JP2010040375A - Anode discharge reserve reduction method of battery module - Google Patents

Anode discharge reserve reduction method of battery module Download PDF

Info

Publication number
JP2010040375A
JP2010040375A JP2008203027A JP2008203027A JP2010040375A JP 2010040375 A JP2010040375 A JP 2010040375A JP 2008203027 A JP2008203027 A JP 2008203027A JP 2008203027 A JP2008203027 A JP 2008203027A JP 2010040375 A JP2010040375 A JP 2010040375A
Authority
JP
Japan
Prior art keywords
battery
battery module
unit
oxygen
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008203027A
Other languages
Japanese (ja)
Other versions
JP2010040375A5 (en
Inventor
Kazuya Nishimura
和也 西村
Kazuo Tsutsumi
香津雄 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2008203027A priority Critical patent/JP2010040375A/en
Publication of JP2010040375A publication Critical patent/JP2010040375A/en
Publication of JP2010040375A5 publication Critical patent/JP2010040375A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reducing discharge reserve after initial activation by supplying oxygen into a battery in order to improve a lifetime and a charge and discharge capacity of a nickel hydrogen secondary battery. <P>SOLUTION: A battery module includes a unit battery constituted as a nickel hydrogen secondary battery and an oxygen supply source to communicate with the interior of the unit battery. After the initial activation charge and discharge of the unit battery, oxygen is supplied into the unit battery from the oxygen supply source, and is made to react with hydrogen being a discharge reserve stored in the anode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ニッケル水素二次電池モジュールの負極放電リザーブを、電池内に酸素を供給することによって低減する方法に関する。   The present invention relates to a method for reducing the negative electrode discharge reserve of a nickel metal hydride secondary battery module by supplying oxygen into the battery.

従来、主として携帯機器用の電源として使用する充放電可能な種々の二次電池が提案されてきた。さらには、近年、環境への配慮から、自動車や電車などの車両に充放電可能な二次電池を搭載したものが開発されている。車両に二次電池を搭載した場合には、ブレーキ時に生じる回生電力をこの搭載電池に蓄えておき、車両の動力源として使用することができるので、車両のエネルギー効率を高めることができる。このように車両に搭載する二次電池としては、エネルギー密度、負荷変動追従性、耐久性、製造コストなどの諸条件から、例えばニッケル水素二次電池が適しているとされる(特許文献1)。   Conventionally, various rechargeable secondary batteries used mainly as a power source for portable devices have been proposed. Furthermore, in recent years, a battery equipped with a rechargeable battery has been developed for vehicles such as automobiles and trains in consideration of the environment. When a secondary battery is mounted on a vehicle, regenerative power generated during braking can be stored in the mounted battery and used as a power source for the vehicle, so that the energy efficiency of the vehicle can be increased. Thus, for example, a nickel metal hydride secondary battery is considered suitable as a secondary battery mounted on a vehicle from various conditions such as energy density, load fluctuation followability, durability, and manufacturing cost (Patent Document 1). .

ニッケル水素二次電池の電極反応は、下記の式(1)および(2)で表される。それぞれ右向きの反応が充電反応、左向きの反応が放電反応であり、Mは水素吸蔵合金を表す。
正極:Ni(OH) + OH ⇔ NiOOH + HO + e (1)
負極:M + HO +e ⇔ MH + OH (2)
The electrode reaction of the nickel hydride secondary battery is expressed by the following formulas (1) and (2). The rightward reaction is a charging reaction and the leftward reaction is a discharge reaction, respectively, and M represents a hydrogen storage alloy.
Positive electrode: Ni (OH) 2 + OH Ni NiOOH + H 2 O + e (1)
Negative electrode: M + H 2 O + e ⇔ MH + OH (2)

ところで、ニッケル水素二次電池においては、一般的に、図1に示すように、あらかじめ負極の充電容量を正極の充電容量よりも大きく設定しておくことで、密閉化を可能にしている。この、負極における正極の充電容量を上回る分を、充電リザーブと呼ぶ。満充電の状態からさらに充電が行われる過充電時には、正極において下記(3)の反応により酸素ガスが発生する。
OH → 1/4O + 1/2HO + e (3)
正極で発生した酸素ガスは、下記(4)の反応により負極の水素吸蔵合金(M)中の水素と反応してHOとなるので、電池内部の圧力上昇が抑えられ、電池を密閉構造とすることができる。
MH + 1/4O → M + 1/2HO (4)
By the way, in a nickel metal hydride secondary battery, generally, as shown in FIG. 1, the negative electrode charge capacity is set to be larger than the positive electrode charge capacity in advance to enable sealing. The portion of the negative electrode that exceeds the charge capacity of the positive electrode is called charge reserve. At the time of overcharging in which charging is further performed from the fully charged state, oxygen gas is generated at the positive electrode by the reaction (3) below.
OH → 1/4 O 2 + 1/2 H 2 O + e (3)
The oxygen gas generated in the positive electrode reacts with hydrogen in the hydrogen storage alloy (M) of the negative electrode by the reaction (4) below to become H 2 O, so that the increase in pressure inside the battery is suppressed, and the battery is sealed. It can be.
MH + 1/4 O 2 → M + 1/2 H 2 O (4)

一方、放電側においても正極規制となるように、負極に予め多目の放電容量(つまり水素)を設けておく。これを放電リザーブと呼ぶ。通常、ニッケル水素二次電池は、組み立てられた直後は電池として十分に機能しないので、予備的な充放電(初期活性化)を行った後に出荷されるが、この初期活性化の過程で、正極に含まれる、活物質以外の導電材やバインダーなどの物質が酸化し、これによって発生する水素が放電リザーブとして負極に蓄えられる。   On the other hand, a large discharge capacity (that is, hydrogen) is provided in advance on the negative electrode so that the positive electrode is also regulated on the discharge side. This is called discharge reserve. Usually, a nickel metal hydride secondary battery does not function sufficiently as a battery immediately after it is assembled, so it is shipped after preliminary charge / discharge (initial activation). A material such as a conductive material and a binder other than the active material is oxidized and hydrogen generated thereby is stored in the negative electrode as a discharge reserve.

しかし、放電リザーブは、上述の初期活性化の後も、通常の充放電サイクルが進むにつれて、セパレータやバインダーの酸化、負極合金の腐食等によりさらに増加していく。このように放電リザーブが増加することにより、負極の充電容量が正極の充電容量よりも小さくなった場合には、充電末期に負極から水素ガスが発生し、内部圧力が急上昇してガス排出弁が作動する。また、放電リザーブの増大は、電解液(HO)の分解によるものであるので、電解液のドライアウトによる電池寿命の低下を招く。さらには、このような放電リザーブの増加による弊害を防止するために、充電リザーブを大きく設定しようとすれば、実質的に電池容量に寄与しない余分な負極材料を充填しなければならないので、電池全体の体積エネルギ密度の低減を余儀なくされる。 However, even after the initial activation described above, the discharge reserve further increases due to oxidation of the separator and binder, corrosion of the negative electrode alloy, and the like as the normal charge / discharge cycle proceeds. When the discharge reserve increases in this way and the charge capacity of the negative electrode becomes smaller than the charge capacity of the positive electrode, hydrogen gas is generated from the negative electrode at the end of the charge, the internal pressure rapidly rises, and the gas discharge valve Operate. Moreover, since the increase in the discharge reserve is due to the decomposition of the electrolytic solution (H 2 O), the battery life is reduced due to the dry-out of the electrolytic solution. Furthermore, in order to prevent such an adverse effect due to the increase in the discharge reserve, if the charge reserve is set to be large, an extra negative electrode material that does not substantially contribute to the battery capacity must be filled. The volume energy density of the material is inevitably reduced.

特開2001−110381号公報JP 2001-110381 A

本発明の目的は、上記の課題を解決して、ニッケル水素二次電池の寿命や充放電容量の向上を図るために、電池内に酸素を供給することによって初期活性化後の放電リザーブを低減する方法を提供することである。   The object of the present invention is to reduce the discharge reserve after the initial activation by supplying oxygen into the battery in order to solve the above problems and improve the life and charge / discharge capacity of the nickel metal hydride secondary battery. Is to provide a way to do.

前記した目的を達成するために、本発明に係る電池モジュールの負極放電リザーブ低減方法は、ニッケル水素二次電池として構成された単位電池と、前記単位電池の内部に連通する酸素供給源とを備えた電池モジュールの負極放電リザーブを低減する方法であって、前記単位電池の初期活性化充放電の後に、前記酸素供給源から前記単位電池の内部に酸素を供給して、負極に吸蔵された放電リザーブである水素と反応させることを含む。   To achieve the above object, a negative discharge reserve reduction method for a battery module according to the present invention includes a unit battery configured as a nickel hydride secondary battery and an oxygen supply source communicating with the inside of the unit battery. A method for reducing the negative discharge reserve of the battery module, wherein after the initial activation charge / discharge of the unit battery, oxygen is supplied from the oxygen supply source to the inside of the unit battery, and the discharge is occluded in the negative electrode. Reacting with hydrogen which is a reserve.

この構成によれば、初期活性化によって負極に蓄積された水素が、酸素供給源から供給される酸素と反応してHOとなって、負極の放電リザーブが低減されるので、電解液のドライアウトを防止して、電池性能、特には充放電サイクル寿命の劣化を防止することができる。また、初期段階での負極の放電リザーブを低減できることから、予め設定する充電リザーブの量、すなわち余分に充填する負極活物質の量をも低減することが可能となるので、電池全体の充放電容量を増大させることができる。 According to this configuration, the hydrogen accumulated in the negative electrode by the initial activation reacts with oxygen supplied from the oxygen supply source to become H 2 O, and the discharge reserve of the negative electrode is reduced. Dryout can be prevented, and deterioration of battery performance, in particular, charge / discharge cycle life can be prevented. In addition, since the discharge reserve of the negative electrode in the initial stage can be reduced, it is possible to reduce the amount of charge reserve set in advance, that is, the amount of the negative electrode active material to be additionally filled, so that the charge / discharge capacity of the entire battery can be reduced. Can be increased.

本発明に係る負極放電リザーブ低減方法においては、前記酸素供給源から前記単位電池の内部への酸素の供給量を、予め測定した負極放電リザーブ量に基づいて調節することが好ましい。このように構成することにより、適切な量の酸素を供給して効果的に放電リザーブを低減することができる。   In the negative electrode discharge reserve reducing method according to the present invention, it is preferable to adjust the supply amount of oxygen from the oxygen supply source to the inside of the unit battery based on a negative electrode discharge reserve amount measured in advance. By comprising in this way, an appropriate amount of oxygen can be supplied and discharge reserve can be reduced effectively.

本発明に係る上記の負極放電リザーブ低減方法において、前記電池モジュールに、前記単位電池を冷却する冷却構造を設け、この冷却構造によって前記単位電池を冷却しながら単位電池の内部に酸素を供給することが好ましい。放電リザーブである水素が酸素と反応してHOを生成する反応は発熱反応であるので、当該方法によって放電リザーブを低減する際には電池温度が上昇する。電池温度の上昇は、電池を構成する材料の劣化を招き、電池性能の低下をもたらすが、電池モジュールに冷却構造を設けることによりこのような弊害を排除することができる。 In the above-described negative electrode discharge reserve reduction method according to the present invention, the battery module is provided with a cooling structure for cooling the unit battery, and oxygen is supplied to the inside of the unit battery while cooling the unit battery by the cooling structure. Is preferred. Since the reaction in which hydrogen, which is the discharge reserve, reacts with oxygen to generate H 2 O is an exothermic reaction, the battery temperature rises when the discharge reserve is reduced by this method. An increase in battery temperature causes deterioration of materials constituting the battery and a decrease in battery performance. However, such a harmful effect can be eliminated by providing a cooling structure in the battery module.

