JP2010199089A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2010199089A
JP2010199089A JP2010109910A JP2010109910A JP2010199089A JP 2010199089 A JP2010199089 A JP 2010199089A JP 2010109910 A JP2010109910 A JP 2010109910A JP 2010109910 A JP2010109910 A JP 2010109910A JP 2010199089 A JP2010199089 A JP 2010199089A
Authority
JP
Japan
Prior art keywords
partition plate
film
heat dissipation
battery
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010109910A
Other languages
Japanese (ja)
Inventor
Sachio Motokawa
幸翁 本川
Motohiro Nanbae
元広 難波江
Kazuo Tsutsumi
香津雄 堤
Kazuya Nishimura
和也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2010109910A priority Critical patent/JP2010199089A/en
Publication of JP2010199089A publication Critical patent/JP2010199089A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress temperature rise in a plurality of unit cells which are housed inside a battery case. <P>SOLUTION: The battery pack is provided with a battery case 2; a plurality of unit cells 3 housed in the battery case 2 and laminated and connected with each other in series; a positive-side current collector plate 4, connected to the positive electrode of the endmost unit cell of the plus side out of the plurality of the unit cells 3; a negative-side current collector plate 4, connected to a negative electrode of the endmost unit cell of the negative side out of the plurality of the unit cells 3; and a heat-radiating partitioning plate 1, made of an aluminum base material having a heat-treated coating and partitioning between neighboring unit cells. The heat-radiating partitioning plate 1 is pinched by the positive electrode of the unit cells 3 and the neighboring negative electrode of the unit cells 3. and is provided with one or more of ventilation holes D, in a direction of crossing the pinching direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種2次電池(ニッケルカドミウム電池、ニッケル水素2次電池、リチウムイオン2次電池等)の組電池に関する。   The present invention relates to a battery pack of various secondary batteries (nickel cadmium battery, nickel metal hydride secondary battery, lithium ion secondary battery, etc.).

充電して繰り返し使用できる各種2次電池は、その利便性の高さから、民生用、産業用を問わず広く用いられている。例えば、ニッケル水素2次電池は、高エネルギー密度を有し、環境に優しい材料を使用した高性能な電池である。さらに、より高性能なリチウムイオン2次電池も開発され、各種電子機器の電源としてはもちろん、最近では、電気自動車やハイブリッドカーなど輸送機器にも用いられている。   Various secondary batteries that can be charged and used repeatedly are widely used regardless of consumer use or industrial use because of their high convenience. For example, a nickel metal hydride secondary battery is a high-performance battery that has a high energy density and uses environmentally friendly materials. Furthermore, higher-performance lithium ion secondary batteries have been developed and are used not only as power sources for various electronic devices, but also recently in transportation equipment such as electric vehicles and hybrid cars.

各種2次電池の単電池起電力について、ニッケルカドミウム電池やニッケル水素2次電池では約1.2V、リチウムイオン2次電池では約3.6Vであり、所望の電圧、出力特性を得るためには、一般に電池を直列あるいは並列に接続して使用される。   The unit cell electromotive force of various secondary batteries is about 1.2 V for nickel cadmium batteries and nickel metal hydride secondary batteries, and about 3.6 V for lithium ion secondary batteries. To obtain the desired voltage and output characteristics In general, batteries are connected in series or in parallel.

これらの2次電池は、充放電時に熱を発生する場合がある。これは、電気エネルギーと化学エネルギーの変換効率が100%ではなく、変換されなかったエネルギーが熱として放出されるためである。所定の温度以上になると、安全性や電池寿命などの電池性能に悪影響を及ぼすので電池を冷却する必要がある。   These secondary batteries may generate heat during charging and discharging. This is because the conversion efficiency of electric energy and chemical energy is not 100%, and energy that has not been converted is released as heat. When the temperature exceeds a predetermined temperature, the battery performance such as safety and battery life is adversely affected, and thus the battery needs to be cooled.

前述の、直列あるいは並列に接続した2次電池は、限られた空間に多くの電池が収納されている場合が多く、各電池を均等に冷却することは容易でない。また、輸送機器については効率向上のため、出力特性や寿命などの電池特性の他に、電池の軽量化も望まれている。   In the secondary batteries connected in series or in parallel, many batteries are often stored in a limited space, and it is not easy to cool each battery equally. In addition to the battery characteristics such as the output characteristics and the lifespan, in addition to the battery characteristics such as the output characteristics and the lifespan, it is desired to reduce the weight of the battery for transportation equipment.

電池の冷却方法については、様々な提案がなされている。以下に示す例は、いずれも単電池容器を外部から冷却するものであり、発熱源からの熱は単電池容器を介して伝わるため、均一に冷却されないおそれがある。特許文献1には、ニッケル水素2次電池と容器の間に伝熱性部材を充填することが記載されている。特許文献2には、角型Liイオン電池を収納するケースに梁状スペーサを設けることが記載されている。特許文献3には、圧送式ファンによって、電池モジュールのホルダケース内の空気を一方向に強制的に流動させて冷却することが記載されている。特許文献4には、冷却風通路と電池セル群の端面を隔壁により別空間に配置することにより、電池セル群を冷却しつつその電気的接続部を保護することが記載されている。特許文献5には、複数の角型2次電池の間に凹凸を有する空冷スペーサを設けることが記載されている。しかしながら、これら文献に記載の冷却方法では、十分な放熱効果が得られない問題があった。   Various proposals have been made for battery cooling methods. In all the examples shown below, the unit cell container is cooled from the outside, and the heat from the heat generation source is transmitted through the unit cell container, so there is a possibility that the unit cell container may not be cooled uniformly. Patent Document 1 describes that a heat transfer member is filled between a nickel metal hydride secondary battery and a container. Patent Document 2 describes that a beam-like spacer is provided in a case that houses a square Li-ion battery. Patent Document 3 describes that air in a holder case of a battery module is forced to flow in one direction and cooled by a pressure-feed fan. Patent Document 4 describes that a cooling air passage and an end face of a battery cell group are arranged in separate spaces by partition walls to protect the electrical connection portion while cooling the battery cell group. Patent Document 5 describes that an air-cooled spacer having irregularities is provided between a plurality of prismatic secondary batteries. However, the cooling methods described in these documents have a problem that a sufficient heat dissipation effect cannot be obtained.

:特開平5−36392号公報: JP-A-5-36392 :特開平8−212986号公報: JP-A-8-212986 :特開平10−270095号公報: JP-A-10-270095 :特開2003−142051号公報: JP 2003-142051 A :特開平10−112301号公報: JP-A-10-112301

そこで本発明は、電池ケースに収められた複数の単電池の温度上昇を高効率に抑制することを目的とする。   Then, an object of this invention is to suppress the temperature rise of the several cell accommodated in the battery case with high efficiency.

本発明の組電池は、電池ケースと、前記電気ケースに収納され、互いに直列接続して積層された複数の単電池と、前記複数の単電池のうちプラス側の最端にある単電池のプラス極に接続されるプラス側集電板と、前記複数の単電池のうちマイナス側の最端にある前記単電池のマイナス極に接続されるマイナス側集電板と、表面処理皮膜を有するアルミニウム基材からなり、前記複数の単電池のうち隣り合う単電池の間を仕切る放熱用仕切り板と備え、前記放熱用仕切り板は、単電池のプラス極とその隣の単電池のマイナス極とで挟持されており、その挟持方向に直交する方向に貫通する1つ以上の通風孔を有している。   The assembled battery of the present invention includes a battery case, a plurality of single cells housed in the electric case and stacked in series with each other, and a positive cell of the positive cell at the extreme end of the plurality of single cells. A positive-side current collector connected to the electrode; a negative-side current collector connected to the negative electrode of the single cell at the extreme end of the negative cell among the plurality of single cells; and an aluminum base having a surface treatment film And a heat radiating partition plate that partitions between adjacent unit cells of the plurality of unit cells, and the heat radiating partition plate is sandwiched between a positive electrode of a single cell and a negative electrode of the adjacent unit cell. It has one or more ventilation holes penetrating in a direction orthogonal to the clamping direction.

前記複数の単電池のうちプラス側の最端にある単電池のプラス極と前記プラス側集電板とで挟持される放熱用仕切り板と、前記複数の単電池のうちマイナス側の最端にある単電池のプラス極と前記マイナス側集電板とで挟持される放熱用仕切り板と、をさらに備え、これら放熱用仕切り板は、その挟持方向に直交する方向に貫通する1つ以上の通風孔を有していてもよい。   A heat dissipation partition plate sandwiched between the positive electrode of the single cell at the extreme end of the positive side of the plurality of single cells and the positive current collector plate, and at the extreme end of the negative side of the plurality of single cells. A heat radiating partition plate sandwiched between a positive electrode of a unit cell and the negative current collector plate, and the heat radiating partition plate includes one or more ventilation holes penetrating in a direction perpendicular to the sandwiching direction. You may have a hole.

前記放熱用仕切り板の前記通風孔の流入口及び流出口は、前記電池ケースから露出していてもよい。   The inflow port and the outflow port of the ventilation hole of the heat radiating partition plate may be exposed from the battery case.

前記放熱用仕切り板のうち前記流入口が形成された端面及び前記流出口が形成された端面が、前記電池ケースの外面と略同一面上に配置されていてもよい。   The end surface where the inflow port is formed and the end surface where the outflow port is formed may be disposed on substantially the same surface as the outer surface of the battery case.

前記放熱用仕切り板は、前記単電池の積層方向に沿った厚さδ(mm)と、当該積層方向に対して直交する方向に沿った長さL(mm)とを有し、前記通風孔は、前記放熱用仕切り板の当該長さ方向に沿って貫通しており、前記通風孔の前記積層方向における最大幅をF(mm)、前記通風孔の前記積層方向に沿った断面積をS(mm2)としたときに、F/δ≦0.6、かつ、3≦L/S≦45であってもよい。   The heat dissipation partition plate has a thickness δ (mm) along the stacking direction of the unit cells, and a length L (mm) along a direction orthogonal to the stacking direction, and the ventilation holes Is penetrating along the length direction of the heat radiating partition plate, the maximum width of the ventilation holes in the stacking direction is F (mm), and the cross-sectional area of the ventilation holes along the stacking direction is S When (mm2), F / δ ≦ 0.6 and 3 ≦ L / S ≦ 45 may be satisfied.

前記放熱用仕切り板の前記表面処理皮膜は、リン酸クロメート皮膜及びリン酸ジルコン皮膜の少なくともいずれかを含み、当該表面処理皮膜の厚さが10nm以上で50nm未満であってもよい。   The surface treatment film of the heat dissipation partition plate may include at least one of a phosphate chromate film and a zircon phosphate film, and the thickness of the surface treatment film may be 10 nm or more and less than 50 nm.

前記放熱用仕切り板の前記表面処理皮膜は、電気ニッケルめっき皮膜及び無電解ニッケルリンめっき皮膜の少なくともいずれかを含み、当該表面処理皮膜の厚さが5〜50μmであってもよい。   The surface treatment film of the heat dissipation partition plate may include at least one of an electric nickel plating film and an electroless nickel phosphorus plating film, and the thickness of the surface treatment film may be 5 to 50 μm.

本発明に係る組電池により、電池ケースに収納された複数の単電池の温度上昇を高効率で抑制できる。   With the assembled battery according to the present invention, the temperature rise of the plurality of single cells stored in the battery case can be suppressed with high efficiency.

本発明に係る放熱性仕切り板の一例の斜視図を示す。The perspective view of an example of the heat dissipation partition plate which concerns on this invention is shown. 本発明に係る放熱性仕切り板の一例の斜視図を示す。The perspective view of an example of the heat dissipation partition plate which concerns on this invention is shown. 本発明に係る放熱性仕切り板の一例の斜視図を示す。The perspective view of an example of the heat dissipation partition plate which concerns on this invention is shown. 本発明に係る放熱性仕切り板を組み込んだ組電池の正面図を示す。The front view of the assembled battery incorporating the heat-radiating partition plate which concerns on this invention is shown.

A.放熱用仕切り板の材質
放熱用仕切り板の基材は、アルミニウム又はアルミニウム基合金からなるアルミニウム基材である。各種アルミニウム基合金としては、1000系、3000系、5000系、6000系、7000系を用いることができるが、耐腐食性や加工性の観点から、A1050材が好適に用いられる。このようなアルミニウム基材には、表面処理皮膜として、リン酸クロメート皮膜、リン酸ジルコン皮膜の化成皮膜、或いは、電気ニッケルめっき皮膜、無電解ニッケルリンめっき皮膜のめっき皮膜が形成される。
A. Material of heat dissipation partition plate The base material of the heat dissipation partition plate is an aluminum base material made of aluminum or an aluminum-based alloy. As various aluminum-based alloys, 1000 series, 3000 series, 5000 series, 6000 series, and 7000 series can be used, but A1050 material is preferably used from the viewpoint of corrosion resistance and workability. On such an aluminum base material, as a surface treatment film, a phosphate chromate film, a chemical conversion film of a zirconate phosphate film, or a plating film of an electric nickel plating film or an electroless nickel phosphorus plating film is formed.

B.放熱用仕切り板の構造
図1に放熱用仕切り板1の例を示す。この例では、放熱用仕切り板1は平板状を成し、厚さ方向の辺Aと、他の辺BとCを有する。辺B及びCの長さはAに比べて十分に大きい。この例では、辺BとCとによって画成される面が正方形を成しているが、長方形、円形、楕円形など任意の形状とすることができる。放熱用仕切り板1は、通常、押出し成形によって形成される。放熱用仕切り板1には、辺AとCとによって画成される端面E1から対向する端面E2へと貫通した複数の通風孔Dが設けられている。この例では、通風孔Dの断面は正方形を成しているが、円形、楕円形、三角形、長方形、5角形以上の多角形など任意の断面形状とすることができる。
B. Structure of heat dissipation partition plate FIG. 1 shows an example of a heat dissipation partition plate 1. In this example, the heat radiating partition plate 1 has a flat plate shape and includes a side A in the thickness direction and other sides B and C. The length of sides B and C is sufficiently larger than A. In this example, the surface defined by the sides B and C forms a square, but can be any shape such as a rectangle, a circle, or an ellipse. The heat radiating partition plate 1 is usually formed by extrusion molding. The heat radiating partition plate 1 is provided with a plurality of ventilation holes D penetrating from the end surface E1 defined by the sides A and C to the opposite end surface E2. In this example, the cross section of the ventilation hole D is a square, but it can be an arbitrary cross sectional shape such as a circle, an ellipse, a triangle, a rectangle, a pentagon or more polygon.

本発明に係る放熱用仕切り板1は、単電池の積層方向に沿った厚さδ(mm)と当該積層方向に対して直交する方向に沿った長さL(mm)とを有する。通風孔Dは、前記積層方向における最大幅F(mm)と、通風孔の前記積層方向に沿った断面積をS(mm)を有する。本発明では、これら寸法と面積との間に、F/δ≦0.6、かつ、3≦L/S≦45となる関係を満たす必要がある。 The heat dissipation partition plate 1 according to the present invention has a thickness δ (mm) along the stacking direction of the unit cells and a length L (mm) along a direction orthogonal to the stacking direction. Ventilation holes D is the maximum width F (mm) in the stacking direction, the cross-sectional area along the stacking direction of the ventilation holes having a S (mm 2). In the present invention, it is necessary to satisfy the relationship of F / δ ≦ 0.6 and 3 ≦ L / S ≦ 45 between these dimensions and the area.

ここで、F/δは電池の積層方向における放熱用仕切り板の強度を表わすパラメータである。放熱用仕切り板の強度は、Fとδの比率にて一義的に決まり、必要強度を得るにはF/δ≦0.6とする必要がある。F/δが0.6より大きい場合、通風孔上下の材料の肉厚が薄過ぎ、放熱用仕切り板として使用した場合、強度が不足する。通風孔が設けられている限りF/δは正数となる。   Here, F / δ is a parameter representing the strength of the heat radiating partition plate in the battery stacking direction. The strength of the heat radiating partition plate is uniquely determined by the ratio of F and δ. In order to obtain the required strength, it is necessary to satisfy F / δ ≦ 0.6. When F / δ is larger than 0.6, the thickness of the material above and below the ventilation hole is too thin, and the strength is insufficient when used as a heat radiating partition plate. As long as the vent hole is provided, F / δ is a positive number.

通風孔内を流通する冷却風は孔壁から通過抵抗を受け、この通過抵抗は通常、Lに比例してSに反比例する。後述する電池冷却効果と、通過抵抗を表わすパラメータであるL/Sとの関係を実験的に求めたところ、3≦L/S≦45を満たす場合に良好な電池冷却効果が得られることが判明した。L/Sが45を超える場合には、通風孔の長さLが長過ぎたり断面積が小さ過ぎることにより、通過抵抗が大きくなって発熱量が増加するために全体的な冷却効果が低下する。一方、L/Sが3未満の場合には、通風孔の長さLが短じか過ぎて冷却風が十分な電池から生じる熱を十分に吸収しないうちに通風孔内を通り過ぎてしまったり、通風孔の断面積が大き過ぎることにより孔壁付近の冷却風だけが熱吸収にあずかるため、いずれも十分な放熱効果が得られない。   The cooling air flowing through the ventilation hole receives a passage resistance from the hole wall, and this passage resistance is generally proportional to L and inversely proportional to S. The relationship between the battery cooling effect described later and L / S, which is a parameter representing the passage resistance, was experimentally determined, and it was found that a favorable battery cooling effect was obtained when 3 ≦ L / S ≦ 45 was satisfied. did. When L / S exceeds 45, the length L of the ventilation hole is too long or the cross-sectional area is too small, so that the passage resistance increases and the amount of heat generation increases, so the overall cooling effect decreases. . On the other hand, when L / S is less than 3, the length L of the ventilation hole is too short and the cooling air passes through the ventilation hole before it sufficiently absorbs the heat generated from the battery, Since the cross-sectional area of the ventilation hole is too large, only the cooling air in the vicinity of the hole wall is involved in heat absorption, so that a sufficient heat dissipation effect cannot be obtained.

ここで、図1に示す例では通風孔Dの積層方向に沿った断面は正方形を成すので、最大幅Fとはこの正方形の一辺の長さに等しい。図2に示すように、通風孔の積層方向に沿った断面が円形の場合には、最大幅Fとはその直径に等しい。更に、図3に示すように、通風孔の積層方向に沿った断面が、辺Aに沿った辺が短い長方形の場合には、最大幅Fとはその短辺の長さに等しい。   Here, in the example shown in FIG. 1, since the cross section along the laminating direction of the ventilation holes D forms a square, the maximum width F is equal to the length of one side of the square. As shown in FIG. 2, when the cross section along the laminating direction of the ventilation holes is circular, the maximum width F is equal to the diameter. Furthermore, as shown in FIG. 3, when the cross section along the stacking direction of the ventilation holes is a rectangle whose side along the side A is short, the maximum width F is equal to the length of the short side.

C.表面処理皮膜
本発明の放熱用仕切り板は、大気中での酸化に耐えて表面の導電性を維持することも望まれる。また、万一の電解液漏れが想定される場合には、各種2次電池の電解液成分に対して耐性を備えることも望まれる。そのため、放熱用仕切り板の表面を保護するために、リン酸クロメート皮膜又はリン酸ジルコン皮膜から成る化成皮膜、或いは、電気ニッケルめっき皮膜又は無電解ニッケルリンめっき皮膜から成るめっき皮膜を表面処理皮膜として形成したアルミニウム基材を使用するのが好ましい。電気ニッケルめっき皮膜については、ニッケルカドミウム電池又はニッケル水素2次電池の電解液であるKOH水溶液に対する耐腐食性も期待できる。このような表面処理皮膜を設ける場合は、図1に示す放熱用仕切り板の、少なくとも上面H1、下面H2、右側側面I1及び左側側面I2に設けられていればよく、前面E1、後面E2及び通風孔Dの内面には設けても設けなくてもよい。
C. Surface Treatment Film The heat dissipation partition plate of the present invention is also desired to withstand oxidation in the air and maintain surface conductivity. Further, in the unlikely event that an electrolyte leakage is assumed, it is also desired to have resistance to the electrolyte components of various secondary batteries. Therefore, in order to protect the surface of the heat radiating partition plate, a chemical conversion film made of a phosphate chromate film or a zircon phosphate film, or a plating film made of an electric nickel plating film or an electroless nickel phosphorus plating film is used as a surface treatment film. It is preferred to use a formed aluminum substrate. About the electro nickel plating film, corrosion resistance to a KOH aqueous solution, which is an electrolytic solution of a nickel cadmium battery or a nickel hydride secondary battery, can also be expected. In the case of providing such a surface treatment film, it is only necessary to provide at least the upper surface H1, the lower surface H2, the right side surface I1, and the left side surface I2 of the heat dissipation partition plate shown in FIG. 1, and the front surface E1, the rear surface E2, and the ventilation are provided. It may or may not be provided on the inner surface of the hole D.

リン酸クロメート皮膜及びリン酸ジルコニウム皮膜については、皮膜厚さが10nm以上であれば、大気中における耐酸化性が発揮される。コストの観点においては、皮膜厚さが50nm未満であれば許容可能である。したがって、耐酸化性及びコストの観点から、皮膜厚さを10nm以上で50nm未満とする必要があり、20〜40nmとするのが好ましい。   With respect to the phosphate chromate film and the zirconium phosphate film, oxidation resistance in the atmosphere is exhibited as long as the film thickness is 10 nm or more. In terms of cost, it is acceptable if the film thickness is less than 50 nm. Therefore, from the viewpoint of oxidation resistance and cost, the film thickness needs to be 10 nm or more and less than 50 nm, and is preferably 20 to 40 nm.

電気ニッケルめっき皮膜は結晶性であり、皮膜厚さが5μm以上であれば十分な耐酸化性及び耐アルカリ腐食性を発揮する。また、コストの観点からは50μmまでは許容可能である。したがって、耐酸化性、耐アルカリ腐食性及びコストの観点から、皮膜厚さを5〜50μmとする必要があり、10〜30μmとするのが好ましい。   The electro nickel plating film is crystalline, and exhibits sufficient oxidation resistance and alkali corrosion resistance when the film thickness is 5 μm or more. From the viewpoint of cost, it is acceptable up to 50 μm. Therefore, from the viewpoint of oxidation resistance, alkali corrosion resistance and cost, the film thickness needs to be 5 to 50 μm, preferably 10 to 30 μm.

無電解ニッケルリンめっき皮膜は、含有リン量によって皮膜の結晶性が変化する。本発明では、含有リン量が1〜8重量%(すなわち、低リン含有領域から中リン含有領域)の、結晶性又は微結晶性の皮膜が形成される。無電解ニッケルリンめっき皮膜は電解ニッケルめっき皮膜に比べるとアルカリに対する耐食性に劣るので、皮膜厚さを10〜50μmとする必要があり、コストの観点も加えると20〜30μmとするのが好ましい。   In the electroless nickel phosphorus plating film, the crystallinity of the film changes depending on the amount of phosphorus contained. In the present invention, a crystalline or microcrystalline film having a phosphorus content of 1 to 8% by weight (that is, a low phosphorus content region to a medium phosphorus content region) is formed. Since the electroless nickel phosphorus plating film is inferior in corrosion resistance to alkali compared to the electrolytic nickel plating film, the film thickness needs to be 10 to 50 μm, and from the viewpoint of cost, it is preferably 20 to 30 μm.

D.電池への組み込み
図4に示すように、本発明に係る放熱用仕切り板1は、単電池を積層した電池ケース2に組み込まれる。図中3は単電池を示し、放熱用仕切り板1は、隣接する単電池3を仕切るように配設される。図4における放熱用仕切り板1の前面は、図1に示す右側側面I1又は左側側面I2であり、矢印Xに沿って、不図示の通風孔中を冷却風が流通する。図4の左右両端には、プラスとマイナスの側集電板4、4が配設される。このような組電池は、電池ケースのボディ5内に収容される。
D. As shown in FIG. 4, the heat dissipation partition plate 1 according to the present invention is incorporated in a battery case 2 in which unit cells are stacked. In the figure, reference numeral 3 denotes a unit cell, and the heat radiating partition plate 1 is disposed so as to partition adjacent unit cells 3. The front surface of the heat radiating partition plate 1 in FIG. 4 is the right side surface I1 or the left side surface I2 shown in FIG. 1, and the cooling air flows through the ventilation holes (not shown) along the arrow X. Positive and negative side current collecting plates 4 and 4 are disposed at both left and right ends of FIG. Such an assembled battery is accommodated in the body 5 of the battery case.

実施例1〜28及び比較例1〜4
(1)放熱用仕切り板基材の成形
実施例1〜28及び比較例1〜3では、放熱用仕切り板基材としてAl050合金を用いた。実施例1〜24では、図1において、辺Aの長さが5mm、辺B及びCの長さが50mm、正方形の断面を有する通風孔DのFが3mm、通風孔D同士を隔てる壁部分の厚さGが3mm、通風孔Dの個数が7個の放熱用仕切り板基材を、押出し成形によって作製した。実施例25〜28及び比較例2では、実施例1〜24における辺B及びCの長さ(すなわちL)のみを変えて、実施例1〜24とは異なるL/Sが得られるようにした。比較例3では、比較例2における辺B及びCの長さ(すなわちL)、ならびに、辺Aの長さ(すなわちδ)を変えて、比較例2とは異なるF/δ及びL/Sが得られるようにした。比較例1では、辺Aの長さが5mm、辺B及びCの長さが50mmで通風孔のない放熱用仕切り板基材を押出し成形によって作製した。比較例4では、放熱用仕切り板基材として鋼板を用い、辺Aの長さが5mm、辺B及びCの長さが50mmのものをプレス成形によって作製したが、押出し成形が適用できなかったため通風孔は設けられていない。
Examples 1-28 and Comparative Examples 1-4
(1) Molding of heat dissipation partition plate base material In Examples 1 to 28 and Comparative Examples 1 to 3, Al050 alloy was used as the heat dissipation partition plate base material. In Examples 1 to 24, in FIG. 1, the length of the side A is 5 mm, the length of the sides B and C is 50 mm, the F of the ventilation hole D having a square cross section is 3 mm, and the wall portion that separates the ventilation holes D A heat radiating partition plate substrate having a thickness G of 3 mm and a number of vent holes D of 7 was prepared by extrusion molding. In Examples 25 to 28 and Comparative Example 2, only the lengths (ie, L) of sides B and C in Examples 1 to 24 were changed so that L / S different from Examples 1 to 24 was obtained. . In Comparative Example 3, F / δ and L / S different from those in Comparative Example 2 were obtained by changing the lengths of sides B and C in Comparative Example 2 (ie, L) and the length of side A (ie, δ). I was able to get it. In Comparative Example 1, a heat radiating partition base material having a length of side A of 5 mm, sides B and C of 50 mm, and no ventilation holes was produced by extrusion molding. In Comparative Example 4, a steel plate was used as the heat radiating partition base, and a side A having a length of 5 mm and sides B and C having a length of 50 mm was produced by press molding, but extrusion molding could not be applied. Ventilation holes are not provided.

(2)化成処理(リン酸クロメート処理、リン酸ジルコン処理)
上記のようにして作製した放熱用仕切り板基材に前処理としてアルカリ脱脂、デスマット処理を施した後、実施例1〜3、7、8ではリン酸クロメート処理を施した。前記同様の前処理を施した後、実施例4〜6、9、10ではリン酸ジルコン処理を施した。処理液としては、日本ペイント製 アルサーフ301やアルサーフ407/47などを使用し、標準処理条件に準拠し、処理時間にて皮膜厚さを調節した。
(2) Chemical conversion treatment (phosphate chromate treatment, zircon phosphate treatment)
After performing the alkali degreasing and the desmut treatment as pretreatment on the heat radiating partition base material produced as described above, in Examples 1 to 3, 7 and 8, phosphoric acid chromate treatment was performed. After performing the same pretreatment as described above, in Examples 4 to 6, 9, and 10, zircon phosphate treatment was performed. As a treatment solution, Alsurf 301 or Alsurf 407/47 manufactured by Nippon Paint Co., Ltd. was used, and the film thickness was adjusted according to the treatment time in accordance with standard treatment conditions.

(3)めっき処理
上記のようにして作製した放熱用仕切り板基材に前処理としてジンケート処理を施した後、実施例11〜15、21、22、25〜28及び比較例1〜4では電気ニッケルめっき処理を下記の条件にて施した。実施例16〜19、23、24では無電解ニッケルリンめっき処理を下記の条件にて施した。
なお、実施例20では、化成処理もめっき処理も施していない。以上のようにして、化成処理又はめっき処理を施した放熱用仕切り板1を作製した。
(3) Plating treatment After the zincate treatment was applied as a pretreatment to the heat radiating partition plate base material produced as described above, in Examples 11 to 15, 21, 22, 25 to 28 and Comparative Examples 1 to 4, electricity was used. Nickel plating treatment was performed under the following conditions. In Examples 16 to 19, 23, and 24, electroless nickel phosphorus plating treatment was performed under the following conditions.
In Example 20, neither chemical conversion treatment nor plating treatment was performed. As described above, the heat radiating partition plate 1 subjected to the chemical conversion treatment or the plating treatment was produced.

電気ニッケルめっき処理条件
Watt浴(硫酸ニッケル、塩化ニッケル、ホウ酸を含有)を利用し、上記放熱性仕切り板をカソード電極としNi板をアノード電極として両電極を直流電源に接続し、電解温度55℃、電流密度2A/dm、成膜速度0.4μm/分の電解条件で、空気攪拌しつつ所定の膜厚が得られるまで電解処理した。
Electrolytic nickel plating treatment conditions A Watt bath (containing nickel sulfate, nickel chloride and boric acid) is used, the heat-radiating partition plate is used as a cathode electrode, the Ni plate is used as an anode electrode, and both electrodes are connected to a DC power source. The electrolytic treatment was carried out at a temperature of 2 ° C., a current density of 2 A / dm 2 , and a film formation rate of 0.4 μm / min while stirring with air until a predetermined film thickness was obtained.

無電解ニッケルリンめっき処理
めっき温度90℃、成膜速度0.2〜0.3μm/分のめっき条件で、所定の膜厚が得られるまで無電解めっき処理を施した。上記めっき液としては、例えば、奥野製薬工業、トップニコロンシリーズBLやALTなどを使用できる。
Electroless nickel phosphorus plating treatment An electroless plating treatment was performed at a plating temperature of 90 ° C. and a film formation rate of 0.2 to 0.3 μm / min until a predetermined film thickness was obtained. As said plating solution, Okuno Pharmaceutical Co., Ltd. top nicolon series BL, ALT, etc. can be used, for example.

(4)電池の作製とその動作
上記で作製した放熱用仕切り板1を単電池間に挟み込み、3組の単電池を積層した組電池を構成した。単電池は、容量が約2000mAhのものを使用した。放熱用仕切り板1の通風孔Dに外部から冷却風を全通風孔Dに対して200mL/分で流通させて各電池の発する熱を排出させて電池を冷却した。
(4) Production of battery and its operation The above-produced heat dissipation partition plate 1 was sandwiched between the single cells, and an assembled battery in which three sets of single cells were stacked was constructed. A single battery having a capacity of about 2000 mAh was used. Cooling air was circulated from the outside through the ventilation holes D of the heat radiating partition plate 1 at 200 mL / min to discharge the heat generated by each battery, thereby cooling the batteries.

実施例1〜10について、電池冷却効果、耐酸化性、コスト及び強度を評価した。結果を表1に示す。なお、下記のようにして測定したリン酸クロメート皮膜、リン酸ジルコン皮膜の平均皮膜厚さ、通風孔径(F)、F/δ、L/Sならびに、放熱用仕切り板の比重についても表1に合わせて示す。   About Examples 1-10, the battery cooling effect, oxidation resistance, cost, and intensity | strength were evaluated. The results are shown in Table 1. Table 1 also shows the average film thickness, the vent hole diameter (F), F / δ, L / S, and the specific gravity of the heat radiating partition plate measured as follows. Shown together.

Figure 2010199089
Figure 2010199089

実施例11〜28及び比較例1〜4では、電池冷却効果、耐酸化性、耐アルカリ腐食性、コスト及び強度を評価した。結果を表2に示す。なお、下記のようにして測定しためっき皮膜の平均皮膜厚さ、通風孔径(F)、F/δ、L/S、ならびに、放熱用仕切り板の比重についても表2に合わせて示す。   In Examples 11 to 28 and Comparative Examples 1 to 4, the battery cooling effect, oxidation resistance, alkali corrosion resistance, cost and strength were evaluated. The results are shown in Table 2. Table 2 also shows the average film thickness, the vent hole diameter (F), F / δ, L / S, and the specific gravity of the heat radiating partition plate measured as described below.

Figure 2010199089
Figure 2010199089

皮膜厚さの測定
リン酸クロメート及びリン酸ジルコンの皮膜厚さは、TEM(透過型電子顕微鏡)観察により測定した。めっき皮膜厚さは、蛍光X線式膜厚測定装置によって測定した。
Measurement of film thickness The film thickness of phosphate chromate and zircon phosphate was measured by TEM (transmission electron microscope) observation. The plating film thickness was measured with a fluorescent X-ray film thickness measuring device.

放熱用仕切り板の比重の測定
放熱用仕切り板の比重は、体積と重量を測定して計算により求めた。
Measurement of specific gravity of heat radiating partition plate The specific gravity of the heat radiating partition plate was calculated by measuring the volume and weight.

電池冷却効果
周囲温度25℃で、1Cにて充電時の単電池表面の温度変化を測定し、120%充電時の温度上昇量を以下の基準にて評価した。ここで、「1C」とは、電池の定格容量を1時間で放電する時の電流値を示す。◎と〇とを合格とし、×を不合格とした。
◎:温度上昇が15℃未満
○:温度上昇が15℃以上25℃未満
×:温度上昇が25℃以上
In the battery cooling effect ambient temperature 25 ° C., and measuring the temperature change of the battery surface at the time of charging at 1C, a temperature increase of 120% charging was evaluated by the following criteria. Here, “1C” indicates a current value when the rated capacity of the battery is discharged in one hour. ◎ and ○ were accepted, and x was rejected.
A: Temperature rise is less than 15 ° C B: Temperature rise is 15 ° C or more and less than 25 ° C X: Temperature rise is 25 ° C or more

耐酸化性
放熱用仕切り板を、温度50℃、湿度100%の環境に1日間放置し、放置前後の接触抵抗を測定してその増加分を求めた。接触抵抗は、三菱化学製ロレスタGPを使用し、二端子電極を材料に押し当てて抵抗値を測定した。以下の基準にて判断した。◎と〇とを合格とし、△と×とを不合格とした。
◎:増加分が無し
○:増加分が1%未満
△:増加分が1%以上10%未満
×:増加分が10%以上
The oxidation-resistant heat radiation partition plate was left in an environment of a temperature of 50 ° C. and a humidity of 100% for 1 day, and the contact resistance before and after being left was measured to determine the increase. For the contact resistance, a Loresta GP made by Mitsubishi Chemical was used, and the resistance value was measured by pressing the two-terminal electrode against the material. Judgment was made based on the following criteria. ◎ and ○ were accepted, and △ and x were rejected.
◎: No increase ○: Increase is less than 1% △: Increase is 1% or more and less than 10% ×: Increase is 10% or more

耐アルカリ耐食性
めっき皮膜で外面を覆われた放熱用仕切り板を、25℃の6N−KOH水溶液に浸漬して腐食状態を観察し、材料にフクレ又は発泡が発生するまでに要した時間を測定した。試験は最長で30日間行い、以下の基準にて判断した。◎と〇とを合格とし、△と×とを不合格とした。
◎:要した時間が30日以上
○:要した時間が20日以上で30日未満
△:要した時間が10日以上で20日未満
×:要した時間が10日未満
A heat dissipation partition plate whose outer surface was covered with an alkali-corrosion-resistant plating film was immersed in a 6N-KOH aqueous solution at 25 ° C. to observe the corrosion state, and the time taken for the material to bulge or foam was measured. . The test was conducted for a maximum of 30 days and judged according to the following criteria. ◎ and ○ were accepted, and △ and x were rejected.
◎: Time required is 30 days or more ○: Time required is 20 days or more and less than 30 days △: Time required is 10 days or more and less than 20 days ×: Time required is less than 10 days

コスト
化成皮膜(リン酸クロメート皮膜、リン酸ジルコン皮膜)、めっき皮膜(電気ニッケルめっき皮膜、無電解ニッケルリンめっき皮膜)の厚さによってコストを評価した。評価基準は以下の通りである。◎と〇とを合格とし、×を不合格とした。
◎:化成皮膜の厚さが10nm以上で30nm以下
○:化成皮膜の厚さが30nmを超え50nm未満
×:化成皮膜の厚さが10nm未満又は50nm以上
◎:めっき皮膜の厚さが5μm以上で30μm以下
○:めっき皮膜の厚さが30μmを超え50μm以下
×:めっき皮膜の厚さが5μm未満又は50μmを超える
Cost was evaluated based on the thickness of the cost chemical conversion film (phosphate chromate film, zircon phosphate film) and plating film (electric nickel plating film, electroless nickel phosphorus plating film). The evaluation criteria are as follows. ◎ and ○ were accepted, and x was rejected.
A: The thickness of the chemical film is 10 nm or more and 30 nm or less. ○: The thickness of the chemical film is more than 30 nm and less than 50 nm. X: The thickness of the chemical film is less than 10 nm or 50 nm or more. A: The thickness of the plating film is 5 μm or more. 30 μm or less ○: The thickness of the plating film exceeds 30 μm and 50 μm or less ×: The thickness of the plating film is less than 5 μm or exceeds 50 μm

強度
図1において、放熱用仕切り板の上面H1から下面H2に向けて荷重100kg/cmを加えた際に、仕切り板に潰れや曲がりなどの変形が生じなかった場合を○、変形が生じた場合を×とし、○を合格×を不合格とした。
In FIG. 1, when a load of 100 kg / cm 2 was applied from the upper surface H1 to the lower surface H2 of the heat radiating partition plate, a case where the partition plate was not deformed such as crushing or bending was evaluated as ◯. The case was set to x, and ○ was set to pass x.

実施例1〜28ではいずれも電池冷却効果の評価が合格であった。実施例1〜6、8、10、11〜19、21〜28では耐酸化性も合格であった。実施例11〜19、22、24〜28では耐アルカリ耐食性も合格であった。実施例1〜7、9、11〜21、23、25〜28ではコストも合格であった。更に、実施例1〜28では強度も合格であった。   In each of Examples 1 to 28, the evaluation of the battery cooling effect was acceptable. In Examples 1 to 6, 8, 10, 11 to 19, and 21 to 28, the oxidation resistance was also acceptable. In Examples 11-19, 22, and 24-28, the alkali corrosion resistance was also acceptable. In Examples 1 to 7, 9, 11 to 21, 23, 25 to 28, the cost was also acceptable. Furthermore, in Examples 1-28, the strength was also acceptable.

比較例1では通風孔が設けられておらず、電池の冷却性能が劣っていた。比較例2ではL/Sの条件を満たさず電池の冷却性能が不十分であった。比較例3ではF/δの条件を満たさず強度が不足していた。比較例4では、押出成形により通風孔を形成できず冷却効果が劣っており、鋼板を基材とするため比重が大きく扱い難かった。   In Comparative Example 1, the ventilation hole was not provided, and the cooling performance of the battery was inferior. In Comparative Example 2, the L / S condition was not satisfied and the battery cooling performance was insufficient. In Comparative Example 3, the F / δ condition was not satisfied and the strength was insufficient. In Comparative Example 4, ventilation holes could not be formed by extrusion molding, the cooling effect was inferior, and the specific gravity was large and difficult to handle because the steel plate was used as a base material.

以上に述べたように、本発明の組電池は各種2次電池の温度上昇を効果的に抑制できる。   As described above, the assembled battery of the present invention can effectively suppress the temperature rise of various secondary batteries.

1……放熱用ケース仕切り板
2……単電池と電池ケース仕切り板を組み込んだ電池ケース
3……単電池
4……側集電極
5……電池ケースのボディ
A……放熱用仕切り板の辺
B……放熱用仕切り板の辺
C……放熱用仕切り板の辺
D……通風孔
E1……電池ケース仕切り板の前面
E2……電池ケース仕切り板の後面
F……通風孔の積層方向における最大幅
G……通風孔同士を隔てる壁部分の厚さ
H1……電池ケース仕切り板の上面
H2……電池ケース仕切り板の下面
I1……電池ケース仕切り板の右側側面
I2……電池ケース仕切り板の左側側面
X……冷却風の流通方向
DESCRIPTION OF SYMBOLS 1 ... Radiation case partition plate 2 ... Battery case 3 incorporating the unit cell and the battery case partition plate ... Single cell 4 ... Side collector electrode 5 ... Battery case body A ... Side of the heat dissipation partition plate B: Side of heat dissipation partition plate C: Side of heat dissipation partition plate D: Ventilation hole E1: Front surface of battery case partition plate E2: Rear surface of battery case partition plate F: Direction of stacking of ventilation holes Maximum width G …… Thickness of wall portion separating ventilation holes H1 …… Upper surface H2 of battery case partition plate …… Lower surface I1 of battery case partition plate …… Right side surface I2 of battery case partition plate …… Battery case partition plate Left side X of the air flow direction of cooling air

Claims (7)

電池ケースと、
前記電気ケースに収納され、互いに直列接続して積層された複数の単電池と、
前記複数の単電池のうちプラス側の最端にある単電池のプラス極に接続されるプラス側集電板と、
前記複数の単電池のうちマイナス側の最端にある前記単電池のマイナス極に接続されるマイナス側集電板と、
表面処理皮膜を有するアルミニウム基材からなり、隣り合う単電池の間を仕切る放熱用仕切り板とを備え、
前記放熱用仕切り板は、単電池のプラス極とその隣の単電池のマイナス極とで挟持されており、その挟持方向に直交する方向に貫通する1つ以上の通風孔を有している、組電池。
A battery case,
A plurality of single cells housed in the electrical case and stacked in series with each other;
A positive current collector plate connected to a positive electrode of a single cell at the extreme end of the positive side among the plurality of single cells;
A negative current collector plate connected to the negative electrode of the single cell at the extreme end on the negative side among the plurality of single cells;
It consists of an aluminum base material having a surface treatment film, and includes a heat dissipation partition plate that partitions between adjacent single cells,
The heat dissipation partition plate is sandwiched between a positive electrode of a unit cell and a negative electrode of a unit cell adjacent thereto, and has one or more ventilation holes penetrating in a direction perpendicular to the sandwiching direction. Assembled battery.
前記複数の単電池のうちプラス側の最端にある単電池のプラス極と前記プラス側集電板とで挟持される放熱用仕切り板と、
前記複数の単電池のうちマイナス側の最端にある単電池のプラス極と前記マイナス側集電板とで挟持される放熱用仕切り板と、をさらに備え、
これら放熱用仕切り板は、その挟持方向に直交する方向に貫通する1つ以上の通風孔を有している、請求項1に記載の組電池。
A partition plate for heat dissipation that is sandwiched between the positive electrode of the single cell at the extreme end on the positive side of the plurality of single cells and the positive current collector plate;
A heat radiating partition plate sandwiched between the positive electrode of the single cell at the extreme end on the negative side of the plurality of single cells and the negative current collector plate,
The assembled battery according to claim 1, wherein the heat radiating partition plate has one or more ventilation holes penetrating in a direction orthogonal to the clamping direction.
前記放熱用仕切り板の前記通風孔の流入口及び流出口は、前記電池ケースから露出している、請求項1又は2に記載の組電池。   The assembled battery according to claim 1, wherein an inlet and an outlet of the ventilation hole of the heat radiating partition plate are exposed from the battery case. 前記放熱用仕切り板のうち前記流入口が形成された端面及び前記流出口が形成された端面が、前記電池ケースの外面と略同一面上に配置されている、請求項3に記載の組電池。   4. The assembled battery according to claim 3, wherein an end surface on which the inflow port is formed and an end surface on which the outflow port is formed are arranged on substantially the same surface as the outer surface of the battery case. . 前記放熱用仕切り板は、前記単電池の積層方向に沿った厚さδ(mm)と、当該積層方向に対して直交する方向に沿った長さL(mm)とを有し、
前記通風孔は、前記放熱用仕切り板の当該長さ方向に沿って貫通しており、
前記通風孔の前記積層方向における最大幅をF(mm)、前記通風孔の前記積層方向に沿った断面積をS(mm)としたときに、F/δ≦0.6、かつ、3≦L/S≦45である、請求項1乃至4のいずれかに記載の組電池。
The heat dissipation partition plate has a thickness δ (mm) along the stacking direction of the unit cells and a length L (mm) along a direction orthogonal to the stacking direction,
The vent hole penetrates along the length direction of the heat radiating partition plate,
When the maximum width of the ventilation holes in the stacking direction is F (mm) and the sectional area of the ventilation holes along the stacking direction is S (mm 2 ), F / δ ≦ 0.6 and 3 The assembled battery according to claim 1, wherein ≦ L / S ≦ 45.
前記放熱用仕切り板の前記表面処理皮膜は、リン酸クロメート皮膜及びリン酸ジルコン皮膜の少なくともいずれかを含み、当該表面処理皮膜の厚さが10nm以上で50nm未満である、請求項1乃至5のいずれかに記載の組電池。   The surface treatment film of the heat dissipation partition plate includes at least one of a phosphate chromate film and a zircon phosphate film, and the thickness of the surface treatment film is 10 nm or more and less than 50 nm. The assembled battery according to any one of the above. 前記放熱用仕切り板の前記表面処理皮膜は、電気ニッケルめっき皮膜及び無電解ニッケルリンめっき皮膜の少なくともいずれかを含み、当該表面処理皮膜の厚さが5〜50μmである、請求項1乃至5のいずれかに記載の組電池。   The surface treatment film of the partition plate for heat dissipation includes at least one of an electric nickel plating film and an electroless nickel phosphorus plating film, and the thickness of the surface treatment film is 5 to 50 µm. The assembled battery according to any one of the above.
JP2010109910A 2007-01-10 2010-05-12 Battery pack Pending JP2010199089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109910A JP2010199089A (en) 2007-01-10 2010-05-12 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007002411A JP2008171628A (en) 2007-01-10 2007-01-10 Partitioning plate for heat dissipation of battery case
JP2010109910A JP2010199089A (en) 2007-01-10 2010-05-12 Battery pack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007002411A Division JP2008171628A (en) 2007-01-10 2007-01-10 Partitioning plate for heat dissipation of battery case

Publications (1)

Publication Number Publication Date
JP2010199089A true JP2010199089A (en) 2010-09-09

Family

ID=39699530

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007002411A Pending JP2008171628A (en) 2007-01-10 2007-01-10 Partitioning plate for heat dissipation of battery case
JP2010109910A Pending JP2010199089A (en) 2007-01-10 2010-05-12 Battery pack

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007002411A Pending JP2008171628A (en) 2007-01-10 2007-01-10 Partitioning plate for heat dissipation of battery case

Country Status (1)

Country Link
JP (2) JP2008171628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019001469A1 (en) * 2017-06-28 2019-01-03 湖南妙盛汽车电源有限公司 Thermally conductive lithium ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040375A (en) * 2008-08-06 2010-02-18 Kawasaki Heavy Ind Ltd Anode discharge reserve reduction method of battery module
CN102618859A (en) * 2012-03-15 2012-08-01 超威电源有限公司 Impregnation liquid special for lead-calcium alloyed grid
CN103050899A (en) * 2012-12-28 2013-04-17 华为技术有限公司 Device for automatically installing fuses
GB2543863B (en) * 2015-10-30 2018-12-12 Tata Motors European Technical Ct Plc Battery pack
KR102478780B1 (en) 2019-01-09 2022-12-20 비와이디 컴퍼니 리미티드 battery pack and car
CN116505125B (en) * 2023-04-14 2024-04-12 浙江卧龙储能系统有限公司 Battery heat dissipation baffle and battery module with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145571A (en) * 1984-08-09 1986-03-05 Yuasa Battery Co Ltd Method of cooling storage battery
JPH02185981A (en) * 1988-08-26 1990-07-20 Toyota Central Res & Dev Lab Inc Plating method for aluminum-based material
JP2001143769A (en) * 1999-11-18 2001-05-25 Hitachi Ltd Cell module and power supply
JP2003313684A (en) * 2002-04-24 2003-11-06 Kobe Steel Ltd Aluminum sheet for electronic equipment and molded article for electronic equipment using the sheet
JP2006210185A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Cooling structure of secondary battery and cooling structure of battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145571A (en) * 1984-08-09 1986-03-05 Yuasa Battery Co Ltd Method of cooling storage battery
JPH02185981A (en) * 1988-08-26 1990-07-20 Toyota Central Res & Dev Lab Inc Plating method for aluminum-based material
JP2001143769A (en) * 1999-11-18 2001-05-25 Hitachi Ltd Cell module and power supply
JP2003313684A (en) * 2002-04-24 2003-11-06 Kobe Steel Ltd Aluminum sheet for electronic equipment and molded article for electronic equipment using the sheet
JP2006210185A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Cooling structure of secondary battery and cooling structure of battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019001469A1 (en) * 2017-06-28 2019-01-03 湖南妙盛汽车电源有限公司 Thermally conductive lithium ion battery

Also Published As

Publication number Publication date
JP2008171628A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP2010199089A (en) Battery pack
KR100740126B1 (en) Cell barrier for secondary battery module and secondary battery module
EP2840644A1 (en) Battery cell having improved cooling efficiency
EP3285327B1 (en) Battery module
US20120315531A1 (en) Battery cell connection apparatus
CN109273803A (en) Secondary battery module
US20100190056A1 (en) Battery Tab Structure
JP5617940B2 (en) Square lithium ion secondary battery
JP4757369B2 (en) Rectangular alkaline storage battery, unit battery and assembled battery using the same
CN102142527A (en) Secondary battery module
JP6833253B2 (en) Pouch-type secondary battery including heat transfer member
JP2018049719A (en) Assembled battery, battery pack and vehicle
JP2009266773A (en) Battery device
US10347897B2 (en) Secondary battery with electrode tab made of copper-nickel alloy
KR101772416B1 (en) Lithium Secondary Battery Comprising Current Collector Having Graphene Coating Layer
US10164304B1 (en) Thermally dissipative electrochemical cell
US20100021813A1 (en) Electrode for any energy reservoir
CN102569720A (en) Battery
WO2024066624A1 (en) Negative electrode sheet and preparation method therefor, and electrode assembly, battery cell, battery and electric apparatus
JP2023083070A (en) battery module
WO2017073067A1 (en) Metal ion battery current collector
CN117154103A (en) Thick electrode plate, lithium ion battery containing same and power utilization device
WO2017119106A1 (en) Power storage module
JP2006127902A (en) Cooling structure of battery
JP2010073392A (en) Energy storage device, vehicle, and housing container

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731