JP2010203765A - Operation control method of steam generation system using waste heat - Google Patents
Operation control method of steam generation system using waste heat Download PDFInfo
- Publication number
- JP2010203765A JP2010203765A JP2010057468A JP2010057468A JP2010203765A JP 2010203765 A JP2010203765 A JP 2010203765A JP 2010057468 A JP2010057468 A JP 2010057468A JP 2010057468 A JP2010057468 A JP 2010057468A JP 2010203765 A JP2010203765 A JP 2010203765A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- pressure
- generation system
- exhaust heat
- suction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002918 waste heat Substances 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 35
- 239000000446 fuel Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 58
- 239000007789 gas Substances 0.000 description 29
- 230000001276 controlling effect Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 238000010795 Steam Flooding Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
本発明は、工場などから発生する排熱より低圧蒸気を製造し、その低圧蒸気を昇圧させるようにした蒸気発生システムの運転制御方法に関する。 The present invention relates to an operation control method for a steam generation system in which low-pressure steam is produced from exhaust heat generated from a factory or the like, and the low-pressure steam is boosted.
工場などからは多くの排熱が発生する。排熱は、例えば、ガスエンジンなどを動力源とするコジェネレーションシステムにおけるジャケット冷却水、工場や病院等において使用される蒸気からの蒸気環水、ボイラ等の排ガスからの回収温水、固体・液体系を液体冷却した際に生じる温水のように、温水(以下、排温水という)の形態で取り出されることが多い。通常の場合、排熱から得られる排温水の温度は90℃以下である。 Much waste heat is generated from factories. Exhaust heat is, for example, jacket cooling water in a cogeneration system that uses a gas engine as a power source, steam ring water from steam used in factories or hospitals, hot water recovered from exhaust gas from boilers, solid / liquid systems, etc. In many cases, it is taken out in the form of warm water (hereinafter referred to as waste hot water), such as warm water generated when liquid is cooled. In normal cases, the temperature of the exhaust hot water obtained from the exhaust heat is 90 ° C. or less.
これら排温水は、吸収式冷凍機の熱源やボイラ給水の予熱などには有効に用いられており、例えば、特許文献1では、吸収式冷凍機の熱源として排温水が利用されている。しかしながら、一般の工場における熱利用には、0.1〜1.0MPa(G)程度の中圧蒸気が求められており、上記のように90℃以下である排温水のみからでは正圧の蒸気を製造することはできず、その用途はきわめて限定的とならざるを得ない。結果として、多くの排熱が使用されずに放熱されているのが現状である。 These waste water is used effectively for the heat source of an absorption refrigerator, the preheating of boiler feed water, etc. For example, in patent document 1, waste water is utilized as a heat source of an absorption refrigerator. However, medium-pressure steam of about 0.1 to 1.0 MPa (G) is required for heat utilization in general factories, and positive pressure steam is obtained only from the exhaust water having a temperature of 90 ° C. or less as described above. Cannot be manufactured and its use must be very limited. As a result, a large amount of exhaust heat is dissipated without being used.
一つの解決策として、特許文献2および特許文献3には、ヒートポンプを用いることにより排温水を熱源として低圧の蒸気を発生することが提案されている。ヒートポンプを用いることにより、排温水の用途を拡大することは可能であるが、現状で、発生する蒸気の圧力は0.1MPa(G)程度であり、そのままでは用途が限られることから、工場などにおいて広く利用されるには至っていない。
As one solution,
本発明は、上記のような現状に鑑みてなされたものであり、工場などから出される排熱の用途を拡大することを課題とし、より具体的には、工場などから出される排熱を利用して得られる低圧蒸気をより高い圧力の蒸気に昇圧し、それにより排熱の用途を拡大することのできる、排熱を利用した蒸気発生システムを実現することを課題とする。 The present invention has been made in view of the current situation as described above, and aims to expand the use of exhaust heat emitted from factories and the like, and more specifically, utilizes exhaust heat emitted from factories and the like. An object of the present invention is to realize a steam generation system using exhaust heat that can increase the pressure of the low-pressure steam obtained in this way to higher-pressure steam, thereby expanding the use of exhaust heat.
上記の課題を解決する本発明による排熱を利用した蒸気発生システムの運転制御方法の第1の態様は、第1の排熱から第1の蒸気を製造する第1蒸気発生源と、前記第1の蒸気を吸引蒸気として利用する中圧蒸気製造手段とを少なくとも備え、前記中圧蒸気製造手段は、前記第1の排熱とは異なる第2の熱源から前記第1の蒸気よりも圧力の高い第2の蒸気を製造する第2蒸気発生源と前記第2の蒸気を駆動蒸気として利用する蒸気昇圧装置とで構成され、前記蒸気昇圧装置は、前記第1の蒸気を吸引蒸気として利用し、前記第2の蒸気を駆動蒸気として利用して前記第1の蒸気よりも圧力の高い吐出蒸気を作り出すようにされた排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第2の蒸気の圧力と前記第1の蒸気の圧力とを測定し、その測定値から得られる最適な第2の蒸気量と第1の蒸気量の比率となるように、前記第2の蒸気の供給量と前記第1の蒸気の供給量の双方またはいずれか一方を制御し、それにより、安定した圧力と流量の前記吐出蒸気を継続して作り出すように制御する運転制御を含むことを特徴とする。 A first aspect of an operation control method for a steam generation system using exhaust heat according to the present invention that solves the above problems includes a first steam generation source that produces first steam from first exhaust heat, Medium pressure steam producing means that uses one steam as suction steam, and the medium pressure steam producing means has a pressure higher than that of the first steam from a second heat source different from the first exhaust heat. A second steam generation source that produces high second steam and a steam booster that uses the second steam as driving steam, and the steam booster uses the first steam as suction steam. An operation control method for a steam generation system using exhaust heat that uses the second steam as driving steam to produce discharge steam having a pressure higher than that of the first steam, the steam generation The system comprises a control panel, said control panel As one of the operation controls, the pressure of the second steam and the pressure of the first steam are measured, and the optimum ratio of the second steam amount and the first steam amount obtained from the measured value is As described above, the supply amount of the second steam and / or the supply amount of the first steam are controlled so that the discharge steam having a stable pressure and flow rate is continuously generated. Operation control to control is included.
本発明による排熱を利用した蒸気発生システムの運転制御方法の第2の態様は、上記排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第2の蒸気の圧力と前記吐出蒸気の圧力の双方またはいずれか一方の値に測定し、その測定値から得られる前記蒸気昇圧装置の吸引可能な最低圧力となるように前記第1の蒸気の圧力を制御する運転制御を含むことを特徴とする。 A second aspect of the operation control method of the steam generation system using exhaust heat according to the present invention is an operation control method of the steam generation system using exhaust heat, wherein the steam generation system includes a control panel, The control panel measures the pressure of the second steam and / or the pressure of the discharged steam as one of operation controls, and the steam booster that can be sucked from the measured value can be sucked Operation control for controlling the pressure of the first steam so as to be the lowest pressure is included.
本発明による排熱を利用した蒸気発生システムの運転制御方法の第3の態様は、上記排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記吐出蒸気の圧力の値に測定し、その測定値に応じて、前記第2の蒸気発生源の燃料消費量を制御して前記第2の蒸気の圧力を調整する運転制御を含むことを特徴とする。 A third aspect of the operation control method of the steam generation system using exhaust heat according to the present invention is an operation control method of the steam generation system using exhaust heat, wherein the steam generation system includes a control panel, As one of operation controls, the control panel measures the pressure value of the discharged steam, and controls the fuel consumption of the second steam generation source according to the measured value, thereby controlling the second steam generation amount. It is characterized by including the operation control which adjusts a pressure.
本発明による排熱を利用した蒸気発生システムの運転制御方法の第4の態様は、上記排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第1蒸気発生源の使用を停止し、前記第1の排熱から負圧蒸気を製造してそれを前記蒸気昇圧装置の吸引蒸気として用いる運転制御を含むことを特徴とする。 A fourth aspect of the operation control method of the steam generation system using exhaust heat according to the present invention is an operation control method of the steam generation system using exhaust heat, wherein the steam generation system includes a control panel, As one of operation controls, the control panel stops the use of the first steam generation source, produces negative pressure steam from the first exhaust heat, and uses it as suction steam of the steam booster. It is characterized by including.
本発明による排熱を利用した蒸気発生システムの運転制御方法の第5の態様は、上記排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記蒸気昇圧装置へ前記第2の蒸気の供給を開始した後に、前記蒸気昇圧装置の運転条件で決まる吸引可能最低圧力以上の圧力である前記第1の蒸気の供給を開始するようにする運転制御を含むことを特徴とする。 A fifth aspect of the operation control method of the steam generation system using exhaust heat according to the present invention is the operation control method of the steam generation system using exhaust heat, wherein the steam generation system includes a control panel, The control panel, as one of operation control, starts the supply of the second steam to the steam pressure increasing device, and then the first pressure which is equal to or higher than the minimum suctionable pressure determined by the operating conditions of the steam pressure increasing device. Operation control for starting supply of steam is included.
本発明による排熱を利用した蒸気発生システムの運転制御方法の第6の態様は、上記排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第2の蒸気の圧力と前記第1の蒸気の圧力とを測定し、その測定値が設定値を超えたときに、前記第1の蒸気の前記蒸気昇圧装置への供給路を遮断する運転制御を含むことを特徴とする。 A sixth aspect of the operation control method of the steam generation system using exhaust heat according to the present invention is the operation control method of the steam generation system using exhaust heat, wherein the steam generation system includes a control panel, The control panel measures the pressure of the second steam and the pressure of the first steam as one of operation controls, and when the measured value exceeds a set value, It is characterized by including the operation control which interrupts | blocks the supply path to a steam pressure | voltage riser.
本発明による排熱を利用した蒸気発生システムの運転制御方法の第7の態様は、上記排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第1の蒸気の圧力を測定し、その測定値が設定値を超えたときに、前記第1の蒸気の前記蒸気昇圧装置への供給路および第1の排熱の第1蒸気発生源への供給路を遮断する運転制御を含むことを特徴とする。 A seventh aspect of the operation control method of the steam generation system using exhaust heat according to the present invention is the operation control method of the steam generation system using exhaust heat, wherein the steam generation system includes a control panel, The control panel measures the pressure of the first steam as one of the operation controls, and when the measured value exceeds a set value, the supply path of the first steam to the steam booster and the first Operation control which interrupts | blocks the supply path to the 1st steam generation source of 1 waste heat is characterized.
本発明による排熱を利用した蒸気発生システムの運転制御方法の第8の態様は、上記排熱を利用した蒸気発生システムの運転制御方法であって、前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第2の蒸気の圧力と流量と前記吐出蒸気の圧力と流量と前記第1の蒸気の圧力と流量のトレンドから前記吐出蒸気側の負荷を予測し、前記第1蒸気発生源が先行して容量制御を行う運転制御を含むことを特徴とする。 An eighth aspect of the operation control method of the steam generation system using exhaust heat according to the present invention is an operation control method of the steam generation system using exhaust heat, wherein the steam generation system includes a control panel, The control panel predicts the load on the discharge steam side from the trend of the pressure and flow rate of the second steam, the pressure and flow rate of the discharge steam, the pressure and flow rate of the first steam as one operation control. The first steam generation source includes operation control in which capacity control is performed in advance.
限定されないが、第1の排熱には、ガスエンジンなどを動力源とするコジェネレーションシステムのジャケット冷却水や、工場や病院等において使用される蒸気からの蒸気環水が好適であり、第1蒸気発生源としては、ヒートポンプによる昇温システムを備えたものが好適である。限定されないが、ヒートポンプとしては第二種吸収ヒートポンプが好適であり、ヒートポンプを用いることによりシステムの制御も容易となる。 Although not limited, the first exhaust heat is preferably a jacket cooling water of a cogeneration system using a gas engine or the like as a power source, or steam ring water from steam used in a factory or a hospital. As the steam generation source, one having a temperature raising system using a heat pump is suitable. Although not limited, the second type absorption heat pump is suitable as the heat pump, and the system can be easily controlled by using the heat pump.
また、本発明による排熱を利用した蒸気発生システムの運転制御方法において、製造される中圧の吐出蒸気は前記第1の蒸気よりも圧力が高く、前記第2の蒸気よりも圧力が低い。 Moreover, in the operation control method of the steam generation system using exhaust heat according to the present invention, the produced intermediate-pressure discharge steam is higher in pressure than the first steam and lower in pressure than the second steam.
上記形態の排熱を利用した蒸気発生システムでは、蒸気発生システムの作動に必要なエネルギーを、基本的に排熱の持つエネルギーから得ることが可能であり、排熱を有効利用することができ、省エネルギー化が図られる。限定されないが、前記第2の熱源には燃料の燃焼ガスやガスエンジン等である内燃機関の排ガスの持つ熱が好適に用いられる。その場合、第2蒸気発生源にはボイラまたはエンジン排ガスボイラが好適に用いられる。また、蒸気昇圧装置としては、エゼクターまたは蒸気駆動のコンプレッサーが好適に用いられる。 In the steam generation system using the exhaust heat of the above form, the energy necessary for the operation of the steam generation system can be basically obtained from the energy of the exhaust heat, and the exhaust heat can be effectively used. Energy saving is achieved. Although not limited, the heat which the exhaust gas of the internal combustion engine which is fuel combustion gas, a gas engine, etc. has is suitably used for the said 2nd heat source. In that case, a boiler or an engine exhaust gas boiler is suitably used as the second steam generation source. In addition, as the steam booster, an ejector or a steam-driven compressor is preferably used.
上記形態の排熱を利用した蒸気発生システムにおけるさらに具体的な態様では、前記第1の排熱には例えばガスエンジンなどである内燃機関からの排温水の持つ熱が利用され、前記第2の熱源には同じ内燃機関の燃焼排ガスが利用される。前記内燃機関は、限定されないが、コジェネレーションシステムにおける駆動源としてのガスエンジンなどの内燃機関であってもよい。このシステムでは、コジェネレーションシステムの総合効率をさらに向上させることができる。 In a more specific aspect of the steam generation system using exhaust heat of the above form, the first exhaust heat uses heat of exhaust water from an internal combustion engine such as a gas engine, and the second exhaust heat. The exhaust gas from the same internal combustion engine is used as the heat source. The internal combustion engine is not limited, but may be an internal combustion engine such as a gas engine as a drive source in a cogeneration system. This system can further improve the overall efficiency of the cogeneration system.
本発明による排熱を利用した蒸気発生システムの他の態様において、前記中圧蒸気製造手段の蒸気吐出側に一次圧力調整弁が備えられ、前記中圧蒸気製造手段からの吐出蒸気圧が一定となるように前記中圧蒸気製造手段の運転が制御される。一般に、吐出蒸気使用側での負荷が変化したときに生じる吐出圧力の変動によって、中圧蒸気製造手段を構成するエゼクターやコンプレッサーの吸引比(駆動蒸気量/吸引蒸気量)が変動してシステム効率が低下するが、上記態様の蒸気発生システムでは、その効率低下を効果的に防止して、安定した状態でのシステム運転が可能となる。 In another aspect of the steam generation system using exhaust heat according to the present invention, a primary pressure regulating valve is provided on the steam discharge side of the intermediate pressure steam producing means, and the discharge steam pressure from the intermediate pressure steam producing means is constant. Thus, the operation of the intermediate pressure steam producing means is controlled. Generally, due to fluctuations in the discharge pressure that occurs when the load on the discharge steam usage side changes, the suction ratio (drive steam volume / suction steam volume) of the ejector and compressor that make up the medium-pressure steam production means varies, resulting in system efficiency However, in the steam generation system of the above aspect, the efficiency reduction is effectively prevented, and the system can be operated in a stable state.
本発明による排熱を利用した蒸気発生システムのさらに他の態様において、前記第1蒸気発生源の内部に、前記中圧蒸気製造手段への吸引蒸気供給路内の圧力が設定値を超えたときに前記吸引蒸気供給路への吸引蒸気の供給を停止する蒸気供給停止手段もしくは蒸気圧力減少手段を備えるとともに、前記吸引蒸気供給路は蒸気供給停止手段を備えない態様とすることもできる。この態様では、吸引蒸気供給路内に通常設けられる安全手段としての蒸気供給停止手段を省略することができ、システムの簡素化を図ることができる。蒸気圧力減少手段として、好適には排温水のバイパスや第1蒸気発生源からの蒸気の放出が用いられる。 In still another aspect of the steam generation system using exhaust heat according to the present invention, when the pressure in the suction steam supply path to the intermediate pressure steam production means exceeds the set value inside the first steam generation source. In addition, a steam supply stop means or a steam pressure reduction means for stopping the supply of suction steam to the suction steam supply path may be provided, and the suction steam supply path may not include a steam supply stop means. In this aspect, it is possible to omit the steam supply stop means as a safety means normally provided in the suction steam supply path, and the system can be simplified. As the steam pressure reducing means, it is preferable to use exhaust water bypass or discharge of steam from the first steam generation source.
本発明による排熱を利用した蒸気発生システムの他の態様において、前記中圧蒸気製造手段からの吐出蒸気の過熱度を算出する算出手段と、過熱度に応じた水を吐出蒸気に供与する手段をさらに備えることもできる。この態様では、中圧蒸気製造手段からの吐出蒸気が過熱蒸気の場合、過熱蒸気の持つエネルギーを利用することで、蒸気量を増大させることができる。 In another aspect of the steam generation system using exhaust heat according to the present invention, a calculation means for calculating the superheat degree of the discharge steam from the intermediate pressure steam production means, and means for supplying water according to the superheat degree to the discharge steam Can be further provided. In this aspect, when the discharge steam from the intermediate pressure steam production means is superheated steam, the amount of steam can be increased by using the energy of the superheated steam.
本発明による排熱を利用した蒸気発生システムの他の態様において、ヒートポンプが汽水分離機を備える場合、蒸気昇圧装置を汽水分離機内に設置することもできる。この態様では、ヒートポンプと蒸気昇圧装置を接続する配管を省略することができ、圧力損失や温度低下を低減させることができる。 In another aspect of the steam generation system using exhaust heat according to the present invention, when the heat pump includes a brackish water separator, the steam booster can be installed in the brackish water separator. In this aspect, piping connecting the heat pump and the steam booster can be omitted, and pressure loss and temperature drop can be reduced.
本発明は、さらに、前記した中圧蒸気製造手段が外部動力駆動コンプレッサーとされる排熱を利用した蒸気発生システムと、内燃機関を駆動源に持つコジェネレーションシステムとの組み合わせシステムであって、前記コジェネレーションシステムが発電する電力を前記外部動力駆動コンプレッサーの駆動電力として利用し、前記内燃機関の排熱を前記第1の排熱として利用するようにした蒸気発生システムをも実現する。 The present invention is further a combined system of a steam generation system using exhaust heat, in which the above-described medium-pressure steam production means is an external power drive compressor, and a cogeneration system having an internal combustion engine as a drive source, A steam generation system is also realized in which the electric power generated by the cogeneration system is used as the driving power of the externally driven compressor, and the exhaust heat of the internal combustion engine is used as the first exhaust heat.
本発明によれば、工場などから出される排熱を利用して低圧の蒸気を製造し、さらにその低圧蒸気を昇圧してより圧力の高い蒸気を入手することができるので、排熱の利用分野をこれまでよりも格段に広げることができ、排熱の有効利用に資することができる。 According to the present invention, it is possible to produce low-pressure steam using exhaust heat emitted from a factory or the like, and further increase the pressure of the low-pressure steam to obtain higher pressure steam. Can be greatly expanded than before, and can contribute to the effective use of exhaust heat.
