JP2010196594A - Ventilation device for internal combustion engine - Google Patents

Ventilation device for internal combustion engine Download PDF

Info

Publication number
JP2010196594A
JP2010196594A JP2009042592A JP2009042592A JP2010196594A JP 2010196594 A JP2010196594 A JP 2010196594A JP 2009042592 A JP2009042592 A JP 2009042592A JP 2009042592 A JP2009042592 A JP 2009042592A JP 2010196594 A JP2010196594 A JP 2010196594A
Authority
JP
Japan
Prior art keywords
valve
differential pressure
electromagnetic coil
body member
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009042592A
Other languages
Japanese (ja)
Inventor
Shoichiro Morinaka
翔一朗 森中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009042592A priority Critical patent/JP2010196594A/en
Publication of JP2010196594A publication Critical patent/JP2010196594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ventilation device for an internal combustion engine which is compact and low cost and includes a PCV valve, and to enable detection that a valve element member is stuck. <P>SOLUTION: The ventilation device for the internal combustion engine in which the PCV valve 50 comprises a case 51, a valve element member 52 and a compression coil spring 53, includes an electromagnetic coil 55 energizing a valve element member 52 in a close or an open direction, a pressure difference detection means 61 detecting pressure difference, an excitation drive means 62 selectively supplying current to the electromagnetic coil 55 exciting and driving the electromagnetic coil 55 under a condition where detected pressure difference reaches pressure difference level capable of moving the valve element member 52, and a movable condition determination means 63 determining whether a movable state of the valve element member 52 is normal or not, based on induced current induced at the electromagnetic coil 55 by movement of the valve element member 52 when pressure difference detected by the pressure difference detection means 61 reaches pressure difference level capable of moving the valve element member 52 and the electromagnetic coil 55 is not under excited state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関のベンチレーション装置、特に機関本体の内部から吸気管の内部へのブローバイガスの還流を許容し、逆方向の流れを規制するPCVバルブを有する内燃機関のベンチレーション装置に関する。   The present invention relates to a ventilation device for an internal combustion engine, and more particularly to a ventilation device for an internal combustion engine having a PCV valve that allows recirculation of blow-by gas from the inside of the engine body to the inside of an intake pipe and restricts the reverse flow.

自動車等に搭載される内燃機関においては、燃焼室からシリンダとピストンの間の隙間を通ってクランクケース内にブローバイガスが漏れ出ることから、エンジンオイルの劣化防止や腐食防止等のためにクランクケース内を強制的に換気するPCV(Positive Crankcase Ventilation)方式のベンチレーション装置(ブローバイガス還元装置ともいう)が装備されている。また、このような内燃機関のベンチレーション装置では、機関本体の内部から吸気管の内部へのブローバイガスの還流を許容し、逆方向の流れを規制するチェック弁機能を有するPCVバルブが使用されている。   In internal combustion engines mounted on automobiles, etc., blow-by gas leaks from the combustion chamber through the gap between the cylinder and the piston into the crankcase, so the crankcase is used to prevent engine oil deterioration and corrosion. It is equipped with a PCV (Positive Crankcase Ventilation) type ventilation device (also called blow-by gas reduction device) that forcibly ventilates the interior. Further, in such a ventilation device for an internal combustion engine, a PCV valve having a check valve function for permitting recirculation of blowby gas from the inside of the engine body to the inside of the intake pipe and restricting the flow in the reverse direction is used. Yes.

従来のこの種の内燃機関のベンチレーション装置としては、電磁コイルによって駆動されるプランジャに弁体を連結し、その弁体の位置を内燃機関の回転数センサの出力に基づいて制御できるようにした電子制御PCVバルブを備えたものが知られている(例えば、特許文献1参照)。   As a conventional ventilation device for this type of internal combustion engine, a valve body is connected to a plunger driven by an electromagnetic coil so that the position of the valve body can be controlled based on the output of the rotational speed sensor of the internal combustion engine. An electronic control PCV valve is known (for example, see Patent Document 1).

また、内燃機関の機関本体の内部と吸気通路との間に2つのブローバイガス還流通路を設け、その一方の通路上に電磁開閉弁とオリフィスを設けて、暖機運転中にブローバイガスの吸気通路側への還流量を増加させるようにしたものが知られており、この装置の電磁開閉弁は、電磁コイルによって駆動されるプランジャに弁体に向かって突出する押し棒を装着し、内燃機関の冷機状態を感知したときに弁体を開弁方向に付勢するようになっている(例えば、特許文献2参照)。   Further, two blow-by gas recirculation passages are provided between the inside of the engine body of the internal combustion engine and the intake passage, and an electromagnetic on-off valve and an orifice are provided on one of the passages, so that the intake passage for blow-by gas during the warm-up operation is provided. An electromagnetic on-off valve of this apparatus is known in which a push rod that protrudes toward a valve body is attached to a plunger driven by an electromagnetic coil. When the cold state is detected, the valve body is urged in the valve opening direction (see, for example, Patent Document 2).

特開平08−338222号公報Japanese Patent Application Laid-Open No. 08-338222 特開昭61−187907号公報JP-A-61-187907

しかしながら、電磁コイルによって駆動されるプランジャに弁体を連結した従来の内燃機関のベンチレーション装置にあっては、内燃機関の全回転域で電磁コイルに電流が供給され、常時その電磁駆動力の加減によって弁体部材の位置を制御する構成であるため、出力の大きな電磁駆動手段が必要になり、コンパクトで低コストのPCVバルブにすることが困難であるという問題があった。   However, in a conventional internal combustion engine ventilation device in which a valve body is connected to a plunger driven by an electromagnetic coil, current is supplied to the electromagnetic coil in the entire rotation range of the internal combustion engine, and the electromagnetic driving force is constantly adjusted. Therefore, there is a problem that it is difficult to obtain a compact and low-cost PCV valve because an electromagnetic drive means having a large output is required.

また、内燃機関の機関本体の内部と吸気通路との間に2つのブローバイガス還流通路を設ける内燃機関のベンチレーション装置にあっても、電磁コイルにより駆動されるプランジャと弁体部材が別体で設けられるため、プランジャの復帰ばねを用いる必要等から、やはり、出力の大きな電磁駆動手段が必要になり、コンパクトで低コストの構成とすることが困難であるという問題があった。   Further, even in an internal combustion engine ventilation device in which two blow-by gas recirculation passages are provided between the inside of the engine body of the internal combustion engine and the intake passage, the plunger driven by the electromagnetic coil and the valve body member are separated. Since it is provided, it is necessary to use a return spring of the plunger, etc., so that an electromagnetic drive means having a large output is necessary, and there is a problem that it is difficult to achieve a compact and low-cost configuration.

さらに、上記のいずれの装置でも、弁体部材が固着状態に陥ると、PCVバルブの正常な作動ができないにもかかわらず、そのような故障状態を迅速・的確に検出することができないという問題もあった。   Furthermore, in any of the above-described devices, there is a problem that when the valve body member is in a fixed state, such a failure state cannot be detected promptly and accurately even though the PCV valve cannot operate normally. there were.

本発明は、上述のような従来の問題を解決するためになされたもので、PCVバルブを有するコンパクトで低コストの内燃機関のベンチレーション装置を提供し、併せてその弁体部材の固着を検出可能にすることを目的とする。   The present invention has been made to solve the above-described conventional problems, and provides a compact and low-cost internal combustion engine ventilation apparatus having a PCV valve, and also detects sticking of the valve body member. The purpose is to make it possible.

本発明に係るPCVバルブは、上記目的達成のため、内燃機関の機関本体と吸気管との間に介在し、前記機関本体の内部で発生するブローバイガスを前記吸気管の内部に還流させることができるPCVバルブを備え、前記PCVバルブが、前記機関本体と前記吸気管との間に介装され、前記ブローバイガスの前記機関本体の内部から前記吸気管の内部への還流通路の一部を形成する弁座部を有するケースと、前記機関本体の内部と前記吸気管の内部との間の差圧に応じて前記弁座部に接近する閉弁方向および前記弁座部から離れる開弁方向に移動するよう前記ケース内に移動可能に収納された弁体部材と、前記弁体部材を前記閉弁方向に付勢するよう前記ケースと前記弁体部材の間に介装された弾性部材と、を含んで構成される内燃機関のベンチレーション装置において、前記弁体部材を前記閉弁方向および前記開弁方向の少なくとも一方向に付勢する電磁力を発生させることができる電磁コイルと、前記差圧を検出する差圧検出手段と、前記差圧検出手段により検出される前記差圧が前記弁体部材を移動させ得る差圧レベルに達している状態下で、前記電磁コイルを励磁駆動する電流を前記電磁コイルに選択的に供給する励磁駆動手段と、前記差圧検出手段により検出される前記差圧が前記弁体部材を移動させ得る差圧レベルに達し、かつ、前記電磁コイルが非励磁状態にあるとき、前記弁体部材の移動により前記電磁コイルに生じる誘導電流に基づいて、前記弁体部材の可動状態が正常であるか否かを判定する可動状態判定手段と、を設けたことを特徴とする。   In order to achieve the above object, the PCV valve according to the present invention is interposed between the engine body of the internal combustion engine and the intake pipe, and allows the blow-by gas generated inside the engine body to flow back into the intake pipe. A PCV valve that can be interposed between the engine main body and the intake pipe to form a part of a return passage for the blow-by gas from the engine main body to the intake pipe. In a valve closing direction approaching the valve seat portion and in a valve opening direction away from the valve seat portion according to a differential pressure between the inside of the engine body and the inside of the intake pipe. A valve body member movably accommodated in the case to move, and an elastic member interposed between the case and the valve body member to urge the valve body member in the valve closing direction, Of an internal combustion engine comprising In the chilling device, an electromagnetic coil that can generate an electromagnetic force that urges the valve body member in at least one of the valve closing direction and the valve opening direction, and a differential pressure detecting unit that detects the differential pressure; In the state where the differential pressure detected by the differential pressure detecting means has reached a differential pressure level at which the valve body member can be moved, a current for exciting and driving the electromagnetic coil is selectively supplied to the electromagnetic coil. When the differential pressure detected by the differential drive detection means and the differential pressure detection means reaches a differential pressure level at which the valve body member can be moved, and the electromagnetic coil is in a non-excitation state, the valve body member And a movable state determining means for determining whether or not the movable state of the valve body member is normal based on an induced current generated in the electromagnetic coil by the movement of.

