JP2010205884A - Method of manufacturing electronic component - Google Patents

Method of manufacturing electronic component Download PDF

Info

Publication number
JP2010205884A
JP2010205884A JP2009049095A JP2009049095A JP2010205884A JP 2010205884 A JP2010205884 A JP 2010205884A JP 2009049095 A JP2009049095 A JP 2009049095A JP 2009049095 A JP2009049095 A JP 2009049095A JP 2010205884 A JP2010205884 A JP 2010205884A
Authority
JP
Japan
Prior art keywords
plating
electronic component
electrode
ions
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009049095A
Other languages
Japanese (ja)
Other versions
JP5278685B2 (en
Inventor
Tomohiro Sunaga
友博 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009049095A priority Critical patent/JP5278685B2/en
Publication of JP2010205884A publication Critical patent/JP2010205884A/en
Application granted granted Critical
Publication of JP5278685B2 publication Critical patent/JP5278685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electronic component for forming a plating film having a substantial thickness even by using a plating bath that is weak acid to neutral to weak alkaline with less damage to the electronic component when forming the plating film having Cu as a principal component to the electrode surface of the electronic component without using a power supply and performing catalytic treatment. <P>SOLUTION: A method of manufacturing an electronic component includes a step of forming a plating film on an electrode by mixing an electronic component element assembly having an electrode containing Cu or Ag as a principal component and a conductive medium having at least a surface showing catalytic activity to the oxidation reaction of hypophosphorous acid in the plating bath containing Cu ions and hypophosphorous acid. In the method of manufacturing the electronic component, the plating bath contains Ni ions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電子部品の製造方法、及び電子部品に関し、特に、積層コンデンサやノイズフィルタ等のチップ型電子部品の製造方法、及び該製造方法を使用して製造された電子部品に関する。   The present invention relates to a method for manufacturing an electronic component and an electronic component, and more particularly to a method for manufacturing a chip-type electronic component such as a multilayer capacitor or a noise filter, and an electronic component manufactured using the manufacturing method.

セラミック素体の表面にCu電極やAg電極が形成された電子部品では、従来より、電極の耐熱性やはんだ濡れ性を向上させるために、Cuめっき、Niめっき、Snめっき等を施し、電極表面にめっき皮膜を形成することが行われている。   Conventionally, electronic parts with Cu electrodes and Ag electrodes formed on the surface of the ceramic body have been subjected to Cu plating, Ni plating, Sn plating, etc. to improve the heat resistance and solder wettability of the electrodes. A plating film is formed on the substrate.

このCuめっきは、一般的には、電源を用いた電解めっき、詳しくは、めっき浴に満たされた容器中において導電性メディアと共に攪拌しながら通電を行う電解バレルめっきにより行われる。   This Cu plating is generally performed by electrolytic plating using a power source, specifically, electrolytic barrel plating in which energization is performed while stirring together with a conductive medium in a container filled with a plating bath.

この電解バレルめっきには、大きな電源が必要であるという問題がある。また、容器中における電流密度ばらつきにより、電子部品に析出するめっき膜厚にもばらつきが生じるという問題がある。無電解Cuめっきを用いれば前述の問題を解消できるが、還元剤の還元作用を活性化させる触媒処理をマスキング等により被めっき部分のみに行う必要があり、この工程が煩雑であるという問題がある。   This electrolytic barrel plating has a problem that a large power source is required. Moreover, there is a problem that the plating film thickness deposited on the electronic component also varies due to current density variation in the container. If electroless Cu plating is used, the above-mentioned problems can be solved. However, it is necessary to perform the catalytic treatment for activating the reducing agent's reducing action only on the portion to be plated by masking or the like, and this process is complicated. .

そこで、特許文献1には、特に事前の触媒処理を用いなくても、チップ型電子部品の電極上に対し電源を用いず無電解めっきする方法が開示されている。すなわち、還元剤の酸化反応に対し触媒活性を示す導電性媒体を、めっき浴中で前記電子部品素体と混合し、前記電極上にめっき皮膜を形成することを特徴とする方法である。   Therefore, Patent Document 1 discloses a method of performing electroless plating on the electrodes of a chip-type electronic component without using a power source without using a prior catalyst treatment. That is, the method is characterized in that a conductive medium exhibiting catalytic activity for the oxidizing reaction of the reducing agent is mixed with the electronic component body in a plating bath to form a plating film on the electrode.