以下、本発明による排熱を利用した蒸気発生システムのいくつかの具体例とその運転制御方法を、図面を参照しながら説明する。 Hereinafter, some specific examples of the steam generation system using exhaust heat according to the present invention and the operation control method thereof will be described with reference to the drawings.
[第1の形態−その1]
図1に示す蒸気発生システムA1は、第1蒸気発生源Bとして温水熱源ヒートポンプ10を用いており、中圧蒸気製造手段Cは、第2蒸気発生源であるボイラ20と蒸気昇圧装置であるエゼクター30とで構成される。
[First embodiment-part 1]
A steam generation system A1 shown in FIG. 1 uses a hot water heat
温水熱源ヒートポンプ10には、例えばエンジンコジェネレーションシステムのジャケット冷却水、あるいは工場や病院等にて利用される蒸気からの蒸気環水である排温水(本発明でいう、第1の排熱に相当する)が供給される。通常、この種の排温水は90℃以下である。温水熱源ヒートポンプ10内で排温水を熱源としての給水の昇温が行われ、温水熱源ヒートポンプ10は吸引蒸気供給路12に、エゼクター30で用いられる吸引蒸気(本発明でいう、第1の蒸気)を排出する。なお、Vh1、Vh2は流量制御弁であり、Phは吸引側での圧力計である。温水熱源ヒートポンプ10は制御盤11を備えており、圧力計Phの値に応じて、流量制御弁Vh1、Vh2の開度を制御する。また、制御盤11と後記するエゼクター30に取り付けた制御盤31との間でも情報交換が行われる。さらに、制御盤11は、吸引蒸気供給路12内の圧力が設定値を超えたことを圧力計Phが検出したときに、流量制御弁Vh1を遮断する機能も備えており、温水熱源ヒートポンプ10内へ吸引蒸気供給路12から高圧の駆動蒸気が逆流するのを防止し、安全性を担保している。
The hot water heat
第2蒸気発生源であるボイラ20は、燃料として都市ガスなどを用いる通常のボイラであってよく、制御盤21を備える。図示しないが、工業炉などの排ガスを熱源とする排ガスボイラを用いることもできる。該ボイラ20は本発明でいう第2の熱源に相当し、第2の蒸気を発生させる。前記第2の蒸気は、流量制御弁Ve1を通り、蒸気昇圧装置であるエゼクター30に駆動蒸気として供給される。Pe1は、駆動蒸気の圧力を測定する圧力計である。駆動蒸気の圧力は、温水熱源ヒートポンプ10からの吸引蒸気(第1の蒸気)よりも高い圧力である。
The
上記のように、前記エゼクター30には、前記ボイラ20から比較して高圧である駆動蒸気が供給され、吸引蒸気供給路12を通して温水熱源ヒートポンプ10から比較して低圧である吸引蒸気が供給される。それにより、エゼクター30は前記した第1の蒸気である吸引蒸気よりも圧力の高い蒸気を製造し、それが吐出蒸気として排出される。エゼクター30は制御盤31を備えると共に、吐出蒸気の流路には、圧力計Pe2と流量制御弁Ve2が取り付けられ、流量制御弁Ve2を通過した中圧の吐出蒸気が、工場などの消費側へ供給される。
As described above, the
なお、一般に、エゼクターを用いる中圧吐出蒸気製造システムでは、吸引用蒸気発生設備の安全性担保のために、吸引蒸気供給路12に、図1に点線で示すような、圧力計Pe3と流量制御弁Ve3とからなる安全機構13aを設け、圧力計Pe3の計測圧力がある圧力を上回ったときに、蒸気逆流と判断して流量制御弁Ve3を閉とする制御が取られるが、本発明による蒸気発生システムA1では、温水熱源ヒートポンプ10内に圧力計Phと流量制御弁Vh1とからなる安全機構13を組み込んだことで、安全機構の共用化が可能となり、前記した圧力計Pe3と流量制御弁Ve3からなる安全機構13aを省略することができる。それにより、システムの簡素化および低コスト化が可能となっている。
In general, in an intermediate-pressure discharge steam production system using an ejector, a pressure gauge Pe3 and a flow rate control as shown by a dotted line in FIG. A
運転に際し、圧力計Pe1、Pe2、Phの圧力信号は制御盤31に送られ、流量制御弁Vh1、Vh2、Ve1の弁開度を制御する。また、制御盤21と制御盤31との間での情報交換により、ボイラ20の制御も行われる。
During operation, pressure signals from the pressure gauges Pe1, Pe2, and Ph are sent to the control panel 31 to control the valve openings of the flow control valves Vh1, Vh2, and Ve1. The
上記の蒸気発生システムA1は、制御盤11、21、31により、圧力計Pe1、Pe2、Phの圧力信号に基づいて、流量制御弁Vh1、Vh2、Ve1の弁開度を適宜制御することによって、中圧蒸気製造手段Cから、0.1〜1.0MPa程度の中圧の吐出蒸気を得ることができる。 The steam generation system A1 appropriately controls the valve opening degrees of the flow control valves Vh1, Vh2, Ve1 by the control panels 11, 21, 31 based on the pressure signals of the pressure gauges Pe1, Pe2, Ph. From the medium-pressure steam production means C, a medium-pressure discharge steam of about 0.1 to 1.0 MPa can be obtained.
さらに、蒸気発生システムA1は、システムの安定した運転や高効率化を目的として、種々の制御態様を取ることができる。以下でそれを説明する。なお、以下の説明で、Pe1、Pe2、Phという場合には、前記した圧力計Pe1、Pe2、Phで計測される圧力値をいうこととする。 Furthermore, the steam generation system A1 can take various control modes for the purpose of stable operation and high efficiency of the system. This is explained below. In the following description, Pe1, Pe2, and Ph refer to pressure values measured by the above-described pressure gauges Pe1, Pe2, and Ph.
第1の制御態様では、Pe1、Pe2、Phの値に応じて、流量制御弁Ve1および(または)Vh1の開度を制御盤31、11によって制御することにより、吐出蒸気の安定した供給が可能となる。すなわち、各圧力が決定すると、それに最適な吸引蒸気量と駆動蒸気量の比率が自ずと決まってくるので、その流量の比率に応じた信号を流量制御弁Ve1および(または)Vh1に与えて、それぞれの弁開度を決定することで、安定した圧力と流量の吐出蒸気を継続して供給することができる。 In the first control mode, by controlling the opening degree of the flow rate control valve Ve1 and / or Vh1 with the control panels 31 and 11 according to the values of Pe1, Pe2 and Ph, stable supply of discharged steam is possible. It becomes. That is, when each pressure is determined, the optimum ratio of the suction steam amount and the driving steam amount is automatically determined. Therefore, a signal corresponding to the flow rate ratio is given to the flow control valves Ve1 and / or Vh1, By determining the valve opening degree, it is possible to continuously supply discharge steam having a stable pressure and flow rate.
第2の制御態様では、Pe1および(または)Pe2の値に応じて、流量制御弁Vh1によりPhの圧力を制御することで、システムの高効率化を図ることができる。すなわち、エゼクター30の特性としてPe1やPe2の値により自ずと吸引可能な最低圧力が決まる。一方、Phの値が低いほどヒートポンプ10の入熱量は増加するため、Phの値を負荷に応じて極力低い値を設定することで、排熱または排温水の熱回収量を増大させることができる。例えば、Pe2の値が低下した場合に、制御盤によって、流量制御弁Vh1を開方向へ移行させて、Phの値を必要最低限の圧力となるように制御する。
In the second control mode, the efficiency of the system can be improved by controlling the pressure of Ph by the flow rate control valve Vh1 according to the values of Pe1 and / or Pe2. That is, as a characteristic of the
第3の制御態様では、Pe1および(または)Pe2の値に応じて、ボイラ20の蒸気設定圧力を制御することで、システムの高効率化が図られる。すなわち、例えば、Phの値が固定値である場合、エゼクター30から所望の圧力Pe2の吐出蒸気を得るのに必要となる駆動蒸気の圧力Pe1は自ずと決まる。一方、駆動蒸気の圧力が低いほどボイラ20自体の効率は向上するため、ボイラ20の設定圧力を負荷に応じて極力低い値を設定することで、ボイラ20の燃料消費量を減少させる。例えば、吐出圧力Pe2が低下した場合には、制御盤によってボイラ20の設定圧力を下げることにより、システムの効率化が図られる。
In the third control mode, the efficiency of the system is improved by controlling the steam set pressure of the
第4の制御態様では、駆動蒸気の供給に余裕がある場合、ヒートポンプ10を停止し、排温水から負圧蒸気を製造し吸引するような運転態様を取ることもできる。それにより、システムの高効率化が図られる。すなわち、吸引蒸気量が設計値に対して少ない場合、ヒートポンプを介さずに負圧蒸気を製造することで、排温水の蒸気への変換効率を高めるようにする。この場合、エゼクター30の吸引比(駆動蒸気量/吸引蒸気量)は上昇するが、ヒートポンプ10のCOP(蒸気出力/エネルギー投入量(電力の場合は一次エネルギー投入量))が1以下である場合は、排温水から負圧蒸気への変換COPが1であるために、排温水の蒸気への変換効率が向上する。例えば、設計値ではエゼクター30の吸引比2であるときに、吸引蒸気量が少なく、吸引比5で運転されていた場合には、温水からの負圧蒸気を吸引比4で吸引するようになる。
In the fourth control mode, when there is a margin in the supply of driving steam, the
第5の制御態様は、駆動蒸気が流れはじめてから流量制御弁Vh1を開くようにする運転態様であり、このことで、蒸気の逆流を防止することができ、システムの安全性が向上する。例えば、流量制御弁Vh1の開度を、Phがエゼクター30の運転条件から決まる吸引可能最低圧力以上となるよう制御することで、蒸気の逆流によるヒートポンプ10への高圧の駆動蒸気流入を防ぐことができる。
The fifth control mode is an operation mode in which the flow rate control valve Vh1 is opened after the driving steam starts to flow, and thereby, the backflow of the steam can be prevented, and the safety of the system is improved. For example, by controlling the opening degree of the flow rate control valve Vh1 so that Ph is equal to or higher than the minimum suctionable pressure determined from the operating conditions of the
第6の制御態様は、圧力計Pe1または圧力計Pe2が異常圧力検知をした場合、蒸気逆流防止のため流量制御弁Vh1および流量制御弁Vh2を閉とする制御態様であり、この態様では、蒸気の逆流の可能性をすばやく探知することでヒートポンプ10への高圧の駆動蒸気の逆流を防ぐことができる。
The sixth control mode is a control mode in which the flow rate control valve Vh1 and the flow rate control valve Vh2 are closed to prevent the backflow of steam when the pressure gauge Pe1 or the pressure gauge Pe2 detects abnormal pressure. By quickly detecting the possibility of backflow of the high pressure, it is possible to prevent backflow of high-pressure driving steam to the
第7の制御態様は、Phが所定圧力以上に上昇した場合、蒸気逆流と判断し流量制御弁Vh1および流量制御弁Vh2を閉とする制御態様であり、この態様では、ヒートポンプ10自身が逆流を検知することで逆流時の対応を早めることができる。
The seventh control mode is a control mode in which when the Ph rises to a predetermined pressure or more, it is determined that the steam is flowing back, and the flow rate control valve Vh1 and the flow rate control valve Vh2 are closed. In this mode, the
第8の制御態様は、圧力計Pe1、Pe2、Phの計測値や流量制御弁Ve1、Ve2、Vh1のバルブ開度のトレンドから、吐出蒸気側の負荷を予測し、ヒートポンプ10が先行して容量制御(温水または冷却水のバイパス、溶液の希釈、給水流量の制御など)を行う制御態様であり、予測により容量制御を行うことで制御の時間遅れをカバーすることが可能となり、負荷変動に対する対応の高速化が図られる。例えば、Pe2が上昇した場合、吸引可能蒸気量が減少し、それに併せ入熱も減少し、Vh2はバイパス方向へ移行する。この時間遅れをPe2の値に応じて流量制御弁Vh2を制御することでカバーすることができる。
The eighth control mode predicts the load on the discharge steam side from the measured values of the pressure gauges Pe1, Pe2, and Ph and the valve opening trends of the flow control valves Ve1, Ve2, and Vh1, and the
上記した排熱を利用した蒸気発生システムは、駆動蒸気、吸引蒸気、吐出蒸気の各圧力を測定し、それに基づき料金削減量やCO2削減量をコンピュータで演算し、運転状況をディスプレー上にモニター表示することもできる。これにより、蒸気発生システムの有効性をよりはっきりとアピールすることができる。 The steam generation system using exhaust heat measures the pressures of driving steam, suction steam, and discharge steam, calculates the amount of charge reduction and CO2 reduction based on that, and displays the operation status on the display. You can also Thereby, the effectiveness of the steam generation system can be more clearly appealed.
[第1の形態−その2]
図2に示す蒸気発生システムA2は、温水熱源ヒートポンプ10へ供給する排温水としてコジェネレーションシステムからの排熱を利用した排温水を用いている点で、図1に示した蒸気発生システムA1と相違する。図2において、40はコジェネレーションシステムの駆動部であり、内部にガスエンジン等のエンジン41を備える。駆動部40にはエンジン41のための燃料(例えば、都市ガス)が供給され、エンジン41の作動により電力が取り出される。エンジン41の冷却水は排温水とされて、温水熱源ヒートポンプ10に供給される。さらに、蒸気発生システムA2では、駆動部40からの高温の排ガス(例えば、ガスエンジンの排ガスなど)は、前記したボイラ20(好適には、エンジン排ガスを熱源として利用するボイラ)の熱源として利用される。
[First form-part 2]
The steam generation system A2 shown in FIG. 2 is different from the steam generation system A1 shown in FIG. 1 in that waste heat water using waste heat from the cogeneration system is used as waste heat water supplied to the hot water heat
他の構成およびエゼクター30などの作動態様は図1に示した蒸気発生システムAと同じであり、同じ部材には同じ符号を付して説明は省略する。
Other configurations and operation modes such as the
この態様の蒸気発生システムA2では、コジェネレーションシステムの駆動部40からの排熱を有効利用することができ、コジェネレーションシステムの総合効率向上へも資することもできる。
In the steam generation system A2 of this aspect, the exhaust heat from the
[第1の形態−その3]
図3に示す蒸気発生システムA3は、ボイラまたは排ガスボイラ20からの排ガスと温水熱源ヒートポンプ10の熱源温水との間で、熱交換器42を介して熱交換するようにした点で、図1に示す蒸気発生システムA1と相違する。この熱交換により、温水熱源ヒートポンプ10の温水入口温度を向上させることができ、それに伴い、前記吸引蒸気の圧力および(もしくは)流量も上昇する。それにより、吐出蒸気の高圧化もしくは吸引比の低下に結びつけることが可能となる。他の構成およびエゼクター30などの作動態様は図1に示した蒸気発生システムAと同じであり、同じ部材には同じ符号を付して説明は省略する。
[First embodiment-part 3]
The steam generation system A3 shown in FIG. 3 is the same as that shown in FIG. 1 in that heat is exchanged between the exhaust gas from the boiler or the
[第1の形態−その4]
図4に示す蒸気発生システムA4は、前記した蒸気発生システムA2と蒸気発生システムA3とを合体させたシステムである。
[First embodiment-part 4]
A steam generation system A4 shown in FIG. 4 is a system in which the steam generation system A2 and the steam generation system A3 are combined.
[第1の形態−その5]
図5に示す蒸気発生システムA5は、エゼクター30の吐出側の流量制御弁Ve2を一次圧力調整弁Ve21とした点で、図1に示す蒸気発生システムA1と相違している。この形態では、吐出蒸気側の負荷が変動したときでも、一次圧力調整弁Ve21を制御することで吐出圧力を一定に維持することが可能であり、吐出圧力が変動することによるエゼクター30の吸引比の悪化を防ぐことができる。それによりシステムの高効率化、安定化を図る。
[First embodiment-part 5]
The steam generation system A5 shown in FIG. 5 is different from the steam generation system A1 shown in FIG. 1 in that the flow control valve Ve2 on the discharge side of the
なお、蒸気発生システムA5における他の構成およびエゼクター30などの作動態様は図1に示した蒸気発生システムA1と同じであり、同じ部材には同じ符号を付して説明は省略する。
The other configurations in the steam generation system A5 and the operation modes of the
[第1の形態−その6]
図6に示す蒸気発生システムA6は、蒸気昇圧装置として、エゼクター30に代えて、蒸気駆動コンプレッサー30Aを用いた点で、図3に示す蒸気発生システムA3と相違する。蒸気発生システムA6における他の構成は、図3に示した蒸気発生システムA3と同じであり、同じ部材には同じ符号を付して説明は省略する。この態様においても、蒸気駆動コンプレッサー30Aはエゼクター30と同様に中圧蒸気を吐出蒸気として製造することができる。ボイラで熱交換した後の排ガスの熱量が小さい場合には、熱交換器42を用いずにボイラで熱交換した後の排ガスをそのまま廃棄するようにしてもよい。
[First embodiment-part 6]
The steam generation system A6 shown in FIG. 6 is different from the steam generation system A3 shown in FIG. 3 in that a
[第1の形態−その7]
図7に示す蒸気発生システムA7は、図4に示した蒸気発生システムA4において、エゼクター30に代えて、蒸気駆動コンプレッサー30Aを用いた点で相違している。他の構成は、図4に示した蒸気発生システムA4と同じであり、同じ部材には同じ符号を付して説明は省略する。この態様においても、蒸気駆動コンプレッサー30Aはエゼクター30と同様に中圧蒸気を吐出蒸気として製造することができる。ボイラで熱交換した後の排ガスの熱量が小さい場合には、熱交換器42を用いずにボイラで熱交換した後の排ガスをそのまま廃棄するようにしてもよい。
[First embodiment-part 7]
A steam generation system A7 shown in FIG. 7 is different from the steam generation system A4 shown in FIG. 4 in that a
[第2の形態]
図8は、本発明による蒸気発生システムのさらに他の変形例を示す。この蒸気発生システムは、上記した蒸気発生システムの複数個を直列および(または)並列に配列して、一つの蒸気発生システムA10とする態様である。
[Second form]
FIG. 8 shows still another modification of the steam generation system according to the present invention. This steam generation system is a mode in which a plurality of the steam generation systems described above are arranged in series and / or in parallel to form one steam generation system A10.
図示の例では、第1蒸気発生源として一台の温水熱源ヒートポンプ10を用い、第2蒸気発生源として、ボイラ20Aとボイラまたは排ガスボイラ20Bを用い、さらに、蒸気昇圧装置として、3台のエゼクター30A、30B、30Cを用いている。そして、最終的に吐出される中圧の吐出蒸気を、工場で用いられる蒸気または外部動力駆動のコンプレッサー60の吸引蒸気として供給している。
In the illustrated example, one hot water heat
より具体的には、第1蒸気発生源として温水熱源ヒートポンプ10から発生する蒸気は、並列に配列した第1のエゼクター30Aおよび第2のエゼクター30Bに、吸引蒸気として供給される。また、駆動蒸気には、ボイラまたは排ガスボイラ20Bからの蒸気に、もう一つのボイラ20Aからの蒸気が組み合わされ、組み合わせ後の蒸気が、3台のエゼクター30A、30B、30Cに、駆動蒸気として供給される。
More specifically, the steam generated from the hot water heat
第1のエゼクター30Aおよび第2のエゼクター30Bからの吐出蒸気は合体され、合体した状態で、第3のエゼクター30Cに対して吸引蒸気として供給される。そして、第3のエゼクター30Cから最終的な中圧の蒸気が吐出蒸気として排出される。
The discharged steams from the
このような複合システムとすることにより、システム全体での部分負荷特性を向上させることができ、また、システム全体での運転範囲を拡大させることが可能となる。 By setting it as such a complex system, the partial load characteristic in the whole system can be improved, and the operating range in the whole system can be expanded.
図8に示す例において、第3のエゼクター30Cからの吐出蒸気は、図示しない測定器により、その温度と圧力が測定されて過熱度が算出され、過熱度に応じて、エゼクター出口で水の噴霧を行うようにしている。このような手段を講じることにより、吐出蒸気である過熱蒸気の持つエネルギーを使って蒸気量を増大させることができ、さらに効率を向上させることができる。なお、この過熱度を算出し過熱度に応じてエゼクター出口で水を吐出蒸気に供与する手段は、すでに説明したすべての蒸気発生システムにおいて採用することができる。 In the example shown in FIG. 8, the temperature and pressure of the discharged steam from the third ejector 30C are measured by a measuring device (not shown), and the degree of superheat is calculated. Depending on the degree of superheat, water is sprayed at the ejector outlet. Like to do. By taking such means, the amount of steam can be increased using the energy of superheated steam that is discharged steam, and the efficiency can be further improved. The means for calculating the degree of superheat and supplying water to the discharged steam at the outlet of the ejector according to the degree of superheat can be employed in all the steam generation systems already described.
[第3の形態]
図9は、本発明による蒸気発生システムのさらに他の変形例を示す。この蒸気発生システムA9は、ヒートポンプの汽水分離器15内にエゼクター30を配置した構成である。この蒸気発生システムA9では、前記汽水分離器15が本発明でいう「第1の排熱から第1の蒸気を製造する第1蒸気発生源」に相当する。そして、本発明でいう「中圧蒸気製造手段」は、この例では、ボイラまたは排ガスボイラ20とエゼクター30とで構成される。
[Third embodiment]
FIG. 9 shows still another modification of the steam generation system according to the present invention. This steam generation system A9 is the structure which has arrange | positioned the
蒸気発生システムA9において、湿り蒸気はヒートポンプの汽水分離器15内に導入され、そこで水と蒸気に分けられる。分離した水はヒートポンプに送られ、蒸気は汽水分離器15内に位置するエゼクター30に吸引蒸気として供給される。一方、エゼクター30には、ボイラまたは排ガスボイラ20からの蒸気である第2の蒸気が駆動蒸気として供給され、それにより、エゼクター30からは第1の蒸気よりも圧力の高い蒸気が吐出蒸気として排出される。
In the steam generation system A9, the wet steam is introduced into the
この形態では、吸引蒸気供給路12などの配管系をなくすことができ、システム全体の配管抵抗を低減できることから、システムの効率化を図ることができる。
In this embodiment, the piping system such as the suction
A1〜A9…本発明による排熱を利用した蒸気発生システム
B…第1蒸気発生源、
C…中圧蒸気製造手段、
Vh1、Vh2、Ve1、Ve2、Ve3…流量制御弁、
Ve21…一次圧力調整弁、
Ph、Pe1、Pe2、Pe3…圧力計(およびその値)
10…第1蒸気発生源である温水熱源ヒートポンプ、
11…制御盤、
12…吸引蒸気供給路、
15…ヒートポンプの汽水分離器、
20…第2蒸気発生源であるボイラ、
21…制御盤、
30…蒸気昇圧装置であるエゼクター、
30A…蒸気駆動コンプレッサー、
31…制御盤、
40…コジェネレーションシステムの駆動部、
41…ガスエンジン等のエンジン、
42…熱交換器、
60…外部動力駆動コンプレッサー。
A1 to A9: Steam generation system B utilizing exhaust heat according to the present invention B ... First steam generation source,
C: Medium pressure steam production means,
Vh1, Vh2, Ve1, Ve2, Ve3 ... flow control valve,
Ve21 ... primary pressure regulating valve,
Ph, Pe1, Pe2, Pe3 ... Pressure gauge (and its value)
10 ... Hot water heat source heat pump as the first steam generation source,
11 ... Control panel,
12 ... Suction steam supply path,
15 ... Heat pump brackish water separator,
20 ... the boiler which is the second steam generation source,
21 ... Control panel,
30: Ejector that is a steam pressure booster,
30A ... Steam driven compressor,
31 ... Control panel,
40 ... Cogeneration system drive unit,
41 ... an engine such as a gas engine,
42 ... heat exchanger,
60: Externally driven compressor.
Claims (8)
前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第2の蒸気の圧力と前記第1の蒸気の圧力とを測定し、その測定値から得られる最適な第2の蒸気量と第1の蒸気量の比率となるように、前記第2の蒸気の供給量と前記第1の蒸気の供給量の双方またはいずれか一方を制御し、それにより、安定した圧力と流量の前記吐出蒸気を継続して作り出すように制御する運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system includes a control panel, and the control panel measures the pressure of the second steam and the pressure of the first steam as one of operation controls, and obtains an optimal value obtained from the measured value. The supply amount of the second steam and the supply amount of the first steam are controlled so as to be a ratio of the second steam amount and the first steam amount, and thereby stable. An operation control method for the steam generation system, including operation control for continuously generating the discharge steam at a pressure and a flow rate.
前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第2の蒸気の圧力と前記吐出蒸気の圧力の双方またはいずれか一方の値に測定し、その測定値から得られる前記蒸気昇圧装置の吸引可能な最低圧力となるように前記第1の蒸気の圧力を制御する運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system includes a control panel, and the control panel measures the pressure of the second steam and / or the pressure of the discharge steam as one of operation controls, and the measured value An operation control method for the steam generation system, comprising: an operation control for controlling the pressure of the first steam so as to obtain a minimum pressure that can be sucked by the steam booster obtained from the above.
前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記吐出蒸気の圧力の値に測定し、その測定値に応じて、前記第2の蒸気発生源の燃料消費量を制御して前記第2の蒸気の圧力を調整する運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system includes a control panel, and the control panel measures the pressure value of the discharged steam as one of operation controls, and the fuel consumption of the second steam generation source according to the measured value. An operation control method for the steam generation system, comprising operation control for adjusting the pressure of the second steam by controlling the amount.
前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第1蒸気発生源の使用を停止し、前記第1の排熱から負圧蒸気を製造してそれを前記蒸気昇圧装置の吸引蒸気として用いる運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system includes a control panel, and the control panel stops use of the first steam generation source as one of operation controls, produces negative pressure steam from the first exhaust heat, and uses it. An operation control method for the steam generation system, comprising operation control used as suction steam of the steam booster.
前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記蒸気昇圧装置へ前記第2の蒸気の供給を開始した後に、前記蒸気昇圧装置の運転条件で決まる吸引可能最低圧力以上の圧力である前記第1の蒸気の供給を開始するようにする運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system includes a control panel, and the control panel is capable of suction determined by operating conditions of the steam booster after starting the supply of the second steam to the steam booster as one of operation controls. An operation control method for the steam generation system, comprising operation control for starting supply of the first steam having a pressure equal to or higher than a minimum pressure.
前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第2の蒸気の圧力と前記第1の蒸気の圧力とを測定し、その測定値が設定値を超えたときに、前記第1の蒸気の前記蒸気昇圧装置への供給路を遮断する運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system includes a control panel, and the control panel measures the pressure of the second steam and the pressure of the first steam as one of operation controls, and the measured value exceeds a set value. The operation control method of the said steam generation system characterized by including the operation control which interrupts | blocks the supply path of the said 1st steam to the said steam pressure booster.
前記蒸気発生システムは制御盤を備え、前記制御盤は、運転制御の1つとして、前記第1の蒸気の圧力を測定し、その測定値が設定値を超えたときに、前記第1の蒸気の前記蒸気昇圧装置への供給路および第1の排熱の第1蒸気発生源への供給路を遮断する運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system includes a control panel, and the control panel measures the pressure of the first steam as one of operation controls, and when the measured value exceeds a set value, the first steam The operation control method of the said steam generation system characterized by including the operation control which interrupts | blocks the supply path to the said steam pressurization apparatus and the supply path to the 1st steam generation source of 1st waste heat.
前記蒸気発生システムは制御盤を備え、前記制御盤は、生源が先行して容量制御を行う運転制御を含むことを特徴とする前記蒸気発生システムの運転制御方法。 A first steam generating source for producing the first steam from the first exhaust heat; and at least an intermediate pressure steam producing means for using the first steam as a suction steam, the intermediate pressure steam producing means comprising: A second steam generation source for producing second steam having a pressure higher than that of the first steam from a second heat source different from the first exhaust heat, and a steam booster using the second steam as driving steam The steam booster uses the first steam as suction steam and uses the second steam as driving steam, and has a medium pressure discharge steam having a pressure higher than that of the first steam. A method for controlling the operation of a steam generation system using exhaust heat that is designed to produce
The steam generation system is provided with a control panel, and the control panel includes an operation control for performing capacity control in advance of a raw source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010057468A JP5351804B2 (en) | 2010-03-15 | 2010-03-15 | Steam generation system using exhaust heat and its operation control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010057468A JP5351804B2 (en) | 2010-03-15 | 2010-03-15 | Steam generation system using exhaust heat and its operation control method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009052045A Division JP2010203730A (en) | 2009-03-05 | 2009-03-05 | Steam generation system using waste heat |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010203765A true JP2010203765A (en) | 2010-09-16 |
JP5351804B2 JP5351804B2 (en) | 2013-11-27 |
Family
ID=42965406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010057468A Active JP5351804B2 (en) | 2010-03-15 | 2010-03-15 | Steam generation system using exhaust heat and its operation control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5351804B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102226514A (en) * | 2011-05-26 | 2011-10-26 | 常州市锅炉设备有限公司 | Electronic control box for boiler |
JP2012017926A (en) * | 2010-07-08 | 2012-01-26 | Miura Co Ltd | Steam system |
JP2016130596A (en) * | 2015-01-13 | 2016-07-21 | 東京電力ホールディングス株式会社 | Steam supply system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196956A (en) * | 1983-04-21 | 1984-11-08 | Tokyo Gas Co Ltd | Method of generating process-steam and electric power in factory or the like |
JPH07113566A (en) * | 1993-10-15 | 1995-05-02 | Tlv Co Ltd | Vaporization-cooled engine for cogeneration |
JPH1193772A (en) * | 1997-09-19 | 1999-04-06 | Tokyo Gas Co Ltd | Exhaust heat recovery device for internal combustion engine |
-
2010
- 2010-03-15 JP JP2010057468A patent/JP5351804B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196956A (en) * | 1983-04-21 | 1984-11-08 | Tokyo Gas Co Ltd | Method of generating process-steam and electric power in factory or the like |
JPH07113566A (en) * | 1993-10-15 | 1995-05-02 | Tlv Co Ltd | Vaporization-cooled engine for cogeneration |
JPH1193772A (en) * | 1997-09-19 | 1999-04-06 | Tokyo Gas Co Ltd | Exhaust heat recovery device for internal combustion engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012017926A (en) * | 2010-07-08 | 2012-01-26 | Miura Co Ltd | Steam system |
CN102226514A (en) * | 2011-05-26 | 2011-10-26 | 常州市锅炉设备有限公司 | Electronic control box for boiler |
JP2016130596A (en) * | 2015-01-13 | 2016-07-21 | 東京電力ホールディングス株式会社 | Steam supply system |
Also Published As
Publication number | Publication date |
---|---|
JP5351804B2 (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6707013B2 (en) | Gas turbine plant and operating method thereof | |
AU2010264462B2 (en) | System and method for managing thermal issues in one or more industrial processes | |
CN105736081B (en) | Thermal electric generator | |
US8171733B2 (en) | Systems and methods involving combined cycle plants | |
US8104282B2 (en) | Power generation complex plant and plant control method | |
CN103195521A (en) | Double-turbine steam thermodynamic system with regenerative steam extraction function | |
CN104141582B (en) | Highly pressurised liquid acting formula organic Rankine cycle generating system | |
JP6203600B2 (en) | Combined cycle plant | |
JP5351804B2 (en) | Steam generation system using exhaust heat and its operation control method | |
CN203239405U (en) | Double-machine regeneration stream extraction thermodynamic system | |
JP2010203730A (en) | Steam generation system using waste heat | |
JP2014084853A (en) | Internal combustion engine system, ship having the system, and operational method for the internal combustion engine system | |
JPS59138707A (en) | Rankine engine | |
JP2013087644A (en) | Increase output operation method in steam power generation plant | |
JP2008145005A (en) | Steam supply equipment | |
EP3342992B1 (en) | Combined cycle plant and method for controlling operation of combined cycle plant | |
JP2001108201A (en) | Multiple pressure waste heat boiler | |
JP2007239685A (en) | Power generation plant operating device and method | |
CN205400828U (en) | Extraction condensing and back pressure combined unit based on E-level ALSTOM combined cycle | |
CN103883364A (en) | Method for solving combined heat and power generation, split-shaft heat supply turbine generating set, and operating method of split-shaft heat supply turbine generating set | |
JP2002106305A (en) | Starting controller of combined cycle power generation plant | |
CN203531985U (en) | Organic Rankine cycle system for double-stage full-flow screw expander | |
CN105545386A (en) | Extraction condensing and back pressure combined unit based on E-level ALSTOM combined cycle | |
JP2013064328A (en) | System and method for cooling gas turbine | |
CN105909331A (en) | Generating system with output power optimal regulation function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5351804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |