JP2010206117A - Chip-type solid electrolytic capacitor - Google Patents

Chip-type solid electrolytic capacitor Download PDF

Info

Publication number
JP2010206117A
JP2010206117A JP2009052701A JP2009052701A JP2010206117A JP 2010206117 A JP2010206117 A JP 2010206117A JP 2009052701 A JP2009052701 A JP 2009052701A JP 2009052701 A JP2009052701 A JP 2009052701A JP 2010206117 A JP2010206117 A JP 2010206117A
Authority
JP
Japan
Prior art keywords
conductive polymer
layer
chip
conductive
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009052701A
Other languages
Japanese (ja)
Inventor
Takeo Suzuki
健夫 鈴木
Rie Sato
利恵 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holy Stone Polytech Co Ltd
Original Assignee
Holy Stone Polytech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holy Stone Polytech Co Ltd filed Critical Holy Stone Polytech Co Ltd
Priority to JP2009052701A priority Critical patent/JP2010206117A/en
Publication of JP2010206117A publication Critical patent/JP2010206117A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip-type solid electrolytic capacitor whose reliability of a capacitor characteristic is improved by preventing peeling between a plating layer and electrolytic layer and by preventing a crack produced on the electrolytic layer or plating layer due to thermal stress by means of an improvement of an electrolytic layer of a conductive high polymer. <P>SOLUTION: The chip-type solid electrolytic capacitor is formed in a manner such that a dielectric oxide film and the conductive high polymer being as a solid electrolyte are laminated in order on a surface of an anode body being as a rectangular porous body and an anode lead is introduced from one edge of the anode body, and on the surface side of the conductive high polymer, the conductive high polymer coated with a conductive polymer solution paste or a diffusion liquid paste of a conductive polymer is provided, and the plating layer is prepared on it. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体電解質に導電性高分子を用いたチップ形固体電解コンデンサに関するものである。特に、焼結タイプの固体電解質に導電性高分子を用いたチップ形固体電解コンデンサに関するものである。   The present invention relates to a chip-type solid electrolytic capacitor using a conductive polymer as a solid electrolyte. In particular, the present invention relates to a chip-type solid electrolytic capacitor using a conductive polymer as a sintered solid electrolyte.

固体電解コンデンサ、特に焼結タイプのコンデンサは、タンタルまたはニオブなどを、多孔質焼結体にして表面積を拡大し、陽極用リードの一端を埋め込んだ陽極体と、その表面に化成処理により形成した誘電体酸化被膜と、固体電解質層と、導電ペーストにより形成した陰極集電体層とが、順次設けられたコンデンサ素子を有し、この最外層の陰極集電体層に、導電ペーストにより形成した導電性接着剤等の接続体を介して陰極端子板を接続するとともに、溶接等により陽極用リードに陽極端子板を接続している。そして、絶縁樹脂等からなる外装によるモールド成形金型などの方法により被覆し、陽極端子板及び陰極端子板を外装から引き出している。   Solid electrolytic capacitors, especially sintered type capacitors, were formed by chemical conversion treatment on the anode body in which one end of the anode lead was embedded by expanding the surface area of tantalum or niobium as a porous sintered body. A dielectric oxide film, a solid electrolyte layer, and a cathode current collector layer formed of a conductive paste have capacitor elements sequentially provided, and the outermost cathode current collector layer is formed of a conductive paste. The cathode terminal plate is connected via a connection body such as a conductive adhesive, and the anode terminal plate is connected to the anode lead by welding or the like. And it coat | covers by methods, such as a shaping | molding metal mold | die by the exterior which consists of insulating resins, etc., and the anode terminal plate and the cathode terminal plate are pulled out from the exterior.

最近では、固体電解質層として、二酸化マンガンより高導電度であり、耐熱性に優れた導電性高分子、例えばポリピロール、ポリアニリン、ポリチオフェン等を導電性高分子に用いた固体電解コンデンサが開発されつつある。   Recently, as a solid electrolyte layer, a solid electrolytic capacitor using a conductive polymer having higher conductivity than manganese dioxide and excellent heat resistance, such as polypyrrole, polyaniline, polythiophene, etc., is being developed. .

これらの導電性高分子を電解質層とするには、従来、導電性モノマー溶液中に多孔質焼結体の陽極体を浸漬し、絶縁体である陽極体表面の酸化皮膜の表面に、酸化剤による化学酸化重合によりポリマーとして堆積させ導電化し、その後、電解重合等の方法により電解質層を厚くしていく方法や、化学重合を何度か繰り返して電解質層を厚くしていく方法がとられていた。
また、これらの電解質層の表面に形成した陰極集電体層として、酸素や水分等の内部拡散を防止するために、従来の導電ペーストによる層を設ける代わりに、めっき層を設ける方法が提案されている(たとえば特許文献1)。
In order to use these conductive polymers as an electrolyte layer, conventionally, an anode body of a porous sintered body is immersed in a conductive monomer solution, and an oxidizing agent is formed on the surface of the oxide film on the surface of the anode body that is an insulator. The method of depositing and conducting as a polymer by chemical oxidative polymerization by the method, then thickening the electrolyte layer by methods such as electrolytic polymerization, and the method of thickening the electrolyte layer by repeating the chemical polymerization several times It was.
As a cathode current collector layer formed on the surface of these electrolyte layers, a method of providing a plating layer instead of providing a conventional conductive paste layer has been proposed in order to prevent internal diffusion of oxygen, moisture, etc. (For example, Patent Document 1).