特開2003−183843号公報JP 2003-183843 A

特許文献1に記載の電子部品の製造方法においては、無電解Cuめっきの還元剤としてホルムアルデヒドが必要であり、このホルムアルデヒドの還元能力を発現させるためにめっき浴のpHを高アルカリにする必要がある。高アルカリの溶液中において、Cuを錯体として安定させる実用的な錯化剤はEDTAくらいであるが、このEDTAが電子部品のセラミック素体を溶解し、電子部品の信頼性に不具合を及ぼす。   In the method of manufacturing an electronic component described in Patent Document 1, formaldehyde is required as a reducing agent for electroless Cu plating, and the pH of the plating bath needs to be made high alkali in order to develop the reducing ability of formaldehyde. . The practical complexing agent that stabilizes Cu as a complex in a highly alkaline solution is about EDTA. However, this EDTA dissolves the ceramic body of the electronic component and causes a defect in the reliability of the electronic component.

したがって、めっき液のpHを、弱酸〜中性〜弱アルカリにする必要があるが、この範囲において実用的な還元剤としては、次亜りん酸がある。   Therefore, the pH of the plating solution needs to be weak acid, neutral, or weak alkali, but hypophosphorous acid is a practical reducing agent in this range.

しかし、次亜りん酸を還元剤とした場合、Cuの析出反応が早期に止まってしまうという問題があった。これは、一旦、少しでもCuが析出した場合、被めっき部分が還元剤に対する触媒能を失ってしまうためと思われる。この場合、触媒活性を示す導電性媒体を用いる工法だけでは不十分であり、Pd粒子を厚く付与する等の煩雑な触媒処理が必要となってしまう。   However, when hypophosphorous acid was used as the reducing agent, there was a problem that the Cu precipitation reaction stopped early. This seems to be because once Cu is deposited even a little, the portion to be plated loses the catalytic ability for the reducing agent. In this case, the construction method using a conductive medium exhibiting catalytic activity is not sufficient, and complicated catalyst treatment such as thick application of Pd particles becomes necessary.

そこで、本発明の目的は、Cu電極またはAg電極上に、無電解めっきによってCuを主成分とするめっき皮膜を形成する際、煩雑な触媒付与工程が不要であり、かつ、電子部品素体を浸食することなく、平滑で実用的な厚みを有するめっき皮膜を得るためのめっき方法を提供することである。   Therefore, an object of the present invention is to eliminate the need for a complicated catalyst application step when forming a plating film containing Cu as a main component by electroless plating on a Cu electrode or an Ag electrode, and to provide an electronic component body. It is to provide a plating method for obtaining a plating film having a smooth and practical thickness without being eroded.

すなわち本発明は、CuまたはAgを主成分とする電極を有する電子部品素体と、少なくとも表面が次亜りん酸の酸化反応に対し触媒活性を示す導電性媒体とを、Cuイオンおよび次亜りん酸を含むめっき浴中で混合し、前記電極上にめっき皮膜を形成する工程を含む電子部品の製造方法において、前記めっき浴がNiイオンを含むことを特徴とする、電子部品の製造方法である。   That is, the present invention relates to an electronic component body having an electrode mainly composed of Cu or Ag, and a conductive medium having at least a surface having catalytic activity for an oxidation reaction of hypophosphorous acid. In the method of manufacturing an electronic component including a step of mixing in a plating bath containing an acid and forming a plating film on the electrode, the plating bath contains Ni ions, .

また、本発明は、前記めっき皮膜を形成する工程において、めっき開始時におけるめっき浴中のCuイオンの含有量を予め少なくしておき、めっき開始後にCuイオンを補充する操作を含むことを特徴とすることも好ましい。さらに好ましくは、めっき開始時におけるめっき浴中のCuイオンの含有量を実質的にゼロにしておいてもよい。   Further, the present invention is characterized in that in the step of forming the plating film, the content of Cu ions in the plating bath at the start of plating is reduced in advance, and the operation of replenishing Cu ions after the start of plating is characterized. It is also preferable to do. More preferably, the Cu ion content in the plating bath at the start of plating may be substantially zero.

