JP2010196851A - Oil temperature control device of transmission - Google Patents

Oil temperature control device of transmission Download PDF

Info

Publication number
JP2010196851A
JP2010196851A JP2009044627A JP2009044627A JP2010196851A JP 2010196851 A JP2010196851 A JP 2010196851A JP 2009044627 A JP2009044627 A JP 2009044627A JP 2009044627 A JP2009044627 A JP 2009044627A JP 2010196851 A JP2010196851 A JP 2010196851A
Authority
JP
Japan
Prior art keywords
oil temperature
transmission
flow rate
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009044627A
Other languages
Japanese (ja)
Other versions
JP5272800B2 (en
Inventor
Yoshio Ito
良雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009044627A priority Critical patent/JP5272800B2/en
Publication of JP2010196851A publication Critical patent/JP2010196851A/en
Application granted granted Critical
Publication of JP5272800B2 publication Critical patent/JP5272800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil temperature control device of a transmission capable of properly controlling the oil temperature of the transmission. <P>SOLUTION: This oil temperature control device 1 of the transmission is a device for controlling the oil temperature of the transmission by exchanging heat of lubricating oil of the transmission by a heat exchanger 2. The oil temperature control device of this transmission has a flow rate control part 3 for controlling a flow rate of the lubricating oil supplied to the heat exchanger 2. This flow rate control part 3 controls the flow rate of the lubricating oil supplied to the heat exchanger 2 based on a calorific value by a transmission loss. Thus, the flow rate of the lubricating oil in the heat exchanger 2 is actively controlled by the flow rate control part 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、変速機の油温制御装置に関し、さらに詳しくは、変速機の油温を適正に制御できる変速機の油温制御装置に関する。   The present invention relates to an oil temperature control device for a transmission, and more particularly to an oil temperature control device for a transmission that can appropriately control the oil temperature of the transmission.

例えば、車両用無段変速機では、各機構に潤滑油を供給して各機構を適正に潤滑あるいは冷却する必要がある。このため、近年の変速機の油温制御装置では、変速機の潤滑油の熱交換を熱交換器にて行うことにより変速機の油温を制御する構成が採用されている。かかる構成を採用する従来の変速機の油温制御装置として、特許文献1に記載される技術が知られている。   For example, in a continuously variable transmission for a vehicle, it is necessary to supply lubricating oil to each mechanism to properly lubricate or cool each mechanism. For this reason, recent oil temperature control devices for transmissions employ a configuration in which the oil temperature of the transmission is controlled by heat exchange of the lubricating oil of the transmission using a heat exchanger. As a conventional oil temperature control device for a transmission that employs such a configuration, a technique described in Patent Document 1 is known.

特開2004−339989号公報Japanese Patent Application Laid-Open No. 2004-339989

この発明は、変速機の油温を適正に制御できる変速機の油温制御装置を提供することを目的とする。   An object of the present invention is to provide an oil temperature control device for a transmission that can appropriately control the oil temperature of the transmission.

上記目的を達成するため、この発明にかかる変速機の油温制御装置は、変速機の潤滑油の熱交換を熱交換器にて行うことにより前記変速機の油温を制御する変速機の油温制御装置であって、前記熱交換器に供給される潤滑油の流量を制御する流量制御部を備え、且つ、前記流量制御部がトランスミッション損失による発熱量に基づいて前記潤滑油の流量を制御することを特徴とする。   To achieve the above object, an oil temperature control device for a transmission according to the present invention is an oil for a transmission that controls the oil temperature of the transmission by performing heat exchange of lubricating oil of the transmission with a heat exchanger. A temperature control device comprising a flow rate control unit for controlling a flow rate of lubricating oil supplied to the heat exchanger, and the flow rate control unit controls the flow rate of the lubricating oil based on a heat generation amount due to transmission loss It is characterized by doing.

この油温制御装置では、熱交換器に供給される潤滑油の流量を制御する流量制御部が設けられ、この流量制御部がトランスミッション損失による発熱量に基づいて潤滑油の流量を制御する。かかる構成では、熱交換器における潤滑油の流量が流量制御部により積極的に制御される。したがって、熱交換器における潤滑油の油量を制御しない構成と比較して、変速機の油温が適正に制御される利点がある。   In this oil temperature control device, a flow rate control unit that controls the flow rate of the lubricating oil supplied to the heat exchanger is provided, and this flow rate control unit controls the flow rate of the lubricating oil based on the amount of heat generated by transmission loss. In such a configuration, the flow rate of the lubricating oil in the heat exchanger is positively controlled by the flow rate control unit. Therefore, there is an advantage that the oil temperature of the transmission is appropriately controlled as compared with a configuration in which the amount of lubricating oil in the heat exchanger is not controlled.

この発明にかかる油温制御装置では、熱交換器に供給される潤滑油の流量を制御する流量制御部が設けられ、この流量制御部がトランスミッション損失による発熱量に基づいて潤滑油の流量を制御する。かかる構成では、熱交換器における潤滑油の流量が流量制御部により積極的に制御される。したがって、熱交換器における潤滑油の油量を制御しない構成と比較して、変速機の油温が適正に制御される利点がある。   In the oil temperature control device according to the present invention, a flow rate control unit for controlling the flow rate of the lubricating oil supplied to the heat exchanger is provided, and this flow rate control unit controls the flow rate of the lubricating oil based on the heat generation amount due to transmission loss. To do. In such a configuration, the flow rate of the lubricating oil in the heat exchanger is positively controlled by the flow rate control unit. Therefore, there is an advantage that the oil temperature of the transmission is appropriately controlled as compared with a configuration in which the amount of lubricating oil in the heat exchanger is not controlled.

