JP2010205872A - Plasma cleaning method - Google Patents

Plasma cleaning method Download PDF

Info

Publication number
JP2010205872A
JP2010205872A JP2009048888A JP2009048888A JP2010205872A JP 2010205872 A JP2010205872 A JP 2010205872A JP 2009048888 A JP2009048888 A JP 2009048888A JP 2009048888 A JP2009048888 A JP 2009048888A JP 2010205872 A JP2010205872 A JP 2010205872A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
substrate
electrode
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009048888A
Other languages
Japanese (ja)
Other versions
JP2010205872A5 (en
Inventor
Kazuyuki Hiromi
一幸 廣實
Satoyuki Tamura
智行 田村
Katanobu Yokogawa
賢悦 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009048888A priority Critical patent/JP2010205872A/en
Publication of JP2010205872A publication Critical patent/JP2010205872A/en
Publication of JP2010205872A5 publication Critical patent/JP2010205872A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain plasma cleaning at low consumption for an electrode of placing a substrate to be processed, in a step of plasma cleaning the inside of a processing container without a substrate to be processed, in a plasma processing apparatus for semiconductor manufacturing. <P>SOLUTION: While plasma cleaning is continued, magnetic field produced by a magnetic field generator 151 from the outside of a processing container 100 produces electron cyclotron resonance around the outer periphery of the electrode 112 for placement within the processing container, and plasma density is reduced on the electrode 112 for placement. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は半導体製造分野で適用されるプラズマ処理装置において、処理基板載置用電極の消耗を抑制しつつ処理室内洗浄する洗浄方法(プラズマクリーニング方法)に関する。   The present invention relates to a cleaning method (plasma cleaning method) for cleaning a processing chamber while suppressing the consumption of a processing substrate mounting electrode in a plasma processing apparatus applied in the semiconductor manufacturing field.

近年半導体デバイスの微細化、複雑化により、その製造工程にプラズマ処理装置が多く用いられるようになった。しかし、その製造工程において、プラズマ処理装置によりプラズマ処理を行う際に、プラズマ処理を行う度に飛散して処理室内に堆積する異物が処理室内から剥離、飛散し、半導体デバイス上へ付着して、デバイス製造の歩留まりを低下させる。このような歩留まりの低下を防ぐため、処理室内に堆積した異物が剥離するより前に処理室内の洗浄を行う必要がある。   In recent years, with the miniaturization and complication of semiconductor devices, plasma processing apparatuses have been frequently used in the manufacturing process. However, in the manufacturing process, when the plasma processing is performed by the plasma processing apparatus, the foreign matter scattered and deposited in the processing chamber every time the plasma processing is performed peels off and scatters from the processing chamber and adheres to the semiconductor device. Reduce device manufacturing yield. In order to prevent such a decrease in yield, it is necessary to clean the processing chamber before the foreign matter accumulated in the processing chamber is peeled off.

このような処理室内洗浄方法には、処理容器を大気開放し、薬液を用いて洗浄を行う湿式洗浄法と、処理室内に洗浄用のプラズマを発生させ洗浄を行う乾式洗浄法がある。最近では、装置の稼働率を低下させないよう処理室を大気開放せずに洗浄を行える乾式洗浄法が広く用いられている。   Such processing chamber cleaning methods include a wet cleaning method in which a processing container is opened to the atmosphere and cleaning is performed using a chemical solution, and a dry cleaning method in which cleaning plasma is generated in the processing chamber for cleaning. Recently, a dry cleaning method that can perform cleaning without opening the processing chamber to the atmosphere so as not to lower the operating rate of the apparatus is widely used.

この乾式洗浄法には、処理室内の処理基板載置用電極に非製品用基板を載置した状態で洗浄を行う方法(特許文献1参照)や、基板を載置せずに洗浄を行う方法(特許文献2参照)などが公開されている。前述の非製品用基板を電極上へ載置した状態で洗浄を行う方法では、非製品用基板により洗浄用プラズマから影になる部分への異物残留が問題となることがあり、処理室内の異物低減の観点や、スループットの改善という意味から、後述の基板を載置しない洗浄法を用いることが多くなった。   This dry cleaning method includes a method of performing cleaning with a non-product substrate mounted on a processing substrate mounting electrode in a processing chamber (see Patent Document 1), and a method of cleaning without mounting a substrate. (See Patent Document 2) and the like. In the above-described method of cleaning with the non-product substrate placed on the electrode, there may be a problem that foreign matter remains in the shadowed area from the cleaning plasma due to the non-product substrate. From the viewpoint of reduction and improvement of throughput, a cleaning method that does not mount a substrate, which will be described later, has been frequently used.

しかし、この基板を電極上へ載置しない洗浄方法では、基板載置用電極が洗浄用プラズマに直接曝される為、基板載置用電極表面の基板吸着膜が消耗し、プラズマ処理を行う際に処理基板との接触面積が変化するため、処理を続ける毎に基板上の温度均一性が変化する。この経時変化により、製品基板の仕上がり状態が悪化する。このような理由から、吸着膜の消耗を防ぐために、処理室内の異物が無くなる洗浄の終点を正確に把握し、洗浄時間を必要最低限に抑える方法(特許文献3参照)がある。また、基板処理中は載置用電極に接続した高周波電源から高周波電圧を印加し、プラズマ中のイオンを基板へ引き寄せ処理を行う装置体系において、高周波電源に接続された載置用電極を、洗浄中は載置用電源に接続された高周波電源からの出力を切断し、浮遊電位とすることで電極削れを抑制する方法などが公開されている(特許文献4参照)。   However, in this cleaning method in which the substrate is not placed on the electrode, the substrate mounting electrode is directly exposed to the cleaning plasma, so that the substrate adsorption film on the surface of the substrate mounting electrode is consumed and plasma processing is performed. Since the contact area with the processing substrate changes, the temperature uniformity on the substrate changes each time the processing is continued. Due to this change over time, the finished state of the product substrate deteriorates. For this reason, in order to prevent the consumption of the adsorption film, there is a method of accurately grasping the end point of cleaning at which foreign matter in the processing chamber disappears and minimizing the cleaning time (see Patent Document 3). In addition, during processing of the substrate, the mounting electrode connected to the high frequency power source is cleaned in an apparatus system that applies a high frequency voltage from a high frequency power source connected to the mounting electrode and draws ions in the plasma to the substrate. Among them, a method of suppressing electrode scraping by cutting off an output from a high-frequency power source connected to a mounting power source to obtain a floating potential is disclosed (see Patent Document 4).

特開2004−165644号公報JP 2004-165644 A 特開2008−251967号公報JP 2008-251967 A 特開2003−293138号公報JP 2003-293138 A 特開2006−19626号公報JP 2006-19626 A

しかし、前者(特許文献3)の方法において、処理室内に付着する異物の量や厚さは処理室内すべてで一定ではなく、例えば電極周辺の異物を除去した後も、処理室内の他の場所に異物が残留している場合には、基板吸着膜を消耗しながらも洗浄処理を続けてしまうため、すべての場合において電極の消耗を抑制出来ない。また、洗浄終点の正確な把握を行うためには、異物を測定するための基板処理とは関係の無い機構を装置に設置する必要があり、装置の製造コストが上昇してしまう。   However, in the former method (Patent Document 3), the amount and thickness of the foreign matter adhering to the processing chamber is not constant in the entire processing chamber. For example, even after the foreign matter around the electrode is removed, If foreign matter remains, the cleaning process is continued while the substrate adsorbing film is consumed. Therefore, in all cases, the consumption of the electrode cannot be suppressed. Further, in order to accurately grasp the end point of cleaning, it is necessary to install a mechanism in the apparatus that has nothing to do with substrate processing for measuring foreign matter, which increases the manufacturing cost of the apparatus.

また、後者(特許文献4)の洗浄中に載置用電極を浮遊電位にする方法については、発明者らの研究で用いた装置において、載置用電極への電力供給を停止した状態で洗浄処理を実施した場合においても基板吸着膜の十分な消耗抑制を図ることは出来なかった。   In addition, regarding the method of setting the mounting electrode to the floating potential during the latter cleaning (Patent Document 4), in the apparatus used in the research by the inventors, the cleaning is performed in a state where the power supply to the mounting electrode is stopped. Even when the treatment was performed, it was not possible to sufficiently suppress the consumption of the substrate adsorption film.

本発明の目的は、載置用電極上へ基板を載置しない状態で洗浄を行う洗浄工程において、載置用電極(試料台)及び基板吸着膜の消耗を抑制したプラズマクリーニング方法を提供することにある。   An object of the present invention is to provide a plasma cleaning method in which consumption of a mounting electrode (sample stage) and a substrate adsorption film is suppressed in a cleaning process in which cleaning is performed without placing a substrate on the mounting electrode. It is in.

上記目的を達成するために、本発明は、対向して配置された電極を有する真空容器内にガスを供給して一方の電極となる試料台上の被処理基板載置面に載置された被処理基板をプラズマ処理し、前記被処理基板を搬出した後、あるいは次の被処理基板処理の前に、前記真空容器内をプラズマクリーニングする方法において、
前記プラズマクリーニングは、前記真空容器内に磁場を形成し、該磁場と真空容器内の高周波電界との作用によって生成したプラズマを用いるクリーニングであって、
印加された高周波の周波数における電子サイクロトロン共鳴(ECR)条件を満足する磁場強度の面であるECR磁場面を、少なくとも前記被処理基板載置面と対向する電極とではさまれる範囲内の空間に存在させず、かつ真空容器内の前記範囲外に存在するように磁場を制御することを特徴とする。
In order to achieve the above-mentioned object, the present invention supplies gas into a vacuum container having electrodes arranged opposite to each other, and is placed on a processing substrate placing surface on a sample stage that becomes one electrode. In a method of plasma-cleaning the inside of the vacuum container after plasma processing a substrate to be processed and before unloading the substrate to be processed or before processing the next substrate to be processed,
The plasma cleaning is a cleaning using a plasma generated by the action of the magnetic field and a high frequency electric field in the vacuum vessel, forming a magnetic field in the vacuum vessel,
The ECR magnetic field surface, which is the surface of the magnetic field strength that satisfies the electron cyclotron resonance (ECR) condition at the applied high frequency, exists in a space that is at least sandwiched between the electrodes facing the substrate mounting surface. And the magnetic field is controlled so as to exist outside the range in the vacuum vessel.

また、本発明は、上記記載のプラズマクリーニング方法において、前記プラズマ処理時の前記ECR磁場面は、前記プラズマクリーニング時とは異なる位置にあることを特徴とする。   Further, the present invention is the plasma cleaning method described above, wherein the ECR magnetic field surface during the plasma processing is at a position different from that during the plasma cleaning.

また、本発明は、上記記載のプラズマクリーニング方法において、前記ECR磁場面が電極の中心軸を横切る位置が前記試料台の前記被処理基板載置面より下側にあることを特徴とする。   Further, the present invention is characterized in that in the plasma cleaning method described above, the position where the ECR magnetic field plane crosses the central axis of the electrode is below the substrate mounting surface of the sample stage.

また、本発明は、上記記載のプラズマクリーニング方法において、前記ECR磁場面が電極の中心軸を横切る位置が前記試料台に対向する電極より上側にあることを特徴とする。   Further, the present invention is characterized in that in the plasma cleaning method described above, the position where the ECR magnetic field plane crosses the central axis of the electrode is above the electrode facing the sample stage.

また、本発明は、上記記載のプラズマクリーニング方法において、前記磁場は、前記試料台に対向する電極の水平面に対して垂直成分を持ち、中心軸に対して軸対称な磁力線分布を持つことを特徴とする。   Further, the present invention is the plasma cleaning method described above, wherein the magnetic field has a vertical component with respect to a horizontal plane of the electrode facing the sample stage, and has a magnetic force line distribution that is axisymmetric with respect to a central axis. And

また、本発明は、上記記載のプラズマクリーニングにおいて、前記磁場は、前記試料台に対向する電極から前記試料台に向かって拡散する磁場(磁力線分布)を持つことを特徴とする。   Moreover, the present invention is characterized in that, in the plasma cleaning described above, the magnetic field has a magnetic field (magnetic line distribution) that diffuses from the electrode facing the sample stage toward the sample stage.

また、本発明は、上記記載のプラズマクリーニングにおいて、前記高周波電界は、前記試料台に対向する電極に印加される高周波により形成されることを特徴とする。   In the plasma cleaning described above, the high-frequency electric field is formed by a high frequency applied to an electrode facing the sample stage.

また、本発明は、上記記載のプラズマクリーニングにおいて、前記磁場は、処理室に対して周方向に電流を流す2系統以上の電磁コイルによって形成されることを特徴とする。   Moreover, the present invention is characterized in that, in the above-described plasma cleaning, the magnetic field is formed by two or more systems of electromagnetic coils that allow current to flow in the circumferential direction with respect to the processing chamber.

また、本発明は、上記記載のプラズマクリーニングにおいて、ECR磁場面が、前記被処理基板載置部の外周に置かれたリング状部品の外径より内側の上方空間にも存在しないように磁場を制御することを特徴とする。   Further, the present invention provides the above-described plasma cleaning, in which the magnetic field is applied so that the ECR magnetic field surface does not exist in the upper space inside the outer diameter of the ring-shaped component placed on the outer periphery of the substrate mounting portion. It is characterized by controlling.

また、本発明は、上記記載のプラズマクリーニングにおいて、クリーニング中に処理室内に形成する電界は100〜500MHzの周波数であることを特徴とする。   Further, the present invention is characterized in that, in the plasma cleaning described above, the electric field formed in the processing chamber during the cleaning has a frequency of 100 to 500 MHz.

また、本発明は、上記記載のプラズマクリーニングにおいて、クリーニング中に試料台に高周波を印加しないことを特徴とする。   In the plasma cleaning described above, the present invention is characterized in that no high frequency is applied to the sample stage during cleaning.

また、本発明は、上記基板載置用の下部電極と上部電極が対向して設置されたプラズマ処理装置において、製品基板処理後に下部電極に基板を載置しない状態で、上部電極に設けられたガス孔より処理室内に導入された洗浄用ガスに、処理容器外から上部電極に接続された高周波電源により高周波電圧を印加し洗浄用プラズマを生成し、処理容器外に処理容器に隣接するように設置された磁場発生装置から処理容器内に上部電極から下部電極へ拡散する磁場を発生させ、下部電極外周部に分布する湾曲した電子サイクロトロン共鳴(以下、ECR)磁場を形成する洗浄工程を含むことを特徴とする。   Further, the present invention provides a plasma processing apparatus in which the lower electrode and the upper electrode for mounting the substrate are opposed to each other, and is provided on the upper electrode without mounting the substrate on the lower electrode after processing the product substrate. A high-frequency voltage is applied to the cleaning gas introduced from the gas hole into the processing chamber by a high-frequency power source connected to the upper electrode from the outside of the processing container so as to generate cleaning plasma, and so that it is adjacent to the processing container outside the processing container. Including a cleaning step of generating a magnetic field diffusing from the upper electrode to the lower electrode in the processing vessel from the installed magnetic field generator to form a curved electron cyclotron resonance (hereinafter referred to as ECR) magnetic field distributed on the outer periphery of the lower electrode It is characterized by.

本発明によれば、試料台(下部電極)の外周部においてプラズマ密度を上昇させることで、試料台(下部電極)の消耗を抑制することが出来る。これにより、下部電極の消耗を気にせず処理容器内を十分洗浄することが出来るため、処理容器内の異物が低減され、製品基板の歩留まりを向上させる効果がある。   According to the present invention, it is possible to suppress the consumption of the sample stage (lower electrode) by increasing the plasma density at the outer periphery of the sample stage (lower electrode). Thereby, since the inside of the processing container can be sufficiently cleaned without worrying about the consumption of the lower electrode, the foreign matter in the processing container is reduced, and the yield of the product substrate is improved.

本発明を適用したプラズマエッチング装置の概略図断面を示した図。The figure which showed the schematic cross section of the plasma etching apparatus to which this invention is applied. 本発明に用いた装置の、基板処理中の処理室内詳細を示す図。The figure which shows the process chamber detail during a substrate process of the apparatus used for this invention. 本発明に用いた装置の、基板処理中の処理室内のプラズマ分布を示す図。The figure which shows the plasma distribution in the process chamber during a substrate process of the apparatus used for this invention. 本発明実施例1の洗浄工程中における処理室内詳細を示す図。The figure which shows the process chamber details in the washing | cleaning process of this invention Example 1. FIG. 本発明実施例1の洗浄工程中における処理室内プラズマ分布を示す図。The figure which shows plasma distribution in the process chamber in the cleaning process of this invention Example 1. FIG. 本発明実施例2の洗浄工程中における処理室内詳細を示す図。The figure which shows the process chamber details in the washing | cleaning process of this invention Example 2. FIG. 本発明実施例2の洗浄工程中における処理室内プラズマ分布を示す図。The figure which shows plasma processing chamber plasma distribution in the washing | cleaning process of this invention Example 2. FIG. 本発明実施例3を用いて電極消耗抑制以外に期待される効果を示す図。The figure which shows the effect anticipated using this invention Example 3 besides electrode consumption suppression.

前記、特許文献4は、洗浄中は載置用電極(試料台)への電圧印加をオフすることで、載置用電極の電位を浮遊状態にして電極の消耗を抑制する方法であった。この方法に従えば、プラズマ中のイオンの引き付け効果が小さくなるため、電圧を載置用電極へ印加した場合よりも載置用電極の消耗量は少なくなる。しかし、浮遊状態にされた載置用電極にも、周囲の状況に応じた電位が発生するため、発生した電位によるイオン引き付け効果により、電極の消耗が生じる。   The above-mentioned patent document 4 is a method of suppressing the consumption of the electrode by turning off the voltage application to the mounting electrode (sample stage) during cleaning, thereby setting the potential of the mounting electrode in a floating state. According to this method, the effect of attracting ions in the plasma is reduced, so that the amount of consumption of the mounting electrode is smaller than when a voltage is applied to the mounting electrode. However, since a potential corresponding to the surrounding situation is also generated in the mounting electrode in a floating state, the electrode is consumed due to the ion attracting effect by the generated potential.

本発明の研究者らは、上部電極と下部電極が対抗して設置されたプラズマ処理装置において、下部電極へ基板を載置しない状態で洗浄処理を行う際、上部電極と下部電極の間のプラズマ密度を少なくすることで下部電極及び基板吸着膜の消耗を抑制できることを発見した。   In the plasma processing apparatus in which the upper electrode and the lower electrode are opposed to each other, the researchers of the present invention perform plasma treatment between the upper electrode and the lower electrode when performing the cleaning process without placing the substrate on the lower electrode. It was discovered that the consumption of the lower electrode and the substrate adsorption film can be suppressed by reducing the density.

上記、下部電極上でのプラズマ密度を少なくする方法として、本発明では処理容器外部から、発生したプラズマに磁場を与え、プラズマ密度分布を制御する方法を用いた。高周波励起プラズマには、プラズマを生成した際の高周波電圧の周波数に応じてECR磁場条件が存在する。このECR磁場中では、共鳴作用により効率良くプラズマが生成されプラズマ密度が上昇する。このECR磁場条件を満たす磁場条件を下部電極外周部に生成することで、下部電極外周におけるプラズマ密度が増加し、下部電極上のプラズマ密度が減少する。以下に、この磁場分布の制御を行うための最適な形態を、図を参照しながら説明する。   As a method of reducing the plasma density on the lower electrode, in the present invention, a method of applying a magnetic field to the generated plasma from the outside of the processing vessel and controlling the plasma density distribution is used. The high frequency excitation plasma has ECR magnetic field conditions depending on the frequency of the high frequency voltage when the plasma is generated. In this ECR magnetic field, plasma is efficiently generated by the resonance action, and the plasma density is increased. By generating a magnetic field condition that satisfies the ECR magnetic field condition on the outer periphery of the lower electrode, the plasma density on the outer periphery of the lower electrode increases and the plasma density on the lower electrode decreases. Hereinafter, an optimum mode for controlling the magnetic field distribution will be described with reference to the drawings.

図1は、本実施例に関わるプラズマ処理装置の断面を示したものである。本実施例に関わるプラズマ処理装置は、処理容器100の内部に、上部電極との距離を調節でき、処理基板載置面に誘電体(例えばアルミナ)からなる基板吸着膜111を持つ基板載置用の可動電極112(試料台、下部電極)と、可動電極112と対向する位置に設置された上部電極121を備える。また、この上部電極121は処理容器外部に設置されたプラズマ生成用の高周波電源122に接続され、処理容器外部からプラズマ生成用のガスを導入するガス導入機構123を備える。また、可動電極112は、製品基板処理中に生成したプラズマからイオンを引き寄せ、基板処理を行うためのバイアス印加用高周波電源113と、処理中に処理基板Wを基板吸着膜111に吸着するためのフィルタ回路114を持つ直流電源115に接続され、処理中の処理基板Wを冷却するために基板吸着膜111と処理基板Wの間にガスを導入するための冷却ガス導入機構116を備える。   FIG. 1 shows a cross section of a plasma processing apparatus according to the present embodiment. The plasma processing apparatus according to the present embodiment can adjust the distance from the upper electrode inside the processing container 100 and has a substrate adsorption film 111 made of a dielectric (for example, alumina) on the processing substrate mounting surface. The movable electrode 112 (sample stage, lower electrode) and the upper electrode 121 installed at a position facing the movable electrode 112 are provided. Further, the upper electrode 121 is connected to a plasma generating high frequency power source 122 installed outside the processing container, and includes a gas introduction mechanism 123 for introducing a plasma generating gas from the outside of the processing container. In addition, the movable electrode 112 attracts ions from plasma generated during product substrate processing, and applies a bias applying high-frequency power source 113 for performing substrate processing, and for adsorbing the processing substrate W to the substrate adsorption film 111 during processing. A cooling gas introduction mechanism 116 for introducing a gas between the substrate adsorbing film 111 and the processing substrate W in order to cool the processing substrate W being processed is connected to a DC power source 115 having a filter circuit 114.

また、処理容器100は処理基板Wを搬入出するためのゲートバルブ131を備え、ガス導入機構123から導入されたガス及び各種プラズマ処理により発生した反応生成物を排気し、処理室内を所定の圧力に保つことの出来る排気手段141を備える。また、この処理容器外部には処理容器100の内部に磁場を発生させる手段を持つ。この手段は上下二段からなり、処理容器100外から上部電極を取り囲むように設置され、上部電極121の周方向に電流を流すことで、可動電極112の中心軸に対し軸対称な磁場を発生するコイル151を備える。   In addition, the processing container 100 includes a gate valve 131 for carrying in and out the processing substrate W, exhausts the gas introduced from the gas introduction mechanism 123 and reaction products generated by various plasma processing, and causes a predetermined pressure in the processing chamber. The exhaust means 141 can be maintained. Further, a means for generating a magnetic field inside the processing container 100 is provided outside the processing container. This means consists of two stages, upper and lower, and is installed so as to surround the upper electrode from outside the processing vessel 100, and generates a magnetic field that is axisymmetric with respect to the central axis of the movable electrode 112 by flowing current in the circumferential direction of the upper electrode 121. The coil 151 is provided.

本実施例によれば、ゲートバルブ131を通って処理容器100に搬送された処理基板Wは、可動電極112上の基板吸着膜111上へ載置される。処理基板Wが搬送された後、可動電極112により、可動電極112と上部電極121の距離が所定の電極間距離(例えば20〜30mm)に設定される。電極間距離が設定された状態で、ガス導入機構123よりプラズマ生成に用いるガス(例えばC4F6、O2、Ar)が導入され、排気手段141により処理室内は一定の圧力に保たれる(例えば1〜10Pa)。その後上部電極121へプラズマ生成用高周波電源122により高周波電圧(例えば周波数100〜500MHz、電力200〜600W)が印加される。   According to this embodiment, the processing substrate W transferred to the processing container 100 through the gate valve 131 is placed on the substrate adsorption film 111 on the movable electrode 112. After the processing substrate W is transported, the distance between the movable electrode 112 and the upper electrode 121 is set to a predetermined inter-electrode distance (for example, 20 to 30 mm) by the movable electrode 112. With the distance between the electrodes set, a gas (for example, C4F6, O2, Ar) used for plasma generation is introduced from the gas introduction mechanism 123, and the processing chamber is maintained at a constant pressure by the exhaust means 141 (for example, 1 to 1). 10 Pa). Thereafter, a high-frequency voltage (for example, a frequency of 100 to 500 MHz, power of 200 to 600 W) is applied to the upper electrode 121 by a high-frequency power source 122 for plasma generation.

ここで、コイル151に電流を流し(上下二段からなるコイルへ流す総電流量は例えば、1〜4A)、処理容器内に磁場を発生させる。印加された高周波電圧と磁場により処理室内にプラズマが発生し、処理基板Wのエッチングが開始される。このとき可動電極112にはバイアス印加用高周波電源113より高周波電圧(例えば周波数1〜10MHz、電力2〜7kW)が印加されており、同時に直流電源115から吸着用電圧(例えば、1〜1kV)が印加され、冷却ガス導入機構116からガス(例えばHe)を導入し処理基板Wを冷却しながらエッチング処理が行われる。   Here, a current is passed through the coil 151 (the total amount of current flowing through the upper and lower two-stage coils is, for example, 1 to 4 A), and a magnetic field is generated in the processing container. Plasma is generated in the processing chamber by the applied high-frequency voltage and magnetic field, and etching of the processing substrate W is started. At this time, a high frequency voltage (for example, frequency 1 to 10 MHz, power 2 to 7 kW) is applied to the movable electrode 112 from the bias applying high frequency power source 113, and at the same time, an adsorption voltage (for example, 1 to 1 kV) is applied from the DC power source 115. The etching process is performed while a gas (for example, He) is introduced from the cooling gas introduction mechanism 116 and the processing substrate W is cooled.

図2に処理基板Wをエッチング処理中の処理容器内の様子を示す。処理容器内には処理基板Wが搬送され、基板吸着膜201上に載置された状態でエッチング処理が行われる。処理基板をエッチング処理中の処理容器内には、前述の処理容器外に設置されたコイルにより磁力線204が示すような、電極へ向かい拡散する拡散磁場が生じる。この拡散磁場は、上部電極203と、可動電極202及び基板吸着膜201間ないしは、上部電極203上部に湾曲した60〜80GのECR磁場面205を形成する。図2では上部電極203から可動電極202へ向かう方向へ磁力線204が描かれているが、ECR現象の原理を考えればこの磁力線の向きが本図とは逆向きになったとしても同様の結果が得られることは明らかである。   FIG. 2 shows the inside of the processing container during the processing of the processing substrate W. The processing substrate W is transferred into the processing container, and the etching process is performed in a state where the processing substrate W is placed on the substrate adsorption film 201. A diffusion magnetic field that diffuses toward the electrode is generated in the processing container in which the processing substrate is being etched, as indicated by the lines of magnetic force 204 by the coil installed outside the processing container. The diffusion magnetic field forms a curved ECR magnetic field 205 of 60 to 80 G between the upper electrode 203 and the movable electrode 202 and the substrate adsorption film 201 or on the upper electrode 203. In FIG. 2, the magnetic field lines 204 are drawn in the direction from the upper electrode 203 to the movable electrode 202. However, considering the principle of the ECR phenomenon, the same result can be obtained even if the direction of the magnetic field lines is opposite to this figure. It is clear that it is obtained.

図3にエッチング処理中の、処理容器内のプラズマの様子を示す。基板吸着膜301と上部電極302の間を通るECR磁場面304に従い、処理基板W上のプラズマ303のプラズマ密度が上昇し、高密度プラズマのエリア303が形成される。このプラズマ密度の上昇により基板処理時のエッチング性能を向上させることができる。   FIG. 3 shows the state of plasma in the processing container during the etching process. According to the ECR magnetic field surface 304 passing between the substrate adsorption film 301 and the upper electrode 302, the plasma density of the plasma 303 on the processing substrate W increases, and a high-density plasma area 303 is formed. This increase in plasma density can improve the etching performance during substrate processing.

また、ECR磁場面304は処理基板Wの最外径より外側に行くにしたがって、真空容器外に存在するため、処理基板Wより外側ではプラズマが高密度にならない。   Further, since the ECR magnetic field surface 304 exists outside the vacuum vessel as it goes outside the outermost diameter of the processing substrate W, the plasma does not become dense outside the processing substrate W.

前述のように処理基板Wをエッチング処理した際に、エッチングにより飛散した反応生成物などの異物が処理容器内に堆積する。通常、製品基板Wを処理する場合は、装置のスループットを向上させるため連続して処理基板を処理容器内に搬入し処理を行う。しかし、堆積性の高いガスを用いて処理を行う場合は、一枚の基板の処理で処理容器内に異物が堆積してしまい、その状態で次の基板の処理を行うと処理された基板の歩留まりを低下させる可能性がある。そのため本実施例では一枚の基板処理に対し、一度の洗浄を行う。   When the processing substrate W is etched as described above, foreign substances such as reaction products scattered by the etching accumulate in the processing container. Usually, when processing the product substrate W, in order to improve the throughput of the apparatus, the processing substrate is continuously carried into the processing container and processed. However, when processing using a highly depositable gas, foreign matter accumulates in the processing container in the processing of one substrate, and if the next substrate is processed in that state, the processing of the processed substrate Yield may be reduced. Therefore, in this embodiment, cleaning is performed once for one substrate processing.

洗浄工程を実施するための機構について図1を用いて説明する。本実施例によれば、基板処理が終了し、処理基板Wが搬出された後の処理容器100において、可動電極112及び基板吸着膜111に処理基板を載置しない状態で洗浄工程が実施される。処理基板が搬出された後、洗浄工程で用いる電極間距離になるように可動電極112の高さが設定される(例えば20〜80mm)。本実施例では、基板処理中に処理容器内に堆積した異物が可動電極112の上下により影にならないように、基板処理中と同じ電極間距離にて洗浄を実施する。その後、処理容器内は排気手段141により真空排気される。   A mechanism for carrying out the cleaning process will be described with reference to FIG. According to the present embodiment, in the processing container 100 after the substrate processing is completed and the processing substrate W is unloaded, the cleaning process is performed without placing the processing substrate on the movable electrode 112 and the substrate adsorption film 111. . After the processing substrate is carried out, the height of the movable electrode 112 is set so as to be the distance between the electrodes used in the cleaning process (for example, 20 to 80 mm). In this embodiment, cleaning is performed at the same inter-electrode distance as in the substrate processing so that the foreign matter accumulated in the processing container during the substrate processing does not become a shadow due to the upper and lower sides of the movable electrode 112. Thereafter, the inside of the processing container is evacuated by the exhaust means 141.

その状態からガス導入機構123より、洗浄用ガス(例えばO2)が上部電極121を通って導入され、排気手段141により処理容器内を一定の圧力(例えば1〜10Pa)に保持した後、プラズマ生成用高周波電源122より高周波電圧(例えば周波数100〜500MHz、電力600〜1000W)が印加され、前記基板のプラズマ処理と同様のタイミングでコイル151から磁場を発生させる。印加された高周波電圧と磁場により処理容器内に洗浄用プラズマが発生する。このとき洗浄用プラズマに加える磁場が前記基板処理時と同じ磁場強度であった場合、基板吸着膜111が高密度の洗浄用プラズマに曝され消耗してしまう。本実施例では洗浄工程において、基板処理時とは異なる強度の磁場を発生させることで、可動電極外周部へECR磁場を生成し、基板吸着膜111及び載置用電極112の消耗を抑制することを特徴とする。
図4は、本実施例による洗浄工程中の処理容器内部詳細を示したものである。本実施例において上下二段からなるコイル151に流す電流条件を、上下二段のコイルから発生する磁場が互いに強め合うように設定した場合(例えば上コイルに流す電流の向きを正、下コイルに流す電流の向きも正とした場合)、上部電極403と、可動電極402及び基板吸着膜401の間での放電空間における磁場分布は、磁力線404が示す末広がり状の拡散磁場となる。この磁力線404が示す磁場分布における、処理容器内における等磁場面は下に凸の放物線状の等磁場面となる。この等磁場面に従い、洗浄用プラズマとのECR条件である60〜80GのECR磁場面(印加された高周波の周波数における電子サイクロトロン共鳴(ECR)条件を満足する磁場強度の面であるECR磁場面)405も下に凸の放物線状の分布となる。
In this state, a cleaning gas (for example, O 2) is introduced from the gas introduction mechanism 123 through the upper electrode 121, and the inside of the processing container is held at a constant pressure (for example, 1 to 10 Pa) by the exhaust unit 141, and then plasma generation A high frequency voltage (for example, a frequency of 100 to 500 MHz, power of 600 to 1000 W) is applied from the high frequency power supply 122 for use, and a magnetic field is generated from the coil 151 at the same timing as the plasma processing of the substrate. Cleaning plasma is generated in the processing vessel by the applied high-frequency voltage and magnetic field. At this time, if the magnetic field applied to the cleaning plasma has the same magnetic field intensity as that during the substrate processing, the substrate adsorption film 111 is exposed to the high-density cleaning plasma and consumed. In this embodiment, in the cleaning process, a magnetic field having a strength different from that during substrate processing is generated, thereby generating an ECR magnetic field on the outer peripheral portion of the movable electrode, thereby suppressing consumption of the substrate adsorption film 111 and the mounting electrode 112. It is characterized by.
FIG. 4 shows the details inside the processing container during the cleaning process according to this embodiment. In this embodiment, when the current condition for flowing through the upper and lower two-stage coils 151 is set so that the magnetic fields generated from the upper and lower two-stage coils mutually intensify (for example, the direction of the current flowing through the upper coil is positive and the lower coil is When the direction of the flowing current is also positive), the magnetic field distribution in the discharge space between the upper electrode 403, the movable electrode 402, and the substrate adsorption film 401 becomes a divergent diffusion magnetic field indicated by the lines of magnetic force 404. In the magnetic field distribution indicated by the lines of magnetic force 404, the isomagnetic surface in the processing container is a parabolic isomagnetic surface that is convex downward. According to this isomagnetic surface, an ECR magnetic surface of 60 to 80G which is an ECR condition with the cleaning plasma (an ECR magnetic field surface which is a surface of a magnetic field intensity satisfying an electron cyclotron resonance (ECR) condition at an applied high frequency) 405 also has a downwardly parabolic distribution.

本実施例では、下に凸の放物線状のECR磁場面405が、可動電極402の中心軸を横切る位置が、基板吸着膜401及び可動電極402の上面よりも下に位置し、ECR磁場面405の一部が可動電極402外周を通るような磁場を形成するように、コイルに流れる電流を制御し洗浄処理を行う。従って、印加された高周波の周波数における電子サイクロトロン共鳴(ECR)条件を満足する磁場強度の面であるECR磁場面を、真空容器内の少なくとも前記被処理基板載置面と対向する電極とではさまれる範囲内の空間に存在させず、前記範囲外に存在するように磁場を制御することができる。
本実施例では上下二段からなるコイルへ流す総電流量は例えば5〜8Aである。なお、前記磁場は、上部電極403の水平面に対して垂直成分を持ち、中心軸に対して軸対称な磁力線分布を持っている。
In this embodiment, the position where the downwardly convex parabolic ECR magnetic field surface 405 crosses the central axis of the movable electrode 402 is located below the upper surfaces of the substrate adsorption film 401 and the movable electrode 402, and the ECR magnetic field surface 405. The cleaning process is performed by controlling the current flowing through the coil so that a part of the magnetic field passes through the outer periphery of the movable electrode 402 and forms a magnetic field. Therefore, the ECR magnetic field surface, which is the surface of the magnetic field intensity that satisfies the electron cyclotron resonance (ECR) condition at the applied high frequency, is sandwiched between at least the electrode on the processing substrate mounting surface in the vacuum vessel. The magnetic field can be controlled so that it does not exist in the space within the range but exists outside the range.
In this embodiment, the total amount of current flowing through the upper and lower coils is, for example, 5 to 8A. The magnetic field has a vertical component with respect to the horizontal plane of the upper electrode 403 and has a magnetic force line distribution that is axisymmetric with respect to the central axis.

図5に下に凸のECR磁場面を用いた洗浄工程中の、処理容器内の洗浄用プラズマの様子を示す。前述のコイルより発生した下に凸のECR磁場面505により、基板吸着膜501及び可動電極502より外側に高密度のプラズマ504が発生する。この高密度のプラズマ504により、上部電極503と、基板吸着膜501及び可動電極502間のプラズマ密度が減少する。そのため、基板吸着膜501及び可動電極502への洗浄用プラズマからのダメージが抑制され、消耗量が抑制される。   FIG. 5 shows the state of the cleaning plasma in the processing vessel during the cleaning process using the downwardly convex ECR magnetic field surface. A high-density plasma 504 is generated outside the substrate adsorption film 501 and the movable electrode 502 by the downwardly projecting ECR magnetic field surface 505 generated from the coil. The high density plasma 504 reduces the plasma density between the upper electrode 503, the substrate adsorption film 501, and the movable electrode 502. Therefore, damage from the cleaning plasma to the substrate adsorption film 501 and the movable electrode 502 is suppressed, and the consumption amount is suppressed.

上述の洗浄方法では、下に凸のECR磁場面について述べたが、このECR磁場面が上に凸であってもよい。   In the above-described cleaning method, the downward convex ECR magnetic field surface has been described. However, the ECR magnetic field surface may be convex upward.

図6は、洗浄中の処理容器内の詳細を示したもので、装置の構成は図1で示したものと同様である。本実施例における上下二段からなるコイルに流す電流条件を、上部電極付近で上下のコイルから発生した磁場が互いに弱め合うように設定した場合(例えば上コイルに流す電流の向きを負、下コイルに流す電流の向きを正とした場合)、上部電極603と、基板吸着膜601及び可動電極602間の放電空間における磁場分布は、磁力線604が示す拡散磁場となる。この拡散磁場の処理容器内における等磁場面は、上に凸の放物線状の分布となる。この等磁場面に従い、洗浄用プラズマのECR磁場条件である60〜80GのECR磁場面605も上に凸の放物線状の分布となる。   FIG. 6 shows details inside the processing container being cleaned, and the configuration of the apparatus is the same as that shown in FIG. In this embodiment, when the current condition for flowing through the upper and lower coils is set so that the magnetic fields generated from the upper and lower coils are weakened near the upper electrode (for example, the direction of the current flowing through the upper coil is negative, the lower coil In the discharge space between the upper electrode 603, the substrate adsorption film 601 and the movable electrode 602, the magnetic field distribution in the discharge space shown by the magnetic lines of force 604 is a diffusion magnetic field. The isomagnetic field surface in the processing container of the diffusion magnetic field has an upwardly convex parabolic distribution. According to this isomagnetic surface, the ECR magnetic field surface 605 of 60 to 80 G, which is the ECR magnetic field condition of the cleaning plasma, also has an upwardly convex parabolic distribution.

本実施例では、上に凸の放物線状のECR磁場面605が、上部電極603の中心軸を横切る位置が、上部電極603よりも上に位置し、ECR磁場面605の一部が基板吸着膜601及び可動電極602に架からないようにコイルに流れる電流を制御し洗浄を行う。本実施例では上下二段からなるコイルへ流す総電流量は例えば5〜8Aである。   In the present embodiment, the upwardly projecting parabolic ECR magnetic field surface 605 is positioned above the upper electrode 603 so that the central axis of the upper electrode 603 is crossed, and part of the ECR magnetic field surface 605 is a substrate adsorption film. Cleaning is performed by controlling the current flowing through the coil so that it does not hang over 601 and the movable electrode 602. In this embodiment, the total amount of current flowing through the upper and lower coils is, for example, 5 to 8A.

図7に、上に凸のECR磁場面を用いた洗浄工程中の、処理容器内のプラズマの様子を示す。前述のコイルにより発生した、上に凸のECR磁場面705により、基板吸着膜701及び可動電極702の外側に高密度のプラズマ704が発生する。この高密度のプラズマ704により、上部電極703と、基板吸着膜701及び可動電極702間のプラズマ密度が減少する。そのため、基板吸着膜701及び可動電極702への洗浄用プラズマからのダメージが抑制され、消耗量が抑制される。   FIG. 7 shows the state of plasma in the processing container during the cleaning process using the upwardly convex ECR magnetic field surface. High-density plasma 704 is generated outside the substrate adsorption film 701 and the movable electrode 702 by the upwardly convex ECR magnetic field surface 705 generated by the above-described coil. The high density plasma 704 reduces the plasma density between the upper electrode 703, the substrate adsorption film 701 and the movable electrode 702. Therefore, damage from the cleaning plasma to the substrate adsorption film 701 and the movable electrode 702 is suppressed, and the consumption amount is suppressed.

図8は、前述の実施例に加え、本発明の電極消耗抑制以外に望まれる更なる効果について説明するものである。図8に示す体系は図1の体系に加え、基板処理時における外周部のエッチング性能改善の為、基板吸着膜801の外周部に、リング状の導体もしくは誘電体からなるリング806(例えばその材質はSi、SiC、Cなど)を持つ。この体系において、実施例1に記した、下に凸のECR磁場面805を用いた洗浄工程を実施する場合、コイルに与える電流量を制御することで、リング806よりも外側へ高密度のプラズマ804を形成することができる。この高密度なプラズマ804により、上部電極803と、基板吸着膜801、可動電極802及びリング806との間のプラズマ密度が減少する。このプラズマ密度の減少により、基板吸着膜801、リング806の洗浄工程による消耗を抑制することができる。   FIG. 8 explains further effects desired in addition to the electrode consumption suppression of the present invention in addition to the above-described embodiment. In addition to the system of FIG. 1, the system shown in FIG. 8 has a ring 806 made of a ring-shaped conductor or dielectric (for example, its material) on the outer periphery of the substrate adsorption film 801 to improve the etching performance of the outer periphery during substrate processing. Have Si, SiC, C, etc.). In this system, when the cleaning process using the downwardly projecting ECR magnetic field surface 805 described in the first embodiment is performed, the amount of current applied to the coil is controlled, so that a high-density plasma is generated outside the ring 806. 804 can be formed. Due to the high-density plasma 804, the plasma density between the upper electrode 803, the substrate adsorption film 801, the movable electrode 802, and the ring 806 is reduced. Due to the decrease in the plasma density, consumption due to the cleaning process of the substrate adsorption film 801 and the ring 806 can be suppressed.

前述の実施例では、すべてプラズマ生成用の高周波電圧を上部電極から印加する体系を用いて説明してきたが、可動電極からプラズマ生成用高周波電圧を印加してプラズマを生成する体系においても、前述したECR磁場面を制御することで、可動電極上のプラズマ密度をエッチング処理時よりも減少させ可動電極及び基板吸着膜の消耗を抑制できることは明らかである。しかし、可動電極から高周波電圧を印加した場合、可動電極及び基板吸着膜に、上部電極から高周波電圧を印加した場合よりも大きいセルフバイアスがかかり、電極消耗効果が薄れる為、本実施例では上部電極より高周波電圧を印加する体系を用いた。   In the above-described embodiments, the description has been made using the system in which the high-frequency voltage for plasma generation is applied from the upper electrode. However, the above-described system is also used in the system for generating plasma by applying the high-frequency voltage for plasma generation from the movable electrode. By controlling the ECR magnetic field surface, it is clear that the plasma density on the movable electrode can be reduced as compared with the etching process, and consumption of the movable electrode and the substrate adsorption film can be suppressed. However, when a high-frequency voltage is applied from the movable electrode, a larger self-bias is applied to the movable electrode and the substrate adsorption film than when a high-frequency voltage is applied from the upper electrode, and the electrode consumption effect is reduced. A system for applying a higher frequency voltage was used.

また、本発明の実施例によれば、可動電極外周部でのプラズマ密度が上昇するため、基板処理時に異物の付着しやすい可動電極外周部を効率よく洗浄することが出来る。   Further, according to the embodiment of the present invention, the plasma density at the outer peripheral portion of the movable electrode is increased, so that the outer peripheral portion of the movable electrode, to which foreign substances are likely to adhere, can be efficiently cleaned during substrate processing.

また、前述の実施例ではECR磁場条件を60〜80Gとしたが、ECR磁場条件はプラズマ生成時の周波数により異なるため、ECR磁場条件は前記範囲に限らず多様な値をとり得ることは明らかである。   In the above-described embodiment, the ECR magnetic field condition is set to 60 to 80 G. However, since the ECR magnetic field condition varies depending on the frequency at the time of plasma generation, it is obvious that the ECR magnetic field condition can take various values without being limited to the above range. is there.

また、本実施例では、プラズマを生成する高周波に100MHz〜500MHz(好ましくは、168MHz〜224MHz)を用いたが、100MHzよりも低周波の場合に比べて基板吸着膜に入射するイオンのエネルギーが小さいため、基板吸着膜の損傷をより小さくできる。   Further, in this embodiment, 100 MHz to 500 MHz (preferably 168 MHz to 224 MHz) is used as the high frequency for generating plasma, but the energy of ions incident on the substrate adsorption film is smaller than in the case of a frequency lower than 100 MHz. Therefore, damage to the substrate adsorption film can be further reduced.

100…処理容器、111…基板吸着膜、112…可動電極(試料台、下部電極)、113…バイアス印加用高周波電源、114…フィルタ回路、115…直流電源、116…冷却ガス導入機構、121…上部電極、122…プラズマ生成用高周波電源、123…ガス導入機構、131…ゲートバルブ、141…排気手段、151…コイル、201…基板吸着膜、202…可動電極、203…上部電極、204…磁力線、205…ECR磁場面、301…基板吸着膜、302…上部電極、303…高密度プラズマ、304…ECR磁場面、401…基板吸着膜、402…可動電極、403…上部電極、404…磁力線、405…ECR磁場面、501…基板吸着膜、502…可動電極、503…上部電極、504…高密度プラズマ、505…ECR磁場面、601…基板吸着膜、602…可動電極、603…上部電極、604…磁力線、605…ECR磁場面、701…基板吸着膜、702…可動電極、703…上部電極、704…高密度プラズマ、705…ECR磁場面、801…基板吸着膜、802…可動電極、803…上部電極、804…高密度プラズマ、805…ECR磁場面、806…リング。   DESCRIPTION OF SYMBOLS 100 ... Processing container, 111 ... Substrate adsorption film, 112 ... Movable electrode (sample stand, lower electrode), 113 ... High frequency power supply for bias application, 114 ... Filter circuit, 115 ... DC power supply, 116 ... Cooling gas introduction mechanism, 121 ... Upper electrode, 122 ... high frequency power source for plasma generation, 123 ... gas introduction mechanism, 131 ... gate valve, 141 ... exhaust means, 151 ... coil, 201 ... substrate adsorption film, 202 ... movable electrode, 203 ... upper electrode, 204 ... magnetic field lines 205 ... ECR magnetic field surface, 301 ... substrate adsorption film, 302 ... upper electrode, 303 ... high density plasma, 304 ... ECR magnetic field surface, 401 ... substrate adsorption film, 402 ... movable electrode, 403 ... upper electrode, 404 ... magnetic field line, 405 ... ECR magnetic field plane, 501 ... substrate adsorption film, 502 ... movable electrode, 503 ... upper electrode, 504 ... high density plasma, 505 ... CR magnetic field surface, 601 ... substrate adsorption film, 602 ... movable electrode, 603 ... upper electrode, 604 ... magnetic field line, 605 ... ECR magnetic field surface, 701 ... substrate adsorption film, 702 ... movable electrode, 703 ... upper electrode, 704 ... high density Plasma, 705 ... ECR magnetic field, 801 ... Substrate adsorption film, 802 ... Movable electrode, 803 ... Upper electrode, 804 ... High density plasma, 805 ... ECR magnetic field, 806 ... Ring.

Claims (5)

対向して配置された電極を有する真空容器内にガスを供給して一方の電極となる試料台上の被処理基板載置面に載置された被処理基板をプラズマ処理し、前記被処理基板を搬出した後、あるいは次の被処理基板処理の前に、前記真空容器内をプラズマクリーニングする方法において、
前記プラズマクリーニングは、前記真空容器内に磁場を形成し、該磁場と真空容器内の高周波電界との作用によって生成したプラズマを用いるクリーニングであって、
印加された高周波の周波数における電子サイクロトロン共鳴(ECR)条件を満足する磁場強度の面であるECR磁場面を、少なくとも前記被処理基板載置面と対向する電極とではさまれる範囲内の空間に存在させず、かつ真空容器内の前記範囲外に存在するように磁場を制御することを特徴とするプラズマクリーニング方法。
The substrate to be processed is plasma-treated by supplying a gas into a vacuum container having electrodes disposed opposite to each other and placing the substrate to be processed on the sample substrate mounting surface on the sample table serving as one of the electrodes. In the method of plasma cleaning the inside of the vacuum vessel after unloading or before the next substrate processing,
The plasma cleaning is a cleaning using a plasma generated by the action of the magnetic field and a high frequency electric field in the vacuum vessel, forming a magnetic field in the vacuum vessel,
The ECR magnetic field surface, which is the surface of the magnetic field strength that satisfies the electron cyclotron resonance (ECR) condition at the applied high frequency, exists in a space that is at least sandwiched between the electrodes facing the substrate mounting surface. And the magnetic field is controlled so as to be outside the range in the vacuum vessel.
請求項1記載のプラズマクリーニング方法において、前記プラズマ処理時の前記ECR磁場面は、前記プラズマクリーニング時とは異なる位置にあることを特徴とするプラズマクリーニング方法。   2. The plasma cleaning method according to claim 1, wherein the ECR magnetic field surface during the plasma processing is at a position different from that during the plasma cleaning. 請求項1記載のプラズマクリーニング方法において、前記ECR磁場面が電極の中心軸を横切る位置が前記試料台の前記被処理基板載置面より下側にあることを特徴とするプラズマクリーニング方法。   2. The plasma cleaning method according to claim 1, wherein the position where the ECR magnetic field plane crosses the central axis of the electrode is located below the surface of the sample substrate to be processed. 請求項1記載のプラズマクリーニング方法において、前記ECR磁場面が電極の中心軸を横切る位置が前記試料台に対向する電極より上側にあることを特徴とするプラズマクリーニング方法。   2. The plasma cleaning method according to claim 1, wherein the position where the ECR magnetic field plane crosses the central axis of the electrode is above the electrode facing the sample stage. 請求項1記載のプラズマクリーニングにおいて、ECR磁場面が、前記被処理基板載置部の外周に置かれたリング状部品の外径より内側の上方空間にも存在しないように磁場を制御することを特徴とするプラズマクリーニング方法。   2. The plasma cleaning according to claim 1, wherein the magnetic field is controlled so that the ECR magnetic field surface does not exist in an upper space inside the outer diameter of the ring-shaped component placed on the outer periphery of the substrate mounting portion. A plasma cleaning method.
JP2009048888A 2009-03-03 2009-03-03 Plasma cleaning method Pending JP2010205872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048888A JP2010205872A (en) 2009-03-03 2009-03-03 Plasma cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048888A JP2010205872A (en) 2009-03-03 2009-03-03 Plasma cleaning method

Publications (2)

Publication Number Publication Date
JP2010205872A true JP2010205872A (en) 2010-09-16
JP2010205872A5 JP2010205872A5 (en) 2012-03-01

Family

ID=42967099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048888A Pending JP2010205872A (en) 2009-03-03 2009-03-03 Plasma cleaning method

Country Status (1)

Country Link
JP (1) JP2010205872A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241628A (en) * 2003-02-06 2004-08-26 Hitachi High-Technologies Corp Method of controlling semiconductor treatment device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241628A (en) * 2003-02-06 2004-08-26 Hitachi High-Technologies Corp Method of controlling semiconductor treatment device

Similar Documents

Publication Publication Date Title
TWI567862B (en) A particle adhesion control method and a processing device for the substrate to be processed
WO2010058642A1 (en) Plasma processing device and plasma processing method
JP2007214512A (en) Substrate processing chamber, cleaning method thereof, and storage medium
TWI743123B (en) Plasma processing method
JP6339866B2 (en) Plasma processing apparatus and cleaning method
KR100782621B1 (en) Plasma processing method and plasma processing device
KR101898079B1 (en) Plasma processing apparatus
US9253862B2 (en) Plasma processing method and plasma processing apparatus
JP2007208302A (en) Plasma processing method and plasma processing device
KR101909784B1 (en) Method for surface treatment of upper electrode, plasma processing apparatus and upper electrode
TW421820B (en) Plasma processing apparatus
KR100900967B1 (en) Plasma processing apparatus and method
JP2011103489A (en) Plasma processing apparatus and plasma processing method
JP2011034994A (en) Plasma treating apparatus
JP2010263244A (en) Plasma processing method
JP2000164582A (en) Plasma processing system
JP2010267708A (en) Device and method for vacuum processing
KR102427971B1 (en) Plasma processing method
JP6280408B2 (en) Method for determining process gas flow rate
JP2015141956A (en) Plasma processing device, and plasma processing method
JP2010205872A (en) Plasma cleaning method
JP2002319577A (en) Plasma processing system
JP2001230234A (en) Apparatus and method for plasma treatment
JP2011029514A (en) Deposit protection cover and plasma processing apparatus
JP2016225579A (en) Plasma processing device and plasma processing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319