さらに、本発明は、前記めっき浴がクエン酸を含有することも好ましい。   Furthermore, in the present invention, it is also preferable that the plating bath contains citric acid.

また、本発明は、電子部品素体の表面にCuまたはAgを主成分とする電極を有する電子部品にも向けられる。この電子部品では、前記電極の上にCu-Ni-Pめっき層を有するとともに、前記めっき層の電極に近い側の面近傍におけるCu濃度が、前記めっき層の電極に遠い側の面近傍におけるCu濃度よりも低く、かつ、前記めっき層の電極に近い側の面近傍におけるNi濃度が、前記めっき層の電極に遠い側の面近傍におけるNi濃度よりも高いことを特徴とする。   The present invention is also directed to an electronic component having an electrode mainly composed of Cu or Ag on the surface of the electronic component element body. In this electronic component, the Cu-Ni-P plating layer is provided on the electrode, and the Cu concentration in the vicinity of the surface of the plating layer near the electrode is Cu in the vicinity of the surface of the plating layer far from the electrode. The Ni concentration in the vicinity of the surface of the plating layer that is lower than the concentration and closer to the electrode of the plating layer is higher than the Ni concentration in the vicinity of the surface of the plating layer that is far from the electrode.

本発明の電子部品の製造方法によれば、めっき浴に含有されているNiイオンがCuイオンの優先的な析出を抑え、CuイオンとNiイオンとが共析出する形となる。この共析出の状態と、次亜りん酸に対して触媒活性をもつ導電性媒体の混合により、被めっき面は次亜りん酸に対する触媒活性が良好に保持すれた状態となり、実用的な厚みのめっき皮膜が得られる。   According to the method for manufacturing an electronic component of the present invention, Ni ions contained in the plating bath suppress preferential precipitation of Cu ions, and Cu ions and Ni ions co-precipitate. Due to the coprecipitation state and the mixing of a conductive medium having catalytic activity for hypophosphorous acid, the surface to be plated is kept in good catalytic activity for hypophosphorous acid. A plating film is obtained.

また、この方法により、ホルムアルデヒドとEDTAを用いることなくCuを主成分とするめっき皮膜形成が可能となるため、電子部品の素体が浸食されず、高信頼性の電子部品が得られる。   In addition, this method makes it possible to form a plating film containing Cu as a main component without using formaldehyde and EDTA, so that the body of the electronic component is not eroded and a highly reliable electronic component can be obtained.

さらに、この方法により、Pd粒子を厚く付与するなどの煩雑な触媒付与工程が不要になるため、めっき工程がシンプルになるとともに、歩留まりの向上も期待される。   Furthermore, this method eliminates the need for a complicated catalyst application step such as applying Pd particles thickly, which simplifies the plating step and is also expected to improve yield.

本発明において、めっき開始時におけるめっき浴中のCuイオンの含有量を予め少なくしておき、めっき開始後にCuイオンを補充する操作を含む場合、Cuイオンの優先的な析出をより確実に抑えることができるため、CuイオンとNiイオンとの共析出状態が比較的長く続く。したがって、より厚いめっき皮膜を形成することも可能である。   In the present invention, when the content of Cu ions in the plating bath at the start of plating is reduced in advance and the operation of replenishing Cu ions after the start of plating is included, the preferential precipitation of Cu ions is more reliably suppressed. Therefore, the co-precipitation state of Cu ions and Ni ions continues for a relatively long time. Therefore, it is possible to form a thicker plating film.

本発明の電子部品の製造方法においては、Cuめっき浴の錯化剤としては、クエン酸が好ましく、Cuの安定した析出挙動を確保することができる。   In the method for producing an electronic component of the present invention, citric acid is preferable as the complexing agent for the Cu plating bath, and stable deposition behavior of Cu can be ensured.