特開平05−021279号公報Japanese Patent Laid-Open No. 05-021279

陰極集電体層として、導電ペーストによる層を設ける代わりに、めっき層を設ける方法は、コンデンサの製造中や設置時の熱ストレスや環境高温負荷による熱ストレスにより、金属であるめっき層と硬質な高分子である導電性高分子の電解質層との間に剥離が生じたり、電解質層に亀裂が生じたりし、そのために陽極体表面の酸化皮膜に損傷を生じたり、若しくはめっき層に亀裂が生じたりして、コンデンサ特性の信頼性が充分ではなかった。   As a cathode current collector layer, instead of providing a layer made of conductive paste, a method of providing a plating layer is difficult because a metal plating layer is hardened due to thermal stress during manufacturing or installation of the capacitor and thermal stress due to environmental high temperature load. Peeling occurs between the polymer electrolyte layer and the electrolyte layer, and the electrolyte layer is cracked. As a result, the oxide film on the anode body surface is damaged, or the plating layer is cracked. As a result, the reliability of the capacitor characteristics was not sufficient.

本発明の目的は、導電性高分子の電解質層の改善により、熱ストレスによる、めっき層と電解質層との間の剥離または電解質層若しくはめっき層における亀裂の発生を防止して、コンデンサ特性の信頼性の向上したチップ形固体電解コンデンサを提供することである。
The object of the present invention is to improve the reliability of the capacitor characteristics by improving the electrolyte layer of the conductive polymer and preventing the occurrence of peeling between the plating layer and the electrolyte layer or cracking in the electrolyte layer or the plating layer due to thermal stress. It is to provide a chip-type solid electrolytic capacitor with improved performance.

上記課題を解決するために、本発明は、多孔質焼結体の陽極体の表面に、誘電体酸化被膜と、固体電解質としての導電性高分子層と、集電体としてのめっき層を順次積層し、前記陽極体の一方の端面から導出された陽極リードを有するチップ形固体電解コンデンサにおいて、前記導電性高分子層のうち、めっき層と接する側には導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した導電性高分子を設けたことを特徴とするチップ形固体電解コンデンサを提供する。
また、多孔質焼結体の陽極体の表面に、誘電体酸化被膜と、固体電解質としての導電性高分子層と、集電体としてのめっき層を順次積層し、前記陽極体の一方の端面から導出された陽極リードを有するチップ形固体電解コンデンサにおいて、前記導電性高分子層のうち、前記陽極体の内部表面には導電性モノマーを多孔質の内部で化学酸化重合した導電性高分子を設け、前記陽極体の外部表面には導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した導電性高分子を設けたことを特徴とするチップ形固体電解コンデンサを提供する。
In order to solve the above problems, the present invention sequentially forms a dielectric oxide film, a conductive polymer layer as a solid electrolyte, and a plating layer as a current collector on the surface of the anode body of the porous sintered body. In a chip-type solid electrolytic capacitor that is laminated and has an anode lead led out from one end face of the anode body, a conductive polymer solution paste or a conductive material is provided on the side of the conductive polymer layer that contacts the plating layer. Provided is a chip-type solid electrolytic capacitor characterized in that a conductive polymer coated with a polymer dispersion paste is provided.
Further, a dielectric oxide film, a conductive polymer layer as a solid electrolyte, and a plating layer as a current collector are sequentially laminated on the surface of the anode body of the porous sintered body, and one end face of the anode body In the chip-type solid electrolytic capacitor having an anode lead derived from the conductive polymer layer, a conductive polymer obtained by chemically oxidatively polymerizing a conductive monomer inside the porous body is formed on the inner surface of the anode body. Provided is a chip-type solid electrolytic capacitor characterized in that a conductive polymer solution paste or a conductive polymer coated with a conductive polymer dispersion paste is provided on the outer surface of the anode body.

本発明のチップ型固体電解コンデンサは、めっき層の下地層として、導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した導電性高分子を設けたために、熱ストレスによるめっき層と電解質層との間の剥離または電解質層若しくはめっき層における亀裂の発生を防止して、コンデンサ特性の信頼性の向上したチップ形固体電解コンデンサを提供することができる。
Since the chip-type solid electrolytic capacitor of the present invention is provided with a conductive polymer coated with a conductive polymer solution paste or a conductive polymer dispersion paste as a base layer of the plating layer, It is possible to provide a chip-type solid electrolytic capacitor with improved reliability of capacitor characteristics by preventing peeling between the electrolyte layer and cracking in the electrolyte layer or the plating layer.

本発明に係るチップ形固体電解コンデンサを示している。1 shows a chip-type solid electrolytic capacitor according to the present invention. 本発明に係る別のチップ形固体電解コンデンサを示している。3 shows another chip-type solid electrolytic capacitor according to the present invention.

本発明に述べるめっき層は、一般的に液中若しくは真空中でめっき法によって形成される層で、微量に取り込まれる不純物、添加物以外は金属からなる。金属としては、銅、ニッケル、コバルト、錫、亜鉛またはそれらの少なくとも1つを含む合金等で、液中めっき可能なものまたは真空中蒸着可能なものから選択できる。めっき層の厚さは、めっき層にピンホールが残らない程度の厚さとし、1μmから50μm程度、好ましくは、10μmから20μm程度である。薄いとめっき層にピンホールが残りやすく、耐湿性が劣化しやすくまた電気的抵抗が大きくなりやすい。逆に厚いと容易に変形しなくなるため材料間の熱ストレスを吸収しずらくなりやすい。
液中めっきとしては、無電解めっき、電解めっきまたは無電解めっきの表面に電解めっきなど特に限定なく使用できる。
たとえば無電解銅めっきとしては、まず触媒核を付与する。触媒核の付与には、パラジウムイオン触媒やパラジウムコロイド触媒を使用する。本発明における上記パラジウム触媒の導電性高分子上への吸着量は、0.03〜0.6μg/cmの範囲であり、更に望ましくは0.05〜0.3μg/cmの範囲である。パラジウム触媒を吸着させる際の処理温度は10〜40℃が好ましい。処理時間をコントロールすることにより、パラジウム触媒の導電性高分子上への吸着量をコントロールすることができる。
また、無電解銅めっき層には、市販の無電解銅めっきが使用できる。これらの無電解銅めっきは、硫酸銅、ホルマリン、錯化剤、水酸化ナトリウムを主成分とする。めっきの厚さはこの上に電気めっきを行う場合には厚さは、0.1〜5μmの範囲である。
次に、無電解銅めっき層の表面に電解銅めっき層を設ける。最初から電解銅めっきだけを設けてもよい。例えば、硫酸銅系溶液を用いるのであれば、濃度が銅50〜80g/l、硫酸50〜150g/l、液温40〜50℃、電流密度10〜50A/dmの条件とする等である。
電解めっき装置としては、カソード電極を導電性高分子層側に接続し、アノード電極としては銅板を使用する方法のほか、カソード電極を陽極リードに接続してもよい。
The plating layer described in the present invention is generally a layer formed by a plating method in a liquid or in a vacuum, and is made of a metal except for impurities and additives taken in a trace amount. The metal can be selected from copper, nickel, cobalt, tin, zinc or an alloy containing at least one of them, which can be plated in liquid or can be deposited in vacuum. The thickness of the plating layer is such that no pinholes remain in the plating layer, and is about 1 μm to 50 μm, preferably about 10 μm to 20 μm. If it is thin, pinholes are likely to remain in the plating layer, moisture resistance tends to deteriorate, and electrical resistance tends to increase. On the other hand, if it is thick, it will not be easily deformed, and it will be difficult to absorb thermal stress between materials.
As the submerged plating, electroless plating, electrolytic plating, or electroless plating can be used on the surface without particular limitation, such as electrolytic plating.
For example, as electroless copper plating, first, a catalyst nucleus is provided. A palladium ion catalyst or a palladium colloid catalyst is used for imparting the catalyst nucleus. Adsorption to the conductive on a polymer of the palladium catalyst in the present invention is in the range of 0.03~0.6μg / cm 2, and more preferably in the range of 0.05~0.3μg / cm 2 . The treatment temperature for adsorbing the palladium catalyst is preferably 10 to 40 ° C. By controlling the treatment time, the adsorption amount of the palladium catalyst onto the conductive polymer can be controlled.
Moreover, a commercially available electroless copper plating can be used for the electroless copper plating layer. These electroless copper platings are mainly composed of copper sulfate, formalin, complexing agent and sodium hydroxide. When electroplating is performed on the plating, the thickness is in the range of 0.1 to 5 μm.
Next, an electrolytic copper plating layer is provided on the surface of the electroless copper plating layer. Only electrolytic copper plating may be provided from the beginning. For example, if a copper sulfate-based solution is used, the conditions are copper 50 to 80 g / l, sulfuric acid 50 to 150 g / l, liquid temperature 40 to 50 ° C., and current density 10 to 50 A / dm 2. .
As an electrolytic plating apparatus, the cathode electrode may be connected to the conductive polymer layer side, and the cathode electrode may be connected to the anode lead in addition to a method using a copper plate as the anode electrode.

本発明に述べる陽極体は、成形した海綿状の焼結体で、たとえば、陽極用リードの一端を埋め込んで、タンタルやニオブまたはアルミニウム等の、弁作用金属の平均粒径1μm程度の微粉末に、アクリル系樹脂やカンファー等のバインダを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の焼結体である。   The anode body described in the present invention is a molded sponge-like sintered body. For example, one end of an anode lead is embedded into a fine powder having an average particle diameter of about 1 μm of valve action metal such as tantalum, niobium or aluminum. It is a sponge-like sintered body formed by press-pressing a powder mixed with a binder such as acrylic resin or camphor, and then sintering in vacuum.

本発明に述べる導電性ポリマ−溶液ペーストは、主に導電性ポリマーとバインダと溶剤とからなり、その他必要に応じて添加される添加剤とからなる。
導電性ポリマーとしては、ポリアニリンやポリピロール、ポリチオフェン、ポリパラフェニレン、ポリアセチレン等の導電性のポリマーで、溶剤に溶解可能な状態のものが選択される。
バインダとしては、ポリイソプレン、ポリスチレン、ポリエチレン、ポリビニルピロリドン、ポリビニルアルコール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリカーボネート、セルロースや、それらのエラストマー等があげられる。
添加剤としては、たとえば、架橋剤、流動調整剤があげられる。
架橋剤としては、例えば官能性シラン、例えば、テトラアルコキシシシランなどの官能性シランや架橋性ポリマーなどがあげられる。
流動調整剤としては、合成石英、熔融石英、二酸化マンガン、酸化スズ、酸化バナジウム、酸化インジウム、酸化鉄、酸化アルミニウム、酸化セリウム、ガラス粉等の無機酸化物フィラー、窒化ケイ素や窒化ホウ素、窒化アルミニウム等の無機酸化物フィラー、炭化ケイ素や炭化ホウ素等の炭化物フィラー等や、カーボン、非溶剤性導電性ポリマー等の導電フィラーなどがあげられ、分散剤を添加して用いられる。
このフィラーの平均粒子径は0.1μmから50μmの範囲がよく、特に0.5μmから10μmの範囲が好ましい。この平均粒子径が0.1μmより小さいと、配合量が少ない場合には、導電性ポリマーの溶液の流動性が改善され難くなる。また、導電性ポリマー溶液中のフィラーの配合量は、導電性ポリマーに対して体積比で0.01%から30%の範囲が好ましい。特に、無機フィラーは導電性ポリマーに比べると導電率が一桁〜数桁程度低いため、その配合量が上記の範囲を越えると固体電解コンデンサのインピーダンス特性が劣化し易くなる。
溶剤としては、水または有機溶剤を用いる。有機溶剤としては、例えば、ケトン類やエステル類、アルコール類、芳香族炭化水素類、ニトリル類、セルソルブ類、含チッ素化合物等を用いられる。
The conductive polymer solution paste described in the present invention mainly comprises a conductive polymer, a binder, and a solvent, and other additives that are added as necessary.
As the conductive polymer, a conductive polymer such as polyaniline, polypyrrole, polythiophene, polyparaphenylene, polyacetylene or the like that can be dissolved in a solvent is selected.
Examples of the binder include polyisoprene, polystyrene, polyethylene, polyvinyl pyrrolidone, polyvinyl alcohol, polymethyl methacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polycarbonate, cellulose, and elastomers thereof.
Examples of the additive include a crosslinking agent and a flow modifier.
Examples of the crosslinking agent include functional silanes such as functional silanes such as tetraalkoxysilane and crosslinkable polymers.
Examples of the flow control agent include synthetic quartz, fused silica, manganese dioxide, tin oxide, vanadium oxide, indium oxide, iron oxide, aluminum oxide, cerium oxide, glass powder and other inorganic oxide fillers, silicon nitride, boron nitride, and aluminum nitride. Inorganic oxide fillers such as carbide fillers such as silicon carbide and boron carbide, conductive fillers such as carbon and non-solvent conductive polymers, and the like are used.
The average particle diameter of the filler is preferably in the range of 0.1 μm to 50 μm, and particularly preferably in the range of 0.5 μm to 10 μm. When the average particle size is smaller than 0.1 μm, the fluidity of the conductive polymer solution is difficult to be improved when the blending amount is small. Further, the blending amount of the filler in the conductive polymer solution is preferably in the range of 0.01% to 30% by volume with respect to the conductive polymer. In particular, since the inorganic filler has a conductivity that is one to several orders of magnitude lower than that of the conductive polymer, the impedance characteristics of the solid electrolytic capacitor are likely to deteriorate if the blending amount exceeds the above range.
As the solvent, water or an organic solvent is used. Examples of the organic solvent include ketones, esters, alcohols, aromatic hydrocarbons, nitriles, cellosolves, nitrogen-containing compounds, and the like.

本発明に述べる導電性ポリマ−の分散液ペーストは、主に導電性ポリマー粒子とバインダと分散剤と溶剤からなり、その他必要に応じて添加される添加剤とからなる。それらの材料は、上記導電性ポリマ−溶液ペースト用の材料からも選択できる。バインダと分散剤とは兼用される場合もある。
溶剤としては、上記有機溶剤のほか、特に水またはアルコール、またはその混合物を使用する。
導電性ポリマー粒子は、上記導電性ポリマーの溶剤に不溶な状態のものが選択される。
分散剤は、ポリビニルアルコールなどの上記バインダのほか、アルキルグリコキシド、ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキルモノグリセリルエーテル等の界面活性剤などを用いられる。
The conductive polymer dispersion paste described in the present invention mainly comprises conductive polymer particles, a binder, a dispersant and a solvent, and other additives which are added as necessary. These materials can also be selected from the materials for the conductive polymer solution paste. In some cases, the binder and the dispersant are also used.
As the solvent, in addition to the above organic solvent, water, alcohol, or a mixture thereof is used.
The conductive polymer particles are selected in a state insoluble in the solvent for the conductive polymer.
In addition to the above binders such as polyvinyl alcohol, the dispersant is alkyl glycoxide, polyethylene glycol, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, alkyl monoglyceryl ether, etc. Or the like.

本発明に述べる導電性ポリマ−溶液ペーストや導電性ポリマ−の分散液ペーストから形成される層は、導電性ポリマ−から形成される層に比べ、ペースト剤の添加により、層自体の可塑性、強靱性などの物性のほか、その前後の層との接着性を改善しやすくなる。   The layer formed from the conductive polymer solution paste or conductive polymer dispersion paste described in the present invention is more plastic and tougher than the layer formed from the conductive polymer by adding a paste agent. In addition to physical properties such as properties, it is easy to improve the adhesion between the front and back layers.

本発明に述べる外部表面は、陽極体の外形を形成する表面をさす。   The external surface described in the present invention refers to the surface forming the outer shape of the anode body.

本発明に述べる内部表面は、陽極体の外形を形成する表面以外の、多孔質の内部の表面をさす。   The internal surface described in the present invention refers to a porous internal surface other than the surface forming the outer shape of the anode body.

以下、本発明を図面に示す実施の形態に基づいて説明する。
図1は、本発明に係るチップ形固体電解コンデンサを示している。
陽極用リード1は、タンタル、ニオブまたはアルミニウム等の弁作用金属の、直径が0.1mmから0.5mm程度の線状や、厚さ0.1mmから0.5mm程度の短冊薄板状からなる。
コンデンサ素子2は、陽極用リード1の一端を埋め込んで、タンタルやニオブまたはアルミニウム等の弁作用金属の、平均粒径1μm程度の微粉末に、アクリルやカンファー等のバインダを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の多孔質方体の陽極体3と、この陽極体3に陽極酸化皮膜(図示せず)と、導電性高分子の固体電解質層4と、めっき層の陰極集電体層5とを順次設けたものからなる。
陽極体3は、成形した海綿状の焼結体で、陽極用リード1の一端を埋め込んで、弁作用金属の微粉末に、アクリル系樹脂やカンファー等のバインダを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の焼結体である。
固体電解質層4は、多孔質成形体の陽極酸化皮膜の表面に設けた、化学酸化重合した導電性高分子またはそれとその表面に設けた電解重合した導電性高分子の固体電解質下層部4aと、その固体電解質下層部4aの表面に設けた導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した固体電解質上層部4bとからなっている。
6は、陰極端子板で、導電性接着剤やはんだ等の接続体7によりめっき層の陰極集電体層5に接続される。
8は、陽極端子板で、抵抗溶接やレーザ溶接等の溶接や導電性接着剤により陽極用リード1に接続される。
9は、外装で、エポキシ樹脂等の封止樹脂等でコンデンサ素子2等を封止する。陰極端子板6と陽極端子板8は、図1ではこの外装9の横から下に向かって露呈させている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 shows a chip-type solid electrolytic capacitor according to the present invention.
The anode lead 1 is made of a valve metal such as tantalum, niobium, or aluminum, which has a linear shape with a diameter of about 0.1 mm to 0.5 mm, or a strip shape with a thickness of about 0.1 mm to 0.5 mm.
Capacitor element 2 is formed by embedding one end of anode lead 1 and pressing a powder obtained by mixing a binder, such as acrylic or camphor, with a fine powder having an average particle diameter of about 1 μm, such as tantalum, niobium or aluminum. Sponge-shaped porous rectangular anode body 3 formed by pressure forming and then sintered in vacuum, anodized film (not shown) on this anode body 3, and a solid electrolyte layer of a conductive polymer 4 and a cathode current collector layer 5 as a plating layer.
The anode body 3 is a molded sponge-like sintered body. One end of the anode lead 1 is embedded, and a powder obtained by mixing a fine powder of valve action metal with a binder such as acrylic resin or camphor is press-press molded. Then, a sponge-like sintered body formed by sintering in vacuum.
The solid electrolyte layer 4 includes a chemically oxidized polymerized conductive polymer provided on the surface of the anodized film of the porous molded body or a solid electrolyte lower layer 4a of the polymerized conductive polymer provided on the surface thereof, and It comprises a solid electrolyte upper layer portion 4b coated with a conductive polymer solution paste or conductive polymer dispersion paste provided on the surface of the solid electrolyte lower layer portion 4a.
Reference numeral 6 denotes a cathode terminal plate, which is connected to the cathode current collector layer 5 of the plating layer by a connection body 7 such as a conductive adhesive or solder.
Reference numeral 8 denotes an anode terminal plate which is connected to the anode lead 1 by welding such as resistance welding or laser welding or a conductive adhesive.
Reference numeral 9 denotes an exterior which seals the capacitor element 2 and the like with a sealing resin such as an epoxy resin. The cathode terminal plate 6 and the anode terminal plate 8 are exposed from the side to the bottom of the exterior 9 in FIG.

図2は、本発明に係る、固体電解質層が別構成のチップ形固体電解コンデンサを示している。
固体電解質層4は、多孔質成形体の内部表面に設けた導電性モノマーを多孔質の内部で化学酸化重合した内部固体電解質層4cと、多孔質成形体の外部表面に設けた導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した外部固体電解質層4dとからなっている。
また、固体電解質層4以外は、図1に示した構成と同様なものになっている。
FIG. 2 shows a chip-type solid electrolytic capacitor according to the present invention in which the solid electrolyte layer has a different configuration.
The solid electrolyte layer 4 includes an internal solid electrolyte layer 4c obtained by chemically oxidizing and polymerizing a conductive monomer provided on the inner surface of the porous molded body, and a conductive polymer provided on the outer surface of the porous molded body. The outer solid electrolyte layer 4d is coated with a solution paste or a conductive polymer dispersion paste.
Further, the configuration other than the solid electrolyte layer 4 is the same as that shown in FIG.

陽極体3を酸化剤溶液に含浸・乾燥後、導電性モノマー溶液に含浸した後、化学酸化重合する。
その後、水洗等の洗浄工程または除液工程を設け、陽極体3の外部表面のモノマーや酸化剤溶液を
できるだけ取り除いた後に100〜160℃で高温乾燥することにより、陽極体3の内部表面に導電性モノマーを多孔質の内部で化学酸化重合した導電性高分子が形成され、陽極体3の外部表面には化学酸化重合した導電性高分子が形成され難くなる。また、陽極体3の外部表面を高密度化して細孔径を細くすると、導電性モノマー溶液または酸化剤溶液が、洗浄しても陽極体3内部に留まりやすく好ましい。
上記の方法等により、直接、陽極体3の外部表面には、導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した導電性高分子を設けることが可能になり、または直接設ける面積が増加することが可能になり、導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した導電性高分子が陽極体3の外部表面の誘電体酸化被膜に強固に接続することが可能となる。
The anode body 3 is impregnated with an oxidizing agent solution and dried, then impregnated with a conductive monomer solution, and then subjected to chemical oxidative polymerization.
Thereafter, a washing process such as washing with water or a liquid removal process is provided, and the inner surface of the anode body 3 is electrically conductive by drying at a high temperature at 100 to 160 ° C. after removing the monomer and the oxidant solution on the outer surface of the anode body 3 as much as possible. As a result, a conductive polymer obtained by chemically oxidatively polymerizing the conductive monomer inside the porous body is formed, and it is difficult to form a conductive polymer obtained by chemical oxidative polymerization on the outer surface of the anode body 3. Further, it is preferable to increase the density of the outer surface of the anode body 3 to reduce the pore diameter, so that the conductive monomer solution or the oxidizing agent solution tends to stay inside the anode body 3 even after washing.
By the above method or the like, it is possible to directly or directly provide the outer surface of the anode body 3 with a conductive polymer solution paste or a conductive polymer dispersion paste coated with a conductive polymer dispersion paste. The area can be increased, and the conductive polymer coated with the conductive polymer solution paste or the conductive polymer dispersion paste is firmly connected to the dielectric oxide film on the outer surface of the anode body 3. Is possible.

定格10V,100μFのタンタルチップ型固体電解コンデンサの製造方法について述べる。弁作用金属として、タンタルの微粉末を用い、これにアクリル樹脂をバインダとして加えた微粉末を、タンタル製の陽極用リード線の一端を埋め込んだ状態にして、プレス機により圧縮成形する。そしてこの成形体を真空中で加熱処理し、焼結して、幅3mm、厚さ1.5mm、長さ4mmの直方体形状の焼結体を形成した。
次に、焼結体を希燐酸液中に浸漬し、直流電圧30Vを印加して、誘電体皮膜を形成した。誘電体皮膜を形成後、0.1mol/lのチオフェンモノマーのメタノール水溶液と、酸化剤溶液である0.1mol/lのドデシルベンゼンスルホン酸第二鉄のメタノール水溶液を準備した。
次に、陽極体を酸化剤溶液に含浸し室温で20分乾燥した。その後にチオフェンモノマー溶液に含浸し室温で60分保持して化学酸化重合した後に、水洗・乾燥を行った。そしてこの一連の操作を10回繰り返して、陽極体の内部表面に化学酸化重合した導電性高分子層を設けた。
次に、チオフェンポリマー粉末:20質量%、バインダとしてポリビニルアルコール:1質量%のN−メチル−2−ピロリドンに溶解したものを使用し、前記の化学酸化重合した導電性高分子層の表面に導電性ポリマ−の塗布を2度繰り返した。その後加熱乾燥した。
次に、厚さ15μmのめっき層の陰極集電体層を形成した。めっきの形成は、電解硫酸銅溶液を用い、濃度が銅60g/l、硫酸60g/l、液温45℃、電流密度20A/dmの条件で行った。
次に、厚さ0.1mmのリードフレームの陰極端子部に素子の陰極集電体層を銀導電性ペーストにより接続するとともに、リードフレームの陽極端子部に陽極用リード線を溶接して、焼結体をリードフレームに取り付けた。素子をリードフレームに取り付け後、エポキシ樹脂を用いてトランスファーモールド法により外装を形成した。外装を形成後、エージング処理を行い、リードフレームを切断除去し、陰極端子及び陽極端子をフォーミングし、チップ型の固体電解コンデンサとした。
A method of manufacturing a tantalum chip type solid electrolytic capacitor having a rating of 10 V and 100 μF will be described. A fine powder of tantalum is used as the valve action metal, and a fine powder obtained by adding an acrylic resin as a binder to the fine powder is compression-molded by a press machine with one end of a tantalum anode lead wire embedded. The molded body was heat-treated in vacuum and sintered to form a rectangular parallelepiped sintered body having a width of 3 mm, a thickness of 1.5 mm, and a length of 4 mm.
Next, the sintered body was immersed in a diluted phosphoric acid solution, and a DC voltage of 30 V was applied to form a dielectric film. After forming the dielectric film, a 0.1 mol / l thiophene monomer aqueous methanol solution and an 0.1 mol / l ferric dodecylbenzenesulfonic acid methanol aqueous solution as an oxidizing agent solution were prepared.
Next, the anode body was impregnated with an oxidizing agent solution and dried at room temperature for 20 minutes. Thereafter, the thiophene monomer solution was impregnated and kept at room temperature for 60 minutes for chemical oxidative polymerization, followed by washing with water and drying. This series of operations was repeated 10 times to provide a conductive polymer layer chemically oxidized and polymerized on the inner surface of the anode body.
Next, thiophene polymer powder: 20% by mass, polyvinyl alcohol as a binder dissolved in 1% by mass of N-methyl-2-pyrrolidone is used. The application of the functional polymer was repeated twice. Thereafter, it was dried by heating.
Next, a cathode current collector layer having a plating layer thickness of 15 μm was formed. The plating was performed using an electrolytic copper sulfate solution under the conditions of a copper concentration of 60 g / l, sulfuric acid 60 g / l, a liquid temperature of 45 ° C., and a current density of 20 A / dm 2 .
Next, the cathode current collector layer of the element was connected to the cathode terminal portion of the lead frame having a thickness of 0.1 mm with a silver conductive paste, and the anode lead wire was welded to the anode terminal portion of the lead frame to be fired. The ligature was attached to a lead frame. After the element was attached to the lead frame, an exterior was formed by transfer molding using epoxy resin. After forming the exterior, aging treatment was performed, the lead frame was cut and removed, the cathode terminal and the anode terminal were formed, and a chip-type solid electrolytic capacitor was obtained.

