heat dissipation efficiency has a high possibility of burning a single-phase coil, the present invention is particularly useful for such a small-diameter motor.
Further, the single-phase coil overheat detecting unit sets the current value I for integration to the current value command Icmd when the rotation speed command Rcmd is equal to or less than a predetermined threshold Th, and the rotation speed command Rcmd is less than the threshold Th. When the current value I is large, the current value I for accumulation is set to 0, and Y2 = {1-e (−t / τ2) } × {I−Y2 (n−1) } + Y2 (n−1). Since the value Y2 is obtained, it is possible to obtain an index for monitoring the heat generation in the motor stall state more reliably, and to improve the reliability of overheating detection of the single-phase coil.
Further, the single-phase coil overheat detection unit calculates the value of the single-phase coil current integration value Y2 as the all-phase coil current integration value when the all-phase coil current integration value Y1 is equal to or greater than the single-phase coil current integration value Y2. Since the value Y1 is rewritten, the thermal fluctuation of the single-phase coil can be continuously monitored more reliably, and the reliability of detection of overheating of the single-phase coil can be improved.

本発明の実施の形態1によるモータ過負荷検出装置を示すブロック図である。It is a block diagram which shows the motor overload detection apparatus by Embodiment 1 of this invention. 図1の全相コイル過熱検出部及び単相コイル過熱検出部によって求められる全相コイル電流積算値Y1及び単相コイル電流積算値Y2の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the all-phase coil current integrated value Y1 and the single-phase coil current integrated value Y2 calculated | required by the all-phase coil overheat detection part of FIG. 図2のように単相コイル電流積算値Y2が変動した際の単相コイル電流積算値Y2の値の書き換えを示す説明図である。It is explanatory drawing which shows rewriting of the value of the single phase coil current integration value Y2 when the single phase coil current integration value Y2 fluctuates like FIG. 図1の全相コイル過熱検出部が行う全相コイル過熱検出動作を示すフローチャートである。It is a flowchart which shows the all-phase coil overheat detection operation | movement which the all-phase coil overheat detection part of FIG. 1 performs. 図2の単相コイル過熱検出部が行う単相コイル過熱検出動作を示すフローチャートである。It is a flowchart which shows the single phase coil overheat detection operation | movement which the single phase coil overheat detection part of FIG. 2 performs. 従来のモータ過負荷検出装置を示すブロック図である。It is a block diagram which shows the conventional motor overload detection apparatus.

以下、本発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1によるモータ過負荷検出装置を示すブロック図である。図において、モータ過負荷検出装置としてのモータドライバ10は、駆動回路20を介してモータ30に接続されるとともに、アラーム報知器40に接続されている。モータドライバ10には、駆動制御部11と、全相コイル過熱検出部12と、単相コイル過熱検出部13とが設けられており、駆動制御部11は、駆動回路20に対して電流値指令Icmdと回転数指令Rcmdとを入力することで、モータ30の駆動方向、駆動力、及び回転数を制御する。
The best mode for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a motor overload detection apparatus according to Embodiment 1 of the present invention. In the figure, a motor driver 10 as a motor overload detection device is connected to a motor 30 via a drive circuit 20 and is also connected to an alarm notification device 40. The motor driver 10 includes a drive control unit 11, an all-phase coil overheat detection unit 12, and a single-phase coil overheat detection unit 13, and the drive control unit 11 sends a current value command to the drive circuit 20. By inputting Icmd and the rotation speed command Rcmd, the drive direction, drive force, and rotation speed of the motor 30 are controlled.

全相コイル過熱検出部12は、駆動制御部11から出力される電流値指令Icmdを検出するとともに、モータ30に含まれる全相のコイルの熱時定数である第1熱時定数τ1を利用して電流値指令Icmdを積分し全相コイル電流積算値Y1を求める。   The all-phase coil overheat detection unit 12 detects the current value command Icmd output from the drive control unit 11 and uses the first thermal time constant τ1, which is the thermal time constant of all-phase coils included in the motor 30. The current value command Icmd is integrated to obtain an all-phase coil current integrated value Y1.