なお、本発明の電子部品は、電極上に形成されたCu-Ni-Pめっき層において、電極に近い側ではNiの濃度が高く、めっき層表面に近い側ではCuの濃度が高くなっているため、耐はんだ喰われ性とはんだ濡れ性をより良く両立させることができる。   In the electronic component of the present invention, in the Cu—Ni—P plating layer formed on the electrode, the Ni concentration is high on the side close to the electrode, and the Cu concentration is high on the side close to the plating layer surface. Therefore, both the solder erosion resistance and the solder wettability can be made better.

Cu-Ni-Pめっき層の断面写真である。It is a cross-sectional photograph of a Cu-Ni-P plating layer. Cu-Ni-Pめっき層の層方向における組成濃度のライン分析結果である。It is a line analysis result of the composition concentration in the layer direction of a Cu-Ni-P plating layer.

本発明における電子部品は、電子部品の素体に対し、導体からなる電極が形成されているものである。電子部品素体は、例えばセラミック等があげられ、内部電極を有する積層体などでもよい。   In the electronic component according to the present invention, an electrode made of a conductor is formed on an element body of the electronic component. Examples of the electronic component element body include ceramics, and may be a laminate having internal electrodes.

電子部品素体に形成されている電極は、CuまたはAgを主成分とするものであり、それぞれの合金であっても構わない。たとえば、AgやCu等の金属粉末、有機ビヒクル、ガラスフリットを含む導電性ペーストが塗布され、焼き付けられた外部電極などが挙げられる。他にも、スパッタや蒸着による金属膜などが挙げられる。   The electrodes formed on the electronic component body are mainly composed of Cu or Ag, and may be alloys thereof. For example, an external electrode coated with a conductive paste containing metal powder such as Ag or Cu, an organic vehicle, or glass frit and baked can be used. Other examples include metal films formed by sputtering or vapor deposition.

導電性媒体は、その少なくとも表面が、めっき浴の還元剤である次亜りん酸に対し触媒作用を有する金属である。たとえば、金、ニッケル、パラジウム、コバルト、白金、又はこれらの合金の中から選択された少なくとも1種以上の金属が挙げられる。導電性媒体のサイズは特に限定されないが、0.1〜数mm径のものが好んで用いられる。   The conductive medium is a metal having at least a surface having a catalytic action on hypophosphorous acid which is a reducing agent of the plating bath. Examples thereof include at least one metal selected from gold, nickel, palladium, cobalt, platinum, or an alloy thereof. The size of the conductive medium is not particularly limited, but those having a diameter of 0.1 to several mm are preferably used.

Cuめっき浴におけるCu源としての塩は、本発明の目的を損なわない限り、特に限定されない。たとえば、硫酸銅、硝酸銅、塩化銅などが含まれる。また、Ni源としての塩も同様であり、たとえば、硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケル等があげられる。   The salt as a Cu source in the Cu plating bath is not particularly limited as long as the object of the present invention is not impaired. For example, copper sulfate, copper nitrate, copper chloride and the like are included. The same applies to the salt as the Ni source, for example, nickel sulfate, nickel chloride, nickel sulfamate and the like.

Cuめっき浴における還元剤としては、主として、次亜りん酸または次亜りん酸塩が用いられる。次亜りん酸は、弱酸〜中世〜弱アルカリでも還元作用を有するため、電子部品素体の溶解を防ぎつつめっきすることが可能である。   As the reducing agent in the Cu plating bath, hypophosphorous acid or hypophosphite is mainly used. Hypophosphorous acid has a reducing action even in weak acids, medieval times, and weak alkalis, so that it can be plated while preventing dissolution of the electronic component body.

Cuめっき浴における錯化剤としては、カルボン酸系が好んで用いられるが、CuとNiの析出挙動を安定に保つためにはクエン酸が特に好ましい。   As the complexing agent in the Cu plating bath, a carboxylic acid type is preferably used, but citric acid is particularly preferable in order to keep the precipitation behavior of Cu and Ni stable.

