JP2010203774A - Liquid sample storing device and liquid sample measuring method - Google Patents

Liquid sample storing device and liquid sample measuring method Download PDF

Info

Publication number
JP2010203774A
JP2010203774A JP2009046157A JP2009046157A JP2010203774A JP 2010203774 A JP2010203774 A JP 2010203774A JP 2009046157 A JP2009046157 A JP 2009046157A JP 2009046157 A JP2009046157 A JP 2009046157A JP 2010203774 A JP2010203774 A JP 2010203774A
Authority
JP
Japan
Prior art keywords
liquid sample
lid member
inner lid
storage device
container body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009046157A
Other languages
Japanese (ja)
Other versions
JP5140620B2 (en
Inventor
Kazuya Hosokawa
和也 細川
Seiji Fukazawa
征司 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP2009046157A priority Critical patent/JP5140620B2/en
Publication of JP2010203774A publication Critical patent/JP2010203774A/en
Application granted granted Critical
Publication of JP5140620B2 publication Critical patent/JP5140620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Closures For Containers (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid sample storing device capable of storing a liquid sample in a fully filled state without coming into contact with the liquid sample, and capable of preventing air from being mixed in the liquid sample. <P>SOLUTION: The liquid sample storing device is equipped with a container body 10 having an opening 12 formed at the upper end 11 thereof and a lid member 40 for sealing the opening 12. The lid member 40 is equipped with the inner lid member 20 internally fitted to the inner surface 14a of the container body 10 from the opening 12 in a liquid-tight state and the outer lid member 30 fitted to the inner lid member 20 from the outside, a flange 22 for sealing the periphery of the opening 12 is formed to the upper part of the inner lid member 20 and a protruded outside cylindrical member 24 is provided at the upper surface 23 of the inner lid member 20. A flow channel 25 of the liquid sample 2 having an outflow port 27 formed at the outside cylindrical member 24 so as to communicate with the inside and outside of the container body 10 is formed at the inner lid member 20, and the outer lid member 30 has a sealing part 32 externally fitted to the outer surface 24a of the outside cylindrical member 24 in a liquid-tight state and an empty chamber 34 communicating with the outflow port 27 when the sealing part is externally fitted to the outer surface to receive the excessive liquid sample 2a through the flow channel 25. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液体試料の貯留装置および液体試料の測定方法(検査方法、観測方法あるいは試験方法)に関し、より詳細には、液体試料が外部に溢れることなく満杯状態に充填可能な貯留装置ならびにその貯留装置と測定装置との接続方法および液体試料の送液方法に関する。   The present invention relates to a liquid sample storage device and a liquid sample measurement method (inspection method, observation method or test method), and more specifically, a storage device capable of filling a liquid sample in a full state without overflowing to the outside, and its storage device The present invention relates to a connection method between a storage device and a measurement device and a liquid sample feeding method.

近年、例えば、血液等の液体試料の性状の検査、観測、試験あるいは測定(本明細書では、これらを「測定」と総称する。)が行われるようになってきている。特に、血液等の性状の測定においては、より詳細な情報が求められるため、特許文献1には、血管を模した回路に抗凝固処理された血液を、抗凝固処理を解除または血液凝固を促進しつつ流して血栓の生成を観測する血栓観測装置および血栓観測方法が提案されている。具体的には、ポンプを用いて血栓生成室に血液を流入して、目視やカメラによる観察のほか、ポンプの圧力を計測して経時的に血栓生成の測定を行うことが提案されている。   In recent years, for example, examination, observation, test or measurement of properties of a liquid sample such as blood (in the present specification, these are collectively referred to as “measurement”) have been performed. In particular, since more detailed information is required for the measurement of the properties of blood and the like, Patent Document 1 discloses that blood subjected to anticoagulation treatment in a circuit simulating blood vessels, cancels anticoagulation treatment, or promotes blood coagulation. However, a thrombus observation device and a thrombus observation method for observing the formation of a thrombus while flowing are proposed. Specifically, it has been proposed that blood is introduced into a thrombus generation chamber using a pump and the thrombus generation is measured over time by measuring the pressure of the pump in addition to visual observation or observation with a camera.

一方、血液等の液体試料の測定装置として、近年、板状基板に溝が形成されたマイクロチップが用いられるようになってきている。マイクロチップに液体試料を供給する方法は、マイクロチップの液体試料導入口に液体試料を直接接触させ、毛細管現象を利用して液体試料を供給する方法が一般的である(例えば、特許文献2、3)。
しかし、この方法は、測定装置への空気の混入を防止しつつ、かつ任意の流速で長時間連続的または断続的に液体試料を供給することができないので、血液等の検査に際して、圧力を正確に計測して経時的に血栓生成の観測を行うことはできないという問題がある。さらに、測定者が不特定多数の人間の血液等を測定する場合には、ウィルスや細菌その他の病原体の感染等の衛生上の問題もある。
On the other hand, in recent years, a microchip having a groove formed on a plate-like substrate has been used as a measuring device for a liquid sample such as blood. As a method for supplying a liquid sample to a microchip, a method in which a liquid sample is directly brought into contact with a liquid sample inlet of the microchip and a liquid sample is supplied using a capillary phenomenon (for example, Patent Document 2, 3).
However, this method can prevent air from being mixed into the measuring apparatus and cannot supply a liquid sample continuously or intermittently at an arbitrary flow rate for a long time. However, there is a problem that it is impossible to observe thrombus formation over time. Furthermore, when the measurer measures the blood of an unspecified number of humans, there are also health problems such as infection with viruses, bacteria and other pathogens.

これらの問題に対して、特許文献4には、真空採血管から陰圧を制御した吸引により分注先容器(リザーバ)に精度の良い定量分注が自動的に実現する方法が提案されている。
しかし、リザーバに分注された試料をマイクロチップなどの測定装置に供給する方法については、一切開示がない。
一方、特許文献5には、予め所期のずり応力を印加するために、機械的に作動する採取・注入管が試料管(リザーバ)から液体試料を採取し、マイクロチップの流入口に誘導して注入する測定装置が提案されている。この提案によれば、採取・注入管の動作を任意に制御可能なので、特許文献2、3に記載の方法や装置の問題点の解決は可能である。
しかし、この方法は、採取・注入管を機械的に作動させるため、動作が大きく測定装置への注入機構が大型で複雑になり、マイクロチップを用いても測定装置全体としては、大掛かりなものとならざるを得ない。
For these problems, Patent Document 4 proposes a method for automatically realizing accurate quantitative dispensing into a dispensing container (reservoir) by suction with controlled negative pressure from a vacuum blood collection tube. .
However, there is no disclosure about a method for supplying a sample dispensed in a reservoir to a measuring device such as a microchip.
On the other hand, in Patent Document 5, a mechanically-operated sampling / injection tube collects a liquid sample from a sample tube (reservoir) and applies it to the inlet of a microchip in order to apply an intended shear stress in advance. A measuring device for injecting is proposed. According to this proposal, since the operation of the collection / injection tube can be arbitrarily controlled, the problems of the methods and apparatuses described in Patent Documents 2 and 3 can be solved.
However, since this method mechanically operates the sampling / injection tube, the operation is large and the injection mechanism into the measurement device becomes large and complicated. Even if a microchip is used, the measurement device as a whole is large. I have to be.

国際公開第2007/046450号International Publication No. 2007/046450 特開平8−145980号公報JP-A-8-145980 特開2006−177968号公報JP 2006-177968 A 特開2001−99848号公報JP 2001-99848 A 特開2006−145345号公報JP 2006-145345 A

本発明は、上記事情に鑑みてなされたものであり、例えば、特許文献1に記載の方法や装置等に好適に用いるために、測定装置への空気混入を防止することが可能で、その状態で長時間連続的または断続的に液体試料を供給することも可能であり、しかもコンパクトで簡易な装置でありながら、測定者が不特定多数の人間の血液等を測定する場合には、ウィルスの感染等の衛生上の問題がない液体試料の貯留装置および液体試料の測定方法を提供することを課題とする。   The present invention has been made in view of the above circumstances. For example, in order to be suitably used in the method and apparatus described in Patent Document 1, it is possible to prevent air from entering the measuring apparatus, and the state In addition, it is possible to supply a liquid sample continuously or intermittently for a long time, and it is a compact and simple device, but when the measurer measures blood of an unspecified number of humans, It is an object of the present invention to provide a liquid sample storage device and a liquid sample measurement method that are free from sanitary problems such as infection.

本発明の発明者らは、上記の課題を解決するため鋭意検討した結果、測定装置への空気混入を防止するためには、測定装置に接続する貯留装置(リザーバ)に液体試料を充填するに際し、外部に漏洩させることなく満杯状態で充填する必要があるとの知見を得た。
本発明は、この知見に基づいてなされたものであり、請求項1の発明は、上端に開口を有する容器本体と、前記容器本体の上端の開口を封止する蓋部材を備える液体試料の貯留装置であって、前記蓋部材は、前記容器本体の上端の開口から前記容器本体の内面に液密に内嵌めされる内蓋部材と、前記内蓋部材に外側から嵌合される外蓋部材を備え、前記内蓋部材には、前記内蓋部材の上面に突出した外側筒体が設けられ、前記内蓋部材は、その内部に、前記容器本体の内外を連通して前記外側筒体に流出口が設けられた液体試料の流路を有し、前記外蓋部材は、前記内蓋部材の前記外側筒体の外面に液密に外嵌めされる封止部と、前記封止部が前記外側筒体に外嵌めされたときに前記外側筒体の前記流出口に連通して前記流路を通じて余剰となった液体試料を受け入れる空室とを有することを特徴とする液体試料の貯留装置である。
The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, in order to prevent air from entering the measuring device, the reservoir device (reservoir) connected to the measuring device is filled with a liquid sample. The knowledge that it is necessary to fill in a full state without leaking outside.
The present invention has been made on the basis of this finding, and the invention of claim 1 stores a liquid sample comprising a container body having an opening at the upper end and a lid member for sealing the opening at the upper end of the container body. It is an apparatus, Comprising: The said cover member is an inner cover member fitted liquid-tightly by the inner surface of the said container main body from opening of the upper end of the said container main body, and the outer cover member fitted from the outside to the said inner cover member The inner lid member is provided with an outer cylinder projecting from the upper surface of the inner lid member, and the inner lid member communicates with the outer cylinder body through the inside and outside of the container body. A liquid sample flow path provided with an outflow port; and the outer lid member is liquid-tightly fitted to an outer surface of the outer cylinder of the inner lid member; and When the outer cylinder is fitted onto the outer cylinder, the excess cylinder communicates with the outlet and passes through the flow path. Having a check to accept liquid sample Tsu a storage device of the liquid sample characterized by.

請求項2の発明は、前記外蓋部材の前記封止部の基材が弾性体であることを特徴とする請求項1に記載の液体試料の貯留装置である。
請求項3の発明は、前記外蓋部材の天面には、前記空室に連通する空気抜き孔が設けられていることを特徴とする請求項1または2に記載の液体試料の貯留装置である。
請求項4の発明は、前記内蓋部材の前記流路が、前記容器本体の内部に連通する側から前記流出口に向かって次第に断面積が小さくなっていることを特徴とする請求項1ないし3のいずれかに記載の液体試料の貯留装置である。
請求項5の発明は、前記容器本体が、流体の圧入が可能な圧入口を下端に有することを特徴とする請求項1ないし4のいずれかに記載の液体試料の貯留装置である。
The invention of claim 2 is the liquid sample storage device according to claim 1, wherein the base material of the sealing portion of the outer lid member is an elastic body.
A third aspect of the invention is the liquid sample storage device according to the first or second aspect, wherein the top surface of the outer lid member is provided with an air vent hole communicating with the empty chamber. .
The invention according to claim 4 is characterized in that the cross-sectional area of the flow path of the inner lid member gradually decreases from the side communicating with the inside of the container body toward the outlet. 4. The liquid sample storage device according to any one of 3 above.
A fifth aspect of the invention is the liquid sample storage device according to any one of the first to fourth aspects, wherein the container main body has a pressure inlet capable of press-fitting fluid at a lower end.

請求項6の発明は、請求項1ないし5のいずれかに記載の液体試料の貯留装置を用いて液体試料を測定装置に供給し、液体試料の性状を測定する液体試料の測定方法であって、前記容器本体に液体試料を充填する液体試料充填工程と、予め前記外側筒体に前記外蓋部材の前記封止部が外嵌めされた蓋部材の前記内蓋部材を、液体試料が充填された前記容器本体の上端の開口に液密に内嵌めすることにより前記容器本体の内部空間を減少させ前記容器本体を満杯状態として、余剰となった液体試料を前記内蓋部材の前記流路を通じて前記外蓋部材の前記空室内に受け入れる貯留装置封止工程と、前記貯留装置から前記外蓋部材を、前記空室内の余剰となった液体試料とともに除去し、露出した前記内蓋部材の前記外側筒体を測定装置に接続する貯留装置接続工程と、をこの順序で有することを特徴とする液体試料の測定方法である。   A sixth aspect of the present invention is a liquid sample measuring method for supplying a liquid sample to a measuring apparatus using the liquid sample storing apparatus according to any one of the first to fifth aspects and measuring the properties of the liquid sample. A liquid sample filling step of filling the container main body with a liquid sample, and the liquid sample filling the inner lid member of the lid member in which the sealing portion of the outer lid member is fitted on the outer cylinder in advance. In addition, the inner space of the container body is reduced by being liquid-tightly fitted in the opening at the upper end of the container body to make the container body full, and an excess liquid sample is passed through the flow path of the inner lid member. A storage device sealing step for receiving the outer lid member in the empty chamber, and removing the outer lid member from the storage device together with the excess liquid sample in the empty chamber and exposing the outer side of the exposed inner lid member. Connect the cylinder to the measuring device Is a method for measuring a liquid sample, comprising a column unit connecting step, the in this order.

請求項7の発明は、前記容器本体が、流体の圧入が可能な圧入口を下端に有する場合は前記圧入口から、前記容器本体が前記圧入口を有しない場合は前記容器本体の下端に圧入口を形成してその圧入口から、流体を圧入し、圧入した流体で押圧して液体試料を測定装置に供給することを特徴とする請求項6に記載の液体試料の測定方法である。
請求項8の発明は、前記流体が液体であることを特徴とする請求項7に記載の液体試料の測定方法である。
請求項9の発明は、前記液体試料の供給が連続的または断続的であることを特徴とする請求項6ないし8のいずれかに記載の液体試料の測定方法である。
請求項10の発明は、チューブを介すことなく、前記内蓋部材の前記外側筒体を、前記測定装置に設けられた液体試料導入口に接合させて前記貯留装置と前記測定装置とを直接接続することを特徴とする請求項6ないし9のいずれかに記載の液体試料の測定方法である。
請求項11の発明は、前記貯留装置の天地を入れ替え、上下を逆さにして、前記内蓋部材の前記外側筒体が下を向くように前記測定装置に接続することを特徴とする請求項6ないし10のいずれかに記載の液体試料の測定方法である。
請求項12の発明は、前記測定装置が、板状基板に溝が形成されたマイクロチップであることを特徴とする請求項6ないし11のいずれかに記載の液体試料の測定方法である。
According to the seventh aspect of the present invention, when the container main body has a pressure inlet capable of press-fitting fluid at the lower end, the pressure is applied from the pressure inlet to the lower end of the container main body when the container main body does not have the pressure inlet. The liquid sample measuring method according to claim 6, wherein an inlet is formed, a fluid is press-fitted from the pressure inlet, and the liquid sample is supplied to the measuring device by being pressed by the pressed fluid.
The invention of claim 8 is the method of measuring a liquid sample according to claim 7, wherein the fluid is a liquid.
The invention of claim 9 is the method for measuring a liquid sample according to any one of claims 6 to 8, wherein the supply of the liquid sample is continuous or intermittent.
According to the tenth aspect of the present invention, the storage device and the measurement device are directly connected by joining the outer cylinder of the inner lid member to a liquid sample inlet provided in the measurement device without using a tube. The liquid sample measuring method according to claim 6, wherein the liquid sample is connected.
The invention according to claim 11 is characterized in that the storage device is connected to the measuring device so that the top and bottom of the storage device are changed upside down and the outer cylindrical body of the inner lid member faces downward. Or a method for measuring a liquid sample according to any one of 1 to 10.
A twelfth aspect of the invention is the method for measuring a liquid sample according to any one of the sixth to eleventh aspects, wherein the measuring device is a microchip in which a groove is formed on a plate-like substrate.

請求項1の発明によれば、内蓋部材の内嵌めにより容器本体に充填した液体試料を満杯状態にし、外蓋部材の空室に余剰の液体試料を受け入れることができるので、測定装置に接続する貯留装置(リザーバ)に液体試料を外部に漏洩させることなく満杯状態で充填することができる。その結果、測定装置への空気混入を防止することができるので、液体試料の送液を一定または所定の圧力で行うことができ、この時の圧力変化や流量を正確に計測することができる。また、空気混入を防止した状態で容易にポンプ等の送液手段に接続することができ、長時間連続的または断続的に液体試料を供給することもできる。
請求項2の発明によれば、内蓋部材の外側筒体を外蓋部材の空室に向けて液密に挿入することが容易になる。
請求項3の発明によれば、満杯状態となった容器本体からの余剰の液体試料が多量であっても外蓋部材の空室に容易に流入させることができる。
請求項4の発明によれば、外蓋部材を外した状態で貯留装置を倒立させても、表面張力や毛細管現象により液体試料が滴下することがない程度に外部側の流路を滑らかに細くすることができる。また、その結果、外側筒体を細くすることができる。これにより、外側筒体を測定装置にチューブを介すことなく接続する場合に、安定して接続することができる。この時、測定装置がマイクロチップである場合は、マイクロチップの細い回路に直接接続することも容易となる。
請求項5の発明によれば、圧入口から流体を圧入して液体試料を送液することができる。
According to the first aspect of the present invention, the liquid sample filled in the container main body can be filled by the internal fitting of the inner lid member, and an excess liquid sample can be received in the empty chamber of the outer lid member. The liquid sample can be filled in a full state without leaking the storage device (reservoir). As a result, air can be prevented from entering the measuring device, so that the liquid sample can be fed at a constant or predetermined pressure, and the pressure change and flow rate at this time can be accurately measured. Further, it can be easily connected to a liquid feeding means such as a pump in a state where air mixing is prevented, and a liquid sample can be supplied continuously or intermittently for a long time.
According to the invention of claim 2, it becomes easy to insert the outer cylinder of the inner lid member in a liquid-tight manner toward the empty space of the outer lid member.
According to the invention of claim 3, even if a large amount of the excess liquid sample from the container main body is full, it can easily flow into the empty chamber of the outer lid member.
According to the invention of claim 4, even if the storage device is inverted with the outer lid member removed, the external flow path is smoothly narrowed to such an extent that the liquid sample will not drip due to surface tension or capillary action. can do. As a result, the outer cylinder can be made thinner. Thereby, when connecting an outer side cylinder to a measuring device, without passing through a tube, it can connect stably. At this time, when the measuring device is a microchip, it is easy to directly connect to a thin circuit of the microchip.
According to the invention of claim 5, it is possible to send a liquid sample by injecting a fluid from the pressure inlet.

請求項6の発明によれば、外蓋部材の空室に余剰の液体試料を受け入れることができるので、測定装置に接続する貯留装置(リザーバ)に液体試料を外部に漏洩させることなく満杯状態で充填することができ、満杯状態で測定装置に接続することができる。その結果、測定装置への空気混入を防止することができるので、液体試料の送液を一定または所定の圧力で行うことができ、この時の圧力変化や流量を正確に計測することができる。また、空気混入を防止した状態で容易にポンプやピストン等の送液手段に接続することができ、長時間連続的または断続的に液体試料を供給することもできる。
請求項7の発明によれば、圧入した流体で押圧して液体試料を測定装置に供給することができるので、液体試料の圧送時の押圧力が均等となる。また、送液の圧力を容易に制御することが可能で、この時の圧力変化や流量を正確に計測することができる。
請求項8の発明によれば、流体が液体であるので、圧縮しても体積が変動することがなく、供給量の制御が容易になる。また、測定時に、液体試料の圧送時の圧力や流量の変化を応答性よく計測することが可能になる。
請求項9の発明によれば、連続的または断続的に送液の圧力や流量の変化を計測することができ、例えば、人体内の環境に近い状態での血液等の測定が容易になる。
請求項10の発明によれば、チューブによる貯留装置と測定装置の間の圧力損失をなくし、脈動などチューブによる液体試料の流動状態への悪影響がないので、圧送時の圧力や流量の変化を応答性良く計測することができる。また、測定装置をコンパクトにすることができる。
請求項11の発明によれば、血液や水等に比べて比重の小さい液体、例えばミネラルオイルを用いて液体試料を圧送する際、ミネラルオイルが流出口に回り込むことがない。また、簡易な測定装置を使用する場合に測定装置を測定台に直置きすることができる。あるいは、測定装置を空中に支持して、例えば、測定装置の下側にカメラ等の観測装置を設置するなどのシステム化を図る際に、測定装置の上方および下方の空間を有効に活用することができる。
請求項12の発明によれば、測定装置をコンパクトにするとともに、少量の液体試料で測定することができる。
According to the sixth aspect of the present invention, since an excess liquid sample can be received in the empty space of the outer lid member, the liquid sample can be filled without leaking to the storage device (reservoir) connected to the measurement device. It can be filled and connected to the measuring device in a full state. As a result, air can be prevented from entering the measuring device, so that the liquid sample can be fed at a constant or predetermined pressure, and the pressure change and flow rate at this time can be accurately measured. Further, it can be easily connected to a liquid feeding means such as a pump or a piston in a state where air mixing is prevented, and a liquid sample can be supplied continuously or intermittently for a long time.
According to the seventh aspect of the present invention, since the liquid sample can be supplied to the measuring device by being pressed with the press-fitted fluid, the pressing force at the time of feeding the liquid sample becomes equal. Further, the pressure of the liquid feeding can be easily controlled, and the pressure change and the flow rate at this time can be accurately measured.
According to the invention of claim 8, since the fluid is a liquid, the volume does not fluctuate even if the fluid is compressed, and the supply amount can be easily controlled. In addition, it is possible to measure changes in pressure and flow rate when the liquid sample is pumped with high responsiveness during measurement.
According to the ninth aspect of the present invention, it is possible to continuously or intermittently measure changes in the pressure and flow rate of the liquid feeding, and for example, measurement of blood or the like in a state close to the environment in the human body is facilitated.
According to the invention of claim 10, pressure loss between the storage device by the tube and the measuring device is eliminated, and there is no adverse effect on the flow state of the liquid sample by the tube, such as pulsation, so response to changes in pressure and flow rate during pumping. It can be measured with good performance. In addition, the measuring device can be made compact.
According to the eleventh aspect of the invention, when a liquid sample is pumped using a liquid having a specific gravity lower than that of blood, water, or the like, for example, mineral oil, the mineral oil does not flow around the outlet. Further, when a simple measuring device is used, the measuring device can be placed directly on the measuring table. Alternatively, the space above and below the measuring device can be used effectively when the measuring device is supported in the air and, for example, an observation device such as a camera is installed below the measuring device. Can do.
According to the twelfth aspect of the present invention, the measurement apparatus can be made compact and measurement can be performed with a small amount of liquid sample.

本発明の液体試料の貯留装置の一形態例において、(a)は容器本体および蓋部材を互いに嵌合させた状態、(b)は容器本体および蓋部材を分離した状態を示す断面図である。In one form example of the storage device of the liquid sample of the present invention, (a) is a state where a container main part and a lid member were fitted together, and (b) is a sectional view showing a state where a container main part and a lid member were separated. . (a)〜(e)は、図1に示す液体試料の貯留装置を用いた液体試料の測定方法を説明する断面図である。(A)-(e) is sectional drawing explaining the measuring method of the liquid sample using the storage apparatus of the liquid sample shown in FIG.

以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。
図1に本形態例の液体試料の貯留装置1(以下単に「貯留装置1」という。)を示す。
図2に、この貯留装置1を用いた液体試料2の測定方法の各工程を順に示す。
The present invention will be described below based on preferred embodiments with reference to the drawings.
FIG. 1 shows a liquid sample storage device 1 (hereinafter simply referred to as “storage device 1”) according to this embodiment.
In FIG. 2, each process of the measuring method of the liquid sample 2 using this storage apparatus 1 is shown in order.

図1に示すように、本形態例の貯留装置1は、上端11に開口12を有する容器本体10と、容器本体10の上端11の開口12を封止する蓋部材40を備え、蓋部材40は、容器本体10の上端11の開口12から容器本体10の内面14a(後述する「すり合わせ面14a」)に液密に内嵌めされる内蓋部材20と、この内蓋部材20に外側から嵌合される外蓋部材30とから構成されている。
なお、上下方向については、特に断りのない限り、容器本体10に蓋部材40が設けられる側を「上」とする。
As shown in FIG. 1, the storage device 1 of this embodiment includes a container body 10 having an opening 12 at an upper end 11 and a lid member 40 that seals the opening 12 at the upper end 11 of the container body 10. The inner lid member 20 is liquid-tightly fitted into the inner surface 14a of the container main body 10 from the opening 12 at the upper end 11 of the container main body 10 ("latering surface 14a" described later), and the inner lid member 20 is fitted from the outside. The outer lid member 30 is joined.
In the vertical direction, unless otherwise specified, the side on which the lid member 40 is provided on the container body 10 is “upper”.

容器本体10は、略円筒状の側壁14と、側壁14の下端に形成された底壁16と、底壁16から突出して容器本体10の下端17となるように形成された圧入口18を備える。側壁14の上端11には開口12が設けられている。開口12の周囲には、フランジ部13が外方に向けて突出している。
図1(a)に示すように、側壁14の上部の内面が、内蓋部材20が内嵌めされるテーパー状のすり合わせ面14aとなっている。また、側壁14の下部は、液体試料の収納部であり、液体試料との親和性を付与するために、表面処理層15が形成された被表面処理部14bとなっている。被表面処理部14bを設けると、液体試料が円滑に流れやすくなるので、液体試料の圧力や流量を正確に計測することができる。
The container body 10 includes a substantially cylindrical side wall 14, a bottom wall 16 formed at the lower end of the side wall 14, and a pressure inlet 18 formed so as to protrude from the bottom wall 16 and become the lower end 17 of the container body 10. . An opening 12 is provided at the upper end 11 of the side wall 14. Around the opening 12, a flange portion 13 protrudes outward.
As shown in FIG. 1A, the inner surface of the upper portion of the side wall 14 is a tapered mating surface 14a into which the inner lid member 20 is fitted. Further, the lower portion of the side wall 14 is a storage portion for a liquid sample, and is a surface-treated portion 14b on which a surface treatment layer 15 is formed in order to impart affinity with the liquid sample. Providing the surface-treated portion 14b facilitates smooth flow of the liquid sample, so that the pressure and flow rate of the liquid sample can be accurately measured.

表面処理層15は、液体試料に対する親和性が高く、容器本体10の表面の濡れ性を向上させ、かつ液体試料の変質を防ぐことが可能なものが好ましい。
例えば液体試料が血液である場合には、抗血栓性に優れるPMEA(ポリ2メトキシエチルアクリレート)、PVLA(ポリビニルラクトンアミド)などが挙げられる。
The surface treatment layer 15 preferably has a high affinity for the liquid sample, can improve the wettability of the surface of the container body 10 and can prevent the liquid sample from being altered.
For example, when the liquid sample is blood, PMEA (poly 2 methoxyethyl acrylate), PVLA (polyvinyl lactone amide), etc., which are excellent in antithrombogenicity, can be mentioned.

本形態例の場合、表面処理層15は、内蓋部材20が容器本体10に内嵌めされたときに内蓋部材20の下面28の位置Lを上端として、その下側の底壁16および圧入口18の内面までの範囲に設けられている。すり合わせ面14aは、表面処理層15を設ける際に表面が荒れて液密性が低下する場合があるので、ここには表面処理層15を設けることなく容器本体10の基材のままとしておくことが望ましい。   In the case of the present embodiment, the surface treatment layer 15 has the position L of the lower surface 28 of the inner lid member 20 as the upper end when the inner lid member 20 is fitted in the container body 10, and the bottom wall 16 and the pressure below it. It is provided in a range up to the inner surface of the inlet 18. When the surface treatment layer 15 is provided, the rubbing surface 14a may be roughened and the liquid tightness may be lowered. Therefore, the surface 14a is not provided with the surface treatment layer 15 but is left as the base material of the container body 10. Is desirable.

圧入口18は、ポンプやピストン等で流体4を加圧して注入(圧入)することで液体試料2を送液するために用いることができる。また、測定の方法や目的等によっては、液体試料2の連続的供給のために圧入口18を用いることもできる。
すなわち、圧入口18から圧入する流体は、圧送用の流体4(液体、気体等の各種流体)や液体試料が挙げられる。
The pressure inlet 18 can be used to feed the liquid sample 2 by pressurizing and injecting (press-injecting) the fluid 4 with a pump, a piston, or the like. Further, depending on the measurement method and purpose, the pressure inlet 18 can be used for continuous supply of the liquid sample 2.
That is, examples of the fluid that is press-fitted from the pressure inlet 18 include a pressure-feeding fluid 4 (various fluids such as liquid and gas) and a liquid sample.