具体的には、全相コイル過熱検出部12は、
Y1={1−e(−t/τ1)}×{Icmd−Y1(n−1)}+Y1(n−1)・・・式(1)
により、全相コイル電流積算値Y1を求める。但し、tは時間、τ1は第1熱時定数、Icmdは電流値指令、Y1(n−1)は電流値指令Icmdが変化する直前の全相コイル電流積算値である。
Specifically, the all-phase coil overheat detection unit 12
Y1 = {1-e (−t / τ1) } × {Icmd−Y1 (n−1) } + Y1 (n−1) (1)
Thus, an all-phase coil current integrated value Y1 is obtained. However, t is time, (tau) 1 is a 1st thermal time constant, Icmd is an electric current value command, Y1 (n-1) is an all-phase coil current integrated value just before the electric current value command Icmd changes.

また、全相コイル過熱検出部12は、全相コイル電流積算値Y1が所定のオーバロードレベルO.Lに達したか否かを判定し、前記オーバロードレベルO.Lに達したと判定した場合に、モータ30の全相のコイルが過熱されている状態を検出して、過負荷アラーム12aを発する。アラーム報知器40は、全相コイル過熱検出部12からの過負荷アラーム12aを検出した際に、過負荷状態を報知する。   Further, the all-phase coil overheat detection unit 12 is configured such that the all-phase coil current integrated value Y1 is a predetermined overload level O.D. L is reached, and the overload level O.D. When it is determined that L has been reached, a state in which the coils of all phases of the motor 30 are overheated is detected, and an overload alarm 12a is issued. When the alarm notification device 40 detects the overload alarm 12a from the all-phase coil overheat detection unit 12, the alarm notification device 40 notifies the overload state.

単相コイル過熱検出部13は、駆動制御部11から出力される電流値指令Icmdと回転数指令Rcmdを検出するとともに、モータ30のストール状態時の発熱を監視するために、モータ30に含まれる単相のコイルの熱時定数である第2熱時定数τ2と回転数指令Rcmdとを利用して、電流値指令Icmdを積分し単相コイル電流積算値Y2を求める。なお、ストール状態とは、モータ30の駆動軸を停止保持するために1相のコイルに集中してストール電流を流し続ける状態である。   The single-phase coil overheat detection unit 13 is included in the motor 30 in order to detect the current value command Icmd and the rotation speed command Rcmd output from the drive control unit 11 and to monitor the heat generation in the stall state of the motor 30. Using the second thermal time constant τ2 that is the thermal time constant of the single-phase coil and the rotational speed command Rcmd, the current value command Icmd is integrated to obtain the single-phase coil current integrated value Y2. Note that the stall state is a state in which a stall current continues to flow while concentrating on the one-phase coil in order to stop and hold the drive shaft of the motor 30.

具体的には、単相コイル過熱検出部13は、回転数指令Rcmdが例えば10rpm等の所定の閾値以下である場合に積算用電流値Iを電流値指令Icmdとするとともに、回転数指令Rcmdが閾値よりも大きい場合に積算用電流値Iを0として、
Y2={1−e(−t/τ2)}×{I−Y2(n−1)}+Y2(n−1)・・・式(2)
により、単相コイル電流積算値Y2を求める。但し、tは時間、τ2は第2熱時定数、Iは積算用電流値、Y2(n−1)は積算用電流値Iが変化する直前の単相コイル電流積算値である。なお、積分値Y1,Y2の変動については、後に図を用いて説明する。
Specifically, the single-phase coil overheat detection unit 13 sets the current value I for integration to the current value command Icmd when the rotation speed command Rcmd is equal to or less than a predetermined threshold such as 10 rpm, and the rotation speed command Rcmd is When larger than the threshold value, the current value I for accumulation is set to 0,
Y2 = {1-e (−t / τ2) } × {I−Y2 (n−1) } + Y2 (n−1) (2)
Thus, the single-phase coil current integrated value Y2 is obtained. However, t is time, (tau) 2 is the 2nd thermal time constant, I is an integration current value, Y2 (n-1) is a single phase coil current integration value just before the integration current value I changes. Note that fluctuations in the integral values Y1 and Y2 will be described later with reference to the drawings.

ここで、単相コイル電流積算値Y2は、ストール電流による単相のコイルの温度変動を示す指標である。回転数指令Rcmdが閾値Th以下であるときに積算用電流値Iを電流値指令Icmdとしているのは、回転数指令Rcmdが極めて低い時に、特定の単相のコイルにストール電流が集中して流れ、電流値指令Icmdと第2熱時定数τ2とに従って単相のコイルが熱せられるからである。一方、回転数指令Rcmdが閾値Thよりも大きい場合に積算用電流値Iを0としているのは、特定の単相のコイルにストール電流が集中して流れてなく、第2熱時定数τ2に従って単相のコイルが放熱されるからである。   Here, the single-phase coil current integrated value Y2 is an index indicating the temperature fluctuation of the single-phase coil due to the stall current. The current value command Icmd is used as the current value command Icmd when the rotation speed command Rcmd is equal to or less than the threshold Th. When the rotation speed command Rcmd is extremely low, the stall current flows in a specific single-phase coil. This is because the single-phase coil is heated according to the current value command Icmd and the second thermal time constant τ2. On the other hand, when the rotational speed command Rcmd is larger than the threshold value Th, the current value for integration I is set to 0 because the stall current does not flow in a specific single-phase coil in a concentrated manner, according to the second thermal time constant τ2. This is because the single-phase coil is dissipated.

また、単相コイル過熱検出部13は、全相コイル電流積算値Y1と単相コイル電流積算値Y2との大きさの比較結果により、単相コイル電流積算値Y2の値を全相コイル電流積算値Y1の値に書き換える。   Further, the single-phase coil overheat detection unit 13 calculates the value of the single-phase coil current integrated value Y2 based on the comparison result between the total-phase coil current integrated value Y1 and the single-phase coil current integrated value Y2. Rewrite the value Y1.

具体的には、単相コイル過熱検出部13は、全相コイル電流積算値Y1が単相コイル電流積算値Y2よりも小さい場合に、求めた単相コイル電流積算値Y2を維持し、全相コイル電流積算値Y1が単相コイル電流積算値Y2以上の場合に、単相コイル電流積算値Y2の値を全相コイル電流積算値Y1の値に書き換える。
これは、全相コイル電流積算値Y1が単相コイル電流積算値Y2以上である場合には、第2熱時定数τ2に従って単相のコイルが放熱されるよりも、電流値指令Icmdと第1熱時定数τ1とに従って該コイルが熱せられるほうが支配的になっているからである。また、単相コイル電流積算値Y2の値を書き換えるように構成することで、より確実にコイルの熱の変動を連続的に監視できるようにしている。
Specifically, the single-phase coil overheat detection unit 13 maintains the obtained single-phase coil current integrated value Y2 when the all-phase coil current integrated value Y1 is smaller than the single-phase coil current integrated value Y2, When the coil current integrated value Y1 is equal to or greater than the single-phase coil current integrated value Y2, the value of the single-phase coil current integrated value Y2 is rewritten to the value of the all-phase coil current integrated value Y1.
This is because, when the all-phase coil current integrated value Y1 is equal to or greater than the single-phase coil current integrated value Y2, the current value command Icmd and the first value are larger than the single-phase coil is radiated according to the second thermal time constant τ2. This is because it is more dominant that the coil is heated according to the thermal time constant τ1. Further, by configuring the single-phase coil current integrated value Y2 to be rewritten, it is possible to continuously monitor the fluctuation of the coil heat more reliably.

さらに、単相コイル過熱検出部13は、維持された単相コイル電流積算値Y2、又は全相コイル電流積算値Y1の値に書き換えた単相コイル電流積算値Y2を使用して、単相コイル電流積算値Y2がオーバロードレベルO.Lに達したか否かを判定する。単相コイル過熱検出部13は、単相コイル電流積算値Y2がオーバロードレベルO.Lに達したと判定した場合に、モータ30の単相のコイルが過熱されている状態を検出して過負荷アラーム13aを発する。アラーム報知器40は、単相コイル過熱検出部13からの過負荷アラーム13aを検出した際にも、過負荷状態を報知する。   Further, the single-phase coil overheat detection unit 13 uses the single-phase coil current integrated value Y2 rewritten to the maintained single-phase coil current integrated value Y2 or the all-phase coil current integrated value Y1, The integrated current value Y2 is overload level O.D. It is determined whether or not L has been reached. The single-phase coil overheat detection unit 13 indicates that the single-phase coil current integrated value Y2 is an overload level O.D. When it is determined that L has been reached, a state where the single-phase coil of the motor 30 is overheated is detected and an overload alarm 13a is issued. The alarm notification device 40 also notifies the overload state when the overload alarm 13a from the single-phase coil overheat detection unit 13 is detected.

次に、図2は、図1の全相コイル過熱検出部12及び単相コイル過熱検出部13によって求められる全相コイル電流積算値Y1及び単相コイル電流積算値Y2の変動を示すグラフである。
図2において、第2熱時定数τ2が第1熱時定数τ1よりも小さいので、単相コイル電流積算値Y2は、全相コイル電流積算値Y1よりも急に立ち上がる。ここで、タイミングT1の時点で、電流値指令Icmdが0にステップ状に切換えられたとすると、その時点から各積算値Y1,Y2は指数関数的に減少される。やはり、第2熱時定数τ2が第1熱時定数τ1よりも小さいので、単相コイル電流積算値Y2は、全相コイル電流積算値Y1よりも急に減少される。
Next, FIG. 2 is a graph showing the fluctuations of the all-phase coil current integrated value Y1 and the single-phase coil current integrated value Y2 obtained by the all-phase coil overheat detecting unit 12 and the single-phase coil overheat detecting unit 13 in FIG. .
In FIG. 2, since the second thermal time constant τ2 is smaller than the first thermal time constant τ1, the single-phase coil current integrated value Y2 rises more rapidly than the all-phase coil current integrated value Y1. Here, assuming that the current value command Icmd is switched to 0 in a stepped manner at the timing T1, each integrated value Y1, Y2 is exponentially decreased from that time. Again, since the second thermal time constant τ2 is smaller than the first thermal time constant τ1, the single-phase coil current integrated value Y2 is suddenly decreased from the all-phase coil current integrated value Y1.

図3は、図2のように単相コイル電流積算値Y2が変動した際の単相コイル電流積算値Y2の値の書き換えを示す説明図である。
この図3では、タイミングT2までは回転数指令Rcmdが閾値Th以下とされ、タイミングT2からは回転数指令Rcmdが閾値Thよりも大きいとされている。図3において、タイミングT2までは回転数指令Rcmdが閾値Th以下であるので、上記式(2)においてI=Icmdとされて、単相コイル電流積算値Y2が増大される。次に、タイミングT2からは回転数指令Rcmdが閾値Thよりも大きいので、式(2)においてI=0とされて、単相コイル電流積算値Y2が減少される。ここで、全相コイル電流積算値Y1は、回転数指令Rcmdに拘わらず第1熱時定数τ1に従って増大されるので、タイミングT3において、全相コイル電流積算値Y1が単相コイル電流積算値Y2よりも大きくなっている。従って、このタイミングT3から、単相コイル電流積算値Y2の値は、全相コイル電流積算値Y1の値に書き換える。
FIG. 3 is an explanatory diagram showing rewriting of the single-phase coil current integrated value Y2 when the single-phase coil current integrated value Y2 varies as shown in FIG.
In FIG. 3, the rotational speed command Rcmd is set to be equal to or less than the threshold value Th until the timing T2, and the rotational speed command Rcmd is set to be larger than the threshold value Th from the timing T2. In FIG. 3, since the rotational speed command Rcmd is equal to or less than the threshold Th until the timing T2, I = Icmd is set in the above equation (2), and the single-phase coil current integrated value Y2 is increased. Next, since the rotational speed command Rcmd is greater than the threshold value Th from the timing T2, I = 0 is set in Expression (2), and the single-phase coil current integrated value Y2 is decreased. Here, since all-phase coil current integrated value Y1 is increased according to the first thermal time constant τ1 regardless of rotation speed command Rcmd, all-phase coil current integrated value Y1 becomes single-phase coil current integrated value Y2 at timing T3. Is bigger than. Therefore, from this timing T3, the value of the single-phase coil current integrated value Y2 is rewritten to the value of the all-phase coil current integrated value Y1.

次に、各過熱検出部12,13の動作について説明する。
図4は、図1の全相コイル過熱検出部12が行う全相コイル過熱検出動作を示すフローチャートである。図において、モータドライバ10の電源が投入されると、駆動制御部11から出力される電流値指令Icmdが検出されるとともに(ステップS10)、上記式(1)により、電流値指令Icmdが積算されて全相コイル電流積算値Y1が求められる(ステップS11)。その次に、全相コイル電流積算値Y1がオーバロードレベルO.Lに達したか否かが判定されて(ステップS12)、オーバロードレベルO.Lに達していないと判定された場合には、全相コイル電流積算値Y1の算出動作(ステップS10,S11)が繰り返し行われる。
Next, the operation of each of the overheat detection units 12 and 13 will be described.
FIG. 4 is a flowchart showing the all-phase coil overheat detection operation performed by the all-phase coil overheat detection unit 12 of FIG. In the figure, when the power of the motor driver 10 is turned on, the current value command Icmd output from the drive control unit 11 is detected (step S10), and the current value command Icmd is integrated by the above equation (1). Thus, an all-phase coil current integrated value Y1 is obtained (step S11). Next, the all-phase coil current integrated value Y1 becomes the overload level O.D. It is determined whether or not L has been reached (step S12). When it is determined that L has not been reached, the calculation operation of all-phase coil current integrated value Y1 (steps S10 and S11) is repeatedly performed.

これに対して、全相コイル電流積算値Y1がオーバロードレベルO.Lに達したと判定された場合には、モータ30の全相のコイルが過熱されている状態が検出されて過負荷アラームが出力され(ステップS13)、この全相コイル過熱検出動作が終了される。なお、全相コイル過熱検出動作は、例えば、外部からモータドライバ10に対して復帰信号が入力された場合等に改めて開始される。   On the other hand, the all-phase coil current integrated value Y1 is an overload level O.D. If it is determined that L has been reached, a state in which the coils of all phases of the motor 30 are overheated is detected, an overload alarm is output (step S13), and this all-phase coil overheat detection operation is terminated. The Note that the all-phase coil overheat detection operation is started again, for example, when a return signal is input from the outside to the motor driver 10.

次に、図5は、図2の単相コイル過熱検出部13が行う単相コイル過熱検出動作を示すフローチャートである。
図において、モータドライバ10の電源が投入されると、駆動制御部11から出力される回転数指令Rcmdが検出されるとともに(ステップS20)、回転数指令Rcmdが例えば10rpm等の閾値Th以下であるか否かが判定される(ステップS21)。このとき、回転数指令Rcmdが閾値Th以下であると判定されると、駆動制御部11からの電流値指令Icmdが検出されるとともに、積算用電流値Iが電流値指令Icmdとされて(ステップS22)、上記式(2)により単相コイル電流積算値Y2が求められる(ステップS23)。一方、回転数指令Rcmdが閾値Thよりも大きいと判定されると、積算用電流値Iが0とされて(ステップS24)、上記式(2)により単相コイル電流積算値Y2が求められる(ステップS23)。
Next, FIG. 5 is a flowchart showing a single-phase coil overheat detection operation performed by the single-phase coil overheat detection unit 13 of FIG.
In the figure, when the power of the motor driver 10 is turned on, a rotation speed command Rcmd output from the drive control unit 11 is detected (step S20), and the rotation speed command Rcmd is equal to or less than a threshold value Th such as 10 rpm. Is determined (step S21). At this time, if it is determined that the rotation speed command Rcmd is equal to or less than the threshold value Th, the current value command Icmd from the drive control unit 11 is detected, and the current value I for integration is set as the current value command Icmd (step) S22), the single-phase coil current integrated value Y2 is obtained by the above equation (2) (step S23). On the other hand, if it is determined that the rotational speed command Rcmd is larger than the threshold value Th, the current value I for integration is set to 0 (step S24), and the single-phase coil current integrated value Y2 is obtained by the above equation (2) ( Step S23).

単相コイル電流積算値Y2が求められると、全相コイル過熱検出部12によって求められた全相コイル電流積算値Y1が単相コイル電流積算値Y2よりも小さいか否かが判定される(ステップS25)。このとき、全相コイル電流積算値Y1が単相コイル電流積算値Y2よりも小さいと判定されると、現在の単相コイル電流積算値Y2の値が維持される(ステップS26)。一方、全相コイル電流積算値Y1が単相コイル電流積算値Y2以上であると判定されると、単相コイル電流積算値Y2の値が全相コイル電流積算値Y1の値に書き換えられる(ステップS27)。   When the single-phase coil current integrated value Y2 is obtained, it is determined whether or not the all-phase coil current integrated value Y1 obtained by the all-phase coil overheat detecting unit 12 is smaller than the single-phase coil current integrated value Y2 (step). S25). At this time, if it is determined that all-phase coil current integrated value Y1 is smaller than single-phase coil current integrated value Y2, the current value of single-phase coil current integrated value Y2 is maintained (step S26). On the other hand, if it is determined that the all-phase coil current integrated value Y1 is equal to or greater than the single-phase coil current integrated value Y2, the value of the single-phase coil current integrated value Y2 is rewritten to the value of the all-phase coil current integrated value Y1 (step) S27).

その次に、値を維持した単相コイル電流積算値Y2又は値を書き換えた単相コイル電流積算値Y2がオーバロードレベルO.Lに達したか否かが判定されて(ステップS28)、オーバロードレベルO.Lに達していないと判定された場合には、単相コイル電流積算値Y2の算出動作(ステップS20〜S27)が繰り返し行われる。これに対して、オーバロードレベルO.Lに達したと判定された場合には、モータ30の単相のコイルが過熱されている状態が検出されて過負荷アラーム13aが出力されて(ステップS29)、この単相コイル過熱検出動作が終了される。なお、単相コイル過熱検出動作は、例えば、外部からモータドライバ10に対して復帰信号が入力される等したときに改めて開始される。   Next, the single-phase coil current integrated value Y2 with the value maintained or the single-phase coil current integrated value Y2 with the value rewritten is the overload level O.D. It is determined whether or not L has been reached (step S28). If it is determined that it has not reached L, the operation of calculating the single-phase coil current integrated value Y2 (steps S20 to S27) is repeated. On the other hand, the overload level O.D. If it is determined that the value has reached L, a state in which the single-phase coil of the motor 30 is overheated is detected, an overload alarm 13a is output (step S29), and this single-phase coil overheat detection operation is performed. Is terminated. Note that the single-phase coil overheat detection operation is started again, for example, when a return signal is input from the outside to the motor driver 10.

なお、この実施の形態1では、各過熱検出部12,13は、駆動制御部11から出力される電流値指令Icmd及び回転数指令Rcmdを直接的に検出するように説明したが、各過熱検出部は、モータに取付けられた電流検出器及び回転検出器を介して、電流値指令Icmd及び回転数指令Rcmdを間接的に検出してもよい。   In the first embodiment, each overheat detection unit 12 and 13 has been described as directly detecting the current value command Icmd and the rotation speed command Rcmd output from the drive control unit 11, but each overheat detection is performed. The unit may indirectly detect the current value command Icmd and the rotation speed command Rcmd via a current detector and a rotation detector attached to the motor.

11 駆動制御部
12 全相コイル過熱検出部
12a 過負荷アラーム
13 単相コイル過熱検出部
13a 過負荷アラーム
Icmd 電流値指令
Rcmd 回転数指令
DESCRIPTION OF SYMBOLS 11 Drive control part 12 All-phase coil overheat detection part 12a Overload alarm 13 Single-phase coil overheat detection part 13a Overload alarm Icmd Current value command Rcmd Rotational speed command

Claims (3)

モータ(30)の全相のコイルの熱時定数である第1熱時定数を用いて前記モータ(30)への電流値指令Icmdの積算値である全相コイル電流積算値Y1を求め、前記全相コイル電流積算値Y1がオーバロードレベルO.Lに達した場合に、前記モータ(30)の全相のコイルが過熱されている状態を検出して過負荷アラーム(12a)を出力する全相コイル過熱検出部(12)と、
前記モータ(30)のストール状態時の発熱を監視するために、前記モータ(30)の単相のコイルの熱時定数である第2熱時定数τ2と前記モータ(30)への回転数指令Rcmdとを用いて前記電流値指令Icmdの積算値である単相コイル電流積算値Y2を求め、前記単相コイル電流積算値Y2がオーバロードレベルO.Lに達した場合に、前記モータ(30)の単相のコイルが過熱されている状態を検出して過負荷アラーム(13a)を出力する単相コイル過熱検出部(13)と
を備えていることを特徴とするモータ過負荷検出装置。
Using the first thermal time constant which is the thermal time constant of the coils of all phases of the motor (30), an all-phase coil current integrated value Y1 which is an integrated value of the current value command Icmd to the motor (30) is obtained, All-phase coil current integrated value Y1 is overload level O.D. An all-phase coil overheat detection unit (12) for detecting a state in which all the phase coils of the motor (30) are overheated when L is reached and outputting an overload alarm (12a);
In order to monitor the heat generation in the stall state of the motor (30), a second thermal time constant τ2, which is a thermal time constant of a single-phase coil of the motor (30), and a rotational speed command to the motor (30) Rcmd is used to determine a single-phase coil current integrated value Y2 that is an integrated value of the current value command Icmd, and the single-phase coil current integrated value Y2 is determined as an overload level O.D. A single-phase coil overheat detection unit (13) for detecting a state where the single-phase coil of the motor (30) is overheated and outputting an overload alarm (13a) when L is reached. The motor overload detection apparatus characterized by the above-mentioned.
前記単相コイル過熱検出部(13)は、
前記回転数指令Rcmdが所定の閾値Th以下である場合に積算用電流値Iを前記電流値指令Icmdとするとともに前記回転数指令Rcmdが前記閾値Thよりも大きい場合に前記積算用電流値Iを0として、
Y2={1−e(−t/τ2)}×{I−Y2(n−1)}+Y2(n−1)
(但し、tは時間、τ2は前記第2熱時定数、Iは積算用電流値、Y2(n−1)は積算用電流値Iが変化する直前の単相コイル電流積算値)により、単相コイル電流積算値Y2を求める
ことを特徴とする請求項1記載のモータ過負荷検出装置。
The single-phase coil overheat detection unit (13)
When the rotational speed command Rcmd is equal to or less than a predetermined threshold Th, the current value I for integration is set as the current value command Icmd, and when the rotational speed command Rcmd is larger than the threshold Th, the current value I for integration is set. As 0
Y2 = {1-e (−t / τ2) } × {I−Y2 (n−1) } + Y2 (n−1)
(Where t is the time, τ2 is the second thermal time constant, I is the current value for integration, and Y2 (n-1) is the single-phase coil current integration value immediately before the integration current value I changes). The motor overload detection device according to claim 1, wherein a phase coil current integrated value Y2 is obtained.
前記単相コイル過熱検出部(13)は、
前記全相コイル過熱検出部(12)によって求められた前記全相コイル電流積算値Y1が前記単相コイル電流積算値Y2よりも小さいか否かを判定し、前記全相コイル電流積算値Y1が前記単相コイル電流積算値Y2よりも小さい場合に、求めた前記単相コイル電流積算値Y2の値を維持するとともに、前記全相コイル電流積算値Y1が前記単相コイル電流積算値Y2以上である場合に、前記単相コイル電流積算値Y2の値を前記全相コイル電流積算値Y1の値に書き換え、
値を維持した前記単相コイル電流積算値Y2又は値を書き換えた前記単相コイル電流積算値Y2がオーバロードレベルO.Lに達したか否かを判定する
ことを特徴とする請求項1又は請求項2に記載のモータ過負荷検出装置。
The single-phase coil overheat detection unit (13)
It is determined whether the all-phase coil current integrated value Y1 obtained by the all-phase coil overheat detecting unit (12) is smaller than the single-phase coil current integrated value Y2, and the all-phase coil current integrated value Y1 is When the value is smaller than the single-phase coil current integrated value Y2, the obtained single-phase coil current integrated value Y2 is maintained, and the all-phase coil current integrated value Y1 is equal to or greater than the single-phase coil current integrated value Y2. In some cases, the value of the single-phase coil current integrated value Y2 is rewritten to the value of the all-phase coil current integrated value Y1,
The single-phase coil current integrated value Y2 with the value maintained or the single-phase coil current integrated value Y2 with the value rewritten is overload level O.D. The motor overload detection device according to claim 1, wherein it is determined whether or not L has been reached.
JP2009050515A 2009-03-04 2009-03-04 Motor overload detecting device Pending JP2010206967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050515A JP2010206967A (en) 2009-03-04 2009-03-04 Motor overload detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050515A JP2010206967A (en) 2009-03-04 2009-03-04 Motor overload detecting device

Publications (1)

Publication Number Publication Date
JP2010206967A true JP2010206967A (en) 2010-09-16

Family

ID=42967887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050515A Pending JP2010206967A (en) 2009-03-04 2009-03-04 Motor overload detecting device

Country Status (1)

Country Link
JP (1) JP2010206967A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239720A (en) * 2009-03-31 2010-10-21 Hitachi Industrial Equipment Systems Co Ltd Overload protective device of pmw inverter and motor drive system
CN105302058A (en) * 2014-07-09 2016-02-03 发那科株式会社 Control device of machine tool
JP7080368B1 (en) * 2021-03-18 2022-06-03 三菱電機株式会社 Control device and control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239720A (en) * 2009-03-31 2010-10-21 Hitachi Industrial Equipment Systems Co Ltd Overload protective device of pmw inverter and motor drive system
CN105302058A (en) * 2014-07-09 2016-02-03 发那科株式会社 Control device of machine tool
US9581989B2 (en) 2014-07-09 2017-02-28 Fanuc Corporation Control device of machine tool which estimates overheating of motor
JP7080368B1 (en) * 2021-03-18 2022-06-03 三菱電機株式会社 Control device and control method

Similar Documents

Publication Publication Date Title
JP6219984B2 (en) System and method for controlling forward / reverse rotation of fan
JP2006025565A (en) Inverter circuit and compressor
JP2007252034A (en) Apparatus and method for driving fan motor
JP5080791B2 (en) Power element protection method in the inverter when the motor is restrained
JP4719006B2 (en) Brushless DC motor drive device
JP6178136B2 (en) Electric tool
JP2008011670A (en) Inverter system
JP2018082581A (en) Motor drive controller and motor drive control method
JP2010206967A (en) Motor overload detecting device
JP6405687B2 (en) Motor control device and motor control method
JP2004195643A5 (en)
JP2004195643A (en) Method for operating power tool motor and power tool to adopt the method
JP5952157B2 (en) Fan motor control device
JP5199392B2 (en) System clock monitoring device and motor control system
JP5501987B2 (en) Air conditioner
TW200843323A (en) Fan motor controller and fan motor control method
JP4924401B2 (en) COOLING FAN CONTROL DEVICE, COOLING FAN CONTROL METHOD, AND PROGRAM
JP2005253196A (en) Motor control unit and air conditioner using the same
JP2008104299A (en) Temperature protection control device and method for motor
JP6043573B2 (en) Fan motor control device
JP2006157987A (en) Inverter circuit and compressor employing it
JP2007124839A (en) Abnormality detector and motor controller therewith
JP2010185343A (en) Control device for compressor
JP2002199785A (en) Motor controller, overheat detector for motor winding, motor control method, and overheat detecting method for the motor winding
JP6642033B2 (en) Power supply for vacuum pump