また、めっき浴は、導電剤、pH調整剤、膜質を改善するための界面活性剤、などを必要に応じて含むことがある。なお、めっき浴のpHは、CuとNiの析出挙動を安定に保つためには、特に8.5〜11.0付近が好ましい。   Moreover, a plating bath may contain a electrically conductive agent, a pH adjuster, surfactant for improving film quality, etc. as needed. The pH of the plating bath is particularly preferably around 8.5 to 11.0 in order to keep the precipitation behavior of Cu and Ni stable.

本発明のめっき工程においては、Cuめっき浴で満たされたバレル等のめっき容器中において、導電性媒体と電子部品素体とが攪拌され、互いに接触することにより、Cuめっき皮膜が形成されていく。導電性媒体の表面にある次亜りん酸に対して触媒作用を有する金属が電子部品素体上の電極に接触した際、その電極における接触部分の近傍が触媒活性化される。このとき、前記接触部分の近傍に存在した金属イオンが電極上に析出する。これが、事前のPd粒子などの触媒付与工程なくして無電解めっきが可能となる原理である(特許文献1と同じ作用)。   In the plating step of the present invention, the Cu plating film is formed by stirring the conductive medium and the electronic component element body in a plating container such as a barrel filled with a Cu plating bath and bringing them into contact with each other. . When a metal having a catalytic action on hypophosphorous acid on the surface of the conductive medium comes into contact with an electrode on the electronic component body, the vicinity of the contact portion in the electrode is activated. At this time, metal ions existing in the vicinity of the contact portion are deposited on the electrode. This is the principle that electroless plating is possible without a catalyst application step such as prior Pd particles (the same action as in Patent Document 1).

しかし、上述の原理を用いて無電解めっきを行うと、電極上にCuめっき皮膜が薄く形成された時点で、早々と析出反応が止まってしまう。これは、Cuが次亜りん酸に対して触媒能を有しないこと、および、上述の触媒活性を有する導電性媒体による触媒付与は、従来のPd付与工程ほど強くはないためである。   However, when electroless plating is performed using the above-described principle, the precipitation reaction stops as soon as the Cu plating film is thinly formed on the electrode. This is because Cu does not have a catalytic ability for hypophosphorous acid and the catalyst application by the conductive medium having the above-mentioned catalytic activity is not as strong as the conventional Pd application process.

そこで、本発明においては、めっき浴にCuイオンだけでなくNiイオンを含有させている。これにより、CuイオンとNiイオンとが共析出する状態となるため、被めっき部分表面には常に次亜りん酸に対して触媒能を有するNiが存在することになり、これに加えて触媒能を有する導電性メディアによる触媒付与と併せて、CuとNiが共に析出を続けることとなる。結果として、実用的な厚みを有するCu-Ni-Pめっき層が得られる。   Therefore, in the present invention, the plating bath contains not only Cu ions but also Ni ions. As a result, since Cu ions and Ni ions co-precipitate, Ni having a catalytic ability for hypophosphorous acid is always present on the surface of the portion to be plated. Together with the application of the catalyst by the conductive media having Cu, both Ni and Cu continue to precipitate. As a result, a Cu—Ni—P plating layer having a practical thickness can be obtained.

CuとNiの共析出の挙動を安定して長時間継続させるには、めっき開始時のCuめっき浴のCu/Ni比を予め低くしておき、後から不足分のCuを追加補充することが好ましい。これは、被めっき部分における次亜りん酸に対する触媒能を良好に保つには、特に反応初期のNi析出をより確実にすることが好ましいためである。ただ、本発明におけるめっき層はあくまでCuが主となるCu合金膜であるため、必要なCu源を後から補充することが好ましい。また、本発明の目的を損なわなければ、めっき開始時のCu濃度をゼロにしても構わない。   In order to stably continue the co-precipitation behavior of Cu and Ni for a long time, the Cu / Ni ratio of the Cu plating bath at the start of plating should be lowered in advance, and additional Cu after that may be additionally replenished. preferable. This is because, in order to maintain good catalytic performance for hypophosphorous acid in the portion to be plated, it is preferable to make Ni precipitation at the initial stage of the reaction more reliable. However, since the plating layer in the present invention is a Cu alloy film mainly containing Cu, it is preferable to replenish a necessary Cu source later. Further, the Cu concentration at the start of plating may be made zero as long as the object of the present invention is not impaired.

このようにして得られたCu-Ni-Pめっき層においては、電極に近い側ではNiの濃度が高く、めっき層表面に近い側ではCuの濃度が高くなっている。このNiの濃度の高い箇所ではんだ喰われを防止しつつ、かつ表面に近い側のCuの濃度の高い箇所ではんだ濡れ性を確保している。なお、めっき層の厚み方向によるCu濃度またはNi濃度の変化は、直線的な濃度勾配でもよいし、段階的な変化でもよい。また、濃度の高低が周期的に繰り返される形であってもよい。   In the Cu—Ni—P plating layer thus obtained, the Ni concentration is high on the side close to the electrode, and the Cu concentration is high on the side close to the plating layer surface. The solder wettability is ensured at the high Cu concentration portion on the side close to the surface while preventing the solder erosion at the high Ni concentration portion. The change in Cu concentration or Ni concentration depending on the thickness direction of the plating layer may be a linear concentration gradient or a stepwise change. Moreover, the form where the level of a density is repeated periodically may be sufficient.

なお、導電性媒体と電子部品素体とを攪拌する方法としては、水平回転バレル、揺動バレル、傾斜バレル等を用いたり、容器を振動させる方法などがある。   In addition, as a method for stirring the conductive medium and the electronic component body, there are a method of using a horizontal rotating barrel, a swinging barrel, an inclined barrel, or the like, or a method of vibrating a container.

次に、この発明による効果を確認するために実施した実験例について説明する。   Next, experimental examples carried out to confirm the effects of the present invention will be described.

[実験例1] 縦2.0mm、横1.2mm、厚さ0.85mmのセラミック素体の両端部にAg電極を形成した電子部品素体を1000個作製した。次いで、この電子部品素体を下記のめっき組成を有するめっき浴を満たした内容積が150cm3のバレル容器に上記電子部品素体を浸漬すると共に、平均径1mmφのNiボールを100個投入して、めっき浴を70℃に保ったうえで容器を回転させ、Ag電極の表面めっき皮膜が形成されるようにめっきを施した。 [Experimental Example 1] 1000 electronic component bodies in which Ag electrodes were formed on both ends of a ceramic body having a length of 2.0 mm, a width of 1.2 mm, and a thickness of 0.85 mm were produced. Next, the electronic component element was immersed in a barrel container having an inner volume of 150 cm 3 filled with a plating bath having the following plating composition, and 100 Ni balls having an average diameter of 1 mmφ were added. The container was rotated after maintaining the plating bath at 70 ° C., and plating was performed so that the surface plating film of the Ag electrode was formed.

<めっき開始時のめっき浴組成>
硫酸ニッケル6水和物 : 0.1mol/L
クエン酸1水和物 : 0.5mol/L
ホウ酸 : 0.4mol/L
次亜りん酸ナトリウム1水和物 : 0.3mol/L
水酸化ビスマス : 5wtppm.
pH : 8.5
めっき開始時には銅イオン濃度はゼロであったが、めっき開始後1分後に硫酸銅5水和物を1g/L補充し、その後は5分毎に1g/Lずつ補充した。その後、めっき開始後から25分間経過した時点で、めっきを停止させた。
<Plating bath composition at the start of plating>
Nickel sulfate hexahydrate: 0.1 mol / L
Citric acid monohydrate: 0.5 mol / L
Boric acid: 0.4 mol / L
Sodium hypophosphite monohydrate: 0.3 mol / L
Bismuth hydroxide: 5 wtppm.
pH: 8.5
The copper ion concentration was zero at the start of plating, but 1 g / L of copper sulfate pentahydrate was replenished 1 minute after the start of plating, and thereafter 1 g / L was replenished every 5 minutes. Thereafter, the plating was stopped when 25 minutes passed from the start of the plating.

