JP2010206152A - Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method - Google Patents

Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method Download PDF

Info

Publication number
JP2010206152A
JP2010206152A JP2009105883A JP2009105883A JP2010206152A JP 2010206152 A JP2010206152 A JP 2010206152A JP 2009105883 A JP2009105883 A JP 2009105883A JP 2009105883 A JP2009105883 A JP 2009105883A JP 2010206152 A JP2010206152 A JP 2010206152A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
composition
forming
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009105883A
Other languages
Japanese (ja)
Other versions
JP5526593B2 (en
Inventor
Hideaki Sakurai
英章 桜井
Jun Fujii
順 藤井
Takeshi Noguchi
毅 野口
Nobuyuki Soyama
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009105883A priority Critical patent/JP5526593B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to CN201410553563.3A priority patent/CN104446463B/en
Priority to EP10192771.3A priority patent/EP2343268B1/en
Priority to PCT/JP2009/059804 priority patent/WO2009145272A1/en
Priority to CN201110025514.9A priority patent/CN102173795B/en
Priority to CN201310273420.2A priority patent/CN103360066B/en
Priority to EP09754780.6A priority patent/EP2298714B1/en
Priority to US12/736,944 priority patent/US8859051B2/en
Priority to KR1020107029565A priority patent/KR101242840B1/en
Priority to EP11195995.3A priority patent/EP2436661B1/en
Priority to KR1020107026443A priority patent/KR101565186B1/en
Priority to CN200980119294.7A priority patent/CN102046563B/en
Publication of JP2010206152A publication Critical patent/JP2010206152A/en
Priority to US12/929,056 priority patent/US8790538B2/en
Priority to US13/899,111 priority patent/US9005358B2/en
Application granted granted Critical
Publication of JP5526593B2 publication Critical patent/JP5526593B2/en
Priority to US14/448,224 priority patent/US9502636B2/en
Priority to US14/448,135 priority patent/US20140349139A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for ferroelectric thin film formation that can have both characteristics of reduction in leakage current and improvement in breakdown voltage improved in a well-balanced state and is suitable for use in a thin film capacitor with high capacity density, to provide a method for ferroelectric thin film formation, and to provide a ferroelectric thin film formed by the method. <P>SOLUTION: The composition for ferroelectric thin film formation is used in the formation of the ferroelectric thin film of one material selected from the group consisting of PLZT, PZT and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide A represented by general formula (Pb<SB>x</SB>La<SB>y</SB>)(Zr<SB>z</SB>Ti<SB>(1-z)</SB>)O<SB>3</SB>(wherein 0.9<x<1.3, 0≤y<0.1, and 0≤z<0.9 are satisfied) with a composite oxide B containing P (phosphorus), and consists of an organic metal compound solution such that the raw material consisting the composite metal oxide A and the raw material constituting the composite oxide B are dissolved in an organic solvent at rates for imparting the metal atom ratio shown by the general formula. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高容量密度の薄膜キャパシタ用途に適した強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜に関するものである。   The present invention relates to a composition for forming a ferroelectric thin film suitable for use in a thin film capacitor having a high capacity density, a method for forming a ferroelectric thin film, and a ferroelectric thin film formed by the method.

この種の強誘電体膜の製造方法として、各成分金属のアルコキシドや有機酸塩を極性溶媒に溶解してなる混合溶液を用い、金属基板に塗布、乾燥して、塗膜を形成し、結晶化温度以上の温度に加熱して焼成することにより、誘電体薄膜を成膜することが一般的に知られている(例えば、特許文献1参照。)。   As a method of manufacturing this type of ferroelectric film, a mixed solution in which each component metal alkoxide or organic acid salt is dissolved in a polar solvent is used. It is generally known to form a dielectric thin film by heating to a temperature equal to or higher than the crystallization temperature and firing (see, for example, Patent Document 1).

また、DRAMや不揮発性メモリ用途として、半導体基板上に非晶質又は結晶性の誘電体膜を形成した後に、この誘電体膜に不純物を熱拡散法やイオン注入法、イオンドーピング法などの手法によってドーピングする誘電体素子の製造方法が知られている(例えば、特許文献2参照。)。この特許文献2では、金属誘電体膜としてPZT膜が、ドーパントとしてP(燐)イオンが開示されている。P(燐)をドープすることで誘電体キャパシタを備えたDRAMや不揮発性メモリのメモリ保持特性を向上することができる。   Also, for DRAM and nonvolatile memory applications, after an amorphous or crystalline dielectric film is formed on a semiconductor substrate, impurities are diffused into the dielectric film by techniques such as thermal diffusion, ion implantation, and ion doping. There is known a method for manufacturing a dielectric element to be doped by (see, for example, Patent Document 2). This Patent Document 2 discloses a PZT film as a metal dielectric film and P (phosphorus) ions as a dopant. Doping P (phosphorus) can improve the memory retention characteristics of a DRAM or a nonvolatile memory having a dielectric capacitor.

また、半導体メモリセルのキャパシタ用途として、ゾル−ゲル法によってPZTからなる強誘電体膜を形成するに際し、鉛チタニウム・ダブルアルコキシドや鉛ジルコニウム・ダブルアルコキシドを生成させ、これらの反応生成物を加水分解しかつ縮合反応により高分子化を行い、原料溶液を調製し、この原料溶液を塗布し、この塗布された原料溶液を乾燥して乾燥膜を形成し、この乾燥膜を焼結する強誘電体膜の形成方法が開示されている(例えば、特許文献3参照。)。この特許文献3では、成膜されるPZT薄膜の使用時での印加電圧の反転による疲労(残留分極値の減少)やリーク電流を抑えるために、原料溶液にランタン、ニオブ、鉄のごとき第4の金属元素を添加しても良いことが記載されている。特許文献3によれば、各ダブルアルコキシドの加水分解及び縮合反応が均一に進行し、このゾルゲル溶液から成膜されたPZT薄膜は平滑な表面を呈し、残留分極が大きく、漏れ電流も小さいなど、電気特性が十分となり、要求される性能を満足することができる。   Moreover, when forming a ferroelectric film made of PZT by the sol-gel method as a capacitor for semiconductor memory cells, lead titanium double alkoxide and lead zirconium double alkoxide are produced, and these reaction products are hydrolyzed. Ferroelectric material which polymerizes by condensation reaction, prepares raw material solution, applies this raw material solution, dries this applied raw material solution to form a dry film, and sinters this dry film A method for forming a film is disclosed (for example, see Patent Document 3). In Patent Document 3, in order to suppress fatigue (reduction in residual polarization value) and leakage current due to reversal of applied voltage when using a deposited PZT thin film, a raw material solution such as lanthanum, niobium, or iron is used. It is described that these metal elements may be added. According to Patent Document 3, hydrolysis and condensation reactions of each double alkoxide proceed uniformly, the PZT thin film formed from this sol-gel solution exhibits a smooth surface, a large residual polarization, a small leakage current, etc. Electrical characteristics are sufficient, and required performance can be satisfied.