本形態例の場合、圧入口18は、底壁16から下端17に向けて径が縮小するテーパー状になっており、図2に示すように、流体4を供給するチューブ3を圧入口18に外嵌め可能に形成している。本発明においては、底壁16から下端17に向けて径が拡大するテーパー状(逆テーパー状)の圧入口を設けて、流体4を供給するチューブ3を内嵌めできるようにしても良い。また、圧入口は、円筒状、角筒状、角錐状などでも良く、チューブ3側に接続用の部材を設ける場合には、圧入口が底壁16から突出していなくても構わない。また、チューブ3の代わりに先端が尖った針(注射針など中空の針)を用いる場合には、底壁16の基材をゴムやエラストマー等の弾性体とすれば、液体試料2を貯留装置に充填した後で針を刺し通して流体4の圧入口となる孔を設けることもできる。
チューブ3の材質としては、各種の樹脂や金属等が挙げられ、可撓性があるものでも可撓性がないものでも構わない。
In the case of this embodiment, the pressure inlet 18 has a tapered shape whose diameter decreases from the bottom wall 16 toward the lower end 17, and the tube 3 for supplying the fluid 4 is connected to the pressure inlet 18 as shown in FIG. 2. It is formed so that it can be externally fitted. In the present invention, a tapered (reversely tapered) pressure inlet whose diameter increases from the bottom wall 16 toward the lower end 17 may be provided so that the tube 3 for supplying the fluid 4 can be fitted therein. The pressure inlet may be cylindrical, prismatic, pyramidal, or the like. When a connecting member is provided on the tube 3 side, the pressure inlet may not protrude from the bottom wall 16. In addition, when a needle having a sharp tip (hollow needle such as an injection needle) is used instead of the tube 3, the liquid sample 2 can be stored in the storage device if the base material of the bottom wall 16 is an elastic body such as rubber or elastomer. It is also possible to provide a hole to be a pressure inlet for the fluid 4 by piercing the needle after filling.
Examples of the material of the tube 3 include various resins and metals. The tube 3 may be flexible or non-flexible.

内蓋部材20は、外面21aが容器本体10に内嵌めされるすり合わせ面21aとなっている内蓋本体21と、内蓋部材20が容器本体10に内嵌めされたときに極めて微量の液体試料が滲んだ場合に備えて、容器本体10の上端11において開口12の周縁に延設されたフランジ部13と、内蓋本体21の上面23に突出した外側筒体24と、内蓋部材20の内部に形成された液体試料の流路25を有する。
内蓋部材20の外側筒体24に外蓋部材30を嵌合する際、内蓋部材20と外蓋部材30が密着しやすく、また、後述する貯留装置1を測定装置5に接続する工程において、貯留装置1が測定装置5に安定して立垂するように、内蓋本体21の上面23は、平面に形成されている。
The inner lid member 20 includes an inner lid body 21 whose outer surface 21a is a mating surface 21a fitted inside the container body 10, and an extremely small amount of liquid sample when the inner lid member 20 is fitted inside the container body 10. In order to prepare for the bleeding, the flange portion 13 extended to the periphery of the opening 12 at the upper end 11 of the container body 10, the outer cylinder 24 projecting from the upper surface 23 of the inner lid body 21, and the inner lid member 20 It has a flow path 25 for a liquid sample formed inside.
When fitting the outer lid member 30 to the outer cylinder 24 of the inner lid member 20, the inner lid member 20 and the outer lid member 30 are easily in close contact with each other, and in the step of connecting the storage device 1 described later to the measuring device 5. The upper surface 23 of the inner lid body 21 is formed in a flat surface so that the storage device 1 is stably suspended from the measuring device 5.

内蓋部材20の流路25は、内蓋本体21の下面28に流入口26が設けられ、外側筒体24に流出口27が設けられている。内蓋部材20が容器本体10に内嵌めされたときには、流入口26が容器本体10の内部に、流出口27が容器本体10の外部に位置し、流路25が容器本体10の内外を連通している。
流路25は、容器本体10の内部に連通する流入口26から、容器本体10の外部に連通する流出口27に向かって次第に断面積が小さくなっている。これにより、図2(e)に示すように、外蓋部材30を外した状態で貯留装置1を倒立させても、表面張力や毛細管現象により液体試料2が滴下することがない程度に流路25の流出口27を滑らかに細くすることができる。
In the flow path 25 of the inner lid member 20, an inlet 26 is provided on the lower surface 28 of the inner lid body 21, and an outlet 27 is provided on the outer cylinder 24. When the inner lid member 20 is fitted in the container body 10, the inlet 26 is located inside the container body 10, the outlet 27 is located outside the container body 10, and the flow path 25 communicates between the inside and outside of the container body 10. is doing.
The flow path 25 has a cross-sectional area that gradually decreases from the inlet 26 communicating with the inside of the container body 10 toward the outlet 27 communicating with the outside of the container body 10. As a result, as shown in FIG. 2 (e), even if the storage device 1 is inverted with the outer lid member 30 removed, the flow path is such that the liquid sample 2 does not drip due to surface tension or capillary action. The 25 outlets 27 can be smoothly made thinner.

本形態例の場合、流路25は、内面のテーパー角が大きい流入口26側のテーパー部25aと、内面のテーパー角が小さい流出口27側のテーパー部25bとを有する。本形態例の場合、テーパー部25a,25bの内面は、円錐状である。なお、本発明においては、流路25は、円錐状に限定されるものではなく、多角錐状などでも良いが、円錐状の場合には、角がないので、流路の形成が容易で、液体試料2の圧送時に滞留が起きにくいことから、より好ましい。
そして、流路25のテーパー部25aとテーパー部25bに液体試料2との親和性を付与するために、容器本体10の被表面処理部14bと同様に表面処理層29が設けられている。表面処理層29を設けると、液体試料が円滑に流れやすくなるので、液体試料の圧力や流量を正確に計測することができるとともに、容器本体10の上端11とフランジ部22との隙間から漏洩する液体試料の量が少なくなる。
表面処理層29は、液体試料2に対する親和性が高く、表面の濡れ性を向上させ、かつ液体試料2の変質を防ぐことが可能なものが好ましい。
例えば液体試料2が血液である場合には、抗血栓性に優れるPMEA(ポリ2メトキシエチルアクリレート)、PVLA(ポリビニルラクトンアミド)などが挙げられる。
なお、流路25は、テーパー部を有することなく、段階的に断面積が小さくなるものであっても良いが、テーパー部で滑らかに断面積を減少させた場合には、液体試料2の充填時に空気が残留せず、圧送時に液体試料2の滞留もない。また血液等の検査においては、ずり応力による血栓等の不本意な凝固を防止することができるので、好ましい。
In the case of this embodiment, the flow path 25 has a tapered portion 25a on the inlet 26 side where the taper angle of the inner surface is large, and a tapered portion 25b on the outlet 27 side where the taper angle of the inner surface is small. In the case of this embodiment, the inner surfaces of the tapered portions 25a and 25b are conical. In the present invention, the flow path 25 is not limited to a conical shape, and may be a polygonal pyramid or the like. It is more preferable because stagnation hardly occurs when the liquid sample 2 is pumped.
In addition, in order to give affinity to the liquid sample 2 to the tapered portion 25 a and the tapered portion 25 b of the flow path 25, a surface treatment layer 29 is provided in the same manner as the surface treatment portion 14 b of the container body 10. Providing the surface treatment layer 29 facilitates smooth flow of the liquid sample, so that the pressure and flow rate of the liquid sample can be measured accurately and leak from the gap between the upper end 11 of the container body 10 and the flange portion 22. The amount of liquid sample is reduced.
The surface treatment layer 29 preferably has a high affinity for the liquid sample 2, can improve surface wettability, and can prevent the liquid sample 2 from being altered.
For example, when the liquid sample 2 is blood, PMEA (poly 2 methoxyethyl acrylate), PVLA (polyvinyl lactone amide), etc. which are excellent in antithrombogenicity are mentioned.
The flow path 25 may have a taper portion and the cross-sectional area may be gradually reduced. However, when the cross-sectional area is smoothly reduced by the taper portion, the liquid sample 2 is filled. Sometimes no air remains and there is no stagnation of the liquid sample 2 during pumping. In the examination of blood and the like, unintentional coagulation such as thrombus due to shear stress can be prevented, which is preferable.

流出口27側のテーパー部25bのテーパー角を小さくして、内蓋本体21の長さ(下面28から上面23までの距離)を長くとることにより、図2(b)から(c)に示すように、内蓋部材20を容器本体10に内嵌めするときに、容器本体10の内部空間の減少量(横溢量)を容易に確保することができる。また、流出口27の断面積を滑らかに小さくすることができ、結果として、外側筒体24を細くすることができる。これにより、図2(e)に示すように、外側筒体24を測定装置5にチューブを介すことなく接続する場合に、安定して接続することができる。この時、測定装置5がマイクロチップである場合は、マイクロチップの細い回路に直接接続することも容易となる。   2B to 2C, by reducing the taper angle of the tapered portion 25b on the outlet 27 side and increasing the length of the inner lid body 21 (distance from the lower surface 28 to the upper surface 23). As described above, when the inner lid member 20 is fitted into the container main body 10, it is possible to easily secure a reduction amount (lateral overflow amount) of the internal space of the container main body 10. Moreover, the cross-sectional area of the outflow port 27 can be reduced smoothly, and as a result, the outer cylinder 24 can be made thin. Thereby, as shown in FIG.2 (e), when connecting the outer cylinder 24 to the measuring apparatus 5 without passing a tube, it can connect stably. At this time, when the measuring device 5 is a microchip, it is easy to directly connect to a thin circuit of the microchip.

また、流入口26側のテーパー部25aは、流入口26での開口寸法が内蓋本体21の下面28の寸法に近いため、内蓋部材20を容器本体10に内嵌めするときに、流入口26で押し退けられる液体試料のほとんどが流路25に流入するようになるので、すり合わせ面14a,21a間の隙間に向かう量を極めて少なくすることができる。
また、内蓋部材20がフランジ部22を有することにより、両方のすり合わせ面14a,21a間の隙間に向かった液体試料2は、両方のすり合わせ面14a,21aがすり合って嵌合する最後の一瞬にその隙間から滲み出すおそれがある。しかし、最後の一瞬に内蓋部材20を容器本体10に強く押し込むことで、フランジ部22と容器本体10の開口周縁が強く当接した状態で、内蓋部材20と容器本体10が嵌合するので、容器本体10の上端11において開口12の周囲に滲む極微量の液体試料を上端11とフランジ部22との極めて微細な隙間に封止することで液体試料2の滲み出しを防ぐことができる。
フランジ部22がない場合は、開口12の周縁と内蓋部材20のすり合わせ面21aの交接部に液体試料が滲むが、測定者は、外蓋部材30を摘まんで内蓋部材20を容器本体10に挿入するので、測定者の指が液体試料2に触れることはない。したがって、フランジ部22は、省略することもできるが、フランジ部22があると、ここを摘まんで内蓋部材20を取り扱うことができるので、外蓋部材30を内蓋部材20に嵌合する作業が容易となり、また、後述する貯留装置1を測定装置5に接続する工程において、貯留装置1が測定装置5に、より安定して立垂するので、好ましい。
In addition, since the opening size at the inlet 26 is close to the size of the lower surface 28 of the inner lid body 21, the tapered portion 25 a on the inlet 26 side has an inlet when the inner lid member 20 is fitted into the container body 10. Since most of the liquid sample pushed away at 26 flows into the flow path 25, the amount toward the gap between the mating surfaces 14a and 21a can be extremely reduced.
Further, since the inner lid member 20 has the flange portion 22, the liquid sample 2 facing the gap between the both sliding surfaces 14 a, 21 a is the last moment when both the sliding surfaces 14 a, 21 a are fitted together. There is a risk of bleeding from the gap. However, the inner lid member 20 and the container body 10 are fitted in the state where the flange portion 22 and the opening peripheral edge of the container body 10 are in strong contact by pushing the inner lid member 20 into the container body 10 in the last moment. Therefore, it is possible to prevent the liquid sample 2 from exuding by sealing a very small amount of liquid sample which oozes around the opening 12 at the upper end 11 of the container body 10 in an extremely fine gap between the upper end 11 and the flange portion 22. .
When the flange portion 22 is not provided, the liquid sample oozes at the intersection of the peripheral edge of the opening 12 and the mating surface 21a of the inner lid member 20, but the measurer grips the outer lid member 30 and removes the inner lid member 20 from the container body 10. Therefore, the finger of the measurer does not touch the liquid sample 2. Accordingly, the flange portion 22 can be omitted, but if the flange portion 22 is present, the inner lid member 20 can be handled by gripping the flange portion 22, so that the operation of fitting the outer lid member 30 to the inner lid member 20 is possible. In addition, in the process of connecting the storage device 1 to be described later to the measurement device 5, the storage device 1 hangs more stably on the measurement device 5, which is preferable.

容器本体10のフランジ部13は、上端11の幅(開口12から外側に向かう径方向の幅)と側壁14の肉厚が大きい場合は必要ないが、フランジ部13があると、側壁14の肉厚を大きくすることなく上端11の幅を広げて、内蓋部材20のフランジ部22と対向する幅を大きくすることができるので、好ましい。   The flange portion 13 of the container body 10 is not necessary when the width of the upper end 11 (the width in the radial direction from the opening 12 to the outside) and the thickness of the side wall 14 are large. This is preferable because the width of the upper end 11 can be increased without increasing the thickness and the width of the inner lid member 20 facing the flange portion 22 can be increased.

外蓋部材30は、内蓋部材20の外側筒体24の外面24aに液密に外嵌めされる封止部32と、封止部32が外側筒体24に外嵌めされたときに外側筒体24に設けられた流路25の流出口27に連通する空室34とを有する。
本形態例の場合、外蓋部材30は、空室34を囲む外蓋本体31と、外側筒体24に外嵌めされる嵌合孔33を有する封止部32とが別基材から構成され、封止部32が外蓋本体31に嵌合、または嵌合に加えて接着剤等で液密に固定されている。
The outer lid member 30 includes a sealing portion 32 that is liquid-tightly fitted to the outer surface 24 a of the outer cylinder 24 of the inner lid member 20, and an outer cylinder when the sealing portion 32 is fitted to the outer cylinder 24. And a vacant chamber 34 communicating with the outlet 27 of the flow path 25 provided in the body 24.
In the case of this embodiment, the outer lid member 30 includes an outer lid body 31 that surrounds the empty chamber 34 and a sealing portion 32 that has a fitting hole 33 that is fitted on the outer cylindrical body 24 from different base materials. The sealing portion 32 is fitted to the outer lid main body 31 or is liquid-tightly fixed with an adhesive or the like in addition to the fitting.

外蓋部材30において、封止部32の基材が弾性体であることが好ましい。封止部32の基材が弾性体(弾性材料)からなる場合、外側筒体24を挿入したときに嵌合孔33の内面が外側筒体24の外面24aに密着し、内蓋部材20と外蓋部材30との間の液密性が向上する。これにより、内蓋部材20の外側筒体24を外蓋部材30の空室34に向けて液密に挿入することが容易になる。液密性の観点からは、嵌合孔33の内径は、外側筒体24の外径より若干小さくなるようにすることが好ましい。   In the outer lid member 30, the base material of the sealing portion 32 is preferably an elastic body. When the base material of the sealing portion 32 is made of an elastic body (elastic material), the inner surface of the fitting hole 33 comes into close contact with the outer surface 24a of the outer cylindrical body 24 when the outer cylindrical body 24 is inserted. Liquid tightness with the outer lid member 30 is improved. This facilitates liquid-tight insertion of the outer cylinder 24 of the inner lid member 20 toward the empty chamber 34 of the outer lid member 30. From the viewpoint of liquid tightness, it is preferable that the inner diameter of the fitting hole 33 is slightly smaller than the outer diameter of the outer cylindrical body 24.

封止部32に使用される弾性材料については特に限定されず、適宜のゴムもしくはエラストマーを用いることができる。このようなゴムもしくはエラストマーとしては、例えば、天然ゴム、ブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、シリコーンゴムなどの様々なゴム、あるいは、スチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマーなどの各種エラストマーを利用することができる。   The elastic material used for the sealing portion 32 is not particularly limited, and an appropriate rubber or elastomer can be used. Examples of such rubbers or elastomers include various rubbers such as natural rubber, butyl rubber, chlorinated butyl rubber, brominated butyl rubber, and silicone rubber, or styrene elastomers, vinyl chloride elastomers, olefin elastomers, and urethane elastomers. Various elastomers such as polyester elastomer and polyamide elastomer can be used.

容器本体10を構成する基材は、特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリ塩化ビニル、ポリウレタン、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ABS樹脂、AS樹脂、アイオノマー、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等のフッ素系樹脂等の各種樹脂材料、ステンレス鋼、アルミニウム、チタン等の各種金属材料、各種ガラス材、各種紙材、複合材等が挙げられる。
本形態例の場合、封止部32以外の部分、すなわち容器本体10、内蓋部材20および外蓋本体31がこれらの基材のいずれか1種または複数種から構成されている。容器本体10、内蓋部材20および外蓋本体31の基材は、互いに同じものでも良く、異なるものでも良い。
The base material constituting the container body 10 is not particularly limited. For example, polyolefin such as polyethylene, polypropylene, polybutadiene, and ethylene-vinyl acetate copolymer, polyvinyl chloride, polyurethane, polystyrene, polymethyl methacrylate, polycarbonate, polyamide, Various resin materials such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., ABS resin, AS resin, ionomer, polyacetal, polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, and other resin materials, stainless steel, Examples include various metal materials such as aluminum and titanium, various glass materials, various paper materials, and composite materials.
In the case of this embodiment, portions other than the sealing portion 32, that is, the container main body 10, the inner lid member 20, and the outer lid main body 31 are composed of any one or more of these base materials. The base materials of the container body 10, the inner lid member 20, and the outer lid body 31 may be the same as or different from each other.

空室34は、容器本体10から流路25を通じて余剰となった液体試料2aを受け入れるため、外蓋部材30の内部に設けられている。また、外蓋部材30の天面35には、空室34に連通する空気抜き孔36が設けられていると余剰となった液体試料2aの量が多い場合にも、円滑に受け入れることができるので、好ましい。これにより、満杯状態となった容器本体10から余剰の液体試料2aを外蓋部材30の空室34に通じさせることが容易になる。また、貯留装置1に液体試料を充填した後、測定時まで外蓋部材30を装着したまま保管する場合において、保管温度が変化しても、空室34内が陽圧となって液体試料を加圧することがないので、内蓋部材20と外蓋部材30の間から液体試料が漏れ出すこともない。   The empty chamber 34 is provided inside the outer lid member 30 to receive the excess liquid sample 2 a from the container body 10 through the flow path 25. In addition, if the top surface 35 of the outer lid member 30 is provided with an air vent hole 36 communicating with the empty chamber 34, it can be smoothly received even when there is a large amount of excess liquid sample 2a. ,preferable. Thereby, it becomes easy to let the excess liquid sample 2a communicate with the empty chamber 34 of the outer lid member 30 from the container main body 10 which has become full. Further, when the storage device 1 is filled with the liquid sample and then stored with the outer lid member 30 attached until measurement, the liquid sample is kept in the vacant chamber 34 with a positive pressure even if the storage temperature changes. Since the pressure is not applied, the liquid sample does not leak from between the inner lid member 20 and the outer lid member 30.

空気抜き孔36の大きさは、空室34内の余剰となった液体試料が漏れにくいよう、液体試料の粘性等に応じて適宜の小径とする。例えば、貯留装置1に血液を充填する場合は、空気抜き孔36の内径を0.5〜1.0mmの大きさとする。空気抜き孔36は、1箇所でもよいし、複数個所に設けてもよい。
また、空気抜き孔36からの余剰の液体試料2aの漏れ出しをより確実に防止するために、空室34内に脱脂綿やスポンジ、吸水性ゲル等の吸着部材を封入しておいてもよい。
なお、余剰となった液体試料の量が、容器本体10から空室34へ液体試料が移動しても空室34の内圧が変化しない程度に少ない場合は、空気抜き孔36は設けなくてもよい。
The size of the air vent hole 36 is set to an appropriate small diameter according to the viscosity of the liquid sample so that the excess liquid sample in the empty chamber 34 is difficult to leak. For example, when the storage device 1 is filled with blood, the inner diameter of the air vent hole 36 is set to a size of 0.5 to 1.0 mm. The air vent hole 36 may be provided at one place or at a plurality of places.
In addition, in order to prevent leakage of excess liquid sample 2a from the air vent hole 36 more reliably, an adsorbing member such as absorbent cotton, sponge, water absorbent gel or the like may be enclosed in the empty chamber 34.
If the amount of excess liquid sample is small enough that the internal pressure of the empty chamber 34 does not change even if the liquid sample moves from the container body 10 to the empty chamber 34, the air vent hole 36 may not be provided. .

次に、図2を参照して、本形態例の貯留装置1を用いて液体試料2を測定装置5に供給し、液体試料2の性状を測定する液体試料2の測定方法について説明する。   Next, with reference to FIG. 2, a measurement method of the liquid sample 2 in which the liquid sample 2 is supplied to the measurement device 5 using the storage device 1 of the present embodiment and the properties of the liquid sample 2 are measured will be described.

本形態例の貯留装置1は、容器本体10と蓋部材40を分離した状態で用意される。蓋部材40は、図2(a)に示すように内蓋部材20と外蓋部材30が分離しているときは、予め、図2(b)に示すように、内蓋部材20の外側筒体24を外蓋部材30の封止部32の嵌合孔33に嵌合し、外嵌めによって一体化する。   The storage device 1 of this embodiment is prepared in a state where the container body 10 and the lid member 40 are separated. When the inner lid member 20 and the outer lid member 30 are separated from each other as shown in FIG. 2 (a), the lid member 40 is preliminarily arranged in the outer cylinder of the inner lid member 20 as shown in FIG. 2 (b). The body 24 is fitted into the fitting hole 33 of the sealing portion 32 of the outer lid member 30 and integrated by external fitting.

(液体試料充填工程)
まず、図2(b)に示すように、容器本体10に液体試料2を充填する液体試料充填工程を行う。液体試料充填工程においては、次工程で内蓋部材20が容器本体10に内嵌めされたとき(図2(c)参照)に内蓋部材20の下面28が達する位置Lよりもやや上側まで、従来から公知のピペット等を用いて液体試料2を供給する。液体試料2が位置Lよりも上側に存在する高さHは、その体積が内蓋部材20の流路25の容積よりも大きくなるようにする。ただし、その余剰分が空室34に受け入れられても溢れることがないよう、容器本体10の位置Lよりも上側に存在する液体試料2の体積は、内蓋部材20の流路25の容積と空室34の容積の合計よりも小さくなるようにする。
なお、容器本体10の圧入口18の開口は、開放されているが、図示しないチューブ3のもう一端がポンプ等に接続されて閉じられていれば、液体試料2は、圧入口18から流出することはない。液体試料2の粘度や表面張力によっては、チューブ3が嵌合されていなかったり、図示しないチューブ3のもう一端が開放状態であったりしても、液体試料2の表面張力によって、圧入口18から流出することはない。
(Liquid sample filling process)
First, as shown in FIG. 2B, a liquid sample filling process for filling the container body 10 with the liquid sample 2 is performed. In the liquid sample filling step, when the inner lid member 20 is fitted into the container body 10 in the next step (see FIG. 2 (c)), to a position slightly above the position L where the lower surface 28 of the inner lid member 20 reaches, The liquid sample 2 is supplied using a conventionally known pipette or the like. The height H at which the liquid sample 2 exists above the position L is set so that the volume thereof is larger than the volume of the flow path 25 of the inner lid member 20. However, the volume of the liquid sample 2 existing above the position L of the container main body 10 is equal to the volume of the flow path 25 of the inner lid member 20 so that the surplus will not overflow even if it is received in the empty chamber 34. The volume is made smaller than the total volume of the vacancies 34.
Although the opening of the pressure inlet 18 of the container body 10 is open, the liquid sample 2 flows out from the pressure inlet 18 if the other end of the tube 3 (not shown) is connected to a pump or the like and closed. There is nothing. Depending on the viscosity and surface tension of the liquid sample 2, even if the tube 3 is not fitted or the other end of the tube 3 (not shown) is in the open state, There is no spillage.

(貯留装置封止工程)
次に、図2(c)に示すように、蓋部材40によって容器本体10を封止する貯留装置封止工程を行う。ここでは、図2(b)の予め外側筒体24に封止部32が外嵌めされた内蓋部材20を、液体試料2が充填された容器本体10の上端11の開口12に液密に内嵌めすることにより容器本体10の内部空間を減少させ容器本体10を満杯状態とする。これにより、余剰となった液体試料2aは、流路25を通じて空室34内に受け入れられる。
(Storage device sealing process)
Next, as illustrated in FIG. 2C, a storage device sealing process for sealing the container body 10 with the lid member 40 is performed. Here, the inner lid member 20 in which the sealing portion 32 is fitted on the outer cylinder 24 in advance in FIG. 2B is liquid-tightly connected to the opening 12 at the upper end 11 of the container body 10 filled with the liquid sample 2. The internal space of the container body 10 is reduced by fitting the container body 10 so that the container body 10 is full. As a result, the excess liquid sample 2 a is received in the empty chamber 34 through the flow path 25.

(貯留装置接続工程)
次に、図2(d)に示すように、図2(c)の貯留装置1から外蓋部材30を、空室34内の余剰となった液体試料2aとともに除去し、さらに、図2(e)に示すように、露出した内蓋部材20の外側筒体24を測定装置5に接続する貯留装置接続工程を行う。
外蓋部材30を取り外した貯留装置6は、上述したように、天地を入れ替え、上下を逆さにして、この貯留装置6の内蓋部材20の外側筒体24を測定装置5に設けられた嵌合用の孔に挿入して測定装置5に接続すると、貯留装置6は、平らな内蓋本体21の上面23とフランジ部22とに支えられて測定装置5に安定して立垂する。この様に接続すると、測定装置5の上方および下方の空間を有効に活用でき、測定装置5の下側(図2(e)の下側)にカメラ等の観測装置(図示せず)を設置することができる。これにより、測定が容易となり、測定結果を自動的に記録することもできるので好ましい。
なお、内蓋部材20の外側筒体24の開口は、開放されているが、容器本体10の圧入口から流体4が圧入されない限り、上下を逆さにしても液体試料2は、表面張力によって外側筒体24から流出することはない。
また、外側筒体24を測定装置5に接続するに際して、天地を入れ替えることなく、接続してもよいし、チューブ等を用いて接続してもよいことは勿論である。
(Storage device connection process)
Next, as shown in FIG. 2 (d), the outer lid member 30 is removed from the storage device 1 of FIG. 2 (c) together with the excess liquid sample 2a in the empty chamber 34, and further, FIG. As shown to e), the storage apparatus connection process which connects the outer side cylinder 24 of the exposed inner cover member 20 to the measuring apparatus 5 is performed.
The storage device 6 from which the outer lid member 30 has been removed, as described above, is a fitting in which the outer cylinder 24 of the inner lid member 20 of the storage device 6 is provided in the measuring device 5 by changing the top and bottom and upside down. When it is inserted into the corresponding hole and connected to the measuring device 5, the storage device 6 is supported by the flat upper surface 23 of the inner lid main body 21 and the flange portion 22 and hangs stably on the measuring device 5. By connecting in this way, the space above and below the measuring device 5 can be used effectively, and an observation device (not shown) such as a camera is installed below the measuring device 5 (below FIG. 2 (e)). can do. This facilitates measurement and is preferable because the measurement result can be recorded automatically.
The opening of the outer cylinder 24 of the inner lid member 20 is open. However, the liquid sample 2 is outside due to surface tension even if it is turned upside down unless the fluid 4 is pressed from the pressure inlet of the container body 10. It does not flow out of the cylinder 24.
Moreover, when connecting the outer cylinder 24 to the measuring apparatus 5, it may be connected without changing the top and bottom, or may be connected using a tube or the like.

液体試料2を貯留装置6から測定装置5に供給する際には、容器本体10の下端17に設けた圧入口18から流体4を圧入し、圧入した流体4で液体試料2を押圧することで、矢印2bに示すように液体試料2を流出口27から吐出し、流体4の圧入量に応じた分量を、連続的または断続的に供給することができる。液体試料2の圧送状態を制御し、または確認するため、液体試料2や流体4の圧力変化や流量を計測することが好ましい。なお、本明細書では「計測」という用語は、液体試料の測定結果を数値化することを意味する。   When the liquid sample 2 is supplied from the storage device 6 to the measuring device 5, the fluid 4 is press-fitted from the pressure inlet 18 provided at the lower end 17 of the container body 10, and the liquid sample 2 is pressed by the fluid 4 that has been press-fitted. As shown by the arrow 2b, the liquid sample 2 can be discharged from the outlet 27, and an amount corresponding to the press-fitting amount of the fluid 4 can be supplied continuously or intermittently. In order to control or confirm the pumping state of the liquid sample 2, it is preferable to measure the pressure change or flow rate of the liquid sample 2 or the fluid 4. In the present specification, the term “measurement” means that the measurement result of the liquid sample is digitized.

圧入する流体4が液体であると、圧力によって流体4が圧縮して体積が変動することがないので、供給量の制御が容易になる。また、液体試料の測定時に、ポンプやピストン等の圧送手段を用いて液体試料の圧送時の圧力や流量の変化を応答性よく計測することが可能になる。
圧送用の流体4は、液体試料2と混和や溶解がなく、かつ液体試料2を変質させないものが好ましい。例えば液体試料2が血液である場合は、流体4にミネラルオイル等を用いることができる。
If the fluid 4 to be press-fitted is a liquid, the fluid 4 is not compressed by the pressure and the volume does not fluctuate, so the supply amount can be easily controlled. In addition, when measuring a liquid sample, it is possible to measure changes in pressure and flow rate when the liquid sample is pumped with high responsiveness using pumping means such as a pump and a piston.
The fluid 4 for pumping is preferably one that is not mixed or dissolved with the liquid sample 2 and does not alter the liquid sample 2. For example, when the liquid sample 2 is blood, mineral oil or the like can be used for the fluid 4.

測定装置5は、特に限定されるものではないが、板状基板に溝が形成されたマイクロチップが好ましい。例えば特許文献1に記載されるような、回路となる溝を形成した基板に他の基板を積層してなるマイクロチップは、コンパクトであるので、好適に用いることができる。
マイクロチップの材質は、金属、ガラス、プラスチック、シリコーン等の各種基材が挙げられる。マイクロチップ内の変化(血栓の生成や薬剤の呈色など)を観測するため、透明な材質が好ましい。マイクロチップが血栓観測用である場合には、抗血栓性の基材を用いることが好ましく、特にPDMS(ポリジメチルシロキサン)等のシリコーン樹脂製としたときには、抗血栓性で、かつ密着性に優れるため、溝が形成された板状基板と蓋部材とを、接着剤等で接着しなくても、圧着で回路を形成することができる。アクリル樹脂等の抗血栓性でない基材を用いる場合は、回路内等をPVLAやPMEA等で抗血栓処理することが好ましい。
The measuring device 5 is not particularly limited, but a microchip in which a groove is formed on a plate-like substrate is preferable. For example, a microchip formed by laminating another substrate on a substrate on which a circuit groove is formed as described in Patent Document 1 is compact and can be suitably used.
Examples of the material of the microchip include various substrates such as metal, glass, plastic, and silicone. A transparent material is preferred for observing changes in the microchip (such as thrombus formation and drug coloration). When the microchip is used for blood clot observation, it is preferable to use an antithrombotic substrate, and particularly when it is made of a silicone resin such as PDMS (polydimethylsiloxane), it is antithrombotic and has excellent adhesion. Therefore, a circuit can be formed by pressure bonding without bonding the plate-like substrate having the groove formed thereon and the lid member with an adhesive or the like. When using a non-antithrombogenic substrate such as an acrylic resin, it is preferable to perform antithrombotic treatment in the circuit or the like with PVLA or PMEA.

本形態例においては、容器本体10の下端に流体4を圧入するための圧入口18が設けられているが、圧入口が設けられていない場合は、貯留装置6を測定装置5に接続した後からでも圧入口を設けることができる。例えば、容器本体10の底壁をゴムやエラストマー等の柔軟な基材で形成し、シリンジ針や注射針を刺し通して圧入口となる孔を開ける方法等が挙げられる。   In the present embodiment, a pressure inlet 18 for press-fitting the fluid 4 is provided at the lower end of the container body 10, but when the pressure inlet is not provided, the storage device 6 is connected to the measuring device 5. The pressure inlet can be provided even from the outside. For example, there may be mentioned a method in which the bottom wall of the container body 10 is formed of a flexible base material such as rubber or elastomer, and a hole serving as a pressure inlet is formed by inserting a syringe needle or an injection needle.

以上説明したように、本形態例によれば、容器本体10に充填した液体試料2を内蓋部材20の内嵌めにより満杯状態にし、余剰の液体試料2aを外蓋部材30の空室34に受け入れることができるので、測定装置5に接続する貯留装置(リザーバ)6に液体試料2を外部に漏洩させることなく満杯状態で充填することができる。その結果、測定装置5への空気混入を防止することができるので、液体試料2の送液を一定または所定の圧力で行うことができ、この時の圧力変化や流量を正確に計測することができる。また、空気混入を防止した状態で容易にポンプ等の送液手段に接続することができ、長時間連続的または断続的に液体試料2を供給することもできる。   As described above, according to the present embodiment, the liquid sample 2 filled in the container main body 10 is filled with the inner cover member 20 and the excess liquid sample 2a is filled in the empty chamber 34 of the outer cover member 30. Since it can be received, the liquid sample 2 can be filled in a full state in the storage device (reservoir) 6 connected to the measurement device 5 without leaking outside. As a result, since air can be prevented from entering the measuring device 5, the liquid sample 2 can be fed at a constant or predetermined pressure, and the pressure change and flow rate at this time can be accurately measured. it can. In addition, the liquid sample 2 can be easily connected to liquid feeding means such as a pump in a state where air mixing is prevented, and the liquid sample 2 can be supplied continuously or intermittently for a long time.

近年、医療従事者の安全が強く求められており、不特定多数の検体での検査は測定者の安全性を守る上で血液が触れることを避ける必要性がある。内蓋部材20の内嵌めにより容器本体10に充填した液体試料2を満杯状態にした時、内蓋部材20の流出口27から吐出漏洩される液体試料2を外蓋部材30の空室34に導入することによって液体試料2に触れることなく、液体試料2で満杯状態の貯留装置6を用意し、測定を行うことができる。
また、液体試料2は流体4の圧力によって貯留装置6から吐出されるので、貯留装置6内に空気(気泡)を含むと、圧送ポンプ等での圧力変化や流量の計測データが不正確になる場合がある。本発明においては、空室34を有する外蓋部材30を内蓋部材20に取り付けることによって、容器本体10に液体試料2を多めに充填し、余剰の液体試料2aを外蓋部材30の空室34に受け入れさせることができるので、貯留装置6内の空気を除去して満杯充填することができる。
In recent years, there has been a strong demand for the safety of medical staff, and testing with an unspecified number of specimens needs to avoid contact with blood in order to protect the safety of the measurer. When the liquid sample 2 filled in the container main body 10 is filled by the internal fitting of the inner lid member 20, the liquid sample 2 discharged and leaked from the outlet 27 of the inner lid member 20 is filled in the empty chamber 34 of the outer lid member 30. By introducing, the storage device 6 filled with the liquid sample 2 can be prepared and measured without touching the liquid sample 2.
In addition, since the liquid sample 2 is discharged from the storage device 6 due to the pressure of the fluid 4, if the storage device 6 contains air (bubbles), the pressure change data and flow rate measurement data in the pressure pump or the like become inaccurate. There is a case. In the present invention, by attaching the outer lid member 30 having the vacant chamber 34 to the inner lid member 20, the container body 10 is filled with the liquid sample 2 more and the excess liquid sample 2 a is filled in the vacant chamber of the outer lid member 30. 34, the air in the storage device 6 can be removed and filled up.

本発明は、血液等、各種液体試料の測定(検査、観測あるいは試験)に利用することができる。   The present invention can be used for measurement (examination, observation or test) of various liquid samples such as blood.

1,6…液体試料の貯留装置、2…液体試料、2a…余剰の液体試料、4…流体、5…測定装置、10…容器本体、11…上端、12…開口、17…下端、18…圧入口、20…内蓋部材、22…フランジ部、23…上面、24…外側筒体、25…流路、27…流出口、30…外蓋部材、32…封止部、34…空室、35…天面、36…空気抜き孔、40…蓋部材。 DESCRIPTION OF SYMBOLS 1,6 ... Liquid sample storage device, 2 ... Liquid sample, 2a ... Excess liquid sample, 4 ... Fluid, 5 ... Measuring device, 10 ... Container body, 11 ... Upper end, 12 ... Opening, 17 ... Lower end, 18 ... Pressure inlet, 20 ... inner lid member, 22 ... flange part, 23 ... upper surface, 24 ... outer cylinder, 25 ... flow path, 27 ... outlet, 30 ... outer lid member, 32 ... sealing part, 34 ... empty room 35 ... Top surface, 36 ... Air vent hole, 40 ... Lid member.

Claims (12)

上端に開口を有する容器本体と、前記容器本体の上端の開口を封止する蓋部材を備える液体試料の貯留装置であって、
前記蓋部材は、前記容器本体の上端の開口から前記容器本体の内面に液密に内嵌めされる内蓋部材と、前記内蓋部材に外側から嵌合される外蓋部材を備え、
前記内蓋部材には、前記内蓋部材の上面に突出した外側筒体が設けられ、
前記内蓋部材は、その内部に、前記容器本体の内外を連通して前記外側筒体に流出口が設けられた液体試料の流路を有し、
前記外蓋部材は、前記内蓋部材の前記外側筒体の外面に液密に外嵌めされる封止部と、前記封止部が前記外側筒体に外嵌めされたときに前記外側筒体の前記流出口に連通して前記流路を通じて余剰となった液体試料を受け入れる空室とを有することを特徴とする液体試料の貯留装置。
A liquid sample storage device comprising: a container body having an opening at the upper end; and a lid member for sealing the opening at the upper end of the container body,
The lid member includes an inner lid member that is liquid-tightly fitted into the inner surface of the container body from an opening at the upper end of the container body, and an outer lid member that is fitted from the outside to the inner lid member.
The inner lid member is provided with an outer cylinder projecting from the upper surface of the inner lid member,
The inner lid member has a liquid sample flow channel in which the inside and outside of the container body communicate with each other, and an outflow port is provided in the outer cylindrical body,
The outer lid member includes a sealing portion that is liquid-tightly fitted to an outer surface of the outer cylinder of the inner lid member, and the outer cylinder when the sealing portion is fitted to the outer cylinder. And a vacant chamber for receiving an excess liquid sample through the flow path in communication with the outlet.
前記外蓋部材の前記封止部の基材が弾性体であることを特徴とする請求項1に記載の液体試料の貯留装置。   The liquid sample storage device according to claim 1, wherein a base material of the sealing portion of the outer lid member is an elastic body. 前記外蓋部材の天面には、前記空室に連通する空気抜き孔が設けられていることを特徴とする請求項1または2に記載の液体試料の貯留装置。   3. The liquid sample storage device according to claim 1, wherein an air vent hole communicating with the empty chamber is provided on a top surface of the outer lid member. 前記内蓋部材の前記流路は、前記容器本体の内部に連通する側から前記流出口に向かって次第に断面積が小さくなっていることを特徴とする請求項1ないし3のいずれかに記載の液体試料の貯留装置。   4. The cross-sectional area of the flow path of the inner lid member gradually decreases from the side communicating with the inside of the container body toward the outlet. Liquid sample storage device. 前記容器本体は、流体の圧入が可能な圧入口を下端に有することを特徴とする請求項1ないし4のいずれかに記載の液体試料の貯留装置。   5. The liquid sample storage device according to claim 1, wherein the container main body has a pressure inlet capable of fluid injection at a lower end. 請求項1ないし5のいずれかに記載の液体試料の貯留装置を用いて液体試料を測定装置に供給し、液体試料の性状を測定する液体試料の測定方法であって、
前記容器本体に液体試料を充填する液体試料充填工程と、
予め前記外側筒体に前記外蓋部材の前記封止部が外嵌めされた蓋部材の前記内蓋部材を、液体試料が充填された前記容器本体の上端の開口に液密に内嵌めすることにより前記容器本体の内部空間を減少させ前記容器本体を満杯状態として、余剰となった液体試料を前記内蓋部材の前記流路を通じて前記外蓋部材の前記空室内に受け入れる貯留装置封止工程と、
前記貯留装置から前記外蓋部材を、前記空室内の余剰となった液体試料とともに除去し、露出した前記内蓋部材の前記外側筒体を測定装置に接続する貯留装置接続工程と、をこの順序で有することを特徴とする液体試料の測定方法。
A liquid sample measurement method for supplying a liquid sample to a measurement device using the liquid sample storage device according to any one of claims 1 to 5, and measuring the property of the liquid sample,
A liquid sample filling step of filling the container body with a liquid sample;
The inner lid member of the lid member in which the sealing portion of the outer lid member is fitted on the outer cylinder in advance is liquid-tightly fitted into the opening at the upper end of the container body filled with the liquid sample. And a storage device sealing step for reducing the internal space of the container body to fill the container body and receiving an excess liquid sample into the empty chamber of the outer lid member through the flow path of the inner lid member; ,
The storage device connection step of removing the outer lid member from the storage device together with the excess liquid sample in the vacant chamber and connecting the exposed outer cylinder of the inner lid member to the measuring device in this order. A method for measuring a liquid sample, comprising:
前記容器本体が、流体の圧入が可能な圧入口を下端に有する場合は前記圧入口から、前記容器本体が前記圧入口を有しない場合は前記容器本体の下端に圧入口を形成してその圧入口から、流体を圧入し、圧入した流体で押圧して液体試料を測定装置に供給することを特徴とする請求項6に記載の液体試料の測定方法。   A pressure inlet is formed at the lower end of the container main body when the container main body has a pressure inlet capable of fluid injection at the lower end, and a pressure inlet is formed at the lower end of the container main body when the container main body does not have the pressure inlet. The method for measuring a liquid sample according to claim 6, wherein a fluid sample is pressed from the inlet, and the fluid sample is supplied to the measuring device by being pressed by the pressed fluid. 前記流体が液体であることを特徴とする請求項7に記載の液体試料の測定方法。   The liquid sample measuring method according to claim 7, wherein the fluid is a liquid. 前記液体試料の供給が連続的または断続的であることを特徴とする請求項6ないし8のいずれかに記載の液体試料の測定方法。   9. The method for measuring a liquid sample according to claim 6, wherein the supply of the liquid sample is continuous or intermittent. チューブを介すことなく、前記内蓋部材の前記外側筒体を、前記測定装置に設けられた液体試料導入口に接合させて前記貯留装置と前記測定装置とを直接接続することを特徴とする請求項6ないし9のいずれかに記載の液体試料の測定方法。   The storage device and the measurement device are directly connected by joining the outer cylindrical body of the inner lid member to a liquid sample inlet provided in the measurement device without using a tube. The method for measuring a liquid sample according to claim 6. 前記貯留装置の天地を入れ替え、上下を逆さにして、前記内蓋部材の前記外側筒体が下を向くように前記測定装置に接続することを特徴とする請求項6ないし10のいずれかに記載の液体試料の測定方法。   11. The storage device according to claim 6, wherein the storage device is connected to the measurement device so that the top and bottom are turned upside down and the outer cylindrical body of the inner lid member faces downward. Method for measuring liquid sample. 前記測定装置が、板状基板に溝が形成されたマイクロチップであることを特徴とする請求項6ないし11のいずれかに記載の液体試料の測定方法。   12. The method for measuring a liquid sample according to claim 6, wherein the measuring device is a microchip in which a groove is formed on a plate-like substrate.
JP2009046157A 2009-02-27 2009-02-27 Liquid sample storage device and liquid sample measurement method Active JP5140620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046157A JP5140620B2 (en) 2009-02-27 2009-02-27 Liquid sample storage device and liquid sample measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046157A JP5140620B2 (en) 2009-02-27 2009-02-27 Liquid sample storage device and liquid sample measurement method

Publications (2)

Publication Number Publication Date
JP2010203774A true JP2010203774A (en) 2010-09-16
JP5140620B2 JP5140620B2 (en) 2013-02-06

Family

ID=42965414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046157A Active JP5140620B2 (en) 2009-02-27 2009-02-27 Liquid sample storage device and liquid sample measurement method

Country Status (1)

Country Link
JP (1) JP5140620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255004A (en) * 2020-09-27 2021-01-22 中国科学院空间应用工程与技术中心 Axial buckling metal sealing deep space sampling packaging device and leakage rate monitoring packaging system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102223194B1 (en) * 2019-03-18 2021-03-04 주식회사 셀스미스 Microwell Container for Cell Culture Camprising Functional Cap and the Cap therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142257U (en) * 1978-03-22 1979-10-03
JPS5832345U (en) * 1981-08-20 1983-03-02 株式会社常光 pipe cap
JPH01276042A (en) * 1988-04-27 1989-11-06 Fuji Photo Film Co Ltd Liquid fixed quantity collecting instrument
JPH0680657U (en) * 1993-04-26 1994-11-15 神田ゴム化学株式会社 Lid with inner stopper of container
JPH07299052A (en) * 1994-04-08 1995-11-14 Becton Dickinson & Co Collection assembly
JPH10236500A (en) * 1997-02-28 1998-09-08 Ayaka Koshiro Container with measuring cap and method for measuring liquid using the same
JP2007315793A (en) * 2006-05-23 2007-12-06 Neat:Kk Pipette tip used for measuring sampled liquid, measuring method using pipette tip and measuring instrument
JP2008011880A (en) * 2006-06-30 2008-01-24 Sakae:Kk Liquid collector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142257U (en) * 1978-03-22 1979-10-03
JPS5832345U (en) * 1981-08-20 1983-03-02 株式会社常光 pipe cap
JPH01276042A (en) * 1988-04-27 1989-11-06 Fuji Photo Film Co Ltd Liquid fixed quantity collecting instrument
JPH0680657U (en) * 1993-04-26 1994-11-15 神田ゴム化学株式会社 Lid with inner stopper of container
JPH07299052A (en) * 1994-04-08 1995-11-14 Becton Dickinson & Co Collection assembly
JPH10236500A (en) * 1997-02-28 1998-09-08 Ayaka Koshiro Container with measuring cap and method for measuring liquid using the same
JP2007315793A (en) * 2006-05-23 2007-12-06 Neat:Kk Pipette tip used for measuring sampled liquid, measuring method using pipette tip and measuring instrument
JP2008011880A (en) * 2006-06-30 2008-01-24 Sakae:Kk Liquid collector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255004A (en) * 2020-09-27 2021-01-22 中国科学院空间应用工程与技术中心 Axial buckling metal sealing deep space sampling packaging device and leakage rate monitoring packaging system

Also Published As

Publication number Publication date
JP5140620B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US10126211B2 (en) Bodily fluid sampler
JP4963790B2 (en) Automatic preparation IV solution administration system
CN104918703B (en) Pipette
US20140045275A1 (en) Apparatus for hermetically sealed storage of liquids for a microfluidic system
US20110194977A1 (en) Liquid container for analysis
US7384409B2 (en) Disposable cassette
US10705046B2 (en) Electrophoresis device and electrophoresis method
EP1600746A2 (en) Fluid dispenser cartridge with bladder means
JP2011092425A (en) Chemical sampling device, chemical sampling container, and endoscope washing and sterilizing device
JP5140620B2 (en) Liquid sample storage device and liquid sample measurement method
CN100502829C (en) Closure device for a container
US20080172025A1 (en) Chemical reaction cartridge and using method thereof
JP2009102070A (en) Liquid medicine-supplying tip end having storage portion
US11448571B2 (en) Specimen collection tip, specimen preparation container and specimen preparation kit
US11441977B2 (en) Biological fluid dilution devices
JP2010133843A (en) Sample solution supply method and vessel
JP2017207429A (en) Fluid handling device
EP0796659A2 (en) Pipette for collecting and dispensing material samples
KR20160072506A (en) Deaeration apparatus and apparatus for applying diagnostic reagent including the same
JP2009281954A (en) Reaction vessel plate and reaction processing method
US20150314288A1 (en) Cartridge for uptake and processing of a sample
WO2005030033A2 (en) Fluid sample test device
JP2021089188A (en) Testing device and control method therefor
CN110624615A (en) Micro-fluidic chip
US11992841B2 (en) Test apparatus, injection method, and microchannel device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5140620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250