図1は、この発明の実施例にかかる変速機の油温制御装置を示す構成図である。FIG. 1 is a block diagram showing an oil temperature control device for a transmission according to an embodiment of the present invention. 図2は、図1に記載した油温制御装置の作用を示すブロック図である。FIG. 2 is a block diagram showing the operation of the oil temperature control device shown in FIG. 図3は、図1に記載した油温変速機の変形例1の作用を示すブロック図である。FIG. 3 is a block diagram showing the operation of the first modification of the oil temperature transmission shown in FIG. 図4は、図1に記載した油温変速機の変形例2の作用を示すブロック図である。FIG. 4 is a block diagram showing the operation of the modification 2 of the oil temperature transmission shown in FIG. 図5は、図1に記載した油温変速機の変形例2の作用を示すブロック図である。FIG. 5 is a block diagram showing the operation of the second modification of the oil temperature transmission shown in FIG. 図6は、図1に記載した油温変速機の変形例3の作用を示すブロック図である。FIG. 6 is a block diagram showing the operation of Modification 3 of the oil temperature transmission shown in FIG. 図7は、図1に記載した油温変速機の変形例4の作用を示すブロック図である。FIG. 7 is a block diagram showing the operation of the modified example 4 of the oil temperature transmission shown in FIG.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、この実施例の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施例に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Further, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within a range obvious to those skilled in the art.

[変速機の油温制御装置]
この変速機の油温制御装置1は、変速機の潤滑油の油温を制御する装置であり、例えば、車両用のベルト式無段変速機あるいはトロイダル型無段変速機に適用される(図1参照)。
[Transmission oil temperature control device]
The transmission oil temperature control device 1 is a device for controlling the oil temperature of the lubricating oil of the transmission, and is applied to, for example, a belt type continuously variable transmission or a toroidal type continuously variable transmission for a vehicle (see FIG. 1).

例えば、この実施例では、ドレーン系の潤滑油路に配置されたセカンダリレギュレータバルブ11と、トランスミッション内の前側機構(例えば、トルクコンバータ、前後進切換装置など)の潤滑系12および後側(例えば、減速機構など)の潤滑系13とが潤滑油路151を介して接続されている。また、セカンダリレギュレータバルブ11と変速機の変速部(例えば、ベルト式無段変速機のプーリとベルトとの接触部など)の潤滑系14とが潤滑油路151の中途から分岐された潤滑油路152を介して接続されている。そして、油温制御装置1が、この変速部の潤滑系14側の潤滑油路152上に配置されて、変速部の潤滑系14に供給される潤滑油の油温を制御している。   For example, in this embodiment, the secondary regulator valve 11 disposed in the drain-type lubrication oil passage, the lubrication system 12 and the rear side (for example, the torque converter, the forward / reverse switching device, etc.) in the transmission, for example, And a lubricating system 13 of a speed reduction mechanism or the like is connected through a lubricating oil passage 151. In addition, the lubricating oil passage in which the secondary regulator valve 11 and the lubricating system 14 of the transmission portion of the transmission (for example, the contact portion between the pulley and the belt of the belt type continuously variable transmission) are branched from the middle of the lubricating oil passage 151. 152 is connected. The oil temperature control device 1 is disposed on the lubricating oil passage 152 on the lubricating system 14 side of the transmission unit, and controls the oil temperature of the lubricating oil supplied to the lubricating system 14 of the transmission unit.

また、油温制御装置1は、熱交換器2と、流量制御部3と、ECU(electronic control unit)4とを備える。熱交換器2は、熱交換により潤滑油を冷却(あるいは加熱)する装置であり、例えば、空冷式クーラー、水冷式クーラーなどにより構成される。流量制御部3は、熱交換器2に供給される潤滑油の流量を制御する油圧回路であり、流量制御弁31としてリニアソレノイドバルブを有する。また、熱交換器2と流量制御部3とは、変速部の潤滑系14側の潤滑油路152上に直列に配置される。ECU4は、各種センサ(図示省略)からの出力値に基づいて所定の演算を行い、この演算結果に基づいて流量制御部3(流量制御弁31)を駆動制御する。各種センサには、例えば、車速あるいは風速を計測する車速センサ、外気の温度を計測する外気温センサ、トランスミッションの油温(T/M油温)を計測するT/M油温センサ、エンジントルクを計測するトルクセンサ、エンジン回転数を計測する回転数センサ、熱交換器2の入口部にて潤滑油の油温を計測する熱交換器入口油温センサなどが含まれる。   The oil temperature control device 1 includes a heat exchanger 2, a flow rate control unit 3, and an ECU (electronic control unit) 4. The heat exchanger 2 is a device that cools (or heats) the lubricating oil by heat exchange, and includes, for example, an air-cooled cooler or a water-cooled cooler. The flow rate control unit 3 is a hydraulic circuit that controls the flow rate of the lubricating oil supplied to the heat exchanger 2, and has a linear solenoid valve as the flow rate control valve 31. Further, the heat exchanger 2 and the flow rate control unit 3 are arranged in series on the lubricating oil passage 152 on the lubricating system 14 side of the transmission unit. The ECU 4 performs a predetermined calculation based on output values from various sensors (not shown), and drives and controls the flow rate control unit 3 (flow rate control valve 31) based on the calculation result. Various sensors include, for example, a vehicle speed sensor that measures vehicle speed or wind speed, an outside air temperature sensor that measures the temperature of outside air, a T / M oil temperature sensor that measures the oil temperature (T / M oil temperature) of the transmission, and engine torque. A torque sensor for measuring, a rotation speed sensor for measuring the engine speed, a heat exchanger inlet oil temperature sensor for measuring the oil temperature of the lubricating oil at the inlet of the heat exchanger 2, and the like are included.