また、電気的又は光学的性質を利用した各種デバイス用途として、PLZT強誘電体薄膜を形成するための組成物において、PLZTで示される複合金属化合物Aと、Bi、Si、Pb、Ge、Sn、Al、Ga、In、Mg、Ca、Sr、Ba、V、Nb、Ta、Sc、Y、Ti、Zr、Hf、Cr、Mn、Fe、Co、Ni、Zn、Cd、Li、Na及びKのうちから選ばれる1種又は2種以上の元素から構成される複合金属酸化物Bの混合複合金属酸化物の薄膜を形成するための液状組成物であり、該金属酸化物を構成する化合物が、所望の金属原子比を与えるような割合で有機溶媒中に溶解している溶液からなる組成物が知られている(例えば、特許文献4参照。)。この特許文献4では、この組成物を用いることで、強誘電体薄膜を形成するに当たり、450℃以下の低温でも結晶化を行うことが可能となる。   Further, as various device applications utilizing electrical or optical properties, in a composition for forming a PLZT ferroelectric thin film, a composite metal compound A represented by PLZT, Bi, Si, Pb, Ge, Sn, Al, Ga, In, Mg, Ca, Sr, Ba, V, Nb, Ta, Sc, Y, Ti, Zr, Hf, Cr, Mn, Fe, Co, Ni, Zn, Cd, Li, Na, and K A liquid composition for forming a composite metal oxide thin film of composite metal oxide B composed of one or more elements selected from among them, and the compound constituting the metal oxide, A composition comprising a solution dissolved in an organic solvent at a ratio that gives a desired metal atomic ratio is known (see, for example, Patent Document 4). In Patent Document 4, by using this composition, crystallization can be performed even at a low temperature of 450 ° C. or lower when forming a ferroelectric thin film.

更に、不揮発性メモリー用途として、PZTにCaやSr、Laを添加する強誘電体薄膜を形成するための混合液が開示されている(例えば、特許文献5参照。)。   Furthermore, a liquid mixture for forming a ferroelectric thin film in which Ca, Sr, or La is added to PZT is disclosed as a nonvolatile memory application (see, for example, Patent Document 5).

特開昭60−236404号公報(第3頁右下欄11行目〜第4頁左下欄10行目、第5頁右上欄10行目〜同頁左下欄17行目)JP-A-60-236404 (page 3, lower right column, line 11 to page 4, lower left column, line 10; page 5, upper right column, line 10 to same page, lower left column, line 17) 特開平5−343641号公報(請求項3,4、8、段落[0001]、[0065])Japanese Patent Laid-Open No. 5-343441 (Claims 3, 4, and 8, paragraphs [0001] and [0065]) 特開平7−252664号公報(請求項2,3,7,8、段落[0001]、[0035]、[0117]、[0118])JP-A-7-252664 (claims 2, 3, 7, 8, paragraphs [0001], [0035], [0117], [0118]) 特開2003−2647号公報(請求項1、段落[0001]、[0013])JP2003-2647A (Claim 1, paragraphs [0001] and [0013]) 米国特許第6203608号明細書(FIELD OF THE INVENTION, Claim 1)US Pat. No. 6,203,608 (Field of the Invention, Claim 1)

上記特許文献2のように、誘電体膜にP(燐)をドープすることでメモリ保持特性を向上させることが可能であるが、この特許文献2では、誘電体膜を形成した後に、形成した誘電体膜にP(燐)をドープする手法であるため、ドーパントが膜中で不均一となったり、ドーパント以外の不純物が導入されるおそれがあり、また、誘電体膜の膜質の劣化も懸念される。更に、熱処理工程が必要となるなど複数の工程を経ることから、作業が繁雑となることも考えられる。   As in Patent Document 2, it is possible to improve the memory retention characteristics by doping P (phosphorus) into the dielectric film. However, in Patent Document 2, it is formed after the dielectric film is formed. Since this is a technique of doping P (phosphorus) into the dielectric film, the dopant may become non-uniform in the film or impurities other than the dopant may be introduced, and the film quality of the dielectric film may be deteriorated. Is done. Furthermore, since a plurality of processes such as a heat treatment process is required, the work may be complicated.

また、上記特許文献3〜5のように、誘電体膜の特性を改善させるために様々な元素を添加する技術が開発されているが、強誘電体薄膜を高容量密度の薄膜キャパシタ用途で考えた場合、リーク電流の低減と絶縁耐圧の向上の双方の特性をバランス良く改善することが必要となっていた。   In addition, as described in Patent Documents 3 to 5, techniques for adding various elements to improve the characteristics of the dielectric film have been developed. However, a ferroelectric thin film is considered for use in a high-capacity density thin film capacitor. In such a case, it is necessary to improve both the characteristics of the reduction of the leakage current and the improvement of the withstand voltage in a balanced manner.

本発明の目的は、簡便な手法で、リーク電流の低減と絶縁耐圧の向上の両特性をバランスよく改善することができる、高容量密度の薄膜キャパシタ用途に適した強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜を提供することにある。   An object of the present invention is a composition for forming a ferroelectric thin film suitable for high-capacity-density thin film capacitor applications, which can improve both the characteristics of reduction of leakage current and improvement of dielectric strength with a simple technique in a balanced manner. Another object is to provide a method for forming a ferroelectric thin film and a ferroelectric thin film formed by the method.

本発明の第1の観点は、PLZT、PZT及びPTからなる群より選ばれた1種の強誘電体薄膜を形成するための強誘電体薄膜形成用組成物において、一般式:(PbxLay)(ZrzTi(1-z))O3(式中0.9<x<1.3、0≦y<0.1、0≦z<0.9)で示される複合金属酸化物Aに、P(燐)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる薄膜を形成するための液状組成物であり、前記複合金属酸化物Aを構成するための原料並びに前記複合酸化物Bを構成するための原料が上記一般式で示される金属原子比を与えるような割合で有機溶媒中に溶解している有機金属化合物溶液からなることを特徴とする。 A first aspect of the present invention is a composition for forming a ferroelectric thin film for forming one kind of ferroelectric thin film selected from the group consisting of PLZT, PZT, and PT, and has a general formula: (Pb x La y) (Zr z Ti (1 -z)) O 3 (0.9 <x <1.3,0 ≦ y <0.1,0 ≦ z composite metal oxide represented by <0.9) wherein A liquid composition for forming a thin film in the form of a mixed composite metal oxide in which a composite oxide B containing P (phosphorus) is mixed with A, a raw material for constituting the composite metal oxide A, and The raw material for constituting the composite oxide B is composed of an organometallic compound solution dissolved in an organic solvent at a ratio giving the metal atomic ratio represented by the above general formula.

本発明の第2の観点は、第1の観点に基づく発明であって、更に複合金属酸化物Aを構成するための原料が、有機基がその酸素又は窒素原子を介して金属元素と結合している化合物であることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the raw material for constituting the composite metal oxide A further combines an organic group with a metal element via its oxygen or nitrogen atom. It is characterized by being a compound.

本発明の第3の観点は、第2の観点に基づく発明であって、更に複合金属酸化物Aを構成するための原料が、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上であることを特徴とする。   A third aspect of the present invention is an invention based on the second aspect, wherein the raw material for constituting the composite metal oxide A is a metal alkoxide, a metal diol complex, a metal triol complex, a metal carboxylate, It is one or more selected from the group consisting of metal β-diketonate complexes, metal β-diketoester complexes, metal β-iminoketo complexes, and metal amino complexes.

本発明の第4の観点は、第1の観点に基づく発明であって、更に複合酸化物Bを構成するための原料が、有機基がその酸素又は窒素原子を介してP(燐)元素と結合している化合物であることを特徴とする。   A fourth aspect of the present invention is the invention based on the first aspect, wherein the raw material for constituting the composite oxide B is an organic group and a P (phosphorus) element via its oxygen or nitrogen atom. It is a compound which has couple | bonded.

本発明の第5の観点は、第4の観点に基づく発明であって、更に複合酸化物Bを構成するための原料が、アルコキシド化合物、ジオール化合物、トリオール化合物、カルボン酸塩化合物、β−ジケトネート化合物、β−ジケトエステル化合物、β−イミノケト化合物、及びアミノ化合物からなる群より選ばれた1種又は2種以上であることを特徴とする。   The fifth aspect of the present invention is the invention based on the fourth aspect, wherein the raw materials for constituting the composite oxide B are alkoxide compounds, diol compounds, triol compounds, carboxylate compounds, β-diketonates. It is 1 type, or 2 or more types chosen from the group which consists of a compound, (beta) -diketoester compound, (beta) -iminoketo compound, and an amino compound, It is characterized by the above-mentioned.