固体電解質層の作成において、化学酸化重合した導電性高分子層の表面に、導電性ポリマ−の分散液ペースト層を形成する方法として、チオフェン:0.1mol/l、ドーパンであるナフタレンスルホン酸ナトリウム:0.2mol/lと酸化剤である塩化鉄:0.2mol/lのメタノール溶液中で化学酸化重合させ、過剰物を除去後、乾燥して、粉末状のポリチオフェンを得た。次に、この粉末状のポリチオフェン:20質量%、バインダとしてポリビニルピロリドン:1質量%を混合した懸濁水溶液を使用して、化学酸化重合した導電性高分子層の表面に導電性ポリマ−の塗布を行う以外実施例1と同様に行った。   As a method for forming a conductive polymer dispersion paste layer on the surface of a chemically oxidatively polymerized conductive polymer layer in preparation of a solid electrolyte layer, thiophene: 0.1 mol / l, sodium naphthalene sulfonate, which is doppane, : 0.2 mol / l and an oxidizing agent of iron chloride: 0.2 mol / l in a methanol solution was chemically oxidatively polymerized to remove excess and then dried to obtain powdered polythiophene. Next, a conductive polymer is applied to the surface of the chemically oxidized polymerized conductive polymer layer by using a suspension of this powdery polythiophene: 20% by mass and polyvinylpyrrolidone: 1% by mass as a binder. The same procedure as in Example 1 was performed except that.

固体電解質層の作成において、陽極体を酸化剤溶液に含浸し室温で20分乾燥した。その後にチオフェンモノマー溶液に含浸し室温で60分保持して化学酸化重合した後に、水洗・乾燥を行った。
そしてこの一連の操作を10回繰り返して、陽極体の内部表面に導電性モノマーを多孔質の内部で化学酸化重合した導電性高分子を設けた。
次に、チオフェンポリマー粉末:20質量%、バインダとしてポリビニルアルコール:1質量%のN−メチル−2−ピロリドンに溶解したものを使用し、陽極体の外部表面に導電性ポリマ−の塗布し加熱乾燥しこれを2度行う以外実施例1と同様に行った。

(比較例1)
陽極体の外部表面にも化学酸化重合膜を設ける以外、実施例1同様に作成した。
外部表面の化学酸化重合膜の形成方法は、0.1mol/lのチオフェンモノマーのメタノール水溶液に含浸後、室温で30分保持した後、酸化剤溶液である0.1mol/lのドデシルベンゼンスルホン酸第二鉄のメタノール水溶液に含浸し、室温で10分保持した後、40℃、40%の雰囲気内で20分間、化学酸化重合を行った。その後、水洗・乾燥を行った。この一連の操作を10回繰り返して行った。
In preparation of the solid electrolyte layer, the anode body was impregnated with an oxidant solution and dried at room temperature for 20 minutes. Thereafter, the thiophene monomer solution was impregnated and kept at room temperature for 60 minutes for chemical oxidative polymerization, followed by washing with water and drying.
This series of operations was repeated 10 times to provide a conductive polymer obtained by chemically oxidizing and polymerizing a conductive monomer inside the porous body on the inner surface of the anode body.
Next, a thiophene polymer powder: 20% by mass, polyvinyl alcohol as a binder dissolved in 1% by mass of N-methyl-2-pyrrolidone is used, and a conductive polymer is applied to the outer surface of the anode body and dried by heating. However, this was performed in the same manner as in Example 1 except that this was performed twice.

(Comparative Example 1)
It was prepared in the same manner as in Example 1 except that a chemical oxidation polymerization film was also provided on the outer surface of the anode body.
The method of forming a chemical oxidation polymerized film on the external surface is as follows: after impregnation in a methanol solution of 0.1 mol / l thiophene monomer and holding at room temperature for 30 minutes, then 0.1 mol / l dodecylbenzenesulfonic acid as an oxidant solution After impregnating with an aqueous ferric methanol solution and holding at room temperature for 10 minutes, chemical oxidative polymerization was performed in an atmosphere of 40 ° C. and 40% for 20 minutes. Thereafter, washing and drying were performed. This series of operations was repeated 10 times.

実施例と比較例の、チップ型の固体電解コンデンサの、初期特性と150℃の高温雰囲気で100時間放置後の漏れ電流を測定した。また、ESR(等価直列抵抗)は、100KHzでの値とし、ヒートサイクルテストは、温度−55℃から125℃、200サイクルの条件で行った。測定は各n10で行い、その平均測定結果を表1に示す。   The initial characteristics of the chip-type solid electrolytic capacitors of Examples and Comparative Examples and the leakage current after being left in a high temperature atmosphere at 150 ° C. for 100 hours were measured. Further, ESR (equivalent series resistance) was a value at 100 KHz, and the heat cycle test was performed under conditions of a temperature of −55 ° C. to 125 ° C. and 200 cycles. The measurement is performed at each n10, and the average measurement results are shown in Table 1.

Figure 2010206117
Figure 2010206117

以上、表1の高温放置およびヒートサイクル試験結果から明らかな通り、実施例は、従来例に比較して、ESRおよび漏れ電流の安定性を向上できるチップ形固体電解コンデンサを得ることができる。
As described above, as is apparent from the results of the high temperature storage and heat cycle test in Table 1, the embodiment can provide a chip-type solid electrolytic capacitor that can improve the stability of ESR and leakage current as compared with the conventional example.

1…陽極用リード、2…コンデンサ素子、3…陽極体、4…固体電解質層、4a…固体電解質下層部、4b…固体電解質上層部、4c…内部固体電解質層、4d…外部固体電解質層、5…めっき層の陰極集電体層、6…陰極端子板、7…接続体、8…陽極端子板、9…外装。   DESCRIPTION OF SYMBOLS 1 ... Lead for anode, 2 ... Capacitor element, 3 ... Anode body, 4 ... Solid electrolyte layer, 4a ... Solid electrolyte lower layer part, 4b ... Solid electrolyte upper layer part, 4c ... Internal solid electrolyte layer, 4d ... External solid electrolyte layer, 5 ... Cathode current collector layer of plating layer, 6 ... Cathode terminal plate, 7 ... Connector, 8 ... Anode terminal plate, 9 ... Exterior.

Claims (2)

多孔質焼結体の陽極体の表面に、誘電体酸化被膜と、固体電解質としての導電性高分子層と、集電体としてのめっき層を順次積層し、前記陽極体の一方の端面から導出された陽極リードを有するチップ形固体電解コンデンサにおいて、前記導電性高分子層のうち、めっき層と接する側には導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した導電性高分子を設けたことを特徴とするチップ形固体電解コンデンサ。   A dielectric oxide film, a conductive polymer layer as a solid electrolyte, and a plating layer as a current collector are sequentially stacked on the surface of the anode body of the porous sintered body and derived from one end face of the anode body. In the chip-type solid electrolytic capacitor having the anode lead formed, a conductive polymer solution paste or a conductive polymer dispersion paste is applied to a side of the conductive polymer layer in contact with the plating layer. A chip-type solid electrolytic capacitor characterized by providing molecules. 多孔質焼結体の陽極体の表面に、誘電体酸化被膜と、固体電解質としての導電性高分子層と、集電体としてのめっき層を順次積層し、前記陽極体の一方の端面から導出された陽極リードを有するチップ形固体電解コンデンサにおいて、前記導電性高分子層のうち、前記陽極体の内部表面には導電性モノマーを多孔質の内部で化学酸化重合した導電性高分子を設け、前記陽極体の外部表面には導電性ポリマ−溶液ペーストまたは導電性ポリマ−の分散液ペーストを塗布した導電性高分子を設けたことを特徴とするチップ形固体電解コンデンサ。   A dielectric oxide film, a conductive polymer layer as a solid electrolyte, and a plating layer as a current collector are sequentially stacked on the surface of the anode body of the porous sintered body and derived from one end face of the anode body. In the chip-type solid electrolytic capacitor having an anode lead, a conductive polymer obtained by chemically oxidatively polymerizing a conductive monomer inside the porous body is provided on the inner surface of the anode body in the conductive polymer layer, A chip-type solid electrolytic capacitor characterized in that a conductive polymer solution paste or a conductive polymer dispersion paste is provided on the outer surface of the anode body.
JP2009052701A 2009-03-05 2009-03-05 Chip-type solid electrolytic capacitor Pending JP2010206117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052701A JP2010206117A (en) 2009-03-05 2009-03-05 Chip-type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052701A JP2010206117A (en) 2009-03-05 2009-03-05 Chip-type solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2010206117A true JP2010206117A (en) 2010-09-16

Family

ID=42967283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052701A Pending JP2010206117A (en) 2009-03-05 2009-03-05 Chip-type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2010206117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812376B1 (en) * 2014-02-17 2018-01-31 한국에너지기술연구원 Sealing Material, Flexible Thin-film type Super-Capacitor Device Manufacturing Method having the same and Super-Capacitor Device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812376B1 (en) * 2014-02-17 2018-01-31 한국에너지기술연구원 Sealing Material, Flexible Thin-film type Super-Capacitor Device Manufacturing Method having the same and Super-Capacitor Device thereof

Similar Documents

Publication Publication Date Title
JP6641321B2 (en) Ultra high voltage solid electrolytic capacitors
JP7361284B2 (en) Manufacturing method of electrolytic capacitor
JP5884068B2 (en) Manufacturing method of solid electrolytic capacitor
JP4955000B2 (en) Solid electrolytic capacitor
JP2010278446A (en) Solid electrolytic capacitor with facedown termination
JP2010153625A (en) Chip-shaped solid electrolytic capacitor and production method thereof
KR20030035883A (en) Solid electrolytic capacitor and method for preparing the same
JP2012043958A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009505413A (en) Solid capacitor and manufacturing method thereof
TW200406796A (en) Solid electrolytic capacitor and method of producing the same
JP2012039123A (en) Mechanically robust solid electrolytic capacitor assembly
JP2010278445A (en) High melting point metal paste for solid electrolytic capacitor
US20100149729A1 (en) Solid electrolytic capacitor and method for manufacturing the same
US9048024B2 (en) Solid electrolytic capacitor and method for producing the same
JP2014049520A (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008277476A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2009094155A (en) Method for manufacturing solid electrolytic capacitor
JP2010206117A (en) Chip-type solid electrolytic capacitor
JP2015220247A (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP2007173454A (en) Solid electrolytic capacitor
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007281268A (en) Solid electrolytic capacitor and its manufacturing method
JP2011071178A (en) Method of manufacturing solid electrolytic capacitor