本発明に係る負極放電リザーブ低減方法において、上記の冷却構造は、例えば、前記電池モジュールに、複数の前記単位電池を互いに電気的に接続し、かつ、その内部を、連通部材を介して互いに連通させてなる電池積層体を設け、該電池積層体の隣接する単位電池間に、単位電池の積層方向に直交して延びる貫通孔を有する放熱板を介在させることにより設けることができる。このように構成することにより、簡単な構造で、電池積層体の表面のみならず単位電池の積層面までも効果的に冷却して、電池モジュールの性能劣化を防止することができる。   In the method for reducing negative electrode discharge reserve according to the present invention, the cooling structure includes, for example, electrically connecting a plurality of the unit cells to the battery module and communicating the interior with each other via a communication member. The battery stack can be provided, and a heat dissipation plate having a through hole extending perpendicularly to the stacking direction of the unit cells can be provided between adjacent unit cells of the battery stack. With such a configuration, it is possible to effectively cool not only the surface of the battery stack but also the stack surface of the unit battery with a simple structure, and prevent performance deterioration of the battery module.

本発明に係る電池モジュールは、ニッケル水素二次電池として構成された単位電池と、前記単位電池の内部に連通する酸素供給源とを備え、上記の負極放電リザーブ低減方法によって負極放電リザーブが低減された電池モジュールであって、正極活物質の充填量に対する負極活物質の充填量の比が、容量換算で100〜400%の範囲内にある。上記の方法によって負極放電リザーブの低減が可能となるので、このように、予め正極活物質よりも余分に充填しておく負極活物質の充電リザーブ相当分を低減することも可能となり、電池モジュールの充放電容量を増加させることができる。   A battery module according to the present invention includes a unit battery configured as a nickel metal hydride secondary battery and an oxygen supply source that communicates with the inside of the unit battery, and the negative electrode discharge reserve is reduced by the negative electrode discharge reserve reduction method described above. The ratio of the filling amount of the negative electrode active material to the filling amount of the positive electrode active material is in a range of 100 to 400% in terms of capacity. Since the negative electrode discharge reserve can be reduced by the above method, it is possible to reduce the amount equivalent to the charge reserve of the negative electrode active material previously filled in excess of the positive electrode active material. The charge / discharge capacity can be increased.

以上のように、本発明に係る電池モジュールの負極放電リザーブ低減方法によれば、初期活性化後の放電リザーブを確実に低減して、電池モジュールの寿命や充放電容量の向上を図ることができる。   As described above, according to the negative discharge reserve reduction method for a battery module according to the present invention, the discharge reserve after the initial activation can be reliably reduced, and the life of the battery module and the charge / discharge capacity can be improved. .

以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments.

図2は、本発明の一実施形態に係る放電リザーブ低減方法が適用される電池モジュールを示す概略構成図である。この電池モジュールBは、例えば、電車に搭載されるものであって、ニッケル水素二次電池として構成された単位電池Cを、単位電池Cの厚み方向に複数個(本実施形態では30個)積層した電池積層体1、単位電池Cの内部を連通させる連通部材3、および連通部材3を介して各単位電池Cの内部に酸素を供給する酸素供給源5を主要な構成要素として備えており、これらが後述するハウジングによって覆われている。   FIG. 2 is a schematic configuration diagram illustrating a battery module to which the discharge reserve reduction method according to an embodiment of the present invention is applied. The battery module B is mounted on a train, for example, and a plurality of unit batteries C (30 in the present embodiment) stacked in the thickness direction of the unit battery C are stacked as nickel-hydrogen secondary batteries. The battery stack 1, the communication member 3 that communicates the inside of the unit battery C, and the oxygen supply source 5 that supplies oxygen to the inside of each unit battery C via the communication member 3 are provided as main components. These are covered by a housing which will be described later.

図3は、図2の単位電池Cの構造の一例を示す断面図である。単位電池Cは、セパレータ21と、正極23および負極25を含む電極体27と、電極体27を電解液とともに収容する角形形状のケーシング29とを備えている。ケーシング29は、絶縁素材からなる矩形の枠形部材31と、枠形部材31の二つの開口をそれぞれ覆う、導電素材からなる第1蓋部材33および第2蓋部材35とから構成されている。   FIG. 3 is a cross-sectional view showing an example of the structure of the unit battery C of FIG. The unit battery C includes a separator 21, an electrode body 27 including a positive electrode 23 and a negative electrode 25, and a rectangular casing 29 that houses the electrode body 27 together with an electrolytic solution. The casing 29 includes a rectangular frame member 31 made of an insulating material, and a first lid member 33 and a second lid member 35 made of a conductive material that respectively cover the two openings of the frame member 31.

ケーシング29の枠形部材31の外面には、単位電池Cの内部と外部を連通させる連通口37が設けられている。連通口37は、連通口37が設けられている枠形部材31の一辺にほぼ平行に、枠形部材31の中央に向かって突出する二又の連通部37aを有しており、後述するように、電池モジュールBのガス供給系統39の一部を構成している。なお、本実施形態における単位電池Cは、水酸化ニッケルを主要な正極活物質とし、水素吸蔵合金を主要な負極活物質とし、アルカリ系水溶液を電解液とする、繰り返し充放電が可能なニッケル水素二次電池として構成している。   A communication port 37 is provided on the outer surface of the frame-shaped member 31 of the casing 29 to allow the inside and the outside of the unit battery C to communicate with each other. The communication port 37 has a bifurcated communication portion 37a that protrudes toward the center of the frame-shaped member 31 substantially parallel to one side of the frame-shaped member 31 provided with the communication port 37, as will be described later. In addition, a part of the gas supply system 39 of the battery module B is configured. The unit battery C in this embodiment is nickel-hydrogen that can be repeatedly charged and discharged using nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy as a main negative electrode active material, and an alkaline aqueous solution as an electrolyte. It is configured as a secondary battery.

電極体27の構造は、特に限定されないが、例えば、複数の正極23と複数の負極25とが、プリーツ状に折り曲げられたセパレータ21を介して所定の方向に交互に積層されて対向する積層構造を有している。ケーシング29の第1蓋部材33および第2蓋部材35は、ニッケルめっきを施した鋼板で形成されており、正極23は第1蓋部材33に、負極25は第2蓋部材35に、それぞれ電気的に接続されている。つまり、第1および第2蓋部材33,35は、それぞれ、単位電池Cの正極集電体および負極集電体を兼ねている。なお、セパレータ21は、図3に示したプリーツ状のものに限らず、例えば、袋状のものを使用してもよい。   The structure of the electrode body 27 is not particularly limited. For example, a stacked structure in which a plurality of positive electrodes 23 and a plurality of negative electrodes 25 are alternately stacked in a predetermined direction through separators 21 bent in a pleat shape. have. The first lid member 33 and the second lid member 35 of the casing 29 are formed of a nickel-plated steel plate. The positive electrode 23 is electrically connected to the first lid member 33 and the negative electrode 25 is electrically connected to the second lid member 35. Connected. That is, the first and second lid members 33 and 35 also serve as the positive electrode current collector and the negative electrode current collector of the unit battery C, respectively. The separator 21 is not limited to the pleated one shown in FIG. 3, and for example, a bag-like one may be used.

次に、単位電池Cを用いて構成した電池モジュールBの構造について説明する。本実施形態における電池モジュールBの電池積層体1は、図2に示すように、単位電池Cと、後述する構造の放熱板41とを積層したものである。単位電池Cは、隣接する単位電池Cの一方の第1蓋部材33と、他方の第2蓋部材35とが互いに対向する方向に積層されており、さらに、2つの単位電池Cに1つの割合で、放熱板41が介在している。   Next, the structure of the battery module B configured using the unit battery C will be described. As shown in FIG. 2, the battery stack 1 of the battery module B in the present embodiment is obtained by stacking unit batteries C and a heat radiating plate 41 having a structure described later. In the unit cell C, one first lid member 33 and the other second lid member 35 of the adjacent unit cells C are stacked in a direction facing each other, and further, one unit cell C is in proportion to two unit cells C. And the heat sink 41 is interposed.

電池モジュールBには、各単位電池Cの内部に酸素ガスを供給するためのガス供給系統39が、以下のように構成されて設けられている。図2に示すように、各単位電池Cに設けられた各連通口37の二又の導入部37aのそれぞれが、隣接する単位電池Cの連通口37の導入部37aの一方と、ガス供給通路GSの一部分を形成する可撓性の連結チューブ51を介して順次接続されており、末端の単位電池Cの一方の導入部37aが、ガス供給通路GSの一部分を形成する導入チューブ52に設けられた流量監視用の流量計F、流量調整弁53、および流路開閉機構55を介して、酸素ガスの供給源となる酸素タンク57に接続されている。先端の単位電池Cの一方の導入部37aは、盲栓により閉塞する。これら連通口37、連通部材3である連結チューブ51および導入チューブ52、流量計F、流量調整弁53、流路開閉機構55ならびに酸素タンク57が、電池モジュールBのガス供給系統39を構成している。   In the battery module B, a gas supply system 39 for supplying oxygen gas into each unit battery C is configured and provided as follows. As shown in FIG. 2, each of the bifurcated introduction portions 37 a of each communication port 37 provided in each unit battery C is connected to one of the introduction portions 37 a of the communication ports 37 of the adjacent unit cells C, and a gas supply passage. They are sequentially connected via a flexible connecting tube 51 that forms a part of GS, and one introduction portion 37a of the terminal unit cell C is provided in an introduction tube 52 that forms a part of the gas supply passage GS. The flow rate monitoring valve F, the flow rate adjustment valve 53, and the flow path opening / closing mechanism 55 are connected to an oxygen tank 57 serving as an oxygen gas supply source. One introduction part 37a of the unit battery C at the tip is closed by a blind plug. The communication port 37, the connection tube 51 and the introduction tube 52 that are the communication members 3, the flow meter F, the flow rate adjustment valve 53, the flow path opening / closing mechanism 55, and the oxygen tank 57 constitute a gas supply system 39 of the battery module B. Yes.

このようなに構成したガス供給系統39において、所定のモル数の酸素ガスが供給されたときに、流路開閉機構55により酸素ガスの供給を停止すれば、必要な量の酸素ガスを無駄なく供給することができる。なお、流量調整弁53は流量の加減が行えるものであればよく、例えば、流量絞り機構を備えたもののほか、工業プロセス用に用いられるダイヤフラム式の流量調節弁であってもよい。流量計Fとしては、容積式のものであってもよく、風車のような回転式のものであってもよい。容積式のものを用いればより精密な計測が可能となり、回転式の流量計は流路抵抗が小さい。また、単位電池Cに酸素を供給する際の圧力を監視するための圧力計Pを、ガス供給系統39に設けてもよい。   In the gas supply system 39 configured as described above, when the supply of oxygen gas is stopped by the flow path opening / closing mechanism 55 when a predetermined number of moles of oxygen gas is supplied, a necessary amount of oxygen gas is not wasted. Can be supplied. The flow rate adjusting valve 53 may be anything that can adjust the flow rate. For example, the flow rate adjusting valve 53 may be a diaphragm type flow rate adjusting valve used for an industrial process in addition to a flow rate throttle mechanism. The flow meter F may be a positive displacement type or a rotary type such as a windmill. If a positive displacement type is used, more precise measurement is possible, and the rotary flow meter has a low flow path resistance. Further, a pressure gauge P for monitoring the pressure when oxygen is supplied to the unit battery C may be provided in the gas supply system 39.

なお、ガス供給源5である酸素タンク57、および、流量計F,流量調整弁53、流路開閉機構55などのガス供給量を調節する装置は、電池モジュールB内に設けられていてもよく、これらの全部または一部が、電池モジュールBの外部に配設されていてもよい。また、ガス供給系統39を構成する部材のうち、連通口37、連結チューブ51および酸素タンク57以外の部材は、場合によっては省略してもよく、その構成や仕様を変更または追加してもよい。例えば、流量計Fの代わりに、図示しない差圧計を設けて、図示しない流量調節器を介して流量調整弁53を制御してもよい。このとき圧力計Pと、リザーバに設けられた温度計とを用いて、いわゆる温圧補正を行えば、精密な流量調節が可能となる。上記の流量調節器に積算機能を持たせて、所定のモル数の酸素ガスが供給されたときに流量調整弁53が閉じるようにしてもよい。このように構成すれば、流路開閉機構55を省略することが可能であり、酸素ガスの供給量を自動調節することができる。   Note that the oxygen tank 57 that is the gas supply source 5 and devices for adjusting the gas supply amount such as the flow meter F, the flow rate adjusting valve 53, and the flow path opening / closing mechanism 55 may be provided in the battery module B. All or a part of these may be disposed outside the battery module B. Of the members constituting the gas supply system 39, members other than the communication port 37, the connecting tube 51, and the oxygen tank 57 may be omitted depending on circumstances, and the configuration and specifications thereof may be changed or added. . For example, instead of the flow meter F, a differential pressure gauge (not shown) may be provided, and the flow rate adjustment valve 53 may be controlled via a flow rate regulator (not shown). At this time, if the so-called temperature / pressure correction is performed using the pressure gauge P and the thermometer provided in the reservoir, precise flow rate adjustment is possible. The flow rate regulator 53 may be provided with an integrating function so that the flow rate regulating valve 53 is closed when a predetermined number of moles of oxygen gas is supplied. With this configuration, the flow path opening / closing mechanism 55 can be omitted, and the supply amount of oxygen gas can be automatically adjusted.

次に、本実施形態に係る電池モジュールBの冷却構造について説明する。図4に示すように、放熱板41は、アルミニウム素材にニッケルメッキを施したものであり、積層方向Xに直交する方向に延びる直線状の貫通孔として形成された、冷却用の空気を通すための複数の通風孔41aを有している。図2に示すように、この放熱板41が、電池モジュールBにおいて、隣接する単位セルCの一方の第1蓋部材23と他方の第2蓋部材25との間に介在するように積層されている。   Next, the cooling structure of the battery module B according to this embodiment will be described. As shown in FIG. 4, the heat radiating plate 41 is obtained by applying nickel plating to an aluminum material, and for passing cooling air formed as a linear through hole extending in a direction orthogonal to the stacking direction X. A plurality of ventilation holes 41a. As shown in FIG. 2, in the battery module B, the heat radiating plate 41 is laminated so as to be interposed between one first lid member 23 and the other second lid member 25 of adjacent unit cells C. Yes.

また、図5に示すように、電池モジュールBのハウジング7の上部5aおよび底部5bの内方には、冷却媒体となる空気を流通させるための各流通空間61,63が形成されており、底部5bの前端壁および後端壁に、それぞれ、電池積層体1を強制的に冷却するための吸気ファン65が設置されている。各吸気ファン65から底部5bの流通空間63に導入された空気Aは、上部5aの流通空間61を通って前後の開口から外部に排出されるまでの途中で、図4に示す放熱板41の通風孔41aに入り込み、放熱板41を介して単位電池Cを冷却する。このようにして、通風孔41aが単位電池Cを冷却するための冷却媒体通路として機能する。なお、本実施形態では、放熱板41を、単位電池C2つに1つの割合で介在させているが、放熱板41を介在させる位置や数は適宜変更してよい。また、冷媒としては、空気Aの他に、一般的に用いられているもの、例えば油を使用してもよい。   Further, as shown in FIG. 5, flow spaces 61 and 63 for flowing air as a cooling medium are formed inside the upper portion 5 a and the bottom portion 5 b of the housing 7 of the battery module B, and the bottom portion An intake fan 65 for forcibly cooling the battery stack 1 is installed on each of the front end wall and the rear end wall of 5b. The air A introduced into the circulation space 63 of the bottom portion 5b from each intake fan 65 passes through the circulation space 61 of the upper portion 5a and is exhausted to the outside through the front and rear openings. The air enters the ventilation hole 41 a and cools the unit battery C through the heat radiating plate 41. Thus, the ventilation hole 41a functions as a cooling medium passage for cooling the unit battery C. In the present embodiment, the heat radiating plate 41 is interposed in one unit cell C at a ratio of one, but the position and number of the heat radiating plates 41 interposed may be changed as appropriate. Further, as the refrigerant, in addition to the air A, a commonly used one such as oil may be used.

放熱板41は、隣接する単位電池Cの一方の正極集電体である第1蓋部材23と、他方の負極集電体である第2蓋部材25との間に介在するので、これら2つの単位電池Cを電気的に接続するべく、電気伝導性を有することが必要である。この点において、アルミニウムは電気抵抗が比較的低く、熱伝導率が比較的大きいので、放熱板41を形成する素材として好ましい特性を有している。しかしながら、アルミニウムは酸化しやすく、接触抵抗も大きいので、アルミニウム板にニッケルメッキを施すことにより、接触抵抗の低減を図っている。   Since the heat radiating plate 41 is interposed between the first lid member 23 that is one positive electrode current collector of the adjacent unit battery C and the second lid member 25 that is the other negative electrode current collector, In order to electrically connect the unit cells C, it is necessary to have electrical conductivity. In this respect, since aluminum has a relatively low electrical resistance and a relatively high thermal conductivity, aluminum has preferable characteristics as a material for forming the heat sink 41. However, since aluminum easily oxidizes and has high contact resistance, the contact resistance is reduced by applying nickel plating to the aluminum plate.

次に、本発明の一実施形態に係る負極放電リザーブの低減方法について説明する。図6は、本発明に係る電池モジュールの負極放電リザーブ低減方法を含む、電池モジュールBの生産過程を示すフロー図である。図6に示すように、電池モジュールBは組み立てられた後に、初期活性化工程に投入され、所定の条件で数サイクルの充放電が行われる。その後、初期活性化のための充放電を終えて放電状態に置かれた電池モジュールBの各単位電池Cの内部に、酸素が供給され、この酸素が負極内の放電リザーブである水素と反応してHOを生成することにより、放電リザーブが低減される。この際に供給する酸素の量は、電池モジュールBの生産過程とは別に行う放電リザーブ量の測定結果に基づいて決定される。また、酸素が電池モジュールBに供給されている間は、並行して、電池モジュールBの電池積層体1を構成する単位電池Cの冷却が行われる。これら放電リザーブ量測定、酸素供給、電池モジュール冷却で構成される放電リザーブ低減が行われた後に、電池モジュールBは出荷される。 Next, a method for reducing the negative electrode discharge reserve according to an embodiment of the present invention will be described. FIG. 6 is a flowchart showing the production process of the battery module B including the method for reducing negative discharge reserve of the battery module according to the present invention. As shown in FIG. 6, after the battery module B is assembled, it is put into an initial activation process, and charging and discharging are performed for several cycles under predetermined conditions. Thereafter, oxygen is supplied into each unit cell C of the battery module B which has been charged and discharged for initial activation and placed in a discharged state, and this oxygen reacts with hydrogen which is a discharge reserve in the negative electrode. By generating H 2 O, the discharge reserve is reduced. The amount of oxygen supplied at this time is determined based on the measurement result of the discharge reserve amount that is performed separately from the production process of the battery module B. In addition, while oxygen is supplied to the battery module B, the unit battery C constituting the battery stack 1 of the battery module B is cooled in parallel. The battery module B is shipped after the discharge reserve reduction including the discharge reserve amount measurement, oxygen supply, and battery module cooling is performed.

本実施形態における、負極放電リザーブの量の測定は、例えば、以下のようにして行う。まず、実際に酸素供給が行われる電池モジュールBと同じ仕様の電池モジュールを、放電リザーブ量測定用に用意する。この電池モジュールについて、実際の生産工程と同じ条件で初期活性化のための充放電を行って放電状態にした後に、低率の定電流でさらに放電を行う。このときの放電終止電圧は、単位電池C当たり−0.2Vよりも低い値、例えば−0.5Vに設定する。このような条件で放電を行い、電池電圧−放電容量特性を測定すると、図7に示すように、過放電領域の−0.2V付近に平坦な電圧領域Pが観測される。この平坦領域Pの放電量x(Ah)が放電リザーブとして蓄えられている水素の量を表している。すなわち、このとき負極では、下記の一電子反応(6)
MH → M + H + e (6)
によって、負極の水素が酸化されている。電子1モルの電気量は96500クーロン、また1Ahは3600クーロンであるので、xAhの放電量は、水素原子3600x/96500モルに相当する。
The measurement of the amount of negative electrode discharge reserve in this embodiment is performed as follows, for example. First, a battery module having the same specifications as the battery module B to which oxygen is actually supplied is prepared for measuring the discharge reserve amount. The battery module is charged and discharged for initial activation under the same conditions as the actual production process to be in a discharged state, and then further discharged at a low constant current. The discharge end voltage at this time is set to a value lower than −0.2 V per unit battery C, for example, −0.5 V. When discharging is performed under such conditions and the battery voltage-discharge capacity characteristics are measured, a flat voltage region P is observed in the vicinity of -0.2 V in the overdischarge region as shown in FIG. The discharge amount x (Ah) in the flat region P represents the amount of hydrogen stored as the discharge reserve. That is, at this time, in the negative electrode, the following one-electron reaction (6)
MH → M + H + + e - (6)
As a result, hydrogen of the negative electrode is oxidized. Since the electric quantity of 1 mol of electrons is 96500 coulombs and 1Ah is 3600 coulombs, the discharge quantity of xAh corresponds to 3600 x / 96500 mols of hydrogen atoms.

1モルの水素原子と反応してHOを生成するために必要な酸素ガス(O)は、1/4モルであるので、結局、上記の測定から得られた負極放電リザーブ量に相当する酸素ガスの量は、3600x/(96500×4)=約0.0093xモルとなる。 Since the oxygen gas (O 2 ) required to react with 1 mol of hydrogen atoms to generate H 2 O is ¼ mol, it corresponds to the negative electrode discharge reserve amount obtained from the above measurement. The amount of oxygen gas to be used is 3600 × / (96500 × 4) = about 0.0093 × mol.

電池積層体1を構成する各単位電池C内への酸素ガスの供給は、例えば、以下のようにして行う。まず、図2に示すガス供給系統39の流路開閉機構55を酸素タンク57側に切り替えた状態で、流量調整弁53を所定の値に設定し、酸素タンク57から連通チューブ51および連通口37を介して各単位電池C内に酸素ガスを供給し、この酸素ガスを、負極に蓄積された水素と反応させてHOを生成する。酸素ガスの供給量の制御は、例えば、上述の負極放電リザーブ量の測定値を基にして、予め供給すべき酸素ガス流量を決めておき、その所定のガス流量だけ供給されるように調節することができる。あるいは、電池モジュールB全体もしくは各単位電池Cの電圧を監視しながら酸素ガス供給を行い、所定の電圧値まで下降した時点で供給を停止するようにしてもよい。 The supply of oxygen gas into each unit battery C constituting the battery stack 1 is performed as follows, for example. First, in a state where the flow path opening / closing mechanism 55 of the gas supply system 39 shown in FIG. 2 is switched to the oxygen tank 57 side, the flow rate adjustment valve 53 is set to a predetermined value, and the communication tube 51 and the communication port 37 are connected to the oxygen tank 57. Then, oxygen gas is supplied into each unit cell C through the gas, and this oxygen gas is reacted with hydrogen accumulated in the negative electrode to generate H 2 O. The oxygen gas supply amount is controlled by, for example, determining the oxygen gas flow rate to be supplied in advance based on the measured value of the negative electrode discharge reserve and adjusting the oxygen gas supply amount to be supplied only by the predetermined gas flow rate. be able to. Alternatively, oxygen gas supply may be performed while monitoring the voltage of the entire battery module B or each unit battery C, and the supply may be stopped when the voltage drops to a predetermined voltage value.

上記実施形態に係る電池モジュールBの負極放電リザーブ低減方法によれば、以下の効果が得られる。   According to the negative electrode discharge reserve reducing method of the battery module B according to the embodiment, the following effects are obtained.

上記で説明した本実施形態に係る電池モジュールの負極放電リザーブ低減方法においては、ニッケル水素二次電池として構成された単位電池Cを有する電池モジュールBが、単位電池Cの内部に連通する酸素供給源5を備えており、電池モジュールBの初期活性化の後に、単位電池Cの内部に酸素ガスを供給して、負極に吸蔵された放電リザーブである水素と反応させる。したがって、初期活性化によって負極に蓄積された水素が、酸素供給源から供給する酸素と反応してHOとなって、負極の放電リザーブが低減するので、電解液のドライアウトを防止して、電池性能、特には充放電サイクル寿命の劣化を防止することができる。また、初期段階での負極の放電リザーブを低減できることから、予め設定する充電リザーブの量、すなわち余分に充填する負極活物質の量をも低減することが可能となるので、電池全体の充放電容量を増大させることができる。 In the method for reducing negative discharge reserve of the battery module according to the present embodiment described above, the oxygen supply source in which the battery module B having the unit battery C configured as a nickel hydride secondary battery communicates with the inside of the unit battery C. 5, after the initial activation of the battery module B, oxygen gas is supplied into the unit battery C and reacted with hydrogen, which is a discharge reserve occluded in the negative electrode. Therefore, the hydrogen accumulated in the negative electrode due to the initial activation reacts with the oxygen supplied from the oxygen supply source to become H 2 O and the discharge reserve of the negative electrode is reduced. It is possible to prevent deterioration of battery performance, particularly charge / discharge cycle life. In addition, since the discharge reserve of the negative electrode in the initial stage can be reduced, it is possible to reduce the amount of charge reserve set in advance, that is, the amount of the negative electrode active material to be additionally filled, so that the charge / discharge capacity of the entire battery can be reduced. Can be increased.

また、本実施形態に係る負極放電リザーブ低減方法においては、酸素供給源5から単位電池Cの内部への酸素の供給量を、予め測定した負極放電リザーブ量に基づいて決定し、制御を行っているので、適切な量の酸素を供給して効果的に放電リザーブを低減することができる。   Further, in the negative electrode discharge reserve reducing method according to the present embodiment, the supply amount of oxygen from the oxygen supply source 5 to the inside of the unit battery C is determined based on the negative electrode discharge reserve amount measured in advance and controlled. Therefore, the discharge reserve can be effectively reduced by supplying an appropriate amount of oxygen.

さらには、電池モジュールBに、電池積層体1を構成する各単位電池Cを冷却する冷却構造、つまり通風孔41aを有する放熱板41を設けているので、放電リザーブである水素が酸素と反応してHOを生成する発熱反応に起因する電池温度上昇を防止することができる。一般的に、電池温度の上昇は、電池を構成する材料の劣化を招き、電池性能の低下をもたらすが、電池モジュールBにこのような冷却構造を設けることにより、簡単な構造で、電池積層体1の表面のみならず単位電池Cの積層面をも効果的に冷却して、電池モジュールBの性能劣化を防止することができる。 Furthermore, since the battery module B is provided with a cooling structure for cooling the unit cells C constituting the battery stack 1, that is, the heat radiation plate 41 having the ventilation holes 41 a, hydrogen as a discharge reserve reacts with oxygen. Thus, an increase in battery temperature due to an exothermic reaction that generates H 2 O can be prevented. In general, an increase in battery temperature causes deterioration of the material constituting the battery, leading to a decrease in battery performance. By providing such a cooling structure for the battery module B, a battery stack with a simple structure can be obtained. It is possible to effectively cool not only the surface of 1 but also the laminated surface of the unit cells C, and prevent performance deterioration of the battery module B.

また、本実施形態に係る電池モジュールBは、上述の方法によって負極放電リザーブを低減することが可能となるので、予め正極活物質よりも余分に充填しておく負極活物質の充電リザーブ相当分を低減することができ、正極活物質の充填量に対する負極活物質の充填量の比を、容量換算で100〜400%の範囲内に設定している。したがって、電池モジュールBの充放電容量を増加させることが可能となる。   In addition, since the battery module B according to the present embodiment can reduce the negative electrode discharge reserve by the above-described method, an amount equivalent to the charge reserve of the negative electrode active material that is previously filled in excess of the positive electrode active material is provided. The ratio of the filling amount of the negative electrode active material to the filling amount of the positive electrode active material can be reduced, and is set within a range of 100 to 400% in terms of capacity. Therefore, the charge / discharge capacity of the battery module B can be increased.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.

ニッケル水素二次電池の負極充電リザーブおよび放電リザーブの模式図である。It is a schematic diagram of the negative electrode charge reserve and discharge reserve of a nickel metal hydride secondary battery. 本発明の一実施形態に係る電池モジュールを示す概略構成図である。It is a schematic block diagram which shows the battery module which concerns on one Embodiment of this invention. 図2の電池モジュールに使用される単位電池の部分破断断面図である。FIG. 3 is a partially broken cross-sectional view of a unit battery used in the battery module of FIG. 2. 図2の電池モジュールに使用される放熱板を示す斜視図である。It is a perspective view which shows the heat sink used for the battery module of FIG. 図2の電池モジュールの冷却構造の例を示す斜視図である。It is a perspective view which shows the example of the cooling structure of the battery module of FIG. 本発明の一実施形態に係る負極放電リザーブ低減方法を示すフロー図である。It is a flowchart which shows the negative electrode discharge reserve reduction method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る負極放電リザーブ低減方法における、放電リザーブ量の測定方法の原理を示す特性図である。It is a characteristic view which shows the principle of the measuring method of the discharge reserve in the negative electrode discharge reserve reducing method which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 電池積層体
3 連通部材
5 酸素供給源
27 ガス導入口
51 連結チューブ(連通部材)
52 導出チューブ(連通部材)
C 単位電池
B 電池モジュール
DESCRIPTION OF SYMBOLS 1 Battery laminated body 3 Communication member 5 Oxygen supply source 27 Gas inlet 51 Connection tube (communication member)
52 Lead tube (communication member)
C Unit battery B Battery module

Claims (5)

ニッケル水素二次電池として構成された単位電池と、前記単位電池の内部に連通する酸素供給源とを備えた電池モジュールの負極放電リザーブを低減する方法であって、
前記単位電池の初期活性化充放電の後に、前記酸素供給源から前記単位電池の内部に酸素を供給して、負極に吸蔵された放電リザーブである水素と反応させることを含む電池モジュールの負極放電リザーブ低減方法。
A method for reducing negative discharge reserve of a battery module comprising a unit battery configured as a nickel metal hydride secondary battery and an oxygen supply source communicating with the inside of the unit battery,
After the initial activation charge / discharge of the unit battery, the negative discharge of the battery module includes supplying oxygen from the oxygen supply source to the inside of the unit battery and reacting with hydrogen which is a discharge reserve stored in the negative electrode Reserve reduction method.
請求項1において、前記酸素供給源から前記単位電池の内部への酸素の供給量を、予め測定した負極放電リザーブ量に基づいて調節する電池モジュールの負極放電リザーブ低減方法。   2. The method of reducing negative discharge reserve in a battery module according to claim 1, wherein the supply amount of oxygen from the oxygen supply source to the inside of the unit cell is adjusted based on a negative discharge reserve amount measured in advance. 請求項1または2において、前記電池モジュールに、前記単位電池を冷却する冷却構造を設け、この冷却構造によって前記単位電池を冷却しながら単位電池の内部に酸素を供給することを含む電池モジュールの負極放電リザーブ低減方法。   3. The negative electrode of the battery module according to claim 1, wherein the battery module includes a cooling structure that cools the unit battery, and supplies oxygen to the inside of the unit battery while cooling the unit battery by the cooling structure. Discharge reserve reduction method. 請求項3において、前記電池モジュールに、複数の前記単位電池を互いに電気的に接続し、かつ、その内部を、連通部材を介して互いに連通させてなる電池積層体を設け、該電池積層体の隣接する単位電池間に、単位電池の積層方向に直交して延びる貫通孔を有する放熱板を介在させる電池モジュールの負極放電リザーブ低減方法。   The battery module according to claim 3, wherein the battery module is provided with a battery stack in which the plurality of unit batteries are electrically connected to each other, and the inside thereof is connected to each other via a communication member. A method for reducing negative discharge reserve in a battery module, wherein a heat sink having a through hole extending perpendicularly to a stacking direction of unit cells is interposed between adjacent unit cells. ニッケル水素二次電池として構成された単位電池と、前記単位電池の内部に連通する酸素供給源とを備え、請求項1〜5のいずれか一項に記載の負極放電リザーブ低減方法によって負極放電リザーブが低減された電池モジュールであって、正極活物質の充填量に対する負極活物質の充填量の比が、容量換算で100〜400%の範囲内にある電池モジュール。   A negative electrode discharge reserve according to claim 1, comprising a unit battery configured as a nickel metal hydride secondary battery and an oxygen supply source communicating with the inside of the unit battery. The battery module in which the ratio of the filling amount of the negative electrode active material to the filling amount of the positive electrode active material is in the range of 100 to 400% in terms of capacity.
JP2008203027A 2008-08-06 2008-08-06 Anode discharge reserve reduction method of battery module Pending JP2010040375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203027A JP2010040375A (en) 2008-08-06 2008-08-06 Anode discharge reserve reduction method of battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203027A JP2010040375A (en) 2008-08-06 2008-08-06 Anode discharge reserve reduction method of battery module

Publications (2)

Publication Number Publication Date
JP2010040375A true JP2010040375A (en) 2010-02-18
JP2010040375A5 JP2010040375A5 (en) 2011-08-11

Family

ID=42012701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203027A Pending JP2010040375A (en) 2008-08-06 2008-08-06 Anode discharge reserve reduction method of battery module

Country Status (1)

Country Link
JP (1) JP2010040375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122891A (en) * 2011-12-12 2013-06-20 Kawasaki Heavy Ind Ltd Secondary battery, secondary battery system, and discharge reserve reduction method of secondary battery and secondary battery system
JP2020061223A (en) * 2018-10-05 2020-04-16 株式会社豊田自動織機 Method of manufacturing nickel metal hydride storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283774A (en) * 1988-05-10 1989-11-15 Toshiba Corp Nickel oxide and hydrogen secondary battery
JPH05251108A (en) * 1992-03-04 1993-09-28 Sanyo Electric Co Ltd Sealed type metal-hydrogen alkali storage battery
JPH06150963A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Storage battery system
JP2006260967A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Battery module
JP2008171628A (en) * 2007-01-10 2008-07-24 Furukawa Sky Kk Partitioning plate for heat dissipation of battery case

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283774A (en) * 1988-05-10 1989-11-15 Toshiba Corp Nickel oxide and hydrogen secondary battery
JPH05251108A (en) * 1992-03-04 1993-09-28 Sanyo Electric Co Ltd Sealed type metal-hydrogen alkali storage battery
JPH06150963A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Storage battery system
JP2006260967A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Battery module
JP2008171628A (en) * 2007-01-10 2008-07-24 Furukawa Sky Kk Partitioning plate for heat dissipation of battery case

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122891A (en) * 2011-12-12 2013-06-20 Kawasaki Heavy Ind Ltd Secondary battery, secondary battery system, and discharge reserve reduction method of secondary battery and secondary battery system
JP2020061223A (en) * 2018-10-05 2020-04-16 株式会社豊田自動織機 Method of manufacturing nickel metal hydride storage battery
JP7095539B2 (en) 2018-10-05 2022-07-05 株式会社豊田自動織機 Manufacturing method of nickel-metal hydride storage battery

Similar Documents

Publication Publication Date Title
JP5308729B2 (en) Fuel cell storage battery and battery module using the same
US9590262B2 (en) Reversible fuel cell and reversible fuel cell system
JP3365577B2 (en) Single-cell and unit cells of sealed nickel-hydrogen storage batteries
US20110195321A1 (en) Rechargeable metal-air battery
EP2976803B1 (en) Metal/oxygen battery with oxygen pressure management
CN108432033B (en) Battery module, battery pack including the same, and vehicle
WO2014103943A1 (en) Zinc hybrid battery
CN112072008B (en) Battery pack and vehicle
JP2009266773A (en) Battery device
KR20180081851A (en) Metal/oxygen battery with multistage oxygen compression
JP5937341B2 (en) Secondary battery, secondary battery system, secondary battery and method for reducing discharge reserve of secondary battery system
JP2010040324A (en) Estimation method of state of charge of battery module, and charging method using this
JP5325480B2 (en) Secondary battery, battery module and charging method thereof
JP2010040375A (en) Anode discharge reserve reduction method of battery module
JP6178870B2 (en) Metal oxygen battery with multistage oxygen compressor
JP5514594B2 (en) Nitrogen battery float charging system
JP5426847B2 (en) Method for charging nickel-metal hydride battery stack and its charge control system
JP2009016235A (en) Power storage device
JP5926571B2 (en) Battery module
JP5502307B2 (en) Alkaline storage battery and method for reducing discharge reserve of alkaline storage battery
CN216597727U (en) Air-cooled battery pack
WO2022208530A1 (en) An energy storage cell
CN116154358A (en) Battery and electric equipment
JP2006127902A (en) Cooling structure of battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820