この構成により、弁体部材が差圧に応動するときにその弁体部材の移動が電磁コイルの励磁駆動によって補助されるか抑えられることになり、電磁コイルを励磁駆動する電流を電磁コイルに選択的に供給することで、電磁コイルの非励磁状態下で差圧に応動するPCVバルブの通常の流量特性と、電磁コイルの励磁状態下で通常の流量特性より差圧の上昇側または低下側にシフトするような別の流量特性とに切り替えることができ、しかも、弁体駆動を電磁コイルのみで行う場合のように大出力の電磁駆動手段が要求されないので、PCVバルブをコンパクトな低コストのものにできる。   With this configuration, when the valve body member responds to the differential pressure, the movement of the valve body member is assisted or suppressed by the excitation drive of the electromagnetic coil, and the current for exciting the electromagnetic coil is selected for the electromagnetic coil. The normal flow characteristics of the PCV valve that responds to the differential pressure when the electromagnetic coil is not excited, and the higher or lower differential pressure than the normal flow characteristics when the electromagnetic coil is excited. The flow rate can be switched to another flow characteristic that shifts, and since the high-power electromagnetic drive means is not required as in the case where the valve body is driven only by the electromagnetic coil, the PCV valve is compact and low-cost. Can be.

また、電磁コイルを励磁駆動する電流の方向を切り替えるようにして、PCVバルブの通常の流量特性とは別の流量特性を、通常の特性より差圧の上昇側にシフトする流量特性と差圧の低下側にシフトする流量特性とに切り替えることも可能であり、PCVバルブの流量特性が3段階に切り替え可能となる。   Further, by switching the direction of the current for exciting and driving the electromagnetic coil, the flow rate characteristic different from the normal flow rate characteristic of the PCV valve is shifted to the increasing side of the differential pressure from the normal characteristic. It is also possible to switch to a flow rate characteristic that shifts to a lower side, and the flow rate characteristic of the PCV valve can be switched in three stages.

さらに、差圧が弁体部材を移動させ得る差圧レベルに達し、かつ、電磁コイルが非励磁状態にあるとき、可動状態判定手段によって、差圧に応動する弁体部材の移動により電磁コイルに生じるべき誘導電流が検出されるか否かによって弁体部材の可動状態が正常であるか否かが判定されることから、PCVバルブの固着状態が確実に検出可能になる。   Further, when the differential pressure reaches a differential pressure level at which the valve body member can be moved and the electromagnetic coil is in a non-excited state, the movable state determining means causes the movement of the valve body member that responds to the differential pressure to the electromagnetic coil. Since whether or not the movable state of the valve body member is normal is determined based on whether or not the induced current to be generated is detected, the PCV valve can be securely detected.

加えて、可動状態判定手段は、PCVバルブの流量特性の切り替えに用いる電磁コイルと差圧検出手段を使用するものであるから、簡素な構成で実現できるとともに、車載ECU(電子制御ユニット)に搭載されるオンボードの故障診断回路等にも容易に組み込むことができる。   In addition, since the movable state determination means uses an electromagnetic coil and differential pressure detection means used for switching the flow characteristics of the PCV valve, it can be realized with a simple configuration and mounted on an in-vehicle ECU (electronic control unit). It can be easily incorporated into an on-board failure diagnosis circuit.

本発明によれば、電磁コイルに励磁駆動電流を選択的に供給することで、差圧に応動するPCVバルブの流量特性を、内燃機関の運転状態に好適な流量特性にするよう、電磁コイルの非励磁状態下での流量特性と励磁状態下での流量特性とに切り替えることができ、しかも、弁体駆動を電磁コイルのみで行う場合のように大出力の電磁駆動手段が要求されず、PCVバルブをコンパクトな低コストのものにできる内燃機関のベンチレーション装置を提供することができる。   According to the present invention, by selectively supplying an excitation drive current to the electromagnetic coil, the flow rate characteristic of the PCV valve that responds to the differential pressure is changed to a flow rate characteristic suitable for the operating state of the internal combustion engine. It is possible to switch between the flow characteristics under the non-excited state and the flow characteristics under the excited state. Moreover, unlike the case where the valve body is driven only by the electromagnetic coil, no large output electromagnetic drive means is required, and PCV It is possible to provide a ventilation device for an internal combustion engine, which can make the valve compact and low-cost.

さらに、弁体部材の可動状態が正常であるか否かを、差圧発生情報とそのとき電磁コイルに生じるべき誘導電流の検出情報を利用して判定するようにしているので、PCVバルブの固着状態を確実に検出することができる。   Further, whether or not the movable state of the valve body member is normal is determined by using the differential pressure generation information and the detection information of the induced current that should be generated in the electromagnetic coil at that time. The state can be reliably detected.

本発明の一実施形態に係る内燃機関のベンチレーション装置の要部であるPCVバルブとその制御系の概略構成図である。1 is a schematic configuration diagram of a PCV valve that is a main part of a ventilation device for an internal combustion engine according to an embodiment of the present invention and a control system thereof. 本発明の一実施形態に係る内燃機関のベンチレーション装置を装備したその内燃機関の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the internal combustion engine equipped with the ventilation apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関のベンチレーション装置におけるPCVバルブの流量特性を示すグラフであり、縦軸は流量、横軸はPCVバルブの前後の差圧である。It is a graph which shows the flow characteristic of the PCV valve in the ventilation apparatus of the internal combustion engine which concerns on one Embodiment of this invention, A vertical axis | shaft is a flow volume and a horizontal axis is the differential pressure before and behind a PCV valve.

以下、本発明の好ましい実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1および図2は、本発明の一実施形態に係る内燃機関のベンチレーション装置を示す図であり、本発明を車両用の内燃機関、例えば4サイクルのガソリンエンジン(以下、単にエンジンという)に適用した場合を例示するものである。
(First embodiment)
FIG. 1 and FIG. 2 are views showing a ventilation device for an internal combustion engine according to an embodiment of the present invention. The present invention is applied to an internal combustion engine for a vehicle, for example, a four-cycle gasoline engine (hereinafter simply referred to as an engine). The case where it applies is illustrated.

まず、その構成を説明する。   First, the configuration will be described.

図2に示すように、本実施形態のベンチレーション装置を装備するエンジン1は、ヘッドカバー11、シリンダヘッド12、シリンダブロック13、クランクケース14を有する機関本体10を備えており、シリンダヘッド12とシリンダブロック13の複数のシリンダ13a(図2中には1つのみ図示している)によって、複数の気筒15が形成されている。   As shown in FIG. 2, the engine 1 equipped with the ventilation device of the present embodiment includes an engine body 10 having a head cover 11, a cylinder head 12, a cylinder block 13 and a crankcase 14. A plurality of cylinders 15 are formed by a plurality of cylinders 13 a (only one is shown in FIG. 2) of the block 13.

各気筒15内にはピストン16が収納されており、そのピストン16には、クランクケース14内のクランクシャフト17がコネクティングロッド18を介して連結されている。また、シリンダヘッド12内には公知の動弁機構20や点火装置23、インジェクタ24等が収納されており、動弁機構20はクランクシャフト17からの動力を基に(またはクランクシャフト17と連動するよう独立して)駆動されるようになっている。   A piston 16 is accommodated in each cylinder 15, and a crankshaft 17 in the crankcase 14 is connected to the piston 16 via a connecting rod 18. Also, a known valve operating mechanism 20, an ignition device 23, an injector 24, and the like are housed in the cylinder head 12, and the valve operating mechanism 20 is interlocked with the crankshaft 17 based on power (or with the crankshaft 17). To be driven independently).

クランクケース14の下部にはオイルパン19が設けられており、そこに図示しない潤滑・冷却用のエンジンオイル(以下、単にオイルともいう)が収容されている。また、図示しないが、エンジン1にはクランクシャフト17の動力を基に駆動されるオイルポンプが設けられており、このオイルポンプによりオイルパン19内からオイルを汲み上げ、動弁機構20のカムシャフト21、22等、あるいはクランクシャフト17の軸受部等の各回転・摺動部を潤滑・冷却するようになっている。   An oil pan 19 is provided at the lower part of the crankcase 14, and contains engine oil for lubrication and cooling (hereinafter also simply referred to as oil) (not shown). Although not shown, the engine 1 is provided with an oil pump that is driven based on the power of the crankshaft 17. The oil pump pumps oil out of the oil pan 19, and the camshaft 21 of the valve mechanism 20. , 22 or the like, or each rotating / sliding portion such as a bearing portion of the crankshaft 17 is lubricated and cooled.

各気筒15内でピストン16の図中上方に形成される燃焼室1aには、ピストン16のストロークに応じ吸気通路31および吸気ポート1bを通して空気が吸入され、燃焼室1a内での燃焼後の排気ガスは排気ポート1cおよび図示しない排気通路を通して排気されるようになっている。   Air is sucked into the combustion chamber 1a formed in the upper part of the piston 16 in each cylinder 15 through the intake passage 31 and the intake port 1b according to the stroke of the piston 16, and exhausted after combustion in the combustion chamber 1a. The gas is exhausted through the exhaust port 1c and an exhaust passage (not shown).

ここで、吸気通路31は、スロットルバルブ32を回動(開閉動作)可能に支持しつつ収納するスロットルボデー33と、そのスロットルボデー33の上流側および下流側にそれぞれ設けられた上流側の吸気管34および下流側の吸気管35と、によって形成されている。   Here, the intake passage 31 includes a throttle body 33 that accommodates the throttle valve 32 so as to be pivotable (open / close operation), and an upstream intake pipe provided on the upstream side and the downstream side of the throttle body 33, respectively. 34 and a downstream intake pipe 35.

また、上流側の吸気管34は、例えば樹脂製のもので、この上流側の吸気管34の上流側にはフィルタエレメント36fを有するエアクリーナ36が設けられている。そして、このエアクリーナ36で粉塵等を除去した空気が、上流側の吸気管34内に取り込まれるようになっている。下流側の吸気管35は、サージタンク37と一体に形成され、エンジン1の吸気ポート1bを形成するシリンダヘッド12に締結・固定されている。   The upstream intake pipe 34 is made of, for example, resin, and an air cleaner 36 having a filter element 36 f is provided on the upstream side of the upstream intake pipe 34. The air from which dust or the like has been removed by the air cleaner 36 is taken into the intake pipe 34 on the upstream side. The downstream intake pipe 35 is formed integrally with the surge tank 37 and is fastened and fixed to the cylinder head 12 forming the intake port 1 b of the engine 1.

一方、エンジン1の機関本体10の内部では、燃焼室1aからシリンダ13aとピストン16の間の隙間を通ってクランクケース14の内部空間にブローバイガスが漏れ出る。そこで、エンジンオイルの劣化や機関本体10内部における腐食防止等のため、エンジン1には、クランクケース14内を強制的に換気する本実施形態のベンチレーション装置がPCV方式のブローバイガス還元装置として装備されている。   On the other hand, in the engine body 10 of the engine 1, blow-by gas leaks from the combustion chamber 1 a through the gap between the cylinder 13 a and the piston 16 into the internal space of the crankcase 14. Therefore, in order to prevent deterioration of the engine oil and corrosion inside the engine body 10, the engine 1 is equipped with the ventilation device of the present embodiment for forcibly ventilating the inside of the crankcase 14 as a PCV blowby gas reduction device. Has been.

具体的には、図2に示すように、機関本体10には、動弁機構20を収納するヘッドカバー11およびシリンダヘッド12の内部空間とクランクケース14の内部空間とを連通させる少なくとも1つの換気通路10vが形成されている。   Specifically, as shown in FIG. 2, the engine body 10 includes at least one ventilation passage that communicates the internal space of the head cover 11 and the cylinder head 12 that accommodates the valve mechanism 20 and the internal space of the crankcase 14. 10v is formed.

さらに、機関本体10と上流側の吸気管34との間には、スロットルバルブ32より上流側の吸気通路31aからの新気、すなわち新しい空気を機関本体10の内部に導入する空気導入管41が介装されており、機関本体10と下流側の吸気管35との間には、機関本体10の内部で発生するブローバイガスをスロットルバルブ32より下流側の吸気通路31bに還流させるブローバイガス還流管42と、ブローバイガス還流管42内の還流通路を開閉することができるPCVバルブ50とが介装されている。   Further, an air introduction pipe 41 for introducing fresh air from the intake passage 31 a upstream of the throttle valve 32, that is, new air into the engine body 10, is provided between the engine body 10 and the upstream intake pipe 34. A blow-by gas recirculation pipe that is interposed between the engine main body 10 and the downstream intake pipe 35 to recirculate blow-by gas generated inside the engine main body 10 to the intake passage 31b downstream of the throttle valve 32. 42 and a PCV valve 50 capable of opening and closing a reflux passage in the blow-by gas reflux pipe 42 are interposed.

これにより、図2中に白矢印で示すように、エンジン1の内部空間に空気導入管41を通して新気が導入されるとともに、図2中に黒矢印で示すように、各気筒15からクランクケース14内に漏れ出すブローバイガスが、換気通路10vを通してクランクケース14内からヘッドカバー11およびシリンダヘッド12の内部空間へと送り出され、PCVバルブ50およびブローバイガス還流管42を通って、スロットルバルブ32より下流側の吸気通路31bに還流するようになっている。   As a result, fresh air is introduced into the internal space of the engine 1 through the air introduction pipe 41 as shown by white arrows in FIG. 2, and from each cylinder 15 to the crankcase as shown by black arrows in FIG. The blow-by gas leaking into the engine 14 is sent from the crankcase 14 to the interior space of the head cover 11 and the cylinder head 12 through the ventilation passage 10v, passes through the PCV valve 50 and the blow-by gas return pipe 42, and is downstream of the throttle valve 32. It recirculates to the intake passage 31b on the side.

PCVバルブ50は、例えばブローバイガス還流管42を機関本体10のヘッドカバー11に接続する部位に装着されている。勿論、ブローバイガス還流通路がヘッドカバー11より下方側の部材を通過する場合には、PCVバルブ50は、機関本体10の他の部分とブローバイガス還流管の接続部位に、あるいは、機関本体の内部からのブローバイガスを通すオイルセパレータの出口側に装着されてもよい。   The PCV valve 50 is mounted, for example, at a site where the blow-by gas recirculation pipe 42 is connected to the head cover 11 of the engine body 10. Of course, when the blow-by gas recirculation passage passes through a member below the head cover 11, the PCV valve 50 is connected to another portion of the engine body 10 and the blow-by gas recirculation pipe or from the inside of the engine body. It may be mounted on the outlet side of the oil separator through which the blowby gas passes.

このPCVバルブ50は、エンジン1の機関本体10と下流側の吸気管35との間に介在し、その開弁時に、機関本体10の内部で発生するブローバイガスをブローバイガス還流管42を通して下流側の吸気管35の内部に還流させることができる。   The PCV valve 50 is interposed between the engine body 10 of the engine 1 and the intake pipe 35 on the downstream side. When the valve is opened, blow-by gas generated inside the engine body 10 passes through the blow-by gas recirculation pipe 42 to the downstream side. Can be recirculated into the intake pipe 35.

また、PCVバルブ50は、エンジン1の機関本体10と下流側の吸気管35との間に介装されるケース51と、ケース51内に移動可能に収納された磁性体(例えば強磁性体)からなる弁体部材52と、を含んで構成されている。   The PCV valve 50 includes a case 51 interposed between the engine body 10 of the engine 1 and the intake pipe 35 on the downstream side, and a magnetic body (for example, a ferromagnetic body) movably accommodated in the case 51. The valve body member 52 which consists of this.

ケース51は、ブローバイガスの機関本体10の内部から下流側の吸気管35の内部への還流通路の一部となる通路51wと、それぞれ通路51wの一部を形成する環状の第1弁座部51t(弁座部)および第2弁座部51sとを有している。   The case 51 includes a passage 51w that becomes a part of a return passage from the inside of the engine body 10 for blow-by gas to the inside of the intake pipe 35 on the downstream side, and an annular first valve seat portion that forms a part of the passage 51w. 51t (valve seat part) and the 2nd valve seat part 51s.

弁体部材52は、機関本体10の内部と下流側の吸気管35の内部との間の差圧(気圧の差)に応じて、その一端の第1弁部52uを第1弁座部51tに着座係合させたり第1弁座部51tから離脱させたりするようその軸方向に移動可能になっており、弁体部材52がその第1弁部52uを第1弁座部51tに着座係合させることで、PCVバルブ50は全閉状態となり、弁体部材52がその第1弁部52uを第1弁座部51tから離脱させることで、PCVバルブ50は開弁状態となる。   The valve body member 52 is configured so that the first valve seat 52u at one end thereof is connected to the first valve seat portion 51t according to the pressure difference (pressure difference) between the inside of the engine body 10 and the inside of the intake pipe 35 on the downstream side. The valve body member 52 can be moved in the axial direction so as to be seated and engaged with the first valve seat portion 51t, and the valve body member 52 can seat the first valve portion 52u on the first valve seat portion 51t. As a result, the PCV valve 50 is fully closed, and the valve member 52 disengages the first valve portion 52u from the first valve seat portion 51t, whereby the PCV valve 50 is opened.

弁体部材52は、また、その一端側の第1弁部52uを第1弁座部51tから離隔させるように移動するとき、その他端側の円錘状の第2弁部52vを第2弁座部51sに接近させるようになっており、弁体部材52の第2弁部52vが第2弁座部51sに予め設定された近傍域にまで接近したときには、弁体部材52の第2弁部52vとケース51の第2弁座部51sとの間で、弁体部材52の周りの通路51wである環状通路50wが絞られる(断面積が縮小される)ようになっており、その絞りの度合いに応じてPCVバルブ50の開度が小さくなるようになっている。   When the valve body member 52 moves so that the first valve portion 52u on one end side thereof is separated from the first valve seat portion 51t, the second valve portion 52v having a conical shape on the other end side is moved to the second valve. When the second valve portion 52v of the valve body member 52 approaches the vicinity of the second valve seat portion 51s set in advance, the second valve of the valve body member 52 is made to approach the seat portion 51s. Between the portion 52v and the second valve seat portion 51s of the case 51, the annular passage 50w, which is the passage 51w around the valve body member 52, is restricted (the cross-sectional area is reduced). The opening degree of the PCV valve 50 is made smaller in accordance with the degree of.

PCVバルブ50は、さらに、これらケース51と弁体部材52の間に介装された圧縮コイルばね53を含んで構成されており、弁体部材52は圧縮コイルばね53によって常時閉弁方向(第1弁部52uを第1弁座部51tに接近させる方向)に付勢されている。   The PCV valve 50 further includes a compression coil spring 53 interposed between the case 51 and the valve body member 52, and the valve body member 52 is normally closed by the compression coil spring 53. 1 valve part 52u is urged | biased to the 1st valve seat part 51t.

一方、ケース51の外周壁部51eには、電磁コイル55が巻き付けられるか巻回状態で埋設されており、この電磁コイル55は、弁体部材52を前記絞りの強弱を変化させる方向、すなわち軸方向の一方側または他方側に付勢する電磁力を発生させることができるようになっている。   On the other hand, an electromagnetic coil 55 is wound around the outer peripheral wall portion 51e of the case 51 or embedded in a wound state. The electromagnetic coil 55 changes the valve body member 52 in the direction that changes the strength of the diaphragm, that is, the shaft. It is possible to generate an electromagnetic force that urges one side or the other side of the direction.

この電磁コイル55は、後述するECU60により励磁電流(電磁コイル55を励磁するための電流)が供給されるときに、ケース51の一部(ヨークの一端部に相当する部位)および弁体部材52の一端側をN極に、ケース51の他の一部(ヨークの他端部に相当する部位)および弁体部材52の他端側をS極に磁化させて、弁体部材52の先端側の円錘状の第2弁部52vを第2弁座部51sに接近させる方向に付勢するようになっており、その電磁付勢力によって圧縮コイルばね53による弁体部材52の差圧による開弁方向の付勢力を補助(アシスト)するようになっている。   The electromagnetic coil 55 has a part of the case 51 (a part corresponding to one end of the yoke) and the valve body member 52 when an excitation current (current for exciting the electromagnetic coil 55) is supplied by the ECU 60 described later. The other end of the case 51 (the portion corresponding to the other end of the yoke) and the other end side of the valve body member 52 are magnetized to the S pole so that one end side of the valve body member 52 is magnetized to the S pole. The conical second valve portion 52v is urged in the direction of approaching the second valve seat portion 51s, and the electromagnetic urging force opens the valve body member 52 by the differential pressure of the compression coil spring 53. The urging force in the valve direction is assisted.

すなわち、PCVバルブ50は、電磁コイル55による弁体部材52への電磁付勢力によって、差圧に応動する弁体部材52の位置を差圧がさらに増加したのと同等の位置にシフトさせることができ、それによって流量特性を変化させ得るようになっている。   That is, the PCV valve 50 can shift the position of the valve body member 52 that is responsive to the differential pressure to a position equivalent to a further increase in the differential pressure by the electromagnetic biasing force on the valve body member 52 by the electromagnetic coil 55. It is possible to change the flow characteristics.

この場合、電磁コイル55に供給する励磁電流の大きさを段階的に変えることで、電磁付勢力によるアシストの程度を切り替えることができるが、本実施形態では、ECU60によって、電磁コイル55への励磁電流の供給の有無と、その励磁電流の方向切り替え(電磁コイル55により発生する磁界の向きを逆向きにする切り替え)とが実行されるようになっている。   In this case, by changing the magnitude of the excitation current supplied to the electromagnetic coil 55 in stages, the degree of assist by the electromagnetic biasing force can be switched. In this embodiment, the excitation to the electromagnetic coil 55 is performed by the ECU 60. The presence / absence of current supply and the direction switching of the excitation current (switching to reverse the direction of the magnetic field generated by the electromagnetic coil 55) are executed.

ここで、ケース51の一部、例えば第2弁座部51sより吸気管35側のケース51の一部には、永久磁石57が装着されており、電磁コイル55に供給される励磁電流の向きを逆向きにすることで弁体部材52の磁極を反転させるとき、弁体部材52の先端側の円錘状の第2弁部52vを第2弁座部51sから離隔させる方向に付勢することができるようになっている。   Here, a permanent magnet 57 is attached to a part of the case 51, for example, a part of the case 51 closer to the intake pipe 35 than the second valve seat portion 51 s, and the direction of the excitation current supplied to the electromagnetic coil 55. When the magnetic poles of the valve body member 52 are reversed by reversing the direction of the valve body 52, the conical second valve portion 52v on the distal end side of the valve body member 52 is biased in a direction to separate from the second valve seat portion 51s. Be able to.

なお、永久磁石57を設けることに代えて、弁体部材52のばね受け部となっているフランジ部52fを図1中の左端側に位置させ、ケース51の第1弁座部51tから弁体部材52の第1弁部52uが離脱しているものの一定の離間距離内にあるとき、および、弁体部材52の移動量が第2弁部52vを第2弁座部51sの近傍域にまで接近したときのそれぞれに、電磁コイル55に励磁電流を供給し(さらに、ケース51および弁体部材52に電磁コイル55の励磁時に互いに近接する環状部位を設けてもよい)、差圧の小さいときと大きいときとでは、ケース51と弁体部材52の近接部位が異なることで、電磁コイル55により発生する磁束が通る磁路が部分的に異なる位置に形成されるようにすることも考えられる。そのような磁気回路構成自体は、例えば双安定あるいは3安定のソレノイドと同様に構成できるので、ここでは詳述しない。   Instead of providing the permanent magnet 57, the flange portion 52f serving as the spring receiving portion of the valve body member 52 is positioned on the left end side in FIG. 1, and the valve body from the first valve seat portion 51t of the case 51 is provided. When the first valve portion 52u of the member 52 is detached but within a certain separation distance, and the amount of movement of the valve body member 52 moves the second valve portion 52v to the vicinity of the second valve seat portion 51s. When excitation current is supplied to the electromagnetic coil 55 each time they approach (in addition, the case 51 and the valve body member 52 may be provided with annular portions that are close to each other when the electromagnetic coil 55 is excited), and when the differential pressure is small It is also conceivable that the magnetic path through which the magnetic flux generated by the electromagnetic coil 55 passes is partially formed at different positions by the proximity of the case 51 and the valve body member 52 being different. Such a magnetic circuit configuration itself can be configured in the same manner as a bistable or tristable solenoid, for example, and will not be described in detail here.

ECU60は、具体的なハードウェア構成を図示しないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)および不揮発メモリ等のバックアップ用メモリを含み、さらに、A/D変換器等を含む入力インターフェース回路と、ドライバやリレースイッチを含む出力インターフェース回路とを含んで構成されている。   The ECU 60 includes a backup memory such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and a nonvolatile memory, although a specific hardware configuration is not illustrated. The input interface circuit includes a converter and the like, and the output interface circuit includes a driver and a relay switch.

このECU60は、吸気管内圧力センサ66や機関回転数センサ67からのセンサ情報を基に算出される推定吸気管圧力情報を常時保持しており、この推定吸気管圧力情報に基づいてPCVバルブ50の前後(ブローバイガス還流方向の上流側および下流側)の差圧を検出する差圧検出手段61の機能を有している。   The ECU 60 always holds estimated intake pipe pressure information calculated based on sensor information from the intake pipe pressure sensor 66 and the engine speed sensor 67. Based on the estimated intake pipe pressure information, the ECU 60 It has a function of differential pressure detecting means 61 for detecting the differential pressure before and after (upstream and downstream in the blow-by gas recirculation direction).

また、ECU60は、差圧検出手段61により検出される差圧が弁体部材52を移動させ得る差圧レベルに達している状態下で、電磁コイル55の励磁電流を電磁コイル55に選択的に供給する励磁駆動手段62の機能を併有している。   In addition, the ECU 60 selectively applies the exciting current of the electromagnetic coil 55 to the electromagnetic coil 55 in a state where the differential pressure detected by the differential pressure detecting means 61 has reached a differential pressure level at which the valve body member 52 can be moved. It also has the function of the excitation drive means 62 to supply.

ここで、励磁電流を電磁コイル55に選択的に供給するとは、PCVバルブ50の流量特性が差圧応動のみの流量特性でよいときには電磁コイル55に励磁電流が供給されず、差圧応動のみの流量特性より差圧の増加側あるいは減少側にシフトさせる必要があるときには電磁コイル55に弁体部材52の移動を補助するかまたは抑制する方向の電磁力を発生させる励磁電流が供給されるといったように、電流供給がなされるときと、なされないときとがあることを意味する。   Here, selectively supplying the exciting current to the electromagnetic coil 55 means that when the flow rate characteristic of the PCV valve 50 may be a flow characteristic having only differential pressure response, the exciting current is not supplied to the electromagnetic coil 55 and only the differential pressure response is provided. When it is necessary to shift the differential pressure to an increase side or a decrease side from the flow rate characteristic, an excitation current that generates an electromagnetic force in a direction to assist or suppress the movement of the valve body member 52 is supplied to the electromagnetic coil 55. In other words, there are times when current is supplied and when current is not supplied.

励磁駆動手段62は、PCVバルブ50の弁体部材52がケース51のインレットポート部51aを閉止する全閉状態(図1中に実線で示す状態)から脱し、差圧変化に応じてその軸線方向に移動を開始することができる状態(図1中に点線で示す状態)となる移動領域(以下、これを中間領域という)にあるとき、エンジン1の運転状態を基に、電磁コイル55に選択的に励磁電流を供給することで、PCVバルブ50の流量特性を現在の運転状態に好適な流量特性に切り替えるようになっている。   The excitation drive means 62 is released from the fully closed state (state shown by a solid line in FIG. 1) in which the valve body member 52 of the PCV valve 50 closes the inlet port portion 51a of the case 51, and the axial direction thereof according to the change in the differential pressure. Is selected in the electromagnetic coil 55 on the basis of the operating state of the engine 1 when it is in a moving region (hereinafter referred to as an intermediate region) in which it can start moving (indicated by a dotted line in FIG. 1). In addition, by supplying an exciting current, the flow rate characteristic of the PCV valve 50 is switched to a flow rate characteristic suitable for the current operating state.

具体的には、PCVバルブ50の流量特性は、例えば図3中に実線で示すように、電磁コイル55に通電されない通常時(非通電時)においては、差圧が立ち上がると、最初に流量が急増する開弁動作がなされ、差圧値ΔP1に達するまでは、差圧の増加に伴ってPCVバルブ50の流量が増加する。また、差圧値ΔP1から差圧値ΔP2の間では、ほぼ一定の流量値の大きな流量が維持され、差圧値ΔP2を超えると、概ね差圧値ΔP3に達するまでは、差圧の増加に伴って流量が減少し、差圧値ΔP3から差圧値ΔP4の間では、ほぼ一定の流量値の小さな流量が維持され、差圧値ΔP4を超えると、流量が急に低下して閉弁状態に移行する。ここで、差圧値ΔP1〜ΔP4は、それぞれ概略値である。また、本実施形態のPCVバルブ50では、差圧が十分に大きくなっても、弁体部材52の第2弁部52vとケース51の第2弁座部51sが係合する状態には達することがなく、両者間で環状通路50wがその前後部分より断面積を縮小する絞り状態になる。   Specifically, the flow rate characteristic of the PCV valve 50 is, for example, as shown by a solid line in FIG. 3, when the differential pressure rises at the normal time when the electromagnetic coil 55 is not energized (non-energized), The valve opening operation that rapidly increases is performed, and the flow rate of the PCV valve 50 increases as the differential pressure increases until the differential pressure value ΔP1 is reached. In addition, a large flow rate with a substantially constant flow rate value is maintained between the differential pressure value ΔP1 and the differential pressure value ΔP2. When the differential pressure value ΔP2 is exceeded, the differential pressure increases until the differential pressure value ΔP3 is reached. Accordingly, the flow rate decreases, and a small flow rate with a substantially constant flow rate value is maintained between the differential pressure value ΔP3 and the differential pressure value ΔP4. When the differential pressure value ΔP4 is exceeded, the flow rate suddenly decreases and the valve is closed. Migrate to Here, the differential pressure values ΔP1 to ΔP4 are approximate values. Further, in the PCV valve 50 of the present embodiment, even when the differential pressure becomes sufficiently large, the state in which the second valve portion 52v of the valve body member 52 and the second valve seat portion 51s of the case 51 are engaged is reached. There is no restriction, and the annular passage 50w is in a squeezed state between which the cross-sectional area is reduced from the front and rear portions.

一方、電磁コイル55に励磁電流が供給される通電時には、図3中に破線および一点鎖線で示すように、PCVバルブ部50の流量特性が変化する。なお、図3中では、各流量特性における最大流量を誇張して大きく異ならせているが、ケース51の第1弁座部51tと弁体部材52の第1弁部52uの間に形成される上流側の可変通路部分の断面積と、ケース51の第2弁座部51sと弁体部材52の第2弁部52vの間に形成される下流側の可変通路部分の断面積とが、同一の差圧であってもそれぞれの流量特性により相違することと、好ましい流量特性となるようにケース51および弁体部材52の形状がそれぞれ設定されることで、図示方向の最大流量の変化が生じる。   On the other hand, when the exciting current is supplied to the electromagnetic coil 55, the flow rate characteristic of the PCV valve unit 50 changes as indicated by a broken line and a one-dot chain line in FIG. In FIG. 3, the maximum flow rate in each flow rate characteristic is exaggerated and greatly changed, but is formed between the first valve seat portion 51 t of the case 51 and the first valve portion 52 u of the valve body member 52. The cross-sectional area of the upstream variable passage portion and the cross-sectional area of the downstream variable passage portion formed between the second valve seat portion 51s of the case 51 and the second valve portion 52v of the valve body member 52 are the same. Even if the pressure difference is different, the shape of the case 51 and the valve body member 52 is set so that the flow rate characteristics are preferable and the preferable flow rate characteristics are set, thereby causing a change in the maximum flow rate in the illustrated direction. .

電磁コイル55に供給される励磁電流が差圧の減少側(図3中で(−)方向)に流れるときには、例えば図3中に破線で示すように、差圧が立ち上がると、最初に流量が急増する開弁動作がなされ、差圧値ΔP1より大きい差圧値ΔP1aに達するまでは、差圧の増加に伴ってPCVバルブ50の流量が増加する。また、差圧値ΔP1aから差圧値ΔP2より大きい差圧値ΔP2aまでの間では、ほぼ一定の流量値の大きな流量が維持され、差圧値ΔP2aを超えると、差圧値ΔP3に近い差圧値ΔP3aに達するまで、差圧の増加に伴って流量が減少し、差圧値ΔP3aを超えると、流量が小流量で維持される。すなわち、この場合、弁体部材52の第2弁部52vとケース51の第2弁座部51sが通常よりも接近し難くなることから、差圧が十分に大きくなっても、環状通路50wの絞りがきつくなることはない。   When the excitation current supplied to the electromagnetic coil 55 flows toward the pressure difference decreasing side (in the (−) direction in FIG. 3), for example, as shown by the broken line in FIG. The valve opening operation that rapidly increases is performed, and the flow rate of the PCV valve 50 increases as the differential pressure increases until the differential pressure value ΔP1a that is larger than the differential pressure value ΔP1 is reached. Further, a large flow rate with a substantially constant flow rate value is maintained between the differential pressure value ΔP1a and the differential pressure value ΔP2a larger than the differential pressure value ΔP2, and when the differential pressure value ΔP2a is exceeded, the differential pressure close to the differential pressure value ΔP3 is maintained. Until the value ΔP3a is reached, the flow rate decreases as the differential pressure increases. When the differential pressure value ΔP3a is exceeded, the flow rate is maintained at a small flow rate. That is, in this case, since the second valve portion 52v of the valve body member 52 and the second valve seat portion 51s of the case 51 are less likely to approach than usual, even if the differential pressure becomes sufficiently large, the annular passage 50w The aperture will never be too tight.

電磁コイル55に供給される励磁電流が差圧の増加側(図3中で(+)方向)に流れるときには、例えば図3中に一点鎖線で示すように、差圧が立ち上がると、最初に流量が急増する開弁動作がなされ、差圧値ΔP1に近い差圧値ΔP1b達するまでは、差圧の増加に伴ってPCVバルブ50の流量が増加する。また、差圧値ΔP1bから差圧値ΔP2より小さい差圧値ΔP2bまでの間では、ほぼ一定の流量値の大きな流量が維持され、差圧値ΔP2bを超えると、差圧値ΔP2に近い差圧値ΔP3bに達するまで、差圧の増加に伴って流量が減少し、差圧値ΔP3bを超えると、流量が通常の流量特性時の差圧値ΔP4を超えるときと同程度の小流量で維持される。すなわち、この場合、差圧がさほど高くならない段階から、環状通路50wの絞りがきつくなる。   When the exciting current supplied to the electromagnetic coil 55 flows on the differential pressure increasing side (in the (+) direction in FIG. 3), for example, as shown by the one-dot chain line in FIG. Until the pressure difference value ΔP1b close to the pressure difference value ΔP1 is reached, the flow rate of the PCV valve 50 increases as the pressure difference increases. Further, a large flow rate with a substantially constant flow rate value is maintained between the differential pressure value ΔP1b and the differential pressure value ΔP2b smaller than the differential pressure value ΔP2, and when the differential pressure value ΔP2b is exceeded, the differential pressure close to the differential pressure value ΔP2 is maintained. Until the value ΔP3b is reached, the flow rate decreases as the differential pressure increases, and when the differential pressure value ΔP3b is exceeded, the flow rate is maintained at a small flow rate comparable to that when the differential pressure value ΔP4 in the normal flow characteristics is exceeded. The That is, in this case, the restriction of the annular passage 50w becomes tight from the stage where the differential pressure does not become so high.

ECU60は、さらに、差圧検出手段61の機能により検出される差圧が弁体部材52を移動させ得る差圧レベルに達し、かつ、電磁コイル55が非励磁状態(励磁駆動のための電流が供給されない状態)にあるとき、弁体部材52の移動により電磁コイル55に生じる誘導電流を検出するとともに、その検出値に基づいて弁体部材52の可動状態が正常であるか否かを判定する可動状態判定手段63としての機能を有している。   The ECU 60 further reaches a differential pressure level at which the differential pressure detected by the function of the differential pressure detection means 61 can move the valve body member 52, and the electromagnetic coil 55 is in a non-excited state (the current for excitation drive is In the state of not being supplied), an induced current generated in the electromagnetic coil 55 due to the movement of the valve body member 52 is detected, and whether or not the movable state of the valve body member 52 is normal is determined based on the detected value. It has a function as the movable state determination means 63.

ECU60は、具体的には、例えば少なくとも電磁コイル55を非励磁状態(励磁駆動のための電流が供給されない状態)にするときには、差圧検出手段61の機能により検出される差圧が弁体部材52を移動させ得る差圧レベルに達したか否かを一定時間毎にモニタし、差圧が弁体部材52を移動させ得る差圧レベルに到達した場合であってその到達時点からの経過時間が予め設定された待機時間(例えば、数秒)を超えたとき、電磁コイル55の端子間の電圧をモニタすることで電磁コイル55に流れる誘導電流を検出する。   Specifically, for example, when at least the electromagnetic coil 55 is in a non-excited state (a state in which current for excitation driving is not supplied), the ECU 60 determines that the differential pressure detected by the function of the differential pressure detecting means 61 is the valve body member. Whether or not a differential pressure level that can move 52 has been reached is monitored at regular intervals, and when the differential pressure has reached a differential pressure level that can move the valve body member 52, the elapsed time from that time When a predetermined standby time (for example, several seconds) is exceeded, the induced current flowing through the electromagnetic coil 55 is detected by monitoring the voltage between the terminals of the electromagnetic coil 55.

エンジン1の運転中に弁体部材52が前後差圧に応動する通常の動作状態にある場合であって、電磁コイル55に励磁電流が供給されていないとき、電磁コイル55の端子間には弁体部材52の移動に対応する誘導電流が流れることになるので、電磁コイル55の端子間に一定レベル以上の有効な電圧が生じる。一方、弁体部材52が固着状態(可動でなくなった状態)にある場合であって、電磁コイル55に励磁電流が供給されていないときには、電磁コイル55の端子間に弁体部材52の移動に対応するような誘導電流は流れないので、電磁コイル55の端子間に弁体部材52の移動に対応する有効な電圧は検出されない。   When the valve body member 52 is in a normal operation state that responds to the differential pressure across the engine 1 during operation of the engine 1 and no excitation current is supplied to the electromagnetic coil 55, there is no valve between the terminals of the electromagnetic coil 55. Since an induced current corresponding to the movement of the body member 52 flows, an effective voltage of a certain level or more is generated between the terminals of the electromagnetic coil 55. On the other hand, when the valve body member 52 is in a fixed state (in a state where it is not movable) and no excitation current is supplied to the electromagnetic coil 55, the valve body member 52 is moved between the terminals of the electromagnetic coil 55. Since no corresponding induced current flows, an effective voltage corresponding to the movement of the valve body member 52 is not detected between the terminals of the electromagnetic coil 55.

ECU60の可動状態判定手段63は、この電磁コイル55の端子間電圧の検出値に基づいて、その検出値が予め設定した判定閾値を超えるときには、弁体部材52の可動状態が正常であると判定し、その検出値が予め設定した判定閾値以下であるときには、弁体部材52が固着状態であると判定するようになっている。そして、この可動状態判定手段63の機能は、例えば公知のオンボードの故障診断回路(いわゆるOBD(On Board Diagnosis)回路)に故障診断プログラムの1つとして組み込まれ、弁体部材52の固着状態と判定されたときには、例えばMIL(Malfunction indicator lamp)によりエンジン1の不具合を運転者に知らせる警告情報を発するとともに、弁体部材52の固着状態を表すコード情報等をメンテナンス時に参照可能な内部のメモリ領域に書き込むといった処理を実行するようになっている。   Based on the detected value of the voltage between the terminals of the electromagnetic coil 55, the movable state determining means 63 of the ECU 60 determines that the movable state of the valve body member 52 is normal when the detected value exceeds a preset determination threshold. When the detected value is equal to or less than a predetermined determination threshold value, it is determined that the valve body member 52 is in a fixed state. The function of the movable state determination means 63 is incorporated as one of failure diagnosis programs in a known on-board failure diagnosis circuit (so-called OBD (On Board Diagnosis) circuit), for example, When the determination is made, for example, warning information notifying the driver of a malfunction of the engine 1 is issued by, for example, MIL (Malfunction indicator lamp), and code information indicating the fixed state of the valve body member 52 can be referred to during maintenance. Processing such as writing to is executed.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態の内燃機関のベンチレーション装置では、エンジン1の運転時において、エンジン1の燃焼室1aからシリンダ13aとピストン16の間の隙間を通ってクランクケース14内にブローバイガスが漏れ出るところ、PCVバルブ50の弁体部材52がその前後の差圧、すなわち機関本体10の内部の圧力(気圧)と下流側の吸気管35の内部の圧力との差に応じて軸方向に移動することで、PCVバルブ50の前後差圧に応じ、ブローバイガス還流管42を通る機関本体10の内部から下流側の吸気管35の内部へのブローバイガスの還流が許容される。   In the ventilation device for an internal combustion engine of the present embodiment configured as described above, when the engine 1 is in operation, the combustion chamber 1a of the engine 1 passes through the gap between the cylinder 13a and the piston 16 and enters the crankcase 14. When the blow-by gas leaks, the valve body member 52 of the PCV valve 50 corresponds to the differential pressure before and after that, that is, the difference between the pressure (atmospheric pressure) inside the engine body 10 and the pressure inside the intake pipe 35 on the downstream side. By moving in the axial direction, according to the differential pressure across the PCV valve 50, the return of the blow-by gas from the inside of the engine body 10 passing through the blow-by gas return pipe 42 to the inside of the intake pipe 35 on the downstream side is allowed.

また、この状態においては、ECU60の差圧検出手段61によって、吸気管内圧力センサ66や機関回転数センサ67からのセンサ情報を基に推定吸気管圧力情報が算出され、この推定吸気管圧力情報に基づいてPCVバルブ50の前後差圧が検出される。また、これと併せて、励磁駆動手段62により、PCVバルブ50の前後差圧が弁体部材52を移動させ得る差圧レベルに達しているとき、その状態下で、電磁コイル55を励磁駆動する電流が電磁コイル55に選択的に供給される。   In this state, the differential pressure detection means 61 of the ECU 60 calculates estimated intake pipe pressure information based on sensor information from the intake pipe pressure sensor 66 and the engine speed sensor 67, and the estimated intake pipe pressure information is included in the estimated intake pipe pressure information. Based on this, the differential pressure across the PCV valve 50 is detected. In addition, when the differential pressure level of the PCV valve 50 reaches a differential pressure level at which the valve body member 52 can be moved by the excitation driving means 62, the electromagnetic coil 55 is excited and driven in that state. A current is selectively supplied to the electromagnetic coil 55.

例えば、アイドリング中に燃費節約のために燃料が希釈されるような運転状態、あるいはアイドル後には、PCVバルブ50の流量が抑えられる開度の絞り側、例えば差圧増加側にPCVバルブ50の流量特性が切り替えられ、暖気(暖機)過程においては、PCVバルブ50の流量が増加する開度増加側、例えば差圧減少側にPCVバルブ50の流量特性が切り替えられる。   For example, in an operating state in which the fuel is diluted to save fuel consumption during idling or after idling, the flow rate of the PCV valve 50 is set to the throttle side where the flow rate of the PCV valve 50 is suppressed, for example, to the differential pressure increasing side. In the warm-up (warm-up) process, the flow characteristics of the PCV valve 50 are switched to the opening increasing side where the flow of the PCV valve 50 is increased, for example, the differential pressure decreasing side.

このように、本実施形態では、差圧に応動する弁体部材52の移動が電磁コイル55の励磁駆動によって補助されるか抑えられることになるので、電磁コイル55を励磁駆動する電流を電磁コイル55に選択的に供給することで、電磁コイル55の非励磁状態下で差圧に応動するPCVバルブ50の通常の流量特性(例えば図3中の実線の特性)と、電磁コイル55の励磁状態下で通常の流量特性より差圧の上昇側または低下側にシフトするような別の流量特性(例えば図3中の破線または一点鎖線の特性)とに切り替えることができる。   Thus, in this embodiment, since the movement of the valve body member 52 that responds to the differential pressure is assisted or suppressed by the excitation drive of the electromagnetic coil 55, the current for exciting the electromagnetic coil 55 is set to the electromagnetic coil. When the electromagnetic coil 55 is selectively supplied, the normal flow rate characteristic of the PCV valve 50 that responds to the differential pressure under the non-excited state of the electromagnetic coil 55 (for example, the characteristic of the solid line in FIG. 3) and the excited state of the electromagnetic coil 55 Below, it is possible to switch to another flow rate characteristic (for example, the characteristic of the broken line or the alternate long and short dash line in FIG. 3) that shifts from the normal flow rate characteristic to the increase side or the decrease side of the differential pressure.

しかも、弁体部材52の駆動を電磁コイル55のみで行うのではなく、差圧により全閉状態から脱した中間領域に移動した弁体部材52に対して電磁コイル55の励磁駆動による電磁付勢力が加えられるので、従来のように大出力の電磁駆動手段が要求されないことになり、PCVバルブ50をコンパクトな低コストのものにできる。   In addition, the driving of the valve body member 52 is not performed by the electromagnetic coil 55 alone, but the electromagnetic biasing force by the excitation drive of the electromagnetic coil 55 is applied to the valve body member 52 that has moved to the intermediate region that has been released from the fully closed state due to the differential pressure. Therefore, the high-power electromagnetic drive means is not required as in the prior art, and the PCV valve 50 can be made compact and low-cost.

また、本実施形態では、電磁コイル55を励磁駆動する電流の方向をも切り替えるようにして、PCVバルブ50の通常の流量特性とは別の流量特性を、通常の特性より差圧の上昇側にシフトする流量特性および差圧の低下側にシフトする流量特性(例えば図3中の破線および一点鎖線の流量特性)に切り替えるので、PCVバルブ50の流量特性が3段階に切り替え可能となる。   In this embodiment, the direction of the current for exciting and driving the electromagnetic coil 55 is also switched so that the flow rate characteristic different from the normal flow rate characteristic of the PCV valve 50 is on the higher side of the differential pressure than the normal characteristic. Since the flow characteristic is shifted to the flow characteristic that shifts to the lowering side of the differential pressure (for example, the flow characteristic of the broken line and the one-dot chain line in FIG. 3), the flow characteristic of the PCV valve 50 can be switched in three stages.

さらに、本実施形態では、PCVバルブ50の前後差圧が弁体部材52を移動させ得る差圧レベルに達し、かつ、電磁コイル55が非励磁状態にあるときには、可動状態判定手段63が、差圧に応動する弁体部材52の移動により電磁コイル55に生じるべき誘導電流が検出されるか否かによって、弁体部材52の可動状態が正常であるか否かを判定するので、PCVバルブ50の固着状態が確実に検出できることになる。   Furthermore, in the present embodiment, when the differential pressure across the PCV valve 50 reaches a differential pressure level at which the valve body member 52 can be moved, and the electromagnetic coil 55 is in a non-excited state, the movable state determining means 63 Whether or not the movable state of the valve body member 52 is normal is determined based on whether or not an induced current to be generated in the electromagnetic coil 55 is detected by the movement of the valve body member 52 responsive to the pressure. Thus, it is possible to reliably detect the fixed state.

また、可動状態判定手段63は、PCVバルブ50の流量特性の切り替えに用いる電磁コイル55と差圧検出手段61を使用して、弁体部材52の可動状態判定を実行するものであるから、可動状態判定手段63を簡素な構成で実現できるとともに、車載ECUに搭載されるオンボードの故障診断回路にも容易に組み込むことができる。   Further, the movable state determination means 63 uses the electromagnetic coil 55 and the differential pressure detection means 61 that are used for switching the flow characteristics of the PCV valve 50 to execute the movable state determination of the valve body member 52. The state determination means 63 can be realized with a simple configuration, and can be easily incorporated into an on-board failure diagnosis circuit mounted on the in-vehicle ECU.

このように、本実施形態の内燃機関のベンチレーション装置においては、電磁コイル55に励磁駆動電流を選択的に供給することで、差圧に応動するPCVバルブ50の流量特性を、エンジン1の運転状態に好適な流量特性にするよう、電磁コイル55の非励磁状態下での流量特性と励磁状態下での流量特性とに切り替えることができ、しかも、弁体部材52の駆動を電磁コイル55のみで行うものではないので、大出力の電磁駆動手段が要求されず、PCVバルブ50をコンパクトな低コストのものにできる。さらに、弁体部材52の可動状態が正常であるか否かを、差圧発生情報とそのとき電磁コイル55に生じるべき誘導電流の検出情報を利用して判定するようにしているので、PCVバルブ50の固着状態を確実に検出できるものである。   As described above, in the ventilation device for the internal combustion engine of the present embodiment, the flow characteristic of the PCV valve 50 that responds to the differential pressure can be obtained by selectively supplying the excitation drive current to the electromagnetic coil 55. In order to obtain a flow characteristic suitable for the state, it is possible to switch between a flow characteristic in the non-excited state of the electromagnetic coil 55 and a flow characteristic in the excited state, and the driving of the valve body member 52 is performed only by the electromagnetic coil 55. Therefore, the high-power electromagnetic drive means is not required, and the PCV valve 50 can be made compact and low-cost. Further, since whether or not the movable state of the valve body member 52 is normal is determined using the differential pressure generation information and the detection information of the induced current to be generated in the electromagnetic coil 55 at that time, the PCV valve 50 sticking states can be detected reliably.

なお、上述の一実施形態に係る内燃機関のベンチレーション装置においては、内燃機関をガソリンエンジンとしたが、他の燃料(例えばエタノール)を用いる内燃機関であってもよいことはいうまでもなく、ディーゼルエンジンであってもよい。また、PCVバルブ50は、例えばブローバイガス還流管42を機関本体10のヘッドカバー11に接続する部位に設けていたが、ブローバイガス還流通路の配置によって、シリンダヘッドやシリンダヘッドあるいはクランクケースを貫通する孔部にあるいはその孔部に接続されるオイルセパレータにPCVバルブを装着することもできる。   In the ventilation device for an internal combustion engine according to the above-described embodiment, the internal combustion engine is a gasoline engine. However, it is needless to say that the internal combustion engine may use another fuel (for example, ethanol). A diesel engine may be used. Further, the PCV valve 50 is provided, for example, at a portion where the blow-by gas recirculation pipe 42 is connected to the head cover 11 of the engine body 10, but depending on the arrangement of the blow-by gas recirculation passage, a hole penetrating the cylinder head, the cylinder head or the crankcase A PCV valve can also be attached to the oil separator connected to the hole or the hole.

また、図1に示したPCVバルブ50のケース51および弁体部材52は、インレットポート部51aおよびアウトレットポート部51bの近傍でそれぞれ円筒壁面を形成するストレート形状となっているが、弁体部材52のような弁体の変位に応じて好ましい流量特性となるよう通路断面積を両ポート51a、51bの間で適宜変化させることができるのは勿論である。   Further, the case 51 and the valve body member 52 of the PCV valve 50 shown in FIG. 1 have a straight shape that forms a cylindrical wall surface in the vicinity of the inlet port portion 51a and the outlet port portion 51b. Of course, the passage cross-sectional area can be appropriately changed between the ports 51a and 51b so as to obtain a preferable flow rate characteristic according to the displacement of the valve body.

さらに、上述の一実施形態では、電磁コイル55により発生させる電磁付勢力の方向を開弁方向および閉弁方向のうち双方(開弁方向および閉弁方向のうちいずれか、例えば双方)に切り替えるものとしたが、先に述べたように、一方向の付勢力(開弁方向および閉弁方向のうちいずれか一方向の付勢力)の大きさを、励磁電流の大きさを変えて切り替えてもよい。また、差圧の小さいときと大きいときとでケース51と弁体部材52の近接部位を相違させ、電磁コイル55で発生する磁束の経路(磁路)を部分的に異ならせて、中間領域中の弁体部材52への電磁付勢の方向を切り替えたり中間領域内の特定の位置に付勢したりすることも考えられる。さらに、電磁コイル55による電磁付勢力の有無のみの切り替えを行うようにしてもよい。   Further, in the above-described embodiment, the direction of the electromagnetic urging force generated by the electromagnetic coil 55 is switched between the valve opening direction and the valve closing direction (either the valve opening direction or the valve closing direction, for example, both). However, as described above, even if the magnitude of the urging force in one direction (the urging force in any one of the valve opening direction and the valve closing direction) is changed by changing the magnitude of the excitation current, Good. Further, when the differential pressure is small and large, the proximity portion of the case 51 and the valve body member 52 is made different, and the path (magnetic path) of the magnetic flux generated by the electromagnetic coil 55 is partially made different, so that It is also conceivable to switch the direction of electromagnetic biasing to the valve body member 52 or bias it to a specific position in the intermediate region. Further, only the presence / absence of the electromagnetic biasing force by the electromagnetic coil 55 may be switched.

以上説明したように、本発明に係る内燃機関のベンチレーション装置は、電磁コイルに励磁駆動電流を選択的に供給することで、差圧に応動するPCVバルブの流量特性を、内燃機関の運転状態に好適な流量特性にするよう、電磁コイルの非励磁状態下での流量特性と励磁状態下での流量特性とに切り替えることができ、しかも、弁体駆動を電磁コイルのみで行う場合のように大出力の電磁駆動手段が要求されず、PCVバルブをコンパクトな低コストのものにできる内燃機関のベンチレーション装置を提供することができるという効果を奏するものであり、機関本体の内部から吸気管の内部へのブローバイガスの還流を許容し逆方向の流れを規制するPCVバルブを有する内燃機関のベンチレーション装置全般に有用である。   As described above, the ventilation device for an internal combustion engine according to the present invention selectively supplies the excitation drive current to the electromagnetic coil, thereby changing the flow characteristic of the PCV valve that responds to the differential pressure to the operating state of the internal combustion engine. The flow rate characteristics can be switched between the non-excited state of the electromagnetic coil and the flow rate characteristic under the excited state so that the valve body is driven only by the electromagnetic coil. There is an effect that it is possible to provide a ventilation device for an internal combustion engine in which a PCV valve can be made compact and low cost without requiring a high output electromagnetic drive means. The present invention is useful in general ventilation systems for internal combustion engines having a PCV valve that allows the return of blow-by gas to the inside and restricts the reverse flow.