本発明の第6の観点は、第1ないし第5の観点に基づく発明であって、更にβ−ジケトン、β−ケトン酸、β−ケトエステル、オキシ酸、ジオール、トリオール、高級カルボン酸、アルカノールアミン及び多価アミンからなる群より選ばれた1種又は2種以上の安定化剤を、組成物中の金属合計量1モルに対して、0.2〜3モルの割合で更に含有することを特徴とする。   A sixth aspect of the present invention is an invention based on the first to fifth aspects, further comprising β-diketone, β-ketone acid, β-ketoester, oxyacid, diol, triol, higher carboxylic acid, alkanolamine And further containing one or more stabilizers selected from the group consisting of polyamines in a proportion of 0.2 to 3 moles relative to 1 mole of the total amount of metals in the composition. Features.

本発明の第7の観点は、第1ないし第6の観点に基づく発明であって、更にBとAとのモル比B/Aが0<B/A<0.2であることを特徴とする。   A seventh aspect of the present invention is the invention based on the first to sixth aspects, wherein the molar ratio B / A between B and A is 0 <B / A <0.2. To do.

本発明の第8の観点は、第7の観点に基づく発明であって、更にBとAとのモル比B/Aが0.003≦B/A≦0.1であることを特徴とする。   An eighth aspect of the present invention is the invention based on the seventh aspect, wherein the molar ratio B / A between B and A is 0.003 ≦ B / A ≦ 0.1. .

本発明の第9の観点は、第1ないし第8の観点に基づく強誘電体薄膜形成用組成物を耐熱性基板に塗布し、空気中、酸化雰囲気中又は含水蒸気雰囲気中で加熱する工程を1回又は所望の厚さの膜が得られるまで繰返し、少なくとも最終工程における加熱中或いは加熱後に該膜を結晶化温度以上で焼成することを特徴とする強誘電体薄膜の形成方法である。   According to a ninth aspect of the present invention, there is provided a step of applying the ferroelectric thin film forming composition according to the first to eighth aspects to a heat resistant substrate and heating in air, an oxidizing atmosphere or a steam-containing atmosphere. It is a method for forming a ferroelectric thin film characterized in that it is repeated once or until a film having a desired thickness is obtained, and the film is fired at a temperature equal to or higher than the crystallization temperature at least after heating in the final step.

本発明の第10の観点は、第9の観点に基づく方法により形成された強誘電体薄膜である。   A tenth aspect of the present invention is a ferroelectric thin film formed by a method based on the ninth aspect.

本発明の第11の観点は、第10の観点に基づく強誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD(Integrated Passive Device)、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品である。   An eleventh aspect of the present invention is a thin film capacitor having a ferroelectric thin film based on the tenth aspect, a capacitor, an IPD (Integrated Passive Device), a DRAM memory capacitor, a multilayer capacitor, a gate insulator of a transistor, and a nonvolatile memory , A pyroelectric infrared detecting element, a piezoelectric element, an electro-optical element, an actuator, a resonator, an ultrasonic motor, or an LC noise filter element.

本発明の第12の観点は、第11の観点に基づく100MHz以上の周波数帯域に対応した、強誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品である。   A twelfth aspect of the present invention is a thin film capacitor having a ferroelectric thin film, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, and a gate insulator of a transistor, corresponding to a frequency band of 100 MHz or more based on the eleventh aspect. , A composite electronic component of a nonvolatile memory, a pyroelectric infrared detection element, a piezoelectric element, an electro-optical element, an actuator, a resonator, an ultrasonic motor, or an LC noise filter element.

本発明の強誘電体薄膜形成用組成物は、一般式:(PbxLay)(ZrzTi(1-z))O3(式中0.9<x<1.3、0≦y<0.1、0≦z<0.9)で示される複合金属酸化物Aに、P(燐)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとるように、有機金属化合物溶液に複合金属酸化物Aを構成するための原料並びに複合酸化物Bを構成するための原料を所定の割合で有機溶媒中に溶解させている。この組成物を用いて強誘電体薄膜を形成することにより、リーク電流の低減と絶縁耐圧の向上の両特性をバランスよく改善した高容量密度の薄膜キャパシタ用途に適した強誘電体薄膜を簡便な手法で得ることができる、という利点がある。 The composition for forming a ferroelectric thin film of the present invention has a general formula: (Pb x La y ) (Zr z Ti (1-z) ) O 3 (where 0.9 <x <1.3, 0 ≦ y <0.1, 0 ≦ z <0.9), and an organic metal such that the mixed metal oxide A is mixed with the mixed oxide B containing P (phosphorus). A raw material for constituting the composite metal oxide A and a raw material for constituting the composite oxide B are dissolved in an organic solvent in a predetermined ratio in the compound solution. By forming a ferroelectric thin film using this composition, a ferroelectric thin film suitable for high-capacity density thin-film capacitor applications with a balanced improvement in both leakage current reduction and dielectric breakdown voltage improvement can be easily obtained. There is an advantage that it can be obtained by a technique.

実施例、比較例における5V印加時のリーク電流密度とP(燐)添加量の関係を示す図である。It is a figure which shows the relationship between the leakage current density at the time of 5V application in an Example and a comparative example, and P (phosphorus) addition amount. 実施例、比較例における20V印加時のリーク電流密度とP(燐)添加量の関係を示す図である。It is a figure which shows the relationship between the leakage current density at the time of 20V application in an Example and a comparative example, and the addition amount of P (phosphorus). 実施例、比較例における50V印加時のリーク電流密度とP(燐)添加量の関係を示す図である。It is a figure which shows the relationship between the leakage current density at the time of 50V application in an Example and a comparative example, and the addition amount of P (phosphorus). 実施例、比較例における絶縁耐圧とP(燐)添加量の関係を示す図である。It is a figure which shows the relationship between the withstand voltage in an Example and a comparative example, and P (phosphorus) addition amount.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

本発明の強誘電体薄膜形成用組成物は、PLZT、PZT及びPTからなる群より選ばれた1種の強誘電体薄膜を形成するための組成物である。この組成物を用いて形成される強誘電体薄膜は、一般式:(PbxLay)(ZrzTi(1-z))O3(式中0.9<x<1.3、0≦y<0.1、0≦z<0.9)で示される複合金属酸化物Aに、P(燐)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる。なお、上記式のy≠0かつz≠0の場合はPLZTであり、y=0かつz≠0の場合はPZTであり、y=0かつz=0の場合はPTである。この組成物は、複合金属酸化物Aを構成するための原料と、複合酸化物Bを構成するための原料が上記一般式で示される金属原子比を与えるような割合で有機溶媒中に溶解している有機金属化合物溶液からなる。 The composition for forming a ferroelectric thin film of the present invention is a composition for forming one kind of ferroelectric thin film selected from the group consisting of PLZT, PZT and PT. A ferroelectric thin film formed using this composition has a general formula: (Pb x La y ) (Zr z Ti (1-z) ) O 3 (where 0.9 <x <1.3, 0 It takes the form of mixed composite metal oxide in which composite oxide B containing P (phosphorus) is mixed with composite metal oxide A represented by ≦ y <0.1, 0 ≦ z <0.9). In the above equation, when y ≠ 0 and z ≠ 0, it is PLZT, when y = 0 and z ≠ 0, it is PZT, and when y = 0 and z = 0, it is PT. This composition is dissolved in an organic solvent in such a ratio that the raw material for constituting the composite metal oxide A and the raw material for constituting the composite oxide B give the metal atomic ratio represented by the above general formula. An organometallic compound solution.

複合金属酸化物A用原料は、Pb、La、Zr及びTiの各金属元素に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、金属アルコキシド、その部分加水分解物、有機酸塩である。このうち、Pb化合物、La化合物としては、酢酸塩(酢酸鉛、酢酸ランタン)等の有機酸塩、鉛ジイソプロポキシドなどのアルコキシドが挙げられる。Ti化合物としては、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシドなどのアルコキシドが挙げられる。Zr化合物としては、上記Ti化合物と同様なアルコキシド類が好ましい。金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。   As the raw material for the composite metal oxide A, a compound in which an organic group is bonded to each metal element of Pb, La, Zr, and Ti through an oxygen or nitrogen atom thereof is preferable. For example, one kind selected from the group consisting of metal alkoxide, metal diol complex, metal triol complex, metal carboxylate, metal β-diketonate complex, metal β-diketoester complex, metal β-iminoketo complex, and metal amino complex Or 2 or more types are illustrated. Particularly suitable compounds are metal alkoxides, partial hydrolysates thereof, and organic acid salts. Among these, examples of the Pb compound and La compound include organic acid salts such as acetates (lead acetate and lanthanum acetate) and alkoxides such as lead diisopropoxide. Examples of the Ti compound include alkoxides such as titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, and titanium dimethoxydiisopropoxide. The Zr compound is preferably an alkoxide similar to the Ti compound. Although the metal alkoxide may be used as it is, a partially hydrolyzed product thereof may be used in order to promote decomposition.

また、複合酸化物B用原料は、P(燐)元素に、有機基がその酸素又は窒素原子を介して結合している化合物が好適である。例えば、アルコキシド化合物、ジオール化合物、トリオール化合物、カルボン酸塩化合物、β−ジケトネート化合物、β−ジケトエステル化合物、β−イミノケト化合物、及びアミノ化合物からなる群より選ばれた1種又は2種以上が例示される。特に好適な化合物は、アルコキシド化合物、その部分加水分解物である。   The raw material for the composite oxide B is preferably a compound in which an organic group is bonded to the P (phosphorus) element via the oxygen or nitrogen atom. Examples include one or more selected from the group consisting of alkoxide compounds, diol compounds, triol compounds, carboxylate compounds, β-diketonate compounds, β-diketo ester compounds, β-iminoketo compounds, and amino compounds. Is done. Particularly suitable compounds are alkoxide compounds and partial hydrolysates thereof.

本発明の強誘電体薄膜形成用組成物を調製するには、これらの原料を所望の強誘電体薄膜組成に相当する比率で適当な溶媒に溶解して、塗布に適した濃度に調製する。   In order to prepare the composition for forming a ferroelectric thin film of the present invention, these raw materials are dissolved in an appropriate solvent at a ratio corresponding to the desired ferroelectric thin film composition, and prepared to a concentration suitable for coating.

BとAとのモル比B/Aは、0<B/A<0.2の範囲内となるように調整される。上記範囲内であれば、本発明の効果であるリーク電流の低減と絶縁耐圧の向上の強誘電体薄膜の両特性をバランスよく改善することができる。なお、上限値を越えると比誘電率の劣化の不具合を生じる。このうち、0.003≦B/A≦0.1が特に好ましい。   The molar ratio B / A between B and A is adjusted to be in the range of 0 <B / A <0.2. If it is within the above range, both the characteristics of the ferroelectric thin film, which is the effect of the present invention, which is the reduction of leakage current and the improvement of the withstand voltage, can be improved in a balanced manner. If the upper limit value is exceeded, there will be a problem of deterioration of the relative dielectric constant. Among these, 0.003 ≦ B / A ≦ 0.1 is particularly preferable.

ここで用いる強誘電体薄膜形成用組成物の溶媒は、使用する原料に応じて適宜決定されるが、一般的には、カルボン酸、アルコール、エステル、ケトン類(例えば、アセトン、メチルエチルケトン)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル)、シクロアルカン類(例えば、シクロヘキサン、シクロヘキサノール)、芳香族系(例えば、ベンゼン、トルエン、キシレン)、その他テトラヒドロフランなど、或いはこれらの2種以上の混合溶媒を用いることができる。   The solvent for the composition for forming a ferroelectric thin film used here is appropriately determined according to the raw material to be used. Generally, carboxylic acid, alcohol, ester, ketones (for example, acetone, methyl ethyl ketone), ether (E.g., dimethyl ether, diethyl ether), cycloalkanes (e.g., cyclohexane, cyclohexanol), aromatics (e.g., benzene, toluene, xylene), other tetrahydrofuran, or a mixture of two or more of these be able to.

カルボン酸としては、具体的には、n−酪酸、α−メチル酪酸、i−吉草酸、2−エチル酪酸、2,2−ジメチル酪酸、3,3−ジメチル酪酸、2,3−ジメチル酪酸、3−メチルペンタン酸、4−メチルペンタン酸、2−エチルペンタン酸、3−エチルペンタン酸、2,2−ジメチルペンタン酸、3,3−ジメチルペンタン酸、2,3−ジメチルペンタン酸、2−エチルヘキサン酸、3−エチルヘキサン酸を用いるのが好ましい。   Specific examples of the carboxylic acid include n-butyric acid, α-methylbutyric acid, i-valeric acid, 2-ethylbutyric acid, 2,2-dimethylbutyric acid, 3,3-dimethylbutyric acid, 2,3-dimethylbutyric acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2- It is preferable to use ethylhexanoic acid or 3-ethylhexanoic acid.

また、エステルとしては、酢酸エチル、酢酸プロピル、酢酸n−ブチル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸イソブチル、酢酸n−アミル、酢酸sec−アミル、酢酸tert−アミル、酢酸イソアミルを用いるのが好ましく、アルコールとしては、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソ−ブチルアルコール、1−ペンタノール、2−ペンタノール、2−メチル−2−ペンタノール、2−メトキシエタノールを用いるのが好適である。   As the ester, ethyl acetate, propyl acetate, n-butyl acetate, sec-butyl acetate, tert-butyl acetate, isobutyl acetate, n-amyl acetate, sec-amyl acetate, tert-amyl acetate, isoamyl acetate are used. As the alcohol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butyl alcohol, 1-pentanol, 2-pentanol, 2-methyl-2-pentanol, 2-methoxy It is preferred to use ethanol.

なお、強誘電体薄膜形成用組成物の有機金属化合物溶液中の有機金属化合物の合計濃度は、金属酸化物換算量で0.1〜20重量%程度とすることが好ましい。   The total concentration of the organometallic compound in the organometallic compound solution of the ferroelectric thin film forming composition is preferably about 0.1 to 20% by weight in terms of metal oxide.

この有機金属化合物溶液中には、必要に応じて安定化剤として、β−ジケトン類(例えば、アセチルアセトン、ヘプタフルオロブタノイルピバロイルメタン、ジピバロイルメタン、トリフルオロアセチルアセトン、ベンゾイルアセトン等)、β−ケトン酸類(例えば、アセト酢酸、プロピオニル酢酸、ベンゾイル酢酸等)、β−ケトエステル類(例えば、上記ケトン酸のメチル、プロピル、ブチル等の低級アルキルエステル類)、オキシ酸類(例えば、乳酸、グリコール酸、α−オキシ酪酸、サリチル酸等)、上記オキシ酸の低級アルキルエステル類、オキシケトン類(例えば、ジアセトンアルコール、アセトイン等)、ジオール、トリオール、高級カルボン酸、アルカノールアミン類(例えば、ジエタノールアミン、トリエタノールアミン、モノエタノールアミン)、多価アミン等を、(安定化剤分子数)/(金属原子数)で0.2〜3程度添加しても良い。   In this organometallic compound solution, β-diketones (for example, acetylacetone, heptafluorobutanoylpivaloylmethane, dipivaloylmethane, trifluoroacetylacetone, benzoylacetone, etc.) are used as stabilizers as necessary. , Β-ketone acids (for example, acetoacetic acid, propionylacetic acid, benzoylacetic acid, etc.), β-ketoesters (for example, lower alkyl esters such as methyl, propyl, and butyl of the above ketone acids), oxyacids (for example, lactic acid, Glycolic acid, α-oxybutyric acid, salicylic acid, etc.), lower alkyl esters of the above oxyacids, oxyketones (eg, diacetone alcohol, acetoin, etc.), diols, triols, higher carboxylic acids, alkanolamines (eg, diethanolamine, Triethanolamine, Roh ethanolamine), a polyvalent amine or the like, may be added from 0.2 to 3 approximately at (stabilizer number of molecules) / (number of metal atoms).

本発明では、上記調製された有機金属化合物溶液を濾過処理等によって、パーティクルを除去して、粒径0.5μm以上(特に0.3μm以上とりわけ0.2μm以上)のパーティクルの個数が溶液1mL当り50個/mL以下とするのが好ましい。   In the present invention, particles are removed from the prepared organometallic compound solution by filtration or the like, and the number of particles having a particle size of 0.5 μm or more (especially 0.3 μm or more, especially 0.2 μm or more) per 1 mL of the solution. It is preferable to be 50 / mL or less.

なお、当該有機金属化合物溶液中のパーティクルの個数の測定には、光散乱式パーティクルカウンターを用いる。   A light scattering particle counter is used for measuring the number of particles in the organometallic compound solution.

有機金属化合物溶液中の粒径0.5μm以上のパーティクルの個数が50個/mLを越えると、長期保存安定性が劣るものとなる。この有機金属化合物溶液中の粒径0.5μm以上のパーティクルの個数は少ない程好ましく、特に30個/mL以下であることが好ましい。   If the number of particles having a particle size of 0.5 μm or more in the organometallic compound solution exceeds 50 particles / mL, the long-term storage stability becomes poor. The smaller the number of particles having a particle size of 0.5 μm or more in this organometallic compound solution, the more preferable, and particularly preferably 30 particles / mL or less.

上記パーティクル個数となるように、調製後の有機金属化合物溶液を処理する方法は特に限定されるものではないが、例えば、次のような方法が挙げられる。第1の方法としては、市販の0.2μm孔径のメンブランフィルターを使用し、シリンジで圧送する濾過法である。第2の方法としては、市販の0.05μm孔径のメンブランフィルターと加圧タンクを組み合せた加圧濾過法である。第3の方法としては、上記第2の方法で使用したフィルターと溶液循環槽を組み合せた循環濾過法である。   The method for treating the organometallic compound solution after preparation so as to achieve the number of particles is not particularly limited, and examples thereof include the following method. The first method is a filtration method in which a commercially available membrane filter having a pore size of 0.2 μm is used and pressure-fed with a syringe. The second method is a pressure filtration method in which a commercially available membrane filter having a pore size of 0.05 μm and a pressure tank are combined. The third method is a circulation filtration method in which the filter used in the second method and the solution circulation tank are combined.

いずれの方法においても、溶液圧送圧力によって、フィルターによるパーティクル捕捉率が異なる。圧力が低いほど捕捉率が高くなることは一般的に知られており、特に、第1の方法、第2の方法について、粒径0.5μm以上のパーティクルの個数を50個以下とする条件を実現するためには、溶液を低圧で非常にゆっくりとフィルターに通すのが好ましい。   In any method, the particle capture rate by the filter varies depending on the solution pressure. It is generally known that the lower the pressure, the higher the capture rate. In particular, in the first method and the second method, the number of particles having a particle size of 0.5 μm or more is set to 50 or less. In order to achieve, it is preferable to pass the solution through the filter very slowly at low pressure.

本発明の強誘電体薄膜形成用組成物を用いることで、PLZT、PZT及びPTからなる群より選ばれた1種の複合金属酸化物Aに、P(燐)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる強誘電体薄膜を簡便に形成することができる。   By using the composition for forming a ferroelectric thin film of the present invention, a composite oxide B containing P (phosphorus) is mixed with one composite metal oxide A selected from the group consisting of PLZT, PZT and PT. It is possible to easily form a ferroelectric thin film in the form of a mixed composite metal oxide.

本発明の強誘電体薄膜形成用組成物を用いて、強誘電体薄膜を形成するには、上記組成物をスピンコート、ディップコート、LSMCD(Liquid Source MistedChemical Deposition)法等の塗布法により耐熱性基板上に塗布し、乾燥(仮焼成)及び本焼成を行う。   In order to form a ferroelectric thin film by using the composition for forming a ferroelectric thin film of the present invention, the composition is heat-resistant by a coating method such as spin coating, dip coating, or LSMCD (Liquid Source Misted Chemical Deposition). It apply | coats on a board | substrate and performs drying (temporary baking) and main baking.

使用される耐熱性基板の具体例としては、基板表層部に、単結晶Si、多結晶Si,Pt,Pt(最上層)/Ti,Pt(最上層)/Ta,Ru,RuO2,Ru(最上層)/RuO2,RuO2(最上層)/Ru,Ir,IrO2,Ir(最上層)/IrO2,Pt(最上層)/Ir,Pt(最上層)/IrO2,SrRuO3又は(LaxSr(1-x))CoO3等のペロブスカイト型導電性酸化物等を用いた基板が挙げられるが、これらに限定されるものではない。 As a specific example of the heat-resistant substrate to be used, a single crystal Si, polycrystalline Si, Pt, Pt (uppermost layer) / Ti, Pt (uppermost layer) / Ta, Ru, RuO 2 , Ru ( Top layer) / RuO 2 , RuO 2 (top layer) / Ru, Ir, IrO 2 , Ir (top layer) / IrO 2 , Pt (top layer) / Ir, Pt (top layer) / IrO 2 , SrRuO 3 or (La x Sr (1-x )) is a substrate with CoO 3 perovskite-type conductive oxide such like, but not limited thereto.

なお、1回の塗布では、所望の膜厚が得られない場合には、塗布、乾燥の工程を複数回繰返し行った後、本焼成を行う。ここで、所望の膜厚とは、本焼成後に得られる強誘電体薄膜の厚さをいい、高容量密度の薄膜キャパシタ用途の場合、本焼成後の強誘電体薄膜の膜厚が50〜500nmの範囲である。   In addition, when a desired film thickness cannot be obtained by one application, the application and drying steps are repeated a plurality of times, followed by firing. Here, the desired film thickness refers to the thickness of the ferroelectric thin film obtained after the main firing, and in the case of a high capacity density thin film capacitor, the film thickness of the ferroelectric thin film after the main firing is 50 to 500 nm. Range.

また、仮焼成は、溶媒を除去するとともに有機金属化合物や有機化合物を熱分解又は加水分解して複合酸化物に転化させるために行うことから、空気中、酸化雰囲気中、又は含水蒸気雰囲気中で行う。空気中での加熱でも、加水分解に必要な水分は空気中の湿気により十分に確保される。この加熱は、溶媒の除去のための低温加熱と、有機金属化合物や有機化合物の分解のための高温加熱の2段階で実施しても良い。   In addition, pre-baking is performed in order to remove the solvent and thermally decompose or hydrolyze the organic metal compound or organic compound to convert it into a composite oxide. Therefore, in the air, in an oxidizing atmosphere, or in a steam-containing atmosphere. Do. Even in heating in the air, the moisture required for hydrolysis is sufficiently secured by the humidity in the air. This heating may be performed in two stages: low temperature heating for removing the solvent and high temperature heating for decomposing the organometallic compound or organic compound.

本焼成は、仮焼成で得られた薄膜を結晶化温度以上の温度で焼成して結晶化させるための工程であり、これにより強誘電体薄膜が得られる。この結晶化工程の焼成雰囲気はO2、N2、Ar、N2O又はH2等或いはこれらの混合ガス等が好適である。 The main firing is a step for firing and crystallizing the thin film obtained by the pre-firing at a temperature equal to or higher than the crystallization temperature, whereby a ferroelectric thin film is obtained. The firing atmosphere in this crystallization step is preferably O 2 , N 2 , Ar, N 2 O, H 2, or a mixed gas thereof.

仮焼成は、150〜550℃で1〜30分間程度行われ、本焼成は450〜800℃で1〜10分間程度行われる。本焼成は、急速加熱処理(RTA処理)で行っても良い。RTA処理で本焼成する場合、その昇温速度は10〜100℃/秒が好ましい。   The pre-baking is performed at 150 to 550 ° C. for about 1 to 30 minutes, and the main baking is performed at 450 to 800 ° C. for about 1 to 10 minutes. The main baking may be performed by rapid heating treatment (RTA treatment). When the main baking is performed by the RTA treatment, the heating rate is preferably 10 to 100 ° C./second.

このようにして形成された本発明の強誘電体薄膜は、リーク電流の低減と絶縁耐圧の向上の両特性をバランスよく改善したものとなり、キャパシタとしての基本的特性に優れ、高容量密度の薄膜キャパシタ用途に好適である。また、本発明の強誘電体薄膜は、IPDとしての基本的特性にも優れる。   The ferroelectric thin film of the present invention formed as described above has a balanced improvement in both the reduction of leakage current and the improvement of the withstand voltage, and has excellent basic characteristics as a capacitor and a high capacity density thin film. Suitable for capacitor applications. The ferroelectric thin film of the present invention is also excellent in basic characteristics as an IPD.

また、本発明の強誘電体薄膜は、薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品における構成材料として使用することができる。このうち特に100MHz以上の周波数帯域に対応したものに使用することもできる。   The ferroelectric thin film of the present invention includes a thin film capacitor, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, a transistor gate insulator, a nonvolatile memory, a pyroelectric infrared detection element, a piezoelectric element, an electro-optical element, It can be used as a constituent material in composite electronic parts of actuators, resonators, ultrasonic motors, or LC noise filter elements. Among these, it can also be used especially for the thing corresponding to the frequency band of 100 MHz or more.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

なお、以下の実施例及び比較例において、原料としては、次のものを用いた。   In the following examples and comparative examples, the following materials were used as raw materials.

Pb化合物: 酢酸鉛3水和物
La化合物: 酢酸ランタン1.5水和物
Zr化合物: ジルコニウムテトラt−ブトキシド
Ti化合物: チタンテトライソプロポキシド
P(燐)化合物: P(燐)トリイソプロポキシド、トリエチルフォスフェート
<実施例1〜29、比較例1〜8>
有機溶媒として、十分に脱水処理した2−メトキシエタノールを使用し、これに有機酸塩形態の有機金属化合物(Pb,La化合物など)を溶解させ、共沸蒸留により結晶水を除去した。その後、得られた溶液にアルコキシド形態の有機金属化合物や有機化合物(Zr,Ti,P(燐)化合物など)を添加して溶解させ、溶液安定化のためアセチルアセトン或いはジエタノールアミンをアルコキシドに対して2倍モル加え、PZTに次の表1或いは表2に示す添加元素種及び添加量となるように、有機金属化合物の合計濃度が金属酸化物換算濃度で約10重量%の薄膜形成用溶液を調製した。
Pb compound: lead acetate trihydrate La compound: lanthanum acetate hemihydrate Zr compound: zirconium tetra t-butoxide Ti compound: titanium tetraisopropoxide P (phosphorus) compound: P (phosphorus) triisopropoxide , Triethyl phosphate <Examples 1 to 29, Comparative Examples 1 to 8>
As the organic solvent, 2-methoxyethanol that had been sufficiently dehydrated was used, and an organic metal compound (Pb, La compound, etc.) in the form of an organic acid salt was dissolved therein, and crystal water was removed by azeotropic distillation. Thereafter, an alkoxide-form organometallic compound or organic compound (Zr, Ti, P (phosphorus) compound, etc.) is added and dissolved in the resulting solution, and acetylacetone or diethanolamine is doubled with respect to the alkoxide for solution stabilization A solution for forming a thin film was prepared in which the total concentration of the organometallic compound was about 10% by weight in terms of metal oxide so that the added element species and addition amount shown in the following Table 1 or 2 were added to PZT. .

各々の溶液を用いて、下記方法によりCSD法による薄膜の形成を行った。   Using each solution, a thin film was formed by the CSD method by the following method.

即ち、各々の溶液をスピンコート法により500rpmで3秒間、その後3000rpmで15秒間の条件でPt薄膜を表面にスパッタリング法にて形成した6インチシリコン基板上に塗布した。   That is, each solution was applied on a 6-inch silicon substrate on which a Pt thin film was formed on the surface by a sputtering method at 500 rpm for 3 seconds by a spin coating method and then at 3000 rpm for 15 seconds.

次いで、ホットプレートを用い、350℃で10分間加熱して仮焼成を行った。この塗布、仮焼成の工程を6回繰返した後、100%酸素雰囲気或いは乾燥空気雰囲気中で700℃、1分間RTA(急速加熱処理装置)で焼成して膜厚300nmの強誘電体薄膜を形成した。   Subsequently, using a hot plate, it was heated at 350 ° C. for 10 minutes to perform preliminary firing. This coating and pre-baking process is repeated 6 times, and then the film is baked in a 100% oxygen atmosphere or dry air atmosphere at 700 ° C. for 1 minute by RTA (rapid heat treatment apparatus) to form a 300 nm-thick ferroelectric thin film. did.

その後、メタルマスクを用い、表面に約250μm□のPt上部電極をスパッタリング法にて作製し、強誘電体薄膜直下のPt下部電極間にて直流電圧を印加し、I−V特性(リーク電流密度の電圧依存性及び絶縁耐圧)を評価した。なお、I−V特性の測定には、Keithley社製 236 SMUを用い、Bias step 0.5V、Delay time 0.1sec、Temperature 23℃、Hygrometry 50±10%の条件で測定した。また、「絶縁耐圧」の定義はリーク電流密度が1A/cm2を越える1つ前のBias stepでの電圧とする。その結果を次の表1,表2及び図1〜図4に示す。 After that, using a metal mask, a Pt upper electrode of about 250 μm □ is formed on the surface by sputtering, and a DC voltage is applied between the Pt lower electrodes immediately below the ferroelectric thin film to obtain IV characteristics (leakage current density). Voltage dependence and dielectric strength). The IV characteristics were measured using a 236 SMU manufactured by Keithley under the conditions of bias step 0.5 V, delay time 0.1 sec, temperature 23 ° C., and hygrometry 50 ± 10%. The definition of “insulation breakdown voltage” is a voltage at the previous Bias step where the leakage current density exceeds 1 A / cm 2 . The results are shown in the following Tables 1 and 2 and FIGS.

Figure 2010206152
Figure 2010206152

Figure 2010206152
表1及び図1〜図4から明らかなように、P(燐)を含まない比較例1の強誘電体薄膜に比べて、P(燐)を添加した実施例1〜5の強誘電体薄膜では、リーク電流密度の低減と同時に絶縁耐圧の向上が確認された。
Figure 2010206152
As apparent from Table 1 and FIGS. 1 to 4, the ferroelectric thin films of Examples 1 to 5 to which P (phosphorus) is added as compared with the ferroelectric thin film of Comparative Example 1 that does not contain P (phosphorus). Then, it was confirmed that the withstand voltage was improved simultaneously with the reduction of the leakage current density.

また、Laを含む比較例2,3の強誘電体薄膜と、P(燐)をLaと同時に含む実施例11〜13の強誘電体薄膜の比較でも、同様の傾向を示した。   Further, the same tendency was shown in the comparison between the ferroelectric thin films of Comparative Examples 2 and 3 containing La and the ferroelectric thin films of Examples 11 to 13 containing P (phosphorus) simultaneously with La.

比較例1及び比較例4より、Snを添加するとリーク電流密度は増大するが、実施例6〜8に示すように、P(燐)を共存させると、同様にリーク電流密度の低減と同時に絶縁耐圧の向上効果が確認された。   From Comparative Example 1 and Comparative Example 4, when Sn is added, the leakage current density increases. However, as shown in Examples 6 to 8, when P (phosphorus) coexists, the leakage current density is similarly reduced and insulated. The improvement effect of pressure resistance was confirmed.

また、実施例6〜10の強誘電体薄膜の結果から、P(燐)と同時にSnやSi等の他の成分を1%前後共存させてもP(燐)の良好な効果を確認でき、P(燐)は非常に特性に影響する添加元素であることが確認された。   In addition, from the results of the ferroelectric thin films of Examples 6 to 10, the good effect of P (phosphorus) can be confirmed even if other components such as Sn and Si coexist with about 1% simultaneously with P (phosphorus). It was confirmed that P (phosphorus) is an additive element that greatly affects the characteristics.

また、実施例14〜19,20〜25及び比較例5,6の強誘電体薄膜の結果から、添加P(燐)化合物形態、安定化剤種類、焼成雰囲気に関係なく、リーク電流密度の低減と絶縁耐圧の向上が同時に実現できた。   Further, from the results of the ferroelectric thin films of Examples 14 to 19, 20 to 25 and Comparative Examples 5 and 6, the leakage current density was reduced regardless of the added P (phosphorus) compound form, the type of stabilizer, and the firing atmosphere. And withstand voltage can be improved at the same time.

更に、実施例26〜29及び比較例7,8の強誘電体薄膜の結果から、Laの共存下でも同様の良好な傾向が確認できた。   Furthermore, from the results of the ferroelectric thin films of Examples 26 to 29 and Comparative Examples 7 and 8, the same good tendency was confirmed even in the presence of La.

これらの結果から、実施例1〜29の強誘電体薄膜は、リーク耐圧と絶縁耐圧に優れた効果を有しており、薄層化が可能であることから、高容量密度が達成できる。   From these results, the ferroelectric thin films of Examples 1 to 29 have an excellent effect on leakage withstand voltage and withstand voltage, and can be made thin, so that high capacity density can be achieved.

本発明の強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜は、キャパシタとしての基本的特性に優れ、高容量密度の薄膜キャパシタの用途に利用可能である。その他、IPDとしての基本的特性にも優れ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子等の複合電子部品に利用が可能である。   The composition for forming a ferroelectric thin film of the present invention, the method for forming a ferroelectric thin film, and the ferroelectric thin film formed by the method are excellent in basic characteristics as a capacitor, and are used for a high-capacity density thin film capacitor. Is available. In addition, it has excellent basic characteristics as an IPD. IPD, DRAM memory capacitor, multilayer capacitor, transistor gate insulator, nonvolatile memory, pyroelectric infrared detector, piezoelectric element, electro-optical element, actuator, resonator It can be used for composite electronic parts such as ultrasonic motors or LC noise filter elements.

Claims (12)

PLZT、PZT及びPTからなる群より選ばれた1種の強誘電体薄膜を形成するための強誘電体薄膜形成用組成物において、
一般式:(PbxLay)(ZrzTi(1-z))O3(式中0.9<x<1.3、0≦y<0.1、0≦z<0.9)で示される複合金属酸化物Aに、P(燐)を含む複合酸化物Bが混合した混合複合金属酸化物の形態をとる薄膜を形成するための液状組成物であり、
前記複合金属酸化物Aを構成するための原料並びに前記複合酸化物Bを構成するための原料が上記一般式で示される金属原子比を与えるような割合で有機溶媒中に溶解している有機金属化合物溶液からなる
ことを特徴とする強誘電体薄膜形成用組成物。
In the ferroelectric thin film forming composition for forming one kind of ferroelectric thin film selected from the group consisting of PLZT, PZT and PT,
General formula: (Pb x La y ) (Zr z Ti (1-z) ) O 3 (where 0.9 <x <1.3, 0 ≦ y <0.1, 0 ≦ z <0.9) A liquid composition for forming a thin film in the form of a mixed composite metal oxide in which a composite oxide B containing P (phosphorus) is mixed with the composite metal oxide A represented by
An organic metal dissolved in an organic solvent in such a ratio that the raw material for constituting the composite metal oxide A and the raw material for constituting the composite oxide B give a metal atomic ratio represented by the above general formula A composition for forming a ferroelectric thin film comprising a compound solution.
複合金属酸化物Aを構成するための原料が、有機基がその酸素又は窒素原子を介して金属元素と結合している化合物である請求項1記載の強誘電体薄膜形成用組成物。   2. The composition for forming a ferroelectric thin film according to claim 1, wherein the raw material for constituting the composite metal oxide A is a compound in which an organic group is bonded to a metal element via its oxygen or nitrogen atom. 複合金属酸化物Aを構成するための原料が、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、及び金属アミノ錯体からなる群より選ばれた1種又は2種以上である請求項2記載の強誘電体薄膜形成用組成物。   The raw materials for constituting the composite metal oxide A are metal alkoxide, metal diol complex, metal triol complex, metal carboxylate, metal β-diketonate complex, metal β-diketoester complex, metal β-iminoketo complex, and metal 3. The composition for forming a ferroelectric thin film according to claim 2, wherein the composition is one or more selected from the group consisting of amino complexes. 複合酸化物Bを構成するための原料が、有機基がその酸素又は窒素原子を介してP(燐)元素と結合している化合物である請求項1記載の強誘電体薄膜形成用組成物。   2. The composition for forming a ferroelectric thin film according to claim 1, wherein the raw material for constituting the composite oxide B is a compound in which an organic group is bonded to a P (phosphorus) element via its oxygen or nitrogen atom. 複合酸化物Bを構成するための原料が、アルコキシド化合物、ジオール化合物、トリオール化合物、カルボン酸塩化合物、β−ジケトネート化合物、β−ジケトエステル化合物、β−イミノケト化合物、及びアミノ化合物からなる群より選ばれた1種又は2種以上である請求項4記載の強誘電体薄膜形成用組成物。   The raw material for constituting the composite oxide B is selected from the group consisting of alkoxide compounds, diol compounds, triol compounds, carboxylate compounds, β-diketonate compounds, β-diketoester compounds, β-iminoketo compounds, and amino compounds. The composition for forming a ferroelectric thin film according to claim 4, wherein the composition is one kind or two or more kinds. β−ジケトン、β−ケトン酸、β−ケトエステル、オキシ酸、ジオール、トリオール、高級カルボン酸、アルカノールアミン及び多価アミンからなる群より選ばれた1種又は2種以上の安定化剤を、組成物中の金属合計量1モルに対して、0.2〜3モルの割合で更に含有する請求項1ないし5いずれか1項に記載の強誘電体薄膜形成用組成物。   Composition of one or more stabilizers selected from the group consisting of β-diketone, β-ketone acid, β-ketoester, oxyacid, diol, triol, higher carboxylic acid, alkanolamine and polyvalent amine The composition for forming a ferroelectric thin film according to any one of claims 1 to 5, further comprising 0.2 to 3 moles per mole of the total amount of metals in the product. BとAとのモル比B/Aが0<B/A<0.2である請求項1ないし6いずれか1項に記載の強誘電体薄膜形成用組成物。   The composition for forming a ferroelectric thin film according to any one of claims 1 to 6, wherein a molar ratio B / A between B and A is 0 <B / A <0.2. BとAとのモル比B/Aが0.003≦B/A≦0.1である請求項7記載の強誘電体薄膜形成用組成物。   The composition for forming a ferroelectric thin film according to claim 7, wherein the molar ratio B / A between B and A is 0.003 ≦ B / A ≦ 0.1. 請求項1ないし8のいずれか1項に記載の強誘電体薄膜形成用組成物を耐熱性基板に塗布し、空気中、酸化雰囲気中又は含水蒸気雰囲気中で加熱する工程を1回又は所望の厚さの膜が得られるまで繰返し、少なくとも最終工程における加熱中或いは加熱後に該膜を結晶化温度以上で焼成することを特徴とする強誘電体薄膜の形成方法。   A process of applying the composition for forming a ferroelectric thin film according to any one of claims 1 to 8 to a heat resistant substrate and heating in air, in an oxidizing atmosphere or in a steam-containing atmosphere once or in a desired manner A method for forming a ferroelectric thin film, which is repeated until a film having a thickness is obtained, and the film is fired at a temperature equal to or higher than a crystallization temperature at least after heating in the final step. 請求項9記載の方法により形成された強誘電体薄膜。   A ferroelectric thin film formed by the method according to claim 9. 請求項10記載の強誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品。   A thin film capacitor having a ferroelectric thin film according to claim 10, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, a gate insulator of a transistor, a nonvolatile memory, a pyroelectric infrared detecting element, a piezoelectric element, an electro-optical element, Composite electronic parts of actuators, resonators, ultrasonic motors, or LC noise filter elements. 請求項11に記載する100MHz以上の周波数帯域に対応した、強誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、トランジスタのゲート絶縁体、不揮発性メモリ、焦電型赤外線検出素子、圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、又はLCノイズフィルタ素子の複合電子部品。   A thin film capacitor having a ferroelectric thin film, a capacitor, an IPD, a capacitor for DRAM memory, a multilayer capacitor, a gate insulator of a transistor, a nonvolatile memory, a pyroelectric infrared, corresponding to a frequency band of 100 MHz or more according to claim 11 A composite electronic component including a detection element, a piezoelectric element, an electro-optical element, an actuator, a resonator, an ultrasonic motor, or an LC noise filter element.
JP2009105883A 2008-05-28 2009-04-24 Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method Active JP5526593B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2009105883A JP5526593B2 (en) 2008-05-28 2009-04-24 Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
KR1020107026443A KR101565186B1 (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
PCT/JP2009/059804 WO2009145272A1 (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
CN201110025514.9A CN102173795B (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
CN201310273420.2A CN103360066B (en) 2008-05-28 2009-05-28 The formation method of Strong dielectric film formation composition, Strong dielectric film and the Strong dielectric film formed by the method
EP09754780.6A EP2298714B1 (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
US12/736,944 US8859051B2 (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for forming ferroelectric thin film and ferroelectric thin film formed by the method thereof
KR1020107029565A KR101242840B1 (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
CN201410553563.3A CN104446463B (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
EP10192771.3A EP2343268B1 (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
CN200980119294.7A CN102046563B (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
EP11195995.3A EP2436661B1 (en) 2008-05-28 2009-05-28 Composition for ferroelectric thin film formation and method for forming ferroelectric thin film
US12/929,056 US8790538B2 (en) 2008-05-28 2010-12-27 Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US13/899,111 US9005358B2 (en) 2008-05-28 2013-05-21 Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US14/448,224 US9502636B2 (en) 2008-05-28 2014-07-31 Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US14/448,135 US20140349139A1 (en) 2008-05-28 2014-07-31 Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008139623 2008-05-28
JP2008139623 2008-05-28
JP2009025681 2009-02-06
JP2009025681 2009-02-06
JP2009105883A JP5526593B2 (en) 2008-05-28 2009-04-24 Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method

Publications (2)

Publication Number Publication Date
JP2010206152A true JP2010206152A (en) 2010-09-16
JP5526593B2 JP5526593B2 (en) 2014-06-18

Family

ID=42967311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105883A Active JP5526593B2 (en) 2008-05-28 2009-04-24 Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method

Country Status (1)

Country Link
JP (1) JP5526593B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343641A (en) * 1992-06-09 1993-12-24 Seiko Epson Corp Dielectric element and its manufacture
JPH11510855A (en) * 1995-08-04 1999-09-21 マイクロコーティング テクノロジーズ Chemical vapor deposition and powder formation using thermal spraying of near-supercritical and supercritical fluid solutions
JP2003002647A (en) * 2000-12-27 2003-01-08 Mitsubishi Materials Corp Plzt ferroelectric thin film, composition for forming the same, and producing method for the same
JP2005272294A (en) * 2004-02-27 2005-10-06 Canon Inc Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and inkjet recording head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343641A (en) * 1992-06-09 1993-12-24 Seiko Epson Corp Dielectric element and its manufacture
JPH11510855A (en) * 1995-08-04 1999-09-21 マイクロコーティング テクノロジーズ Chemical vapor deposition and powder formation using thermal spraying of near-supercritical and supercritical fluid solutions
JP2003002647A (en) * 2000-12-27 2003-01-08 Mitsubishi Materials Corp Plzt ferroelectric thin film, composition for forming the same, and producing method for the same
JP2005272294A (en) * 2004-02-27 2005-10-06 Canon Inc Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and inkjet recording head

Also Published As

Publication number Publication date
JP5526593B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
EP2343268B1 (en) Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
JP5724708B2 (en) Composition for forming dielectric thin film, method for forming dielectric thin film, and dielectric thin film formed by the method
JP4329287B2 (en) PLZT or PZT ferroelectric thin film, composition for forming the same and method for forming the same
JP5910431B2 (en) COMPOSITION FOR FORMING DIELECTRIC THIN FILM AND METHOD FOR FORMING DIELECTRIC THIN FILM
WO2015030064A1 (en) METHOD FOR MANUFACTURING PNbZT THIN FILM
KR102330630B1 (en) Composition for forming manganese- and niobium-doped pzt piezoelectric film
KR102384736B1 (en) Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
JP6036460B2 (en) Method for forming PNbZT ferroelectric thin film
JP2014144881A (en) Dielectric thin film-forming composition and method of forming dielectric thin film using the same
KR102334850B1 (en) Manganese- and niobium-doped pzt piezoelectric film
JP5655272B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5655274B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5591485B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5560460B2 (en) Method for forming dielectric thin film
JP5533622B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5659457B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP6102358B2 (en) Dielectric thin film forming composition
JP5526591B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP4329289B2 (en) SBT ferroelectric thin film, composition for forming the same, and method for forming the same
JP5526593B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5591484B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP2003002649A (en) Blt ferroelectric thin film, composition for forming the same, and producing method for the same
JP5293347B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP5417962B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
EP3125314B1 (en) Composition for forming cerium-doped pzt piezoelectric film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150