以上のようにして、Ag電極上に、Cu-Ni-Pめっき層が得られた。このめっき層の断面写真を図1に示す。また、図1の矢印で示した箇所について、Cu濃度、Ni濃度を厚み方向に沿ったライン分析(SAM:オージェ電子分光法)により求めた。それぞれの金属の濃度を表す強度と、厚み方向距離と、の関係を図2に示す。   As described above, a Cu—Ni—P plating layer was obtained on the Ag electrode. A cross-sectional photograph of this plating layer is shown in FIG. Moreover, Cu density | concentration and Ni density | concentration were calculated | required by the line analysis (SAM: Auger electron spectroscopy) along the thickness direction about the location shown by the arrow of FIG. FIG. 2 shows the relationship between the strength representing the concentration of each metal and the distance in the thickness direction.

結果として、Ag電極の上にCu-Ni-Pめっき層を約3μm成膜することができた。また、図2より、反応初期はNiが主に析出しており、時間経過とともにNi析出が少なくなっていることがわかる。ただ、一旦、Cuの析出が軌道に乗れば、Niの析出量が少なくなっても、Cuの析出が安定して続くことがわかる。   As a result, a Cu—Ni—P plating layer of about 3 μm could be formed on the Ag electrode. Further, FIG. 2 shows that Ni is mainly precipitated at the initial stage of the reaction, and Ni precipitation decreases with time. However, it can be seen that once Cu deposition is on track, Cu deposition continues stably even if the amount of Ni deposition decreases.

本発明の電子部品の製造方法は、電極表面にCuめっきを施す電子部品、例えば、積層セラミックコンデンサ、回路基板、チップインダクタ、等に有効である。   The method for producing an electronic component of the present invention is effective for an electronic component in which Cu plating is applied to the electrode surface, such as a multilayer ceramic capacitor, a circuit board, and a chip inductor.

Claims (5)

CuまたはAgを主成分とする電極を有する電子部品素体と、少なくとも表面が次亜りん酸の酸化反応に対し触媒活性を示す導電性媒体とを、Cuイオンおよび次亜りん酸を含むめっき浴中にて混合し、前記電極上にめっき皮膜を形成する工程を含む電子部品の製造方法において、
前記めっき浴がNiイオンを含むことを特徴とする、電子部品の製造方法。
A plating bath containing Cu ions and hypophosphorous acid, an electronic component element having an electrode mainly composed of Cu or Ag, and a conductive medium having a catalytic activity at least on the surface for the oxidation reaction of hypophosphorous acid In the method of manufacturing an electronic component including a step of mixing in and forming a plating film on the electrode,
The method for manufacturing an electronic component, wherein the plating bath contains Ni ions.
前記めっき皮膜を形成する工程において、めっき開始時におけるめっき浴中のCuイオンの含有量を予め少なくしておき、めっき開始後にCuイオンを補充する操作を含むことを特徴とする、請求項1に記載の電子部品の製造方法。   The step of forming the plating film includes an operation of previously reducing the content of Cu ions in the plating bath at the start of plating and replenishing Cu ions after the start of plating. The manufacturing method of the electronic component of description. 前記めっき皮膜を形成する工程において、めっき開始時におけるめっき浴中のCuイオンの含有量を実質的にゼロにしておくことを特徴とする、請求項2に記載の電子部品の製造方法。   3. The method of manufacturing an electronic component according to claim 2, wherein in the step of forming the plating film, the content of Cu ions in the plating bath at the start of plating is substantially zero. 前記めっき浴がクエン酸を含有することを特徴とする、請求項1〜3に記載の電子部品の製造方法。   The method for manufacturing an electronic component according to claim 1, wherein the plating bath contains citric acid. 電子部品素体の表面にCuまたはAgを主成分とする電極を有する電子部品において、
前記電極の上にCu-Ni-Pめっき層を有するとともに、
前記めっき層の電極に近い側の面近傍におけるCu濃度が、前記めっき層の電極に遠い側の面近傍におけるCu濃度よりも低く、かつ、前記めっき層の電極に近い側の面近傍におけるNi濃度が、前記めっき層の電極に遠い側の面近傍におけるNi濃度よりも高いことを特徴とする、電子部品。
In an electronic component having an electrode mainly composed of Cu or Ag on the surface of the electronic component element body,
While having a Cu-Ni-P plating layer on the electrode,
The Cu concentration in the vicinity of the surface near the electrode of the plating layer is lower than the Cu concentration in the vicinity of the surface far from the electrode of the plating layer, and the Ni concentration in the vicinity of the surface near the electrode of the plating layer Is higher than the Ni concentration in the vicinity of the surface far from the electrode of the plating layer.
JP2009049095A 2009-03-03 2009-03-03 Manufacturing method of electronic parts Expired - Fee Related JP5278685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049095A JP5278685B2 (en) 2009-03-03 2009-03-03 Manufacturing method of electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049095A JP5278685B2 (en) 2009-03-03 2009-03-03 Manufacturing method of electronic parts