1 エンジン(内燃機関)
10 機関本体
10v 換気通路
14 クランクケース
15 気筒
31 吸気通路
31a 上流側の吸気通路
31b 下流側の吸気通路
34 上流側の吸気管
35 下流側の吸気管
37 サージタンク
41 空気導入管
42 ブローバイガス還流管
50 PCVバルブ
50w 環状通路
51 ケース
51a インレットポート部
51b アウトレットポート部
51e 外周壁部
51s 第2弁座部
51t 第1弁座部(弁座部)
51w 通路
52 弁体部材
52f フランジ部
52u 第1弁部
52v 第2弁部
55 電磁コイル
57 永久磁石
60 ECU
61 差圧検出手段
62 励磁駆動手段
63 可動状態判定手段
66 吸気管内圧力センサ
67 機関回転数センサ
1 engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 10 Engine body 10v Ventilation passage 14 Crankcase 15 Cylinder 31 Intake passage 31a Upstream intake passage 31b Downstream intake passage 34 Upstream intake pipe 35 Downstream intake pipe 37 Surge tank 41 Air introduction pipe 42 Blow-by gas recirculation pipe 50 PCV valve 50w annular passage 51 case 51a inlet port part 51b outlet port part 51e outer peripheral wall part 51s second valve seat part 51t first valve seat part (valve seat part)
51w passage 52 valve body member 52f flange part 52u first valve part 52v second valve part 55 electromagnetic coil 57 permanent magnet 60 ECU
61 Differential pressure detection means 62 Excitation drive means 63 Movable state determination means 66 Intake pipe pressure sensor 67 Engine speed sensor

Claims (1)

内燃機関の機関本体と吸気管との間に介在し、前記機関本体の内部で発生するブローバイガスを前記吸気管の内部に還流させることができるPCVバルブを備え、
前記PCVバルブが、前記機関本体と前記吸気管との間に介装され、前記ブローバイガスの前記機関本体の内部から前記吸気管の内部への還流通路の一部を形成する弁座部を有するケースと、前記機関本体の内部と前記吸気管の内部との間の差圧に応じて前記弁座部に接近する閉弁方向および前記弁座部から離れる開弁方向に移動するよう前記ケース内に移動可能に収納された弁体部材と、前記弁体部材を前記閉弁方向に付勢するよう前記ケースと前記弁体部材の間に介装された弾性部材と、を含んで構成される内燃機関のベンチレーション装置において、
前記弁体部材を前記閉弁方向および前記開弁方向の少なくとも一方向に付勢する電磁力を発生させることができる電磁コイルと、
前記差圧を検出する差圧検出手段と、
前記差圧検出手段により検出される前記差圧が前記弁体部材を移動させ得る差圧レベルに達している状態下で、前記電磁コイルを励磁駆動する電流を前記電磁コイルに選択的に供給する励磁駆動手段と、
前記差圧検出手段により検出される前記差圧が前記弁体部材を移動させ得る差圧レベルに達し、かつ、前記電磁コイルが非励磁状態にあるとき、前記弁体部材の移動により前記電磁コイルに生じる誘導電流に基づいて、前記弁体部材の可動状態が正常であるか否かを判定する可動状態判定手段と、を設けたことを特徴とする内燃機関のベンチレーション装置。
A PCV valve interposed between the engine body of the internal combustion engine and the intake pipe, and capable of returning the blow-by gas generated inside the engine body to the inside of the intake pipe;
The PCV valve is interposed between the engine body and the intake pipe, and has a valve seat portion that forms a part of a return passage for the blow-by gas from the inside of the engine body to the inside of the intake pipe. The case moves in a valve closing direction approaching the valve seat portion and a valve opening direction away from the valve seat portion in accordance with a differential pressure between the inside of the engine body and the inside of the intake pipe. And a resilient member interposed between the case and the valve body member so as to bias the valve body member in the valve closing direction. In a ventilation device for an internal combustion engine,
An electromagnetic coil capable of generating an electromagnetic force that urges the valve body member in at least one direction of the valve closing direction and the valve opening direction;
Differential pressure detecting means for detecting the differential pressure;
A current for exciting and driving the electromagnetic coil is selectively supplied to the electromagnetic coil in a state where the differential pressure detected by the differential pressure detecting means has reached a differential pressure level at which the valve body member can be moved. Excitation drive means;
When the differential pressure detected by the differential pressure detection means reaches a differential pressure level at which the valve body member can be moved and the electromagnetic coil is in a non-excited state, the electromagnetic coil is moved by the movement of the valve body member. A ventilation apparatus for an internal combustion engine, comprising: a movable state determining means for determining whether or not the movable state of the valve body member is normal based on an induced current generated in the engine.
JP2009042592A 2009-02-25 2009-02-25 Ventilation device for internal combustion engine Pending JP2010196594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042592A JP2010196594A (en) 2009-02-25 2009-02-25 Ventilation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042592A JP2010196594A (en) 2009-02-25 2009-02-25 Ventilation device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010196594A true JP2010196594A (en) 2010-09-09

Family

ID=42821554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042592A Pending JP2010196594A (en) 2009-02-25 2009-02-25 Ventilation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010196594A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112584A1 (en) 2011-09-08 2013-03-14 Mann + Hummel Gmbh Crankcase ventilation system for internal-combustion engine, has diaphragm performing movement between closed and opened positions, and magnet element and hall sensor sensing movement of diaphragm and arranged in housing of system
US9382824B2 (en) 2013-08-09 2016-07-05 Aisan Kogyo Kabushiki Kaisha Failure detection device for blow-by gas recirculation apparatus of engine
JP2017101790A (en) * 2015-12-04 2017-06-08 日立建機株式会社 Control device of work machine
CN107401439A (en) * 2016-05-20 2017-11-28 电装国际美国公司 Crankcase ventilation valve position sensor circuit, component, system and method
CN113738546A (en) * 2020-05-29 2021-12-03 北汽福田汽车股份有限公司 Air filter blockage alarm triggering device, alarm system, engine and vehicle
CN113803184A (en) * 2020-06-12 2021-12-17 卓品智能科技无锡有限公司 Method for detecting whether pressure limiting valve is clamped at closed position
CN114076013A (en) * 2020-08-19 2022-02-22 深圳臻宇新能源动力科技有限公司 Ventilation system of engine crankcase

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112584A1 (en) 2011-09-08 2013-03-14 Mann + Hummel Gmbh Crankcase ventilation system for internal-combustion engine, has diaphragm performing movement between closed and opened positions, and magnet element and hall sensor sensing movement of diaphragm and arranged in housing of system
DE102011112584B4 (en) * 2011-09-08 2015-12-31 Mann + Hummel Gmbh Crankcase breather
US9382824B2 (en) 2013-08-09 2016-07-05 Aisan Kogyo Kabushiki Kaisha Failure detection device for blow-by gas recirculation apparatus of engine
JP2017101790A (en) * 2015-12-04 2017-06-08 日立建機株式会社 Control device of work machine
CN107401439A (en) * 2016-05-20 2017-11-28 电装国际美国公司 Crankcase ventilation valve position sensor circuit, component, system and method
US10060378B2 (en) 2016-05-20 2018-08-28 Denso International America, Inc. Inductive positive crankcase ventilation valve position sensor
CN107401439B (en) * 2016-05-20 2020-01-21 电装国际美国公司 Crankcase forced ventilation valve position sensor circuits, assemblies, systems, and methods
CN113738546A (en) * 2020-05-29 2021-12-03 北汽福田汽车股份有限公司 Air filter blockage alarm triggering device, alarm system, engine and vehicle
CN113738546B (en) * 2020-05-29 2022-07-15 北汽福田汽车股份有限公司 Air filter blockage alarm triggering device, alarm system, engine and vehicle
CN113803184A (en) * 2020-06-12 2021-12-17 卓品智能科技无锡有限公司 Method for detecting whether pressure limiting valve is clamped at closed position
CN113803184B (en) * 2020-06-12 2023-08-29 卓品智能科技无锡有限公司 Method for detecting whether pressure limiting valve is clamped at closed position
CN114076013A (en) * 2020-08-19 2022-02-22 深圳臻宇新能源动力科技有限公司 Ventilation system of engine crankcase

Similar Documents

Publication Publication Date Title
JP6223211B2 (en) Low pressure loop exhaust recirculation system for engine
JP2010196594A (en) Ventilation device for internal combustion engine
US20160017849A1 (en) Abnormality sensing device for evaporation fuel purge system
WO2017110242A1 (en) Fault detection device for internal combustion engine
JP2001050066A (en) Control device for electromagnetic valve of engine
US9638082B2 (en) Fluid control valve device
CN105909392B (en) Method for reducing airflow in an engine at idle
JP2008039141A (en) Control valve and oil control device
US10774790B2 (en) Purge system malfunction diagnosis device
US20050217267A1 (en) Air pump having valve controlled by self-pressure
JP2014098326A (en) Oil pump system
JP2005256784A (en) Failure diagnostic device for exhaust gas recirculation device
JP2004060475A (en) Blow-by gas treating device for engine
JP2013142297A (en) Lubricating oil supply device of internal combustion engine
JP2008128125A (en) Fuel supply device for internal combustion engine
JP5952067B2 (en) Fluid control valve device
JP2010242530A (en) Hydraulic control apparatus
JP6324582B2 (en) Low pressure loop exhaust recirculation system for engine
JP2015059568A (en) Control device of engine with supercharger
JP2020056421A (en) Motor valve device, fresh air passage mechanism and internal combustion engine
JP2008050959A (en) Valve open close control device
JP5049830B2 (en) Negative pressure control device for internal combustion engine
JP2011122599A (en) Fuel supply device for internal combustion engine
JP2010163880A (en) Internal combustion engine
JP2007009924A (en) Waste gate valve control device for internal combustion engine with supercharger