この油温制御装置1では、以下のように変速機の潤滑油の油温が制御される。まず、トランスミッション損失(T/M損失)の発熱により加熱されて高温となった潤滑油がセカンダリレギュレータバルブ11から潤滑油路152に流入し、流量制御部3を経て熱交換器2に供給される。そして、この潤滑油が熱交換器2にて熱交換して冷却され、変速部の潤滑系14に供給される。このとき、流量制御部3(流量制御弁31)が駆動されて、熱交換器2における潤滑油の流量が制御される。これにより、変速機の潤滑系14に供給される潤滑油の油温が制御される。   In the oil temperature control device 1, the oil temperature of the lubricating oil of the transmission is controlled as follows. First, lubricating oil heated to a high temperature by transmission loss (T / M loss) heat flows into the lubricating oil passage 152 from the secondary regulator valve 11 and is supplied to the heat exchanger 2 through the flow rate control unit 3. . The lubricating oil is cooled by exchanging heat in the heat exchanger 2 and supplied to the lubricating system 14 of the transmission unit. At this time, the flow rate control unit 3 (flow rate control valve 31) is driven, and the flow rate of the lubricating oil in the heat exchanger 2 is controlled. Thereby, the oil temperature of the lubricating oil supplied to the lubricating system 14 of the transmission is controlled.

[熱交換器への潤滑量の流量制御]
ここで、上記した変速機の油温制御では、熱量収支に基づいて熱交換器2における必要放熱量が算出され、この必要放熱量に基づいて流量制御部3が駆動されて、熱交換器2における潤滑量の流量が制御される(図2参照)。具体的には、以下のフィードフォワード制御が行われる。
[Flow control of lubrication amount to heat exchanger]
Here, in the oil temperature control of the transmission described above, the required heat radiation amount in the heat exchanger 2 is calculated based on the heat balance, and the flow rate control unit 3 is driven based on the necessary heat radiation amount, so that the heat exchanger 2 The flow rate of the lubrication amount is controlled (see FIG. 2). Specifically, the following feedforward control is performed.

まず、トルクコンバータ損失による発熱量(T/C損失)と、トランスミッション損失による発熱量(T/M損失)と、トランスミッションの表面放熱による放熱量(T/M放熱量)と、エンジンからの伝熱による熱量との和に基づいて、必要放熱量(FF必要放熱量)が算出される。この必要放熱量は、このフィードフォワード制御において、熱交換器2にて放熱する必要がある熱量である。なお、トルクコンバータs損失による発熱量は、エンジントルクおよびエンジン回転数と、トルクコンバータ効率(T/C効率)とに基づいて算出される。また、トランスミッション損失による発熱量は、エンジントルクおよびエンジン回転数に基づいて算出される。また、エンジントルクおよびエンジン回転数は、エンジンのトルクセンサおよび回転数センサの各出力値として取得される。トランスミッションの放熱量は、車速(風速)、外気温およびT/M油温に基づいて算出される。また、車速、外気温およびT/M油温は、車速センサ、外気温センサおよびT/M油温センサの各出力値として取得される。   First, the amount of heat generated due to torque converter loss (T / C loss), the amount of heat generated due to transmission loss (T / M loss), the amount of heat released due to surface heat dissipation of the transmission (T / M heat dissipation amount), and heat transfer from the engine Based on the sum of the amount of heat and the required heat dissipation amount (FF required heat dissipation amount) is calculated. This required heat dissipation is the amount of heat that needs to be radiated by the heat exchanger 2 in this feedforward control. The amount of heat generated by the torque converter s loss is calculated based on the engine torque, the engine speed, and the torque converter efficiency (T / C efficiency). Further, the heat generation amount due to the transmission loss is calculated based on the engine torque and the engine speed. The engine torque and the engine speed are acquired as output values of the engine torque sensor and the engine speed sensor. The heat radiation amount of the transmission is calculated based on the vehicle speed (wind speed), the outside air temperature, and the T / M oil temperature. The vehicle speed, the outside air temperature, and the T / M oil temperature are acquired as output values of the vehicle speed sensor, the outside air temperature sensor, and the T / M oil temperature sensor.

次に、この必要放熱量と、車速(風速)、外気温および熱交換器入口油温とに基づいて、熱交換器2における潤滑油の目標流量が算出される。この目標流量は、熱交換器2の性能特性を示す逆引きマップに基づいて算出される。なお、熱交換器入口油温は、熱交換器入口油温センサの出力値として取得されても良いし、T/M油温センサの出力値をなました値が用いられても良い。   Next, the target flow rate of the lubricating oil in the heat exchanger 2 is calculated based on the necessary heat release amount, the vehicle speed (wind speed), the outside air temperature, and the heat exchanger inlet oil temperature. This target flow rate is calculated based on a reverse map indicating the performance characteristics of the heat exchanger 2. In addition, the heat exchanger inlet oil temperature may be acquired as an output value of the heat exchanger inlet oil temperature sensor, or a value obtained from the output value of the T / M oil temperature sensor may be used.

次に、この目標流量と、ライン圧ソレノイド指令電流とに基づいて、流量制御部3の流量制御弁31の目標電流(流量制御ソレノイド目標電流)が算出される。この目標電流は、流量制御弁31の流量特性を示す逆引きマップに基づいて算出される。   Next, based on this target flow rate and the line pressure solenoid command current, a target current (flow control solenoid target current) of the flow control valve 31 of the flow control unit 3 is calculated. This target current is calculated based on a reverse map indicating the flow characteristics of the flow control valve 31.

そして、この目標電流に基づいて流量制御弁31が駆動されて、熱交換器2における潤滑量の流量が制御される。これにより、T/M損失による発熱分が熱交換器2の放熱量により相殺されて、変速機における潤滑油の油温が適正に維持される。   The flow rate control valve 31 is driven based on this target current, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. As a result, the heat generated by the T / M loss is offset by the heat dissipation amount of the heat exchanger 2, and the oil temperature of the lubricating oil in the transmission is properly maintained.