Publications (2)

Publication Number Publication Date
JP2010205884A true JP2010205884A (en) 2010-09-16
JP5278685B2 JP5278685B2 (en) 2013-09-04

Family

ID=42967109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049095A Expired - Fee Related JP5278685B2 (en) 2009-03-03 2009-03-03 Manufacturing method of electronic parts

Country Status (1)

Country Link
JP (1) JP5278685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429015A1 (en) 2010-09-14 2012-03-14 Sony Corporation Power supply unit
CN103714971A (en) * 2012-09-28 2014-04-09 Tdk株式会社 Ceramic electronic component with metal terminals
WO2021255774A1 (en) * 2020-06-15 2021-12-23 三菱電機株式会社 Distance measurement device, distance measurement method, and laser radar device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340981A (en) * 1993-06-01 1994-12-13 Murata Mfg Co Ltd Alloy coating film and production thereof
JPH08264371A (en) * 1995-03-17 1996-10-11 Taiyo Yuden Co Ltd Manufacture of electronic component with electroless plated film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340981A (en) * 1993-06-01 1994-12-13 Murata Mfg Co Ltd Alloy coating film and production thereof
JPH08264371A (en) * 1995-03-17 1996-10-11 Taiyo Yuden Co Ltd Manufacture of electronic component with electroless plated film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429015A1 (en) 2010-09-14 2012-03-14 Sony Corporation Power supply unit
CN103714971A (en) * 2012-09-28 2014-04-09 Tdk株式会社 Ceramic electronic component with metal terminals
WO2021255774A1 (en) * 2020-06-15 2021-12-23 三菱電機株式会社 Distance measurement device, distance measurement method, and laser radar device

Also Published As

Publication number Publication date
JP5278685B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US9171671B2 (en) Laminate type electronic component and manufacturing method therefor
JP2003183843A (en) Electronic component and manufacturing process therefor
JPH08264372A (en) Manufacture of electronic component with electroless plated film
JP5278685B2 (en) Manufacturing method of electronic parts
JP3678196B2 (en) Chip type electronic component manufacturing method and chip type electronic component
JPH08264371A (en) Manufacture of electronic component with electroless plated film
JP2003253454A (en) Method for plating electronic parts, and electronic parts
JP2003293143A (en) Cleaning agent for palladium catalyst, method for cleaning palladium catalyst, method for plating electronic parts using the agent, and electronic parts
JP2006131949A (en) Electronic component and plating method
JP4096671B2 (en) Electronic component plating method and electronic component
JP2005163153A (en) Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method
JP5201897B2 (en) Electroless copper plating solution and electroless copper plating method
JP4605074B2 (en) Electroless plating solution and method for manufacturing ceramic electronic component
JP2006077311A (en) Nickel plating bath and electronic component
JP6754152B1 (en) Plating laminate
JP2004149824A (en) Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component
WO2021166640A1 (en) Plating laminated body
JP2003268561A (en) Electroless plating solution, method of producing ceramic electronic parts, and ceramic electronic parts
JP4228392B2 (en) Plating method and electronic component manufacturing method
WO2016194966A1 (en) Metal layer formation method
JP2006124812A (en) Ceramic substrate and plating method
JP4839509B2 (en) Ceramic electronic components
JP4582044B2 (en) Electroless plating solution and method for manufacturing ceramic electronic component
JP2002285381A (en) Ceramic electronic parts and electrode forming method for the same
JP2008202086A (en) Electrolytic plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees