JP2010197322A - Air flow rate measuring device - Google Patents

Air flow rate measuring device Download PDF

Info

Publication number
JP2010197322A
JP2010197322A JP2009045222A JP2009045222A JP2010197322A JP 2010197322 A JP2010197322 A JP 2010197322A JP 2009045222 A JP2009045222 A JP 2009045222A JP 2009045222 A JP2009045222 A JP 2009045222A JP 2010197322 A JP2010197322 A JP 2010197322A
Authority
JP
Japan
Prior art keywords
flow
flow rate
bypass
sub
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009045222A
Other languages
Japanese (ja)
Other versions
JP5272801B2 (en
Inventor
Shinichi Kamiya
信一 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009045222A priority Critical patent/JP5272801B2/en
Publication of JP2010197322A publication Critical patent/JP2010197322A/en
Application granted granted Critical
Publication of JP5272801B2 publication Critical patent/JP5272801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air flow rate measuring device 1 improving measurement detection accuracy of an air flow rate by suppressing deposition of intake dust on the upstream/downstream ends of a chip support member, concerning a thermal air flow rate measuring device having a chip sensor structure. <P>SOLUTION: A bypass flow is formed by taking a part of air flowing along the main channel 6 of an intake pipe 2 into a bypass channel 7 of a sensor body 3, and besides a sub-bypass flow is formed by taking a part of the bypass flow into a sub-bypass channel 8 deflected approximately rectangularly. A flow rate measuring element 40 having a chip sensor structure of a flow rate sensor 4 is disposed in a direction orthogonal to the sub-bypass flow. The upstream end 44 of the support member 43 of the flow rate sensor 4 is arranged slantingly with respect to the sub-bypass flow. Hereby, a split flow to a tilt direction of the flow is generated, and generation of a stagnation of the flow is suppressed, to thereby suppress deposition of intake dust. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、吸気通路の内部に配設され、空気の流量を測定する空気流量測定装置に関する。   The present invention relates to an air flow rate measuring device that is disposed inside an intake passage and measures the flow rate of air.

〔従来の技術〕
従来から、発熱抵抗体の放熱量を基に、空気流量を測定する熱式流量測定装置が公知であり、自動車用の内燃機関の吸入空気の流量を測定するエアフローメータとして採用されている(例えば、特許文献1参照)。
[Conventional technology]
2. Description of the Related Art Conventionally, a thermal flow rate measuring device that measures an air flow rate based on a heat release amount of a heating resistor is known, and is employed as an air flow meter that measures a flow rate of intake air of an internal combustion engine for an automobile (for example, , See Patent Document 1).

このエアフローメータ(空気流量測定装置)は、内燃機関の吸気通路内に配置されるセンサボディを有し、センサボディには吸気通路を流れる空気の一部を取り込むバイパス流路と、このバイパス流路の内部に吸入空気量を測定する流量センサが配置されている。流量センサは、半導体基板の表面に形成された薄膜抵抗体からなる発熱素子と感温素子のチップセンサ構造を有しており、チップセンサはセンサ支持部材に埋め込まれ、バイパス流路内を流れるバイパス流れの流線と直交するように配置される。   This air flow meter (air flow measuring device) has a sensor body disposed in an intake passage of an internal combustion engine, and a bypass passage that takes in part of the air flowing through the intake passage into the sensor body, and the bypass passage A flow rate sensor for measuring the amount of intake air is disposed inside. The flow sensor has a chip sensor structure of a heating element and a temperature sensing element made of a thin film resistor formed on the surface of a semiconductor substrate, and the chip sensor is embedded in the sensor support member and bypassed in the bypass flow path. It arrange | positions so that it may be orthogonal to the streamline of a flow.

そして、このチップセンサを制御する回路を構成し、雰囲気温度に応じ一定温度で発熱する発熱素子から伝熱する上下流の感温素子の抵抗値差を電気的な信号(例えば電圧信号)で出力する。そして、この検出信号がECUに入力され、ECUによって空気流量が演算されるものである。   Then, a circuit for controlling the chip sensor is configured, and the resistance value difference between the upstream and downstream temperature sensing elements that transfer heat from the heating element that generates heat at a constant temperature according to the ambient temperature is output as an electrical signal (for example, a voltage signal). To do. This detection signal is input to the ECU, and the air flow rate is calculated by the ECU.

ここで、図5に示すように、従来例の空気流量測定装置100におけるチップセンサ101およびチップ支持部材102の配設は、吸気通路103を流れる空気(メイン流れ)の一部が偏向することなく、直接に、流れ込むバイパス流路104の入口側に、バイパス流れと直交して、そしてバイパス流れがチップセンサ101およびチップ支持部材102の表面および裏面に沿うように流線方向と平行に配設される。   Here, as shown in FIG. 5, the arrangement of the chip sensor 101 and the chip support member 102 in the conventional air flow measuring device 100 is such that part of the air (main flow) flowing through the intake passage 103 is not deflected. Directly on the inlet side of the bypass flow path 104 that flows in, orthogonal to the bypass flow and parallel to the streamline direction so that the bypass flow is along the front and back surfaces of the chip sensor 101 and the chip support member 102. The

そして、さらに、チップ支持部材102は、図5(b)に示すように、バイパス流れと直交に対向する上流側端部105および下流側端部106がテーパ状または円弧状に面取りされて、バイパス流れに乱れや剥離が生じないようになっている。従って、バイパス流れはチップセンサ101と直交して滑らかな流線を描き、2度のUターン構成を経て下流側へ流出される。このとき、バイパス流れに露出されるチップセンサ101によって空気の流量が検出される。   Further, as shown in FIG. 5 (b), the tip support member 102 has a chamfered or arcuate chamfered upstream end portion 105 and downstream end portion 106 that are orthogonal to the bypass flow. The flow is not disturbed or separated. Therefore, the bypass flow draws a smooth streamline perpendicular to the chip sensor 101 and flows out downstream through the two U-turn configuration. At this time, the air flow rate is detected by the chip sensor 101 exposed to the bypass flow.

〔従来技術の不具合〕
しかしながら、本構造の空気流量測定装置では、バイパス流れを偏向することなく直接にバイパス流路に流入させ、しかもチップセンサをバイパス流れの流線に直交させているので、吸気中に浮遊する吸気ダストの比較的大きくて重いものまでが流れに直交して生じるよどみ部に堆積する可能性がある。
[Problems with conventional technology]
However, in the air flow measuring device of this structure, the bypass flow is directly introduced into the bypass flow path without being deflected, and the chip sensor is orthogonal to the flow line of the bypass flow. Even relatively large and heavy objects may accumulate in the stagnation part that occurs perpendicular to the flow.

吸気ダストの堆積は、図6(b)に示すように、センサ支持部材102の上流側端部105のテーパ状部分または円弧状部分に不規則に堆積するため、バイパス流れの流線が変化し、乱れや剥離が生じ、発生した渦等が丁度チップセンサ位置と重なるとチップセンサの検出特性が変化する。図6(c)は、実際の空気流量測定装置におけるダスト試験後の検出特性変化を実際の流量に対して示したグラフであるが、これによれば流量が少ない領域ほど検出特性はマイナス側に大きく変化することが判る。つまり、少流量領域で検出誤差が大きくなるという問題がある。   As shown in FIG. 6B, the intake dust accumulates irregularly on the tapered or arcuate portion of the upstream end portion 105 of the sensor support member 102, so that the flow line of the bypass flow changes. If the generated vortex or the like just overlaps the chip sensor position, the detection characteristics of the chip sensor change. FIG. 6 (c) is a graph showing the change in detection characteristics after the dust test in the actual air flow measurement device with respect to the actual flow rate. According to this, the detection characteristic becomes negative in the region where the flow rate is small. It turns out that it changes greatly. That is, there is a problem that the detection error becomes large in a small flow rate region.

特開2005−156570号公報JP 2005-156570 A

そこで、本発明は、上記問題に鑑みてなされたもので、その目的は、チップセンサ構造の熱式空気流量測定装置において、チップ支持部材の上下流側端部への吸気ダストの堆積を抑制することにより、空気流量の測定検出精度を向上できる空気流量測定装置を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and an object thereof is to suppress the accumulation of intake dust on the upstream and downstream ends of the chip support member in the thermal air flow measurement device having the chip sensor structure. Thus, an object of the present invention is to provide an air flow rate measuring device capable of improving the accuracy of measurement and detection of air flow rate.

〔請求項1の手段〕
請求項1に記載の手段によれば、空気通路を流れる空気の一部を取り込むバイパス流路と、バイパス流路に設けられ、バイパス流路の出口方向に向って流路断面積を次第に減少する絞り部と、絞り部より上流側でバイパス流路より分岐して設けられ、バイパス流路を流れる空気の流れ方向と直交するバイパス流路の所定の径方向の一方側に入口が設けられ、バイパス流路を流れる空気の一部を取り込むサブバイパス流路と、サブバイパス流路内に配設され、サブバイパス流路を流れる空気の流量を測定する流量センサと、を有する空気流量測定装置において、流量センサは、半導体基板の表面に形成された薄膜抵抗体からなる1対の熱式流量測定素子を有し、熱式流量測定素子は、半導体基板の長手方向を同軸とする平板状の支持部材に支持され、熱式流量測定素子は、サブバイパス流路を流れる空気の流れ方向と直交し、支持部材の上流側端部は、サブバイパス流路を流れる空気の流れ方向に傾斜して配設されることを特徴としている。
[Means of Claim 1]
According to the first aspect of the present invention, the bypass passage that takes in part of the air flowing through the air passage, and the bypass passage, the passage cross-sectional area gradually decreases toward the outlet of the bypass passage. An inlet is provided on one side of a predetermined radial direction of the bypass passage, which is provided on the upstream side of the throttle portion and branched from the bypass passage and orthogonal to the flow direction of the air flowing through the bypass passage. In an air flow rate measuring device having a sub-bypass channel that takes in part of the air flowing through the channel, and a flow rate sensor that is disposed in the sub-bypass channel and measures the flow rate of air flowing through the sub-bypass channel, The flow sensor has a pair of thermal flow measurement elements made of a thin film resistor formed on the surface of a semiconductor substrate, and the thermal flow measurement element is a flat support member whose longitudinal direction is coaxial with the semiconductor substrate. To support The thermal flow rate measuring element is orthogonal to the flow direction of the air flowing through the sub-bypass channel, and the upstream end of the support member is inclined to the flow direction of the air flowing through the sub-bypass channel. It is characterized by that.

これにより、支持部材の上流側端部には傾斜面に沿う流れが常に生じ、流れのよどみ部の生成が解消され、吸気ダストは付着することなく浮遊して流れとともに流れ去る。よって、上流側端部でのダストの堆積を抑えることができ、空気流量の測定検出精度を向上できる。   Thereby, the flow along the inclined surface is always generated at the upstream end portion of the support member, the generation of the stagnation portion of the flow is eliminated, and the intake dust floats without adhering and flows away with the flow. Therefore, dust accumulation at the upstream end can be suppressed, and the measurement and detection accuracy of the air flow rate can be improved.

〔請求項2の手段〕
請求項2に記載の手段によれば、支持部材の下流側端部は、サブバイパス流路を流れる空気の流れ方向と逆方向に傾斜して配設されることを特徴としている。
[Means of claim 2]
According to the second aspect of the present invention, the downstream end of the support member is disposed so as to be inclined in the direction opposite to the flow direction of the air flowing through the sub-bypass channel.

これにより、吸気流路にエンジン脈動による過渡的な逆流が生じた場合であっても、この逆流による吸気ダストの支持部材の下流側端部へのダストの堆積を抑えることができ、逆流する空気流量の測定検出精度を向上できる。   As a result, even when a transient backflow due to engine pulsation occurs in the intake flow path, dust accumulation on the downstream end of the support member of the intake dust due to the backflow can be suppressed, and the backflowing air The measurement and detection accuracy of the flow rate can be improved.

〔請求項3の手段〕
請求項3に記載の手段によれば、支持部材の上流側端部および下流側端部とサブバイパス流路を流れる空気の流れ方向とのなす傾斜角は、20〜40度であることを特徴としている。
これにより、傾斜角によるダスト堆積による劣化特性量と出力特性変化量のトレードオフの関係から、傾斜角の設定範囲は20〜40度が好適であると言える。この傾斜角の範囲ならば、流量測定素子の出力特性の低下を引き起こすことなくダスト堆積を防いで劣化特性量を最小値に抑えることが可能となる。
[Means of claim 3]
According to the means described in claim 3, the inclination angle formed by the upstream end portion and the downstream end portion of the support member and the flow direction of the air flowing through the sub-bypass channel is 20 to 40 degrees. It is said.
Accordingly, it can be said that the setting range of the inclination angle is preferably 20 to 40 degrees from the trade-off relationship between the deterioration characteristic amount due to dust accumulation due to the inclination angle and the output characteristic change amount. Within this inclination angle range, it is possible to prevent the accumulation of dust and suppress the deterioration characteristic amount to the minimum value without causing a decrease in the output characteristics of the flow rate measuring element.

空気流量測定装置の部分断面図である(実施例1)。(Example 1) which is a fragmentary sectional view of an air flow measuring device. 空気流量測定装置の要部の流量センサを示し、(a)は平面図であり、(b)は流れ特性図である(実施例1)。The flow sensor of the principal part of an air flow measuring device is shown, (a) is a top view, (b) is a flow characteristic view (Example 1). 空気流量測定装置の流量センサの支持部材の傾斜角θに対して、ダスト堆積による劣化特性量、および出力特性変化量を併記した特性図である(実施例1)。(Example 1) which is the characteristic diagram which described the deterioration characteristic amount by dust accumulation, and the output characteristic change amount with respect to inclination-angle (theta) of the supporting member of the flow sensor of an air flow measuring device. 空気流量測定装置の構成を示し、(a)は部分断面図であり、(b)は要部の流量センサの拡大詳細平面図である(実施例2)。The structure of an air flow rate measuring apparatus is shown, (a) is a fragmentary sectional view, (b) is an expansion detailed top view of the flow sensor of the principal part (Example 2). 空気流量測定装置の構成を示し、(a)は部分断面図であり、(b)はX−X断面図であり、(c)はZ−Z断面図である(従来例)。The structure of an air flow measuring device is shown, (a) is a fragmentary sectional view, (b) is a XX sectional view, (c) is a ZZ sectional view (conventional example). 空気流量測定装置の流量センサの作動および特性を示し、(a)は初期時の空気の流れであり、(b)はダスト堆積時の空気の流れであり、(c)はダスト試験後の検出特性変化を示した特性図である(従来例)。The operation and characteristics of the flow sensor of the air flow measuring device are shown, (a) is the initial air flow, (b) is the air flow during dust accumulation, and (c) is the detection after the dust test. It is a characteristic view which showed the characteristic change (conventional example).

この発明の最良の実施形態を、図に示す実施例1とともに説明する。   The best mode of the present invention will be described together with Example 1 shown in the drawings.

〔実施例1の構成〕
図1〜図3は、本発明の実施例1を示したもので、図1は空気流量測定装置の構成を示す部分断面図である。図2は、図1に示す空気流量測定装置の要部の流量センサを示し、(a)は平面図であり、(b)は流れ特性図である。図3は空気流量測定装置の流量センサの支持部材の傾斜角θに対して、ダスト堆積による劣化特性量、および出力特性変化量を併記した特性図である。
[Configuration of Example 1]
1 to 3 show a first embodiment of the present invention, and FIG. 1 is a partial cross-sectional view showing a configuration of an air flow rate measuring apparatus. FIG. 2 shows a flow sensor of the main part of the air flow rate measuring device shown in FIG. 1, (a) is a plan view, and (b) is a flow characteristic diagram. FIG. 3 is a characteristic diagram in which the deterioration characteristic amount due to dust accumulation and the output characteristic change amount are shown together with the inclination angle θ of the support member of the flow rate sensor of the air flow rate measuring device.

本実施例に示す空気流量測定装置1は、例えば、自動車用の内燃機関(以下、エンジンと呼ぶ)の吸入空気(吸気)量を計測するものであり、図1に示すように、図示しないエアクリーナと接続する空気通路を形成する吸気管2にプラグイン方式によって、着脱可能に取付けられている。   An air flow rate measuring apparatus 1 shown in this embodiment measures, for example, an intake air (intake) amount of an internal combustion engine (hereinafter referred to as an engine) for an automobile. As shown in FIG. Is detachably attached to the intake pipe 2 that forms an air passage to be connected by a plug-in method.

この空気流量測定装置1は、センサボディ3、流量センサ4、および回路モジュール5等から構成される。センサボディ3は、メイン流路6を形成する吸気管2の管壁に開けられた取付け孔より吸気管2の内部に挿入されている。このセンサボディ3は、円筒形状の筒状ボディ3aと、この筒状ボディ3aと一体に設けられる直方体形状の箱型ボディ3bとで構成される。筒状ボディ3aには、吸気管2の内部を図示左側から右側に向って流れる空気(以下、メイン流れと呼ぶ)の一部を取り込むバイパス流路7と、箱型ボディ3bには、このバイパス流路7を流れる空気(以下、バイパス流れと呼ぶ)の一部を取り込むサブバイパス流路8とが形成されている。   The air flow rate measuring device 1 includes a sensor body 3, a flow rate sensor 4, a circuit module 5, and the like. The sensor body 3 is inserted into the intake pipe 2 through an attachment hole formed in the pipe wall of the intake pipe 2 that forms the main flow path 6. The sensor body 3 includes a cylindrical cylindrical body 3a and a rectangular parallelepiped box body 3b provided integrally with the cylindrical body 3a. The cylindrical body 3a has a bypass passage 7 for taking in a part of air (hereinafter referred to as main flow) flowing from the left side to the right side of the intake pipe 2 in the drawing, and the box-type body 3b has this bypass. A sub-bypass channel 8 that takes in a part of the air flowing through the channel 7 (hereinafter referred to as bypass flow) is formed.

バイパス流路7は、筒状ボディ3aの先端中央部に開口する入口9と、筒状ボディ3aの後端中央部に開口する出口10とを有し、入口9から出口10まで直線状に形成されている。また、バイパス流路7の出口側には、バイパス流路7の流路断面積を出口10に向って次第に減少するテーパ形状の絞り部14が設けられている。   The bypass channel 7 has an inlet 9 that opens at the center of the front end of the cylindrical body 3a and an outlet 10 that opens at the center of the rear end of the cylindrical body 3a, and is formed linearly from the inlet 9 to the outlet 10. Has been. Further, on the outlet side of the bypass channel 7, a tapered throttle portion 14 is provided that gradually decreases the channel cross-sectional area of the bypass channel 7 toward the outlet 10.

サブバイパス流路8は、バイパス流路7の絞り部14より上流側でバイパス流路7から分岐する入口12と、バイパス流路7の出口10の周囲に環状に形成される出口13とを有し、入口12と出口13との間に空気の流れ方向が180度変化(Uターン)するUターン部が設けられている。   The sub-bypass channel 8 has an inlet 12 branched from the bypass channel 7 on the upstream side of the narrowed portion 14 of the bypass channel 7 and an outlet 13 formed in an annular shape around the outlet 10 of the bypass channel 7. A U-turn portion is provided between the inlet 12 and the outlet 13 so that the air flow direction changes 180 degrees (U-turn).

流量センサ4は、サブバイパス流路8を流れる空気の流量を計測して電気的な信号(例えば電圧信号)として出力するもので、例えば、半導体基板の表面に薄膜抵抗体で形成された発熱素子および感温素子とからなるチップセンサ構造の流量測定素子を有し、これらの素子が回路モジュール5に内蔵される回路基板(図示せず)に接続されている。   The flow sensor 4 measures the flow rate of the air flowing through the sub-bypass channel 8 and outputs it as an electrical signal (for example, a voltage signal). For example, the heating element is formed on the surface of the semiconductor substrate with a thin film resistor. And a flow rate measuring element having a chip sensor structure composed of a temperature sensitive element, and these elements are connected to a circuit board (not shown) built in the circuit module 5.

この流量センサ4は、サブバイパス流路8の入口12より下流側の所定の位置に配置されている。本実施例では、サブバイパス流路8のUターン部の略中央に配置されているが、Uターン部より上流側で入口12より下流側の直管部に配置されてもよい。   The flow sensor 4 is disposed at a predetermined position downstream of the inlet 12 of the sub bypass flow path 8. In this embodiment, the sub-bypass passage 8 is disposed at the approximate center of the U-turn portion, but may be disposed in a straight pipe portion upstream from the U-turn portion and downstream from the inlet 12.

また、回路モジュール5は、センサボディ3の他端側に一体的に設けられ、吸気管2の取付け孔より外側に配置される。この回路モジュール5は、発熱素子の温度と感温素子で検出される出力を制御している。   Further, the circuit module 5 is integrally provided on the other end side of the sensor body 3 and is disposed outside the attachment hole of the intake pipe 2. The circuit module 5 controls the temperature of the heat generating element and the output detected by the temperature sensitive element.

ここで、本実施例では、本発明の流量センサ4は、チップセンサ構造の流量測定素子を支持する支持部材の上流側端部に傾斜を設け、流れによる吸気ダストの堆積を抑制したことを特徴としている。以下に、図2に基づいて詳細に説明する。   Here, in this embodiment, the flow sensor 4 of the present invention is characterized in that the upstream end portion of the support member that supports the flow rate measuring element of the chip sensor structure is provided with an inclination to suppress the accumulation of intake dust due to the flow. It is said. Below, it demonstrates in detail based on FIG.

本発明の温度センサ4は、図2(a)に示すように、半導体基板の表面に薄膜抵抗体で形成された1個の発熱素子41と2個の感温素子42がそれぞれ上下流側に近接して並列に配置される1対の流量測定素子40と、この流量測定素子40を所定の位置および方向に支持する平板状の支持部材43とから構成される。本実施例では、流量測定素子40の長手方向が支持部材43の長手方向と一致するように配置されているため、1対の発熱素子41と感温素子42はそれぞれ直交するサブバイパス流れにその表面および裏面が露出することになる。ここで、1対の発熱素子41と感温素子42のそれぞれを流れに直交させるのは各素子の検出感度を高めるためである。   As shown in FIG. 2A, the temperature sensor 4 of the present invention includes one heating element 41 and two temperature sensing elements 42 formed on the surface of a semiconductor substrate with thin film resistors on the upstream and downstream sides, respectively. A pair of flow rate measuring elements 40 arranged close to each other in parallel and a flat plate-like support member 43 that supports the flow rate measuring elements 40 in a predetermined position and direction. In the present embodiment, since the longitudinal direction of the flow rate measuring element 40 is arranged so as to coincide with the longitudinal direction of the support member 43, the pair of heating elements 41 and the temperature sensitive element 42 are arranged in sub-bypass flows orthogonal to each other. The front and back surfaces will be exposed. Here, the reason why each of the pair of heating elements 41 and the temperature sensitive elements 42 is orthogonal to the flow is to increase the detection sensitivity of each element.

また、支持部材43の上流側端部44は、衝突する流れに乱れや剥離が生じないようにテーパ状または円弧状に面取りがなされ、さらに、流れに対して傾斜する端部構造を有している。この傾斜は、流れがこの傾斜に衝突したときに流れの一部(分流)が傾斜の稜線に沿って上流側から下流側へ滑らかに流れるよう形成される。即ち、サブバイパス流れに直交する仮想面から流れの下流側に向かってプラス(正)の傾斜角θ(上流傾斜角θ)を形成するものである。これにより、流れと直交して配置(傾斜角θ=0に相当)する場合と異なって、流れによるよどみ部の生成が抑制される。   Further, the upstream end 44 of the support member 43 is chamfered in a taper shape or an arc shape so that the collision flow is not disturbed or separated, and has an end structure that is inclined with respect to the flow. Yes. This inclination is formed so that when a flow collides with this inclination, a part of the flow (divided flow) flows smoothly from the upstream side to the downstream side along the ridgeline of the inclination. That is, a positive (positive) inclination angle θ (upstream inclination angle θ) is formed from a virtual plane orthogonal to the sub-bypass flow toward the downstream side of the flow. Thereby, unlike the case of being arranged orthogonal to the flow (corresponding to the inclination angle θ = 0), the generation of the stagnation part due to the flow is suppressed.

従って、空気中を浮遊する吸気ダストは、流れの慣性効果により比較的大きくて重いものはバイパス流路7の絞り部14において捕集される。そして、バイパス流路7より略直角に分岐したサブバイパス流路を流れるサブバイパス流れには比較的小さくて軽い微小ダストのみが残る。そして、この微小ダストが支持部材43の上流側端部44に衝突しても、よどみ部が生成されないためダストは付着することなく分流とともに下流側に流されることとなる。よって、吸気ダストの堆積が抑えられる(図2(b)参照)。   Therefore, the relatively large and heavy intake dust floating in the air is collected at the throttle portion 14 of the bypass flow path 7 due to the inertial effect of the flow. Then, only a relatively small and light minute dust remains in the sub-bypass flow that flows through the sub-bypass flow path branched at a substantially right angle from the bypass flow path 7. Even if the minute dust collides with the upstream end 44 of the support member 43, no stagnation is generated, so that the dust is caused to flow downstream without being attached. Therefore, accumulation of intake dust is suppressed (see FIG. 2B).

ここで、所定の上流傾斜角θの好適な設定範囲について説明する。
上流側端部44を流れに対し傾斜させることは、流れの傾斜方向への分流を生じさせて、流れによるよどみ部の生成を抑え、よどみ部から派生するダスト堆積を防ぐ狙いのものであった。従って、傾斜角θを大きくすれば分流も大きくなり、大きな分流によりよどみ部の生成は完全に解消されるとともに、吸気ダストも分流側に混流して下流側に流出して堆積することはない。
Here, a preferable setting range of the predetermined upstream inclination angle θ will be described.
The purpose of inclining the upstream end 44 with respect to the flow is to prevent the accumulation of stagnation due to the flow and to prevent dust accumulation derived from the stagnation by causing the flow to be diverted in the direction of inclination of the flow. . Therefore, if the inclination angle θ is increased, the diversion increases, and the generation of the stagnation part is completely eliminated by the large diversion, and the intake dust does not mix and flow out to the downstream side and accumulate.

図3は、発明者が実際の空気流量測定装置を使ってダスト試験したときの上流傾斜角θに対して特性結果をプロットしたもので、特性値は初期時を基準としたダスト堆積時の劣化特性量で示したものである。図3によれば、劣化特性量は傾斜角θがない場合が最も大きく、傾斜角θの増加とともに急激に減少し、傾斜角θが20度以上で最小値に安定する特性である。   FIG. 3 is a plot of the characteristic results against the upstream inclination angle θ when the inventor conducted a dust test using an actual air flow measuring device, and the characteristic values are degradation during dust accumulation relative to the initial time. This is indicated by the characteristic quantity. According to FIG. 3, the deterioration characteristic amount is greatest when there is no inclination angle θ, is a characteristic that decreases sharply as the inclination angle θ increases, and stabilizes to a minimum value when the inclination angle θ is 20 degrees or more.

従って、ダスト堆積を防いで劣化特性量を小さくするには、流れに対する傾斜角θを20度以上の大きな傾斜とすれば好ましいと言える。しかし、傾斜角θを大きくすると流れの分流も増加して、結果、流量測定素子40側に流れる流量(流速)が減少するとともに流量測定素子40と流線との交差が直交状態からズレが生じるようになる。そして、流量測定素子40側に流れる流量の減少および流線のズレは、流量測定素子40の検出感度を低下させることとなる。   Therefore, in order to prevent dust accumulation and reduce the deterioration characteristic amount, it can be said that the inclination angle θ with respect to the flow is preferably set to a large inclination of 20 degrees or more. However, when the inclination angle θ is increased, the flow diversion also increases. As a result, the flow rate (velocity) flowing toward the flow rate measuring element 40 decreases, and the intersection between the flow rate measuring element 40 and the streamline is shifted from an orthogonal state. It becomes like this. Then, the decrease in the flow rate flowing toward the flow rate measuring element 40 and the deviation of the stream line will decrease the detection sensitivity of the flow rate measuring element 40.

それで、発明者は、さらに、同じ試験装置を使ってダスト試験したときの流量測定素子40の検出感度の変化を出力特性変化量として上流傾斜角θに対してプロットして図3に併記している。これによると、出力特性変化量は傾斜角θが零のときが最も小さく、傾斜角θの増加につれて略最小値に安定して推移するが、傾斜角θが40度を超えると出力特性変化量がマイナス側に増加する。つまり、出力特性変化量を小さく抑えるには、傾斜角θを40度以下に抑えることが好ましい。   Therefore, the inventor further plots the change in the detection sensitivity of the flow rate measuring element 40 when the dust test is performed using the same test apparatus with respect to the upstream inclination angle θ as the amount of change in the output characteristic and also writes it in FIG. Yes. According to this, the output characteristic change amount is the smallest when the inclination angle θ is zero, and stably changes to a substantially minimum value as the inclination angle θ increases, but the output characteristic change amount when the inclination angle θ exceeds 40 degrees. Increases to the minus side. That is, in order to keep the output characteristic change amount small, it is preferable to keep the inclination angle θ to 40 degrees or less.

従って、上述した2つの特性変化量はトレードオフの関係であり、各特性変化量の所定の許容幅(図中ハッチング内)に基づいて、傾斜角θは、20〜40度が好適であると言える。この傾斜角θの範囲ならば、流量測定素子40の出力特性の低下を引き起こすことなくダスト堆積を確実に防いで劣化特性量を最小値に抑えることが可能となる。   Therefore, the above-described two characteristic change amounts are in a trade-off relationship, and it is preferable that the inclination angle θ is 20 to 40 degrees based on a predetermined allowable width of each characteristic change amount (within hatching in the figure). I can say that. Within this range of the inclination angle θ, it is possible to reliably prevent dust accumulation and suppress the deterioration characteristic amount to the minimum value without causing a decrease in the output characteristics of the flow rate measuring element 40.

〔実施例1の作用〕
エンジンの始動により、吸気管2の内部に空気の流れ(メイン流れ)が発生すると、メイン流れの一部がセンサボディ3のバイパス流路7に取り込まれバイパス流れとなり、さらに、バイパス流れの一部がサブバイパス流路8に取り込まれる。このとき、サブバイパス流路8に配置された流量センサ4では、サブバイパス流れの流速が大きくなると、発熱素子41の伝熱が上流側へは小さく、下流側へは大きくなり、上下流の感温素子42の抵抗値差が大きくなる。
[Operation of Example 1]
When an air flow (main flow) is generated inside the intake pipe 2 by starting the engine, a part of the main flow is taken into the bypass flow path 7 of the sensor body 3 to become a bypass flow, and a part of the bypass flow Is taken into the sub-bypass channel 8. At this time, in the flow sensor 4 arranged in the sub-bypass flow path 8, when the flow speed of the sub-bypass flow increases, the heat transfer of the heating element 41 decreases to the upstream side, increases to the downstream side, and the upstream / downstream feeling. The resistance value difference of the temperature element 42 is increased.

逆に、サブバイパス流れの流速が小さくなると、発熱素子41の放熱量が低減するため、発熱素子41の伝熱が上下流で均一傾向となるため、上下流の感温素子42の抵抗値差が小さくなる。この抵抗値差に応じた電気信号(例えば電圧信号)が、回路モジュール5から外部のECU(電子制御装置)へ出力されて、ECUにより吸気量が測定される。   On the other hand, when the flow speed of the sub-bypass flow is reduced, the heat dissipation amount of the heat generating element 41 is reduced, so that the heat transfer of the heat generating element 41 tends to be uniform in the upstream and downstream, so the resistance value difference between the upstream and downstream temperature sensitive elements 42 Becomes smaller. An electrical signal (for example, a voltage signal) corresponding to the resistance value difference is output from the circuit module 5 to an external ECU (electronic control unit), and the intake air amount is measured by the ECU.

そして、このとき、流量センサ4の上流側端部44を流れに対し所定の傾斜角θだけ傾けて配置したので、上流側端部44へのダスト堆積は抑制され、流量が少量から多量に至る範囲において、流量の検出精度が低下することなく電気信号が出力される。   At this time, since the upstream end 44 of the flow rate sensor 4 is inclined with respect to the flow by a predetermined inclination angle θ, dust accumulation on the upstream end 44 is suppressed, and the flow rate reaches from a small amount to a large amount. In the range, the electric signal is output without lowering the detection accuracy of the flow rate.

〔実施例1の効果〕
本実施例では、メイン流路6を流れる空気の一部がセンサボディ3のバイパス流路7に取り込まれバイパス流れとなり、さらに、バイパス流れの一部が略直角に偏向するサブバイパス流路8に取り込まれてサブバイパス流れとなる。このサブバイパス流れに直交する向きに流量センサ4のチップセンサ構造の流量測定素子40を配設している。そして、流量センサ4の支持部材43の上流側端部44をサブバイパス流れに対し所定の傾斜角θだけ傾斜して配置した。
[Effect of Example 1]
In the present embodiment, a part of the air flowing through the main flow path 6 is taken into the bypass flow path 7 of the sensor body 3 to become a bypass flow, and further, a part of the bypass flow is changed to a sub-bypass flow path 8 that is deflected substantially at right angles. It is taken in and becomes a sub-bypass flow. A flow rate measuring element 40 having a chip sensor structure of the flow rate sensor 4 is arranged in a direction orthogonal to the sub-bypass flow. The upstream end portion 44 of the support member 43 of the flow sensor 4 is arranged to be inclined by a predetermined inclination angle θ with respect to the sub-bypass flow.

これにより、空気中を浮遊する吸気ダストは、流れの慣性効果により比較的大きくて重いものはバイパス流路7において捕集される。そして、バイパス流路7より略直角に分岐したサブバイパス流路8を流れるサブバイパス流れには比較的小さくて軽い微小ダストのみが残る。そして、この微小ダストが支持部材43の上流側端部44に衝突しても、よどみ部が生成されないため付着することなく分流とともに下流側に流されることとなる。よって、吸気ダストの堆積が抑えられ、流量センサ4の検出精度が向上する。   As a result, the intake dust floating in the air is collected in the bypass flow path 7 by the relatively large and heavy one due to the inertial effect of the flow. Then, only a relatively small and light minute dust remains in the sub-bypass flow that flows through the sub-bypass flow path 8 branched from the bypass flow path 7 at a substantially right angle. And even if this minute dust collides with the upstream end 44 of the support member 43, a stagnation part is not generated, so that it will flow to the downstream side along with the diversion without adhering. Therefore, accumulation of intake dust is suppressed, and the detection accuracy of the flow sensor 4 is improved.

〔実施例2の構成〕
本発明の実施例2を図4に示す。図4は、空気流量測定装置の構成を示し、(a)は部分断面図であり、(b)は要部の流量センサの拡大詳細平面図である。実施例1と実質的に同一構成部分に同一符号を付して、詳細な説明は省略する。
[Configuration of Example 2]
A second embodiment of the present invention is shown in FIG. 4A and 4B show the configuration of the air flow rate measuring device, where FIG. 4A is a partial cross-sectional view, and FIG. 4B is an enlarged detailed plan view of a main part flow sensor. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施例1では、メイン流路6を流れる空気の一部がセンサボディ3のバイパス流路7に取り込まれバイパス流れとなり、さらに、バイパス流れの一部が略直角に偏向するサブバイパス流路8に取り込まれてサブバイパス流れとなる。このサブバイパス流れに直交する向きに流量センサ4のチップセンサ構造の流量測定素子40を配設している。そして、流量センサ4の支持部材43の上流側端部44を流れに対し所定の傾斜角θだけ傾斜して配置している。   In the first embodiment, a part of the air flowing through the main flow path 6 is taken into the bypass flow path 7 of the sensor body 3 to become a bypass flow, and further, a part of the bypass flow is changed to a sub-bypass flow path 8 that is deflected substantially at right angles. It is taken in and becomes a sub-bypass flow. A flow rate measuring element 40 having a chip sensor structure of the flow rate sensor 4 is arranged in a direction orthogonal to the sub-bypass flow. The upstream end 44 of the support member 43 of the flow rate sensor 4 is arranged to be inclined with respect to the flow by a predetermined inclination angle θ.

本実施例では、さらに、支持部材43の下流側端部45にも、上流側端部44と同様に、流れに対して傾斜する端部構造を有していることが特徴である。本発明の流量センサ4は、図4に示すように、半導体基板の表面に薄膜抵抗体で形成された1個の発熱素子41および2個の感温素子42がそれぞれ上下流側に近接して並列に配置される1対の流量測定素子40と、この流量測定素子40を所定の位置および方向に支持する平板状の支持部材43とから構成される(図4(b)参照)。   The present embodiment is further characterized in that the downstream end 45 of the support member 43 has an end structure that is inclined with respect to the flow similarly to the upstream end 44. As shown in FIG. 4, the flow sensor 4 of the present invention has one heating element 41 and two temperature sensing elements 42 formed of a thin film resistor on the surface of a semiconductor substrate, close to the upstream and downstream sides, respectively. A pair of flow rate measuring elements 40 arranged in parallel and a flat plate-like support member 43 that supports the flow rate measuring elements 40 in a predetermined position and direction (see FIG. 4B).

本実施例では、流量測定素子40の長手方向と支持部材43の長手方向とが一致するように配置され、1対の流量測定素子40はそれぞれ流れに直交して露出する。そして、エンジン作動時の吸気管2に流れる空気の流れは、エンジン脈動に連動する周期的に増減する波形の変動挙動を示すが、エンジン脈動の大きさ次第では間欠的な逆流が生じる場合がある。ここで、逆流とは、エンジンの吸気管(上流側)から気筒内(下流側)へ流れる順流に対し、逆に、下流側から上流側への流れを言う。   In the present embodiment, the flow measuring element 40 is arranged so that the longitudinal direction of the flow measuring element 40 coincides with the longitudinal direction of the support member 43, and the pair of flow measuring elements 40 are respectively exposed orthogonally to the flow. The flow of air flowing through the intake pipe 2 during engine operation shows a fluctuation behavior of a waveform that periodically increases and decreases in conjunction with the engine pulsation, but intermittent backflow may occur depending on the magnitude of the engine pulsation. . Here, the reverse flow refers to a flow from the downstream side to the upstream side in contrast to the forward flow that flows from the intake pipe (upstream side) of the engine into the cylinder (downstream side).

そして、この1対の流量測定素子40は、大きな脈動を有するエンジンの吸気量の測定にも適用でき、流量測定はもとより、流れ方向、つまり、順流、逆流の判定も可能なものである。従って、逆流流量はマイナス流量として計測されるから、順流の計測流量から逆流流量を差し引いた演算によって正味の吸入空気量が計測される。   The pair of flow rate measuring elements 40 can be applied to the measurement of the intake air amount of an engine having a large pulsation, and can determine the flow direction, that is, the forward flow and the reverse flow as well as the flow rate measurement. Therefore, since the reverse flow rate is measured as a negative flow rate, the net intake air amount is measured by a calculation obtained by subtracting the reverse flow rate from the forward flow rate.

そして、この場合においても、逆流の計測も正確で精度よく検出できることが重要となる。このため、支持部材43の下流側端部45にも、上流側端部44と同様に、衝突する流れに乱れや剥離が生じないようにテーパ状または円弧状に面取りがなされ、さらに、流れに対して傾斜する端部構造を有している。このとき、この傾斜は、逆流がこの傾斜に衝突したときに逆流の一部(分流)が傾斜の稜線に沿って滑らかに流れるよう形成されることから、逆流の流れ方向に向かってプラス(正)の傾斜角φが形成される。これは、順流であるサブバイパス流れの流れ方向に向かってマイナス(負)の傾斜角φを形成することであり、つまり、サブバイパス流路を流れる空気の流れ方向と逆方向に傾斜して形成されるものである。   Also in this case, it is important that the backflow measurement can be detected accurately and accurately. For this reason, the downstream end 45 of the support member 43 is also chamfered in a taper shape or an arc shape so that the colliding flow is not disturbed or peeled off, similarly to the upstream end 44. It has an end structure which is inclined with respect to it. At this time, this inclination is formed so that a part of the reverse flow (divided flow) flows smoothly along the ridgeline of the inclination when the reverse flow collides with the inclination. ) Is formed. This is to form a negative (negative) inclination angle φ toward the flow direction of the sub-bypass flow that is the forward flow, that is, to be inclined in the direction opposite to the flow direction of the air flowing through the sub-bypass channel. It is what is done.

これにより、逆流に直交して配置する場合と異なって、よどみ部の生成が抑制される。
従って、逆流に混流する吸気ダストが支持部材43の下流側端部45に衝突しても、よどみ部が生成されないため分流とともに流されることとなる。よって、逆流が生じた場合にも、吸気ダストの堆積が抑えられ、流量センサ4の逆流の検出精度が向上する。
Thereby, unlike the case where it arrange | positions orthogonally to a backflow, the production | generation of a stagnation part is suppressed.
Therefore, even if the intake dust mixed in the reverse flow collides with the downstream side end portion 45 of the support member 43, the stagnation portion is not generated, so that it flows along with the diversion. Therefore, even when a backflow occurs, the accumulation of intake dust is suppressed, and the backflow detection accuracy of the flow sensor 4 is improved.

1 空気流量測定装置
4 流量センサ
5 回路モジュール
6 メイン流路(空気通路)
7 バイパス流路
8 サブバイパス流路
40 流量測定素子(チップセンサ、熱式流量測定素子)
41 発熱素子(薄膜抵抗体)
42 感温素子(薄膜抵抗体)
43 支持部材
44 上流側端部
45 下流側端部
θ 上流傾斜角(傾斜角)
DESCRIPTION OF SYMBOLS 1 Air flow measuring device 4 Flow sensor 5 Circuit module 6 Main flow path (air passage)
7 Bypass channel 8 Sub-bypass channel 40 Flow rate measuring element (chip sensor, thermal flow rate measuring element)
41 Heating element (thin film resistor)
42 Temperature sensing element (thin film resistor)
43 Support Member 44 Upstream End 45 Downstream End θ Upstream Inclination Angle (Inclination Angle)

Claims (3)

空気通路を流れる空気の一部を取り込むバイパス流路と、
該バイパス流路に設けられ、前記バイパス流路の出口方向に向って流路断面積を次第に減少する絞り部と、
該絞り部より上流側で前記バイパス流路より分岐して設けられ、前記バイパス流路を流れる空気の流れ方向と直交する前記バイパス流路の所定の径方向の一方側に入口が設けられ、前記バイパス流路を流れる空気の一部を取り込むサブバイパス流路と、
該サブバイパス流路内に配設され、前記サブバイパス流路を流れる空気の流量を測定する流量センサと、を有する空気流量測定装置において、
前記流量センサは、半導体基板の表面に形成された薄膜抵抗体からなる1対の熱式流量測定素子を有し、
前記熱式流量測定素子は、前記半導体基板の長手方向を同軸とする平板状の支持部材に支持され、
前記熱式流量測定素子は、前記サブバイパス流路を流れる空気の流れ方向と直交し、
前記支持部材の上流側端部は、前記サブバイパス流路を流れる空気の流れ方向に傾斜して配設されることを特徴とする空気流量測定装置。
A bypass flow path for taking in part of the air flowing through the air passage;
A throttling portion provided in the bypass channel and gradually reducing the channel cross-sectional area toward the outlet direction of the bypass channel;
An inlet is provided on one side of a predetermined radial direction of the bypass flow path that is branched from the bypass flow path on the upstream side of the throttle portion, and orthogonal to the flow direction of the air flowing through the bypass flow path, A sub-bypass channel that takes in part of the air flowing through the bypass channel;
In the air flow rate measuring device having a flow rate sensor that is disposed in the sub-bypass channel and measures the flow rate of the air flowing through the sub-bypass channel,
The flow sensor has a pair of thermal flow measuring elements made of a thin film resistor formed on the surface of a semiconductor substrate,
The thermal flow rate measuring element is supported by a flat plate-like support member having the longitudinal direction of the semiconductor substrate as the same axis,
The thermal flow rate measuring element is orthogonal to the flow direction of air flowing through the sub-bypass channel,
The air flow rate measuring apparatus according to claim 1, wherein the upstream end portion of the support member is disposed to be inclined in a flow direction of air flowing through the sub-bypass channel.
請求項1に記載の空気流量測定装置において、
前記支持部材の下流側端部は、前記サブバイパス流路を流れる空気の流れ方向と逆方向に傾斜して配設されることを特徴とする空気流量測定装置。
The air flow rate measuring device according to claim 1,
The downstream end portion of the support member is disposed to be inclined in the direction opposite to the flow direction of the air flowing through the sub-bypass channel.
請求項1または請求項2に記載の空気流量測定装置において、
前記支持部材の前記上流側端部および前記下流側端部と前記サブバイパス流路を流れる空気の流れ方向とのなす傾斜角は、20〜40度であることを特徴とする空気流量測定装置。
In the air flow rate measuring device according to claim 1 or 2,
An air flow rate measuring apparatus, wherein an inclination angle formed by the upstream end portion and the downstream end portion of the support member and a flow direction of air flowing through the sub-bypass channel is 20 to 40 degrees.
JP2009045222A 2009-02-27 2009-02-27 Air flow measurement device Active JP5272801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045222A JP5272801B2 (en) 2009-02-27 2009-02-27 Air flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045222A JP5272801B2 (en) 2009-02-27 2009-02-27 Air flow measurement device

Publications (2)

Publication Number Publication Date
JP2010197322A true JP2010197322A (en) 2010-09-09
JP5272801B2 JP5272801B2 (en) 2013-08-28

Family

ID=42822171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045222A Active JP5272801B2 (en) 2009-02-27 2009-02-27 Air flow measurement device

Country Status (1)

Country Link
JP (1) JP5272801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093203A (en) * 2010-10-27 2012-05-17 Hitachi Automotive Systems Ltd Flow measurement device
KR20210153975A (en) * 2020-06-11 2021-12-20 주식회사 원진일렉트로닉스 Dust measuring apparatus for preventing contamination of the sensor by dust

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826360B1 (en) * 2014-10-27 2015-12-02 三菱電機株式会社 Flow measuring device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524634A1 (en) * 1995-07-06 1997-01-09 Bosch Gmbh Robert Device for measuring the mass of a flowing medium
JPH11326001A (en) * 1998-05-15 1999-11-26 Unisia Jecs Corp Flow rate detector
JP2003502682A (en) * 1999-06-18 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for measuring the amount of flowing medium
JP2003315116A (en) * 2002-04-18 2003-11-06 Denso Corp Flow measuring device
JP2004012274A (en) * 2002-06-06 2004-01-15 Denso Corp Flow measuring apparatus
JP2004505235A (en) * 2000-07-26 2004-02-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for measuring at least one parameter of a flowing medium
JP2004226315A (en) * 2003-01-24 2004-08-12 Hitachi Ltd Thermal flow rate measuring device
JP2006501453A (en) * 2002-10-02 2006-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for defining at least one parameter of a medium flowing in a conduit
JP2008020193A (en) * 2006-07-10 2008-01-31 Mitsubishi Electric Corp Thermal flow rate sensor
JP2008309623A (en) * 2007-06-14 2008-12-25 Denso Corp Air flow rate measuring device
JP2008309614A (en) * 2007-06-14 2008-12-25 Denso Corp Air flow rate measuring device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524634A1 (en) * 1995-07-06 1997-01-09 Bosch Gmbh Robert Device for measuring the mass of a flowing medium
JPH11326001A (en) * 1998-05-15 1999-11-26 Unisia Jecs Corp Flow rate detector
JP2003502682A (en) * 1999-06-18 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for measuring the amount of flowing medium
JP2004505235A (en) * 2000-07-26 2004-02-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for measuring at least one parameter of a flowing medium
JP2003315116A (en) * 2002-04-18 2003-11-06 Denso Corp Flow measuring device
JP2004012274A (en) * 2002-06-06 2004-01-15 Denso Corp Flow measuring apparatus
JP2006501453A (en) * 2002-10-02 2006-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for defining at least one parameter of a medium flowing in a conduit
JP2004226315A (en) * 2003-01-24 2004-08-12 Hitachi Ltd Thermal flow rate measuring device
JP2008020193A (en) * 2006-07-10 2008-01-31 Mitsubishi Electric Corp Thermal flow rate sensor
JP2008309623A (en) * 2007-06-14 2008-12-25 Denso Corp Air flow rate measuring device
JP2008309614A (en) * 2007-06-14 2008-12-25 Denso Corp Air flow rate measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093203A (en) * 2010-10-27 2012-05-17 Hitachi Automotive Systems Ltd Flow measurement device
KR20210153975A (en) * 2020-06-11 2021-12-20 주식회사 원진일렉트로닉스 Dust measuring apparatus for preventing contamination of the sensor by dust
KR102393036B1 (en) 2020-06-11 2022-05-03 주식회사 원진일렉트로닉스 Dust measuring apparatus for preventing contamination of the sensor by dust

Also Published As

Publication number Publication date
JP5272801B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP4488031B2 (en) Air flow measurement device
JP5445535B2 (en) Air flow measurement device
JP4412357B2 (en) Air flow measurement device
JP5049996B2 (en) Thermal flow meter
JP5182314B2 (en) Air flow measurement device
JP6013983B2 (en) Physical quantity measuring device
JP2009122054A (en) Flow-measuring apparatus
JP4488030B2 (en) Air flow measurement device
JP2005315740A (en) Air flow rate measuring instrument
JP6477195B2 (en) Flow measuring device
JP2010261771A (en) Device for measurement of air flow rate
JP6365388B2 (en) Flow measuring device
JP5223708B2 (en) Air flow measurement device
JP4752472B2 (en) Air flow measurement device
JP5272801B2 (en) Air flow measurement device
US20130028288A1 (en) Air flow measuring device
US6868722B2 (en) Air flow rate measuring apparatus
WO2015005231A1 (en) Temperature/humidity sensor
JP5477446B2 (en) Air flow measurement device
JP5542614B2 (en) Flow measuring device
CN109196311B (en) Thermal flowmeter
JP5370114B2 (en) Air flow measurement device
WO2002103301A1 (en) Heating resistor flow rate measuring instrument
JP2003090750A (en) Flow rate/flow velocity measuring apparatus
JP2007183212A (en) Heat resistor type fluid flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250