[効果]
以上説明したように、この油温制御装置1では、熱交換器2に供給される潤滑油の流量を制御する流量制御部3が設けられ、この流量制御部3がトランスミッション損失による発熱量に基づいて潤滑油の流量を制御する(図1および図2参照)。かかる構成では、熱交換器2における潤滑油の流量が流量制御部3により積極的に制御される。したがって、熱交換器における潤滑油の油量を制御しない構成と比較して、変速機の油温が適正に制御される利点がある。
[effect]
As described above, in the oil temperature control device 1, the flow rate control unit 3 that controls the flow rate of the lubricating oil supplied to the heat exchanger 2 is provided, and the flow rate control unit 3 is based on the amount of heat generated by transmission loss. Thus, the flow rate of the lubricating oil is controlled (see FIGS. 1 and 2). In such a configuration, the flow rate of the lubricating oil in the heat exchanger 2 is positively controlled by the flow rate control unit 3. Therefore, there is an advantage that the oil temperature of the transmission is appropriately controlled as compared with a configuration in which the amount of lubricating oil in the heat exchanger is not controlled.

例えば、トロイダル型無段変速機では、一般にトラクション係数が油温に依存して低温および高温のいずれの運転条件下でも低下する特性を有する。この点において、この油温制御装置1では、(1)変速機の油温を高いトラクション係数を有する温度範囲内に制御(油温管理)できるので、トロイダル型無段変速機にて、パワーローラをディスクに押圧するための押圧油圧を低減できる。これにより、変速機の駆動効率および車両の燃費が向上する利点があり、また、変速機の耐久性能が向上する利点がある。   For example, a toroidal-type continuously variable transmission generally has a characteristic that the traction coefficient depends on the oil temperature and decreases under both low and high driving conditions. In this respect, in this oil temperature control device 1, (1) the oil temperature of the transmission can be controlled (oil temperature management) within a temperature range having a high traction coefficient. Therefore, in the toroidal continuously variable transmission, the power roller The hydraulic pressure for pressing the disc against the disc can be reduced. Thereby, there is an advantage that the driving efficiency of the transmission and the fuel consumption of the vehicle are improved, and there is an advantage that the durability performance of the transmission is improved.

また、(2)ベルト式無段変速機にて、変速機の油温をベルト焼き鈍し温度以下に制御できるので、変速機の耐久性能が向上する利点がある。   Further, (2) in the belt-type continuously variable transmission, since the oil temperature of the transmission can be controlled by annealing the belt below the temperature, there is an advantage that the durability performance of the transmission is improved.

また、トロイダル型無段変速機では、一般に使用される潤滑油(トラクションフルード)がATF(Automatic Transmission Fluid)と比較して蒸発しやすいため、AT(Automatic Transmission)の使用温度の上限を−20℃に設定する必要がある。この点において、この油温制御装置1では、(3)変速機の油温が適正に制御できるので、潤滑油の蒸発量を抑制できる利点がある。   In addition, in the toroidal type continuously variable transmission, the lubricating oil (traction fluid) that is generally used is more easily evaporated than ATF (Automatic Transmission Fluid), so the upper limit of the operating temperature of AT (Automatic Transmission) is -20 ° C. Must be set to In this respect, the oil temperature control apparatus 1 has the advantage that (3) the oil temperature of the transmission can be controlled appropriately, and the evaporation amount of the lubricating oil can be suppressed.

また、この油温制御装置1では、熱交換器2における潤滑油の目標流量が、熱交換器2の性能特性を示す逆引きマップに基づいて算出される(図2参照)。この逆引きマップは、熱交換器2における必要放熱量と、車速(風速)、外気温および熱交換器入口油温とに基づいて熱交換器2における潤滑油の目標流量が算出するためのマップである。かかる構成では、熱交換器2における目標流量を簡易に算出できる利点がある。   Moreover, in this oil temperature control apparatus 1, the target flow rate of the lubricating oil in the heat exchanger 2 is calculated based on a reverse map indicating the performance characteristics of the heat exchanger 2 (see FIG. 2). This reverse lookup map is a map for calculating the target flow rate of the lubricating oil in the heat exchanger 2 based on the required heat radiation amount in the heat exchanger 2, the vehicle speed (wind speed), the outside air temperature, and the heat exchanger inlet oil temperature. It is. Such a configuration has an advantage that the target flow rate in the heat exchanger 2 can be easily calculated.

また、この油温制御装置1では、流量制御部3の流量制御弁31の目標電流(流量制御ソレノイド目標電流)が、流量制御弁31の流量特性を示す逆引きマップに基づいて算出される(図2参照)。この逆引きマップは、熱交換器2における目標流量と、ライン圧ソレノイド指令電流とに基づいて流量制御ソレノイド目標電流を算出するためのマップである。かかる構成では、ライン圧ソレノイド指令電流を簡易に算出できる利点がある。   Further, in the oil temperature control device 1, the target current (flow control solenoid target current) of the flow control valve 31 of the flow control unit 3 is calculated based on the reverse lookup map indicating the flow characteristics of the flow control valve 31 ( (See FIG. 2). This reverse lookup map is a map for calculating the flow control solenoid target current based on the target flow rate in the heat exchanger 2 and the line pressure solenoid command current. Such a configuration has an advantage that the line pressure solenoid command current can be easily calculated.

[変形例1]
なお、この油温制御装置1では、変速機の現在の油温と目標油温との偏差が算出され、この偏差に基づいて熱交換器2における必要放熱量が算出されても良い(図3参照)。そして、この必要放熱量に基づいて流量制御部3が駆動されて、熱交換器2における潤滑量の流量が制御される。具体的には、以下のようなフィードバック制御が行われ得る。
[Modification 1]
In this oil temperature control device 1, the deviation between the current oil temperature of the transmission and the target oil temperature is calculated, and the necessary heat radiation amount in the heat exchanger 2 may be calculated based on this deviation (FIG. 3). reference). Then, the flow rate control unit 3 is driven based on the necessary heat radiation amount, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. Specifically, the following feedback control can be performed.

まず、熱交換器2における必要放熱量の算出にあたり、変速機における現在の潤滑油の油温(T/M油温)とその目標値(目標油温)との偏差(T/M油温−目標油温)が算出される。次に、この偏差と目標制御時間との比(偏差/目標制御時間)が算出される。この目標制御時間は、偏差を0にするための目標時間である。次に、この比と所定のゲインとの積(偏差/目標制御時間×ゲイン)が算出される。このゲインは、例えば、T/M油温あるいは所定の予想油温に基づいて適宜変更される。次に、この積とトランスミッションの熱容量(T/M熱容量)との積(偏差/目標制御時間×ゲイン×(T/M熱容量))が算出され、この積が必要放熱量として用いられる。なお、T/M熱容量は、次の数式(1)により算出される。   First, in calculating the required heat dissipation amount in the heat exchanger 2, the deviation (T / M oil temperature−) between the current lubricating oil temperature (T / M oil temperature) in the transmission and its target value (target oil temperature). Target oil temperature) is calculated. Next, a ratio (deviation / target control time) between the deviation and the target control time is calculated. This target control time is a target time for setting the deviation to zero. Next, the product of this ratio and a predetermined gain (deviation / target control time × gain) is calculated. This gain is appropriately changed based on, for example, the T / M oil temperature or a predetermined expected oil temperature. Next, the product (deviation / target control time × gain × (T / M heat capacity)) of this product and the heat capacity (T / M heat capacity) of the transmission is calculated, and this product is used as the required heat dissipation amount. The T / M heat capacity is calculated by the following formula (1).

T/M熱容量=(潤滑油体積×比重×比熱+鉄質量×比熱+アルミニウム質量×比熱)×4.18605 (1) T / M heat capacity = (lubricating oil volume × specific gravity × specific heat + iron mass × specific heat + aluminum mass × specific heat) × 4.186605 (1)

次に、この必要放熱量と、車速(風速)、外気温および熱交換器入口油温とに基づいて、熱交換器2における潤滑油の目標流量が算出される。次に、この目標流量と、ライン圧ソレノイド指令電流とに基づいて、流量制御部3の流量制御弁31の目標電流(流量制御ソレノイド目標電流)が算出される。そして、この目標電流に基づいて流量制御弁31が駆動されて、熱交換器2における潤滑量の流量が制御される。これにより、変速機における潤滑油の油温が適正に維持される。   Next, the target flow rate of the lubricating oil in the heat exchanger 2 is calculated based on the necessary heat release amount, the vehicle speed (wind speed), the outside air temperature, and the heat exchanger inlet oil temperature. Next, based on this target flow rate and the line pressure solenoid command current, a target current (flow control solenoid target current) of the flow control valve 31 of the flow control unit 3 is calculated. The flow rate control valve 31 is driven based on this target current, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. Thereby, the oil temperature of the lubricating oil in the transmission is properly maintained.

[変形例2]
また、この油温制御装置1では、変速機における現在の発熱量と熱交換器2の放熱量との差に基づいて所定時間後の予想油温が算出され、この予想油温と目標油温との偏差に基づいて熱交換器2における必要放熱量が算出されても良い(図4および図5参照)。そして、この必要放熱量に基づいて流量制御部3が駆動されて、熱交換器2における潤滑量の流量が制御される。具体的には、以下のようなフィードバック制御が行われ得る。
[Modification 2]
Further, in the oil temperature control device 1, an expected oil temperature after a predetermined time is calculated based on the difference between the current heat generation amount in the transmission and the heat dissipation amount of the heat exchanger 2, and the expected oil temperature and the target oil temperature are calculated. The required heat radiation amount in the heat exchanger 2 may be calculated based on the deviation from (see FIGS. 4 and 5). Then, the flow rate control unit 3 is driven based on the necessary heat radiation amount, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. Specifically, the following feedback control can be performed.

まず、所定時間後における変速機の油温の予想値(予想油温)が算出される(図4参照)。この予想油温の算出では、まず、流量制御部3の流量制御弁31の指令電流(流量制御ソレノイド指令電流)とライン圧ソレノイドの指令電流とに基づいて、熱交換器2における現在の潤滑油の流量(現流量)が算出される(図4の左下部参照)。この現流量は、所定の流量特性マップに基づいて算出される。そして、この現流量と、車速(風速)、外気温および熱交換器入口油温とに基づいて、熱交換器2の放熱量が算出される。この放熱量は、熱交換器2の性能特性を示す所定のマップに基づいて算出される。次に、この熱交換器2の放熱量と、トルクコンバータ損失による発熱量(T/C損失)、トランスミッション損失による発熱量(T/M損失)、トランスミッションの表面放熱による放熱量(T/M放熱量)およびエンジンからの伝熱による熱量との和が算出される。次に、この和と、トランスミッションの熱容量の逆数(1/(T/M熱容量))との積が算出される。次に、この積と、目標制御時間との積が算出される。そして、この積と、T/M油温との和が算出されて、予想油温として用いられる。   First, an expected value (expected oil temperature) of the oil temperature of the transmission after a predetermined time is calculated (see FIG. 4). In the calculation of the predicted oil temperature, first, the current lubricating oil in the heat exchanger 2 is based on the command current (flow control solenoid command current) of the flow control valve 31 of the flow control unit 3 and the command current of the line pressure solenoid. Is calculated (see the lower left part of FIG. 4). This current flow rate is calculated based on a predetermined flow rate characteristic map. Then, based on the current flow rate, the vehicle speed (wind speed), the outside air temperature, and the heat exchanger inlet oil temperature, the heat release amount of the heat exchanger 2 is calculated. This amount of heat release is calculated based on a predetermined map indicating the performance characteristics of the heat exchanger 2. Next, the heat dissipation amount of the heat exchanger 2, the heat generation amount due to torque converter loss (T / C loss), the heat generation amount due to transmission loss (T / M loss), and the heat dissipation amount due to surface heat dissipation of the transmission (T / M release) The sum of the amount of heat) and the amount of heat due to heat transfer from the engine is calculated. Next, the product of this sum and the reciprocal of the heat capacity of the transmission (1 / (T / M heat capacity)) is calculated. Next, the product of this product and the target control time is calculated. The sum of this product and the T / M oil temperature is calculated and used as the predicted oil temperature.

次に、この予想油温と、変速機の油温の目標値(目標油温)との偏差が算出される(図5参照)。次に、この偏差と目標制御時間との比(偏差/目標制御時間)が算出される。次に、この比と所定のゲインとの積(偏差/目標制御時間×ゲイン)が算出される。次に、この積とトランスミッションの熱容量(T/M熱容量)との積(偏差/目標制御時間×ゲイン×(T/M熱容量))が算出され、この積が必要放熱量(FB必要放熱量)として用いられる。   Next, a deviation between the predicted oil temperature and the target value (target oil temperature) of the transmission oil temperature is calculated (see FIG. 5). Next, a ratio (deviation / target control time) between the deviation and the target control time is calculated. Next, the product of this ratio and a predetermined gain (deviation / target control time × gain) is calculated. Next, the product (deviation / target control time × gain × (T / M heat capacity)) of this product and the heat capacity (T / M heat capacity) of the transmission is calculated, and this product is the required heat dissipation (FB required heat dissipation). Used as

次に、この必要放熱量と、車速(風速)、外気温および熱交換器入口油温とに基づいて、熱交換器2における潤滑油の目標流量が算出される。次に、この目標流量と、ライン圧ソレノイド指令電流とに基づいて、流量制御部3の流量制御弁31の目標電流(流量制御ソレノイド目標電流)が算出される。そして、この目標電流に基づいて流量制御弁31が駆動されて、熱交換器2における潤滑量の流量が制御される。これにより、変速機における潤滑油の油温が適正に維持される。   Next, the target flow rate of the lubricating oil in the heat exchanger 2 is calculated based on the necessary heat release amount, the vehicle speed (wind speed), the outside air temperature, and the heat exchanger inlet oil temperature. Next, based on this target flow rate and the line pressure solenoid command current, a target current (flow control solenoid target current) of the flow control valve 31 of the flow control unit 3 is calculated. The flow rate control valve 31 is driven based on this target current, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. Thereby, the oil temperature of the lubricating oil in the transmission is properly maintained.

なお、この実施例では、予想油温の算出ステップ(図4参照)にて、熱交換器2の入口部の油温センサ(熱交換器入口油温センサ)の出力値が用いられて熱交換器2の放熱量が算出されている。しかし、これに限らず、変速機の現在の油温(T/M油温)をなました値が用いられて熱交換器2の放熱量が算出されてもよい。かかる構成では、T/M油温をなますことにより、T/M油温の測定位置(T/M油温センサの設置位置)から熱交換器2の入口部までにおける油温変化の時間遅れが緩和される。これにより、変速機の油温制御の精度が向上する利点がある。また、T/M油温センサの出力値を用いて熱交換器2の放熱量を算出できるので、熱交換器入口油温センサを省略できる。これにより、製品コストを低減できる利点がある。   In this embodiment, in the predicted oil temperature calculation step (see FIG. 4), the output value of the oil temperature sensor (heat exchanger inlet oil temperature sensor) at the inlet of the heat exchanger 2 is used to perform heat exchange. The heat radiation amount of the container 2 is calculated. However, the present invention is not limited to this, and the amount of heat released from the heat exchanger 2 may be calculated using a value obtained from the current oil temperature (T / M oil temperature) of the transmission. In such a configuration, by adjusting the T / M oil temperature, the time delay of the oil temperature change from the T / M oil temperature measurement position (installation position of the T / M oil temperature sensor) to the inlet portion of the heat exchanger 2 is achieved. Is alleviated. Thereby, there exists an advantage which the precision of the oil temperature control of a transmission improves. Moreover, since the heat dissipation amount of the heat exchanger 2 can be calculated using the output value of the T / M oil temperature sensor, the heat exchanger inlet oil temperature sensor can be omitted. Thereby, there is an advantage that the product cost can be reduced.

[変形例3]
また、この油温制御装置1では、図2に示す構成にて熱量収支に基づいて算出されたFF必要放熱量(フィードフォワード制御量)と、図3に示す構成(変形例1)にて変速機のT/M油温と目標油温との偏差に基づいて算出されたFB必要放熱量(フィードバック制御量)との和が熱交換器2の必要放熱量として用いられても良い(図6参照)。そして、この必要放熱量に基づいて流量制御部3が駆動されて、熱交換器2における潤滑量の流量が制御される。具体的には、以下のようなフィードバック制御が行われ得る。
[Modification 3]
Further, in the oil temperature control device 1, the FF required heat release amount (feedforward control amount) calculated based on the heat amount balance in the configuration shown in FIG. 2 and the speed change in the configuration (modification 1) shown in FIG. The sum of the FB required heat release amount (feedback control amount) calculated based on the deviation between the T / M oil temperature of the machine and the target oil temperature may be used as the required heat release amount of the heat exchanger 2 (FIG. 6). reference). Then, the flow rate control unit 3 is driven based on the necessary heat radiation amount, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. Specifically, the following feedback control can be performed.

まず、FB必要放熱量の算出にあたり、変速機のT/M油温と目標油温との偏差が算出される。次に、この偏差と目標制御時間との比(偏差/目標制御時間)が算出される。次に、この比と所定のゲインとの積(偏差/目標制御時間×ゲイン)が算出される。次に、この積とトランスミッションの熱容量(T/M熱容量)との積(偏差/目標制御時間×ゲイン×(T/M熱容量))が算出され、この積がFB必要放熱量として用いられる。   First, in calculating the FB required heat dissipation amount, a deviation between the T / M oil temperature of the transmission and the target oil temperature is calculated. Next, a ratio (deviation / target control time) between the deviation and the target control time is calculated. Next, the product of this ratio and a predetermined gain (deviation / target control time × gain) is calculated. Next, a product (deviation / target control time × gain × (T / M heat capacity)) of this product and the heat capacity (T / M heat capacity) of the transmission is calculated, and this product is used as the FB required heat dissipation amount.

次に、このFB必要放熱量と、図2に示す構成にて熱量収支に基づいて算出されたFF必要放熱量との和が熱交換器2の必要放熱量として算出される。   Next, the sum of the FB required heat dissipation amount and the FF required heat dissipation amount calculated based on the heat balance in the configuration shown in FIG. 2 is calculated as the required heat dissipation amount of the heat exchanger 2.

次に、この必要放熱量と、車速(風速)、外気温および熱交換器入口油温とに基づいて、熱交換器2における潤滑油の目標流量が算出される。次に、この目標流量と、ライン圧ソレノイド指令電流とに基づいて、流量制御部3の流量制御弁31の目標電流(流量制御ソレノイド目標電流)が算出される。そして、この目標電流に基づいて流量制御弁31が駆動されて、熱交換器2における潤滑量の流量が制御される。これにより、変速機における潤滑油の油温が適正に維持される。また、フィードフォワード制御量(図2のFF必要放熱量)とフィードバック制御量(図3のFB必要放熱量)との和が熱交換器2の必要放熱量として用いられるので、変速機の油温を目標油温に速やかに収束させ得る利点がある。   Next, the target flow rate of the lubricating oil in the heat exchanger 2 is calculated based on the necessary heat release amount, the vehicle speed (wind speed), the outside air temperature, and the heat exchanger inlet oil temperature. Next, based on this target flow rate and the line pressure solenoid command current, a target current (flow control solenoid target current) of the flow control valve 31 of the flow control unit 3 is calculated. The flow rate control valve 31 is driven based on this target current, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. Thereby, the oil temperature of the lubricating oil in the transmission is properly maintained. Further, since the sum of the feedforward control amount (FF required heat dissipation amount in FIG. 2) and the feedback control amount (FB required heat dissipation amount in FIG. 3) is used as the required heat dissipation amount of the heat exchanger 2, the oil temperature of the transmission There is an advantage that can be quickly converged to the target oil temperature.

[変形例4]
また、この油温制御装置1では、図2に示す構成にて熱量収支に基づいて算出されたFF必要放熱量(フィードフォワード制御量)と、図4および図5に示す構成(変形例2)にて変速機の予想油温と目標油温との偏差に基づいて算出されたFB必要放熱量(フィードバック制御量)との和が熱交換器2の必要放熱量として用いられても良い(図7参照)。そして、この必要放熱量に基づいて流量制御部3が駆動されて、熱交換器2における潤滑油の流量が制御される。具体的には、以下のようなフィードバック制御が行われ得る。
[Modification 4]
Moreover, in this oil temperature control apparatus 1, FF required heat dissipation amount (feedforward control amount) calculated based on the heat balance in the configuration shown in FIG. 2, and the configuration shown in FIGS. 4 and 5 (Modification 2) The sum of the FB required heat dissipation amount (feedback control amount) calculated based on the deviation between the expected oil temperature of the transmission and the target oil temperature may be used as the required heat dissipation amount of the heat exchanger 2 (FIG. 7). And the flow control part 3 is driven based on this required heat radiation amount, and the flow volume of the lubricating oil in the heat exchanger 2 is controlled. Specifically, the following feedback control can be performed.

まず、FB必要放熱量の算出にあたり、変速機の予想油温と目標油温との偏差が算出される。次に、この偏差と目標制御時間との比(偏差/目標制御時間)が算出される。次に、この比と所定のゲインとの積(偏差/目標制御時間×ゲイン)が算出される。次に、この積とトランスミッションの熱容量(T/M熱容量)との積(偏差/目標制御時間×ゲイン×(T/M熱容量))が算出され、この積がFB必要放熱量として用いられる。   First, in calculating the FB required heat dissipation amount, a deviation between the expected oil temperature of the transmission and the target oil temperature is calculated. Next, a ratio (deviation / target control time) between the deviation and the target control time is calculated. Next, the product of this ratio and a predetermined gain (deviation / target control time × gain) is calculated. Next, a product (deviation / target control time × gain × (T / M heat capacity)) of this product and the heat capacity (T / M heat capacity) of the transmission is calculated, and this product is used as the FB required heat dissipation amount.

次に、このFB必要放熱量と、図2に示す構成にて熱量収支に基づいて算出されたFF必要放熱量との和が熱交換器2の必要放熱量として算出される。   Next, the sum of the FB required heat dissipation amount and the FF required heat dissipation amount calculated based on the heat balance in the configuration shown in FIG. 2 is calculated as the required heat dissipation amount of the heat exchanger 2.

次に、この必要放熱量と、車速(風速)、外気温および熱交換器入口油温とに基づいて、熱交換器2における潤滑油の目標流量が算出される。次に、この目標流量と、ライン圧ソレノイド指令電流とに基づいて、流量制御部3の流量制御弁31の目標電流(流量制御ソレノイド目標電流)が算出される。そして、この目標電流に基づいて流量制御弁31が駆動されて、熱交換器2における潤滑量の流量が制御される。これにより、変速機における潤滑油の油温が適正に維持される。また、フィードフォワード制御量(図2のFF必要放熱量)とフィードバック制御量(図5のFB必要放熱量)との和が熱交換器2の必要放熱量として用いられるので、変速機の油温を目標油温に速やかに収束させ得る利点がある。   Next, the target flow rate of the lubricating oil in the heat exchanger 2 is calculated based on the necessary heat release amount, the vehicle speed (wind speed), the outside air temperature, and the heat exchanger inlet oil temperature. Next, based on this target flow rate and the line pressure solenoid command current, a target current (flow control solenoid target current) of the flow control valve 31 of the flow control unit 3 is calculated. The flow rate control valve 31 is driven based on this target current, and the flow rate of the lubrication amount in the heat exchanger 2 is controlled. Thereby, the oil temperature of the lubricating oil in the transmission is properly maintained. Further, since the sum of the feedforward control amount (FF required heat release amount in FIG. 2) and the feedback control amount (FB required heat release amount in FIG. 5) is used as the required heat release amount of the heat exchanger 2, the oil temperature of the transmission There is an advantage that can be quickly converged to the target oil temperature.

以上のように、この発明にかかる変速機の油温制御装置は、変速機の油温を適正に制御できる点で有用である。   As described above, the oil temperature control device for a transmission according to the present invention is useful in that it can appropriately control the oil temperature of the transmission.

1 油温制御装置
2 熱交換器
3 流量制御部
31 流量制御弁
11 セカンダリレギュレータバルブ
12〜14 潤滑系
151、152 潤滑油路
DESCRIPTION OF SYMBOLS 1 Oil temperature control apparatus 2 Heat exchanger 3 Flow control part 31 Flow control valve 11 Secondary regulator valve 12-14 Lubrication system 151,152 Lubricating oil path

Claims (2)

変速機の潤滑油の熱交換を熱交換器にて行うことにより前記変速機の油温を制御する変速機の油温制御装置であって、
前記熱交換器に供給される潤滑油の流量を制御する流量制御部を備え、且つ、前記流量制御部がトランスミッション損失による発熱量に基づいて前記潤滑油の流量を制御することを特徴とする変速機の油温制御装置。
An oil temperature control device for a transmission that controls the oil temperature of the transmission by performing heat exchange of lubricating oil of the transmission with a heat exchanger,
A speed change control unit comprising a flow rate control unit that controls a flow rate of lubricating oil supplied to the heat exchanger, and the flow rate control unit controls the flow rate of the lubricating oil based on a heat generation amount due to transmission loss. Machine oil temperature control device.
前記熱交換器の放熱量の算出に用いられる前記潤滑油の油温として、変速機の現在の油温をなました値が用いられる請求項1に記載の変速機の油温制御装置。   2. The oil temperature control device for a transmission according to claim 1, wherein a value obtained by converting a current oil temperature of the transmission is used as the oil temperature of the lubricating oil used for calculating the heat radiation amount of the heat exchanger.
JP2009044627A 2009-02-26 2009-02-26 Transmission oil temperature control device Expired - Fee Related JP5272800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044627A JP5272800B2 (en) 2009-02-26 2009-02-26 Transmission oil temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044627A JP5272800B2 (en) 2009-02-26 2009-02-26 Transmission oil temperature control device

Publications (2)

Publication Number Publication Date
JP2010196851A true JP2010196851A (en) 2010-09-09
JP5272800B2 JP5272800B2 (en) 2013-08-28

Family

ID=42821772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044627A Expired - Fee Related JP5272800B2 (en) 2009-02-26 2009-02-26 Transmission oil temperature control device

Country Status (1)

Country Link
JP (1) JP5272800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105238A (en) * 2016-12-27 2018-07-05 いすゞ自動車株式会社 Cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533853A (en) * 1991-07-26 1993-02-09 Nissan Motor Co Ltd Oil regulating device
JPH0694106A (en) * 1992-09-11 1994-04-05 Nissan Motor Co Ltd Lubrication device of automatic transmission
JP2000120848A (en) * 1998-10-15 2000-04-28 Toyota Motor Corp Oil temperature estimation device for vehicular transmission
JP2004278740A (en) * 2003-03-18 2004-10-07 Koyo Seiko Co Ltd Toroidal continuously variable speed transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533853A (en) * 1991-07-26 1993-02-09 Nissan Motor Co Ltd Oil regulating device
JPH0694106A (en) * 1992-09-11 1994-04-05 Nissan Motor Co Ltd Lubrication device of automatic transmission
JP2000120848A (en) * 1998-10-15 2000-04-28 Toyota Motor Corp Oil temperature estimation device for vehicular transmission
JP2004278740A (en) * 2003-03-18 2004-10-07 Koyo Seiko Co Ltd Toroidal continuously variable speed transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105238A (en) * 2016-12-27 2018-07-05 いすゞ自動車株式会社 Cooling system

Also Published As

Publication number Publication date
JP5272800B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
KR102009970B1 (en) A cooling arrangement for a whr-system
US20170248065A1 (en) Thermal management system and method ofmaking and using the same
US10107382B2 (en) Vehicular drive system
JP2009257426A (en) Hydraulic control device
WO2016027151A1 (en) Lubrication control device for transmission
WO2017056944A1 (en) Cooling control device
KR102114411B1 (en) Cooling system control method for transporting coolant to in-vehicle heat exchanger
JP2006522261A (en) Drive system and method for optimizing power supply to drive system cooling system
CN109958608B (en) Transmission cooling water pump control method, transmission cooling system and vehicle
JP2010196852A (en) Oil temperature control device of transmission
JP4321505B2 (en) Hybrid vehicle cooling system
JP5272800B2 (en) Transmission oil temperature control device
JP5773907B2 (en) Semiconductor device and cooling system thereof
CN110709592B (en) Cooling system for a combustion engine and a WHR system
US10288162B2 (en) Control method for a transmission with hydraulic system comprising a variable displacement pump
JP2014126148A (en) Hydraulic control device of transmission for vehicle
JP2010242862A (en) Oil temperature control device for transmission
JP5998463B2 (en) Electric pump discharge flow estimation device
JP2020133608A (en) Cooling system for hybrid vehicle
CN111247360B (en) Thermal control device
JP2020128781A (en) Vehicle control device and vehicle control method
KR20110051504A (en) Atf oil temperature control system using flow adjustment of oil pump
JP6711290B2 (en) Hybrid vehicle cooling system
KR20130017958A (en) Apparatus for oil temperature control of automatic transmission and method thereof
JP4978185B2 (en) Hydraulic control device for continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees