JP2010194541A - Waste water treatment system - Google Patents

Waste water treatment system Download PDF

Info

Publication number
JP2010194541A
JP2010194541A JP2010111971A JP2010111971A JP2010194541A JP 2010194541 A JP2010194541 A JP 2010194541A JP 2010111971 A JP2010111971 A JP 2010111971A JP 2010111971 A JP2010111971 A JP 2010111971A JP 2010194541 A JP2010194541 A JP 2010194541A
Authority
JP
Japan
Prior art keywords
wastewater
aeration tank
waste water
microorganisms
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010111971A
Other languages
Japanese (ja)
Other versions
JP5118722B2 (en
Inventor
Michiaki Okamoto
道明 岡本
Hidetsugu Okada
英嗣 岡田
Michinori Mogi
道教 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KANKYO CHOSA KENKYUSHO KK
Chubu Electric Power Co Inc
Original Assignee
NIPPON KANKYO CHOSA KENKYUSHO KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KANKYO CHOSA KENKYUSHO KK, Chubu Electric Power Co Inc filed Critical NIPPON KANKYO CHOSA KENKYUSHO KK
Priority to JP2010111971A priority Critical patent/JP5118722B2/en
Publication of JP2010194541A publication Critical patent/JP2010194541A/en
Application granted granted Critical
Publication of JP5118722B2 publication Critical patent/JP5118722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment system capable of treating waste water in a short period of time. <P>SOLUTION: The waste water treatment system comprises a pretreatment process 100, a biological treatment process 101, a microorganism culture process 102, a filter treatment process 103, a membrane treatment process 104, and an inspection process 105. In the biological treatment process 101, mixed liquid containing 10<SP>7</SP>to 10<SP>10</SP>pieces of microorganisms per milliliter and a nutrient source for accelerating the propagation of microorganisms are supplied to a first aeration tank together with waste water, and the microorganisms decompose an organic matter in the waste water while forming biological slime on the surface of activated carbon. In the microorganism culture process 102, the spawn of the microorganisms and the nutrient source for accelerating the propagation of the microorganisms are supplied to a second aeration tank together with the waste water, and the microorganisms are propagated to 10<SP>7</SP>to 10<SP>10</SP>pieces per milliliter of the waste water inside the second aeration tank. In the membrane treatment process 104, treated water cleaned through the first aeration tank is filtered and a radioactive material contained in the waste water is removed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、好気性微生物の増殖と代謝活性とを利用して廃水に含まれる有機物を分解する廃水処理システムに関する。   The present invention relates to a wastewater treatment system that decomposes organic matter contained in wastewater by utilizing the growth and metabolic activity of aerobic microorganisms.

廃水が順次流入する調整槽、反応槽、分離槽と、分離槽から抽水された廃水の一部が流入するとともに廃水を腐植物質に接触させる培養槽と、腐植物質を含む混合水を培養槽に供給する腐植物質供給槽とから構成され、土壌細菌を利用して廃水に含まれる有機物を分解する廃水処理システムがある(特許文献1参照)。   An adjustment tank, a reaction tank, a separation tank into which waste water flows in, a culture tank in which a part of the waste water extracted from the separation tank flows in and the waste water is brought into contact with humic substances, and a mixed water containing humic substances are used as culture tanks. There is a wastewater treatment system that includes a humic substance supply tank to be supplied and decomposes organic matter contained in wastewater using soil bacteria (see Patent Document 1).

調整槽に供給された廃水は、調整槽から反応槽に流入し、さらに反応槽から分離槽に流入する。分離槽では、浄化された処理水を外部に排出する他、処理水を調整槽や反応槽に環流させる。処理水の一部は、分離槽から培養槽に流入する。培養槽には、腐植物質供給槽が配水管を介して連結され、腐植物質供給槽から腐植物質を含む混合水が供給されている。培養槽では、処理水と混合水とが腐植物質とともに混合攪拌され、処理水に含まれる土壌細菌が増殖する。培養槽で混合攪拌された処理水と混合水とは、調整槽と反応槽とに環流する。   The wastewater supplied to the adjustment tank flows into the reaction tank from the adjustment tank, and further flows into the separation tank from the reaction tank. In the separation tank, the purified treated water is discharged to the outside, and the treated water is circulated to the adjustment tank and the reaction tank. A part of the treated water flows from the separation tank into the culture tank. A humic substance supply tank is connected to the culture tank via a water pipe, and mixed water containing humic substance is supplied from the humic substance supply tank. In the culture tank, the treated water and the mixed water are mixed and stirred together with the humic substances, and the soil bacteria contained in the treated water grow. The treated water and the mixed water mixed and stirred in the culture tank are circulated to the adjustment tank and the reaction tank.

特開2002−233888号公報JP 2002-233888 A

特許文献1に開示のシステムは、土壌細菌の種類、土壌細菌の有機物に対する分解能力や分解時間、土壌細菌の廃水中における増殖時間、土壌細菌の増殖に適する廃水温度等の条件によってそれら槽における土壌細菌の量的増加が異なるので、処理水に含まれる土壌細菌の量が安定せず、調整槽と反応槽とに環流させる処理水や混合水に常時一定量の土壌細菌を存在させることが難しい。このシステムでは、処理水や混合水に含まれる土壌細菌の量が少ないと、処理水や混合水を調整槽と反応槽とに環流させたとしても、調整槽や反応槽、分離槽における有機物の分解に時間がかかり、短時間に廃水を処理することができない。   The system disclosed in Patent Document 1 is based on the conditions of soil bacteria, the decomposition ability and decomposition time of soil bacteria for organic matter, the growth time of soil bacteria in wastewater, the temperature of wastewater suitable for the growth of soil bacteria, and the like. Because the amount of bacteria is different, the amount of soil bacteria contained in the treated water is not stable, and it is difficult to always have a certain amount of soil bacteria in the treated water and the mixed water circulating in the adjustment tank and the reaction tank. . In this system, if the amount of soil bacteria contained in the treated water or mixed water is small, even if the treated water or mixed water is circulated to the adjustment tank and the reaction tank, the organic matter in the adjustment tank, reaction tank, and separation tank Decomposition takes time and wastewater cannot be treated in a short time.

また、このシステムは、廃水に放射性物質が含まれていたとしても、廃水中の放射性物質を除去することができないので、原子力関連施設で排出される微量の放射性物質を含有した廃水(放射性物質に高度に汚染された水は除く)の処理には適さない。なお、ウラン鉱石を精錬、濃縮して核燃料に加工する転換工場や濃縮工場、原子力発電所、使用済み核燃料をプルトニウムに転換する再処理工場等の原子力関連施設で排出される廃水は、微量の放射性物質を含有する特殊廃水であり、廃水に水を混入して希釈化したり、または、廃水を貯水槽に長期間貯留して放射能の減少を確認した後に処理しなければならず、廃水の処理に時間と手間とを要する。   In addition, this system cannot remove radioactive materials in wastewater even if radioactive materials are contained in the wastewater. Therefore, wastewater containing a small amount of radioactive materials discharged from nuclear facilities (including radioactive materials) Not suitable for treatment of highly contaminated water. Wastewater discharged from nuclear facilities such as conversion plants that concentrate and concentrate uranium ore to process nuclear fuel, enrichment plants, nuclear power plants, and reprocessing plants that convert spent nuclear fuel to plutonium It is a special wastewater containing substances that must be treated after mixing with the wastewater and diluting it, or treating the wastewater after it has been stored in the water tank for a long time to confirm the decrease in radioactivity. Takes time and effort.

本発明の目的は、廃水を短時間に処理することができる廃水処理システムを提供することにある。本発明の他の目的は、廃水に含まれる放射性物質を除去することができ、原子力関連施設において使用するのに好適な廃水処理システムを提供することにある。   An object of the present invention is to provide a wastewater treatment system capable of treating wastewater in a short time. It is another object of the present invention to provide a wastewater treatment system that can remove radioactive substances contained in wastewater and is suitable for use in nuclear facilities.

前記課題を解決するための本発明の前提は、表面に好気性微生物を付着させる濾材を収容した通気通水性の容器と、所定量の廃水を貯水可能かつ容器を収容可能な第1曝気槽と、第1曝気槽内の廃水に空気を供給する第1散気器とを有し、微生物の増殖と代謝活性とを利用して廃水に含まれる有機物を分解する廃水処理システムである。   The premise of the present invention for solving the above-mentioned problems is that an air-permeable container containing a filter medium for attaching aerobic microorganisms to the surface, a first aeration tank capable of storing a predetermined amount of waste water and storing the container, A wastewater treatment system having a first air diffuser for supplying air to wastewater in a first aeration tank and decomposing organic substances contained in the wastewater by utilizing the growth and metabolic activity of microorganisms.

前記前提における本発明の特徴は、濾材が1.3〜2.0mmの平均粒径を有して有機物を吸着する多数の粒状活性炭から形成され、1ミリリットル当たり10〜1010個の微生物を含む種菌溶液と該微生物の増殖を促進させる栄養源とが廃水とともに第1曝気槽に投入され、微生物が時間の経過にともなって活性炭の表面に生物膜を形成しつつ有機物を分解することにある。 The feature of the present invention in the above premise is that the filter medium is formed from a large number of granular activated carbons having an average particle diameter of 1.3 to 2.0 mm and adsorbing organic substances, and 10 7 to 10 10 microorganisms per milliliter. The inoculum solution and the nutrient source that promotes the growth of the microorganisms are put into the first aeration tank together with the waste water, and the microorganisms decompose the organic matter while forming a biofilm on the surface of the activated carbon over time. .

本発明は、以下の実施態様を有する。
(1)本発明の実施態様の一例は、廃水処理システムが好気性微生物を培養して種菌溶液を生産する培養装置を備えている。培養装置は、所定量の廃水を貯水可能な第2曝気槽と、第2曝気槽内の廃水に空気を供給する第2散気器とから形成されている。培養装置では、微生物の種菌と該微生物の増殖を促進させる栄養源とが廃水とともに第2曝気槽に投入され、微生物が時間の経過にともなって第2曝気槽内の廃水1ミリリットル当たり10〜1010個に増殖する。
(2)本発明の実施態様の他の一例は、廃水処理システムが第1曝気槽の下流に配置されて該第1曝気槽を介して浄化された処理水を濾過する膜装置を備えている。膜装置は、処理水の流入口と、処理水を濾過した濾過水を排出する排出口と、濾過水を除く残余の濃縮水を第1曝気槽に環流させる環流口とを有する。濃縮水は、第1曝気槽に流入し、それに含まれる有機物が廃水とともに第1曝気槽内で分解される。
(3)本発明の実施態様の他の一例は、容器の容積に対する活性炭の充填密度が400〜450g/リットルの範囲にある。
(4)本発明の実施態様の他の一例は、第1および第2散気器の空気供給量が廃水1リットル当たり0.05〜0.1リットル/minの範囲にある。
(5)本発明の実施態様の他の一例は、第1および第2曝気槽がそれら槽内の廃水を加熱するヒータを備え、それら槽内の廃水温度がヒータによって20〜37℃に保持される。
(6)本発明の実施態様の他の一例は、第1および第2曝気槽がそれら槽内の廃水を循環させるポンプを備え、それら槽内における廃水の流速が1.2〜3.2cm/secの範囲にある。
(7)本発明の実施態様の他の一例は、第1曝気槽に投入される種菌溶液の割合が該第1曝気槽内の廃水の単位体積に対して0.05%以上である。
(8)本発明の実施態様の他の一例は、第1曝気槽の廃水貯水量が200〜1000リットルの範囲にある。
(9)本発明の実施態様の他の一例は、システムが原子力関連施設に設置され、廃水に含まれる放射性物質が、膜装置によって濾過される。
The present invention has the following embodiments.
(1) An example of an embodiment of the present invention is provided with a culture apparatus in which a wastewater treatment system cultivates aerobic microorganisms to produce a seed solution. The culture apparatus is formed of a second aeration tank capable of storing a predetermined amount of waste water and a second aerator for supplying air to the waste water in the second aeration tank. In the culturing apparatus, seeds of microorganisms and nutrient sources that promote the growth of the microorganisms are introduced into the second aeration tank together with waste water, and the microorganisms are 10 7 to 10 7 ml per 1 ml of waste water in the second aeration tank over time. 10 grow to 10 pieces.
(2) In another example of the embodiment of the present invention, a wastewater treatment system is provided downstream of the first aeration tank, and includes a membrane device that filters the treated water purified through the first aeration tank. . The membrane device has an inlet for treating water, an outlet for discharging filtered water obtained by filtering the treated water, and a reflux port for circulating the remaining concentrated water excluding the filtered water to the first aeration tank. The concentrated water flows into the first aeration tank, and the organic matter contained therein is decomposed together with the waste water in the first aeration tank.
(3) In another example of the embodiment of the present invention, the packing density of the activated carbon with respect to the volume of the container is in the range of 400 to 450 g / liter.
(4) In another example of the embodiment of the present invention, the air supply amount of the first and second diffusers is in the range of 0.05 to 0.1 liter / min per liter of waste water.
(5) In another example of the embodiment of the present invention, the first and second aeration tanks are provided with heaters for heating the waste water in the tanks, and the waste water temperature in the tanks is maintained at 20 to 37 ° C. by the heaters. The
(6) In another example of the embodiment of the present invention, the first and second aeration tanks are provided with a pump for circulating the waste water in the tanks, and the flow rate of the waste water in the tanks is 1.2 to 3.2 cm / It is in the range of sec.
(7) In another example of the embodiment of the present invention, the ratio of the inoculum solution introduced into the first aeration tank is 0.05% or more with respect to the unit volume of waste water in the first aeration tank.
(8) In another example of the embodiment of the present invention, the amount of waste water stored in the first aeration tank is in the range of 200 to 1000 liters.
(9) In another example of the embodiment of the present invention, the system is installed in a nuclear facility, and radioactive substances contained in the wastewater are filtered by the membrane device.

本発明に係る廃水処理システムによれば、1ミリリットル当たり10〜1010個の好気性微生物を含む種菌溶液と微生物の増殖を促進させる栄養源とが廃水とともに第1曝気槽に投入されるので、第1曝気槽内における廃水中の微生物の量が安定し、常時一定量の微生物を第1曝気槽において増殖、活性化させることができ、微生物を利用して短時間に廃水に含まれる有機物を分解することができる。このシステムは、有機物が濾材を形成する粒状活性炭に吸着され、微生物が活性炭の表面に生物膜を作るので、廃水中の有機物と微生物とが活性炭に集中し、活性炭と微生物とによる生物再生を利用しつつ、活性炭の有機物吸着作用と有機物に対する微生物の生分解との相乗効果によって短時間に効率よく有機物を分解することができる。 According to the wastewater treatment system according to the present invention, the seed solution containing 10 7 to 10 10 aerobic microorganisms per milliliter and the nutrient source for promoting the growth of the microorganisms are put together with the waste water into the first aeration tank. The amount of microorganisms in the wastewater in the first aeration tank is stable, and a constant amount of microorganisms can be always propagated and activated in the first aeration tank, and the organic matter contained in the wastewater in a short time using the microorganisms. Can be disassembled. In this system, organic matter is adsorbed on the granular activated carbon that forms the filter medium, and microorganisms create a biofilm on the surface of the activated carbon, so organic matter and microorganisms in the wastewater concentrate on the activated carbon, and biological regeneration by activated carbon and microorganisms is utilized However, the organic matter can be efficiently decomposed in a short time by the synergistic effect of the organic matter adsorption action of the activated carbon and the biodegradation of the microorganisms against the organic matter.

好気性微生物を培養して種菌溶液を生産する培養装置を有し、培養装置において微生物を第2曝気槽内の廃水1ミリリットル当たり10〜1010個に増殖させるシステムでは、一定量の微生物を含む種菌溶液を安定して生産することができ、一定量の微生物を第1曝気槽内の廃水に混入することができるので、微生物の量的不安定によるシステムの廃水処理能力の低下を防ぐことができる。このシステムでは、培養装置を利用して、微生物の有機物に対する分解能力や分解時間、微生物の増殖時間、微生物の増殖に適する廃水温度等を試験することができ、廃水の種類による微生物の選別や微生物の最適な増殖条件を決定してそれを第1曝気槽の運転条件に適用することができる。このシステムは、選別した微生物を第1曝気槽に投入することができ、第1曝気槽を微生物の増殖に最適な条件で運転することができるので、第1曝気槽における廃水処理能力を常時一定に保持することができる。 In a system that cultivates aerobic microorganisms to produce a seed solution, and in which the microorganisms are grown to 10 7 to 10 10 per 1 ml of waste water in the second aeration tank, Since the inoculum solution can be stably produced and a certain amount of microorganisms can be mixed into the wastewater in the first aeration tank, it is possible to prevent the system from deteriorating the wastewater treatment capacity due to quantitative instability of the microorganisms. Can do. In this system, the ability to decompose microorganisms into organic matter, decomposition time, microorganism growth time, wastewater temperature suitable for microorganism growth, etc. can be tested using a culture device. The optimal growth conditions can be determined and applied to the operating conditions of the first aeration tank. In this system, the selected microorganisms can be put into the first aeration tank, and the first aeration tank can be operated under the optimum conditions for the growth of microorganisms, so the wastewater treatment capacity in the first aeration tank is always constant. Can be held in.

第1曝気槽を介して浄化された処理水を濾過する膜装置を有するシステムは、膜装置を介して処理水に含まれる微細な不純物を除去することができる。このシステムは、膜装置を介して分離された濃縮水を第1曝気槽に戻し、濃縮水に含まれる有機物が廃水とともに第1曝気槽において分解されるので、濃縮水に含まれる微量の有機物をさらに減少させることができる。   A system having a membrane device that filters treated water purified through the first aeration tank can remove minute impurities contained in the treated water through the membrane device. In this system, the concentrated water separated through the membrane device is returned to the first aeration tank, and the organic matter contained in the concentrated water is decomposed together with the waste water in the first aeration tank. It can be further reduced.

容器の容積に対する活性炭の充填密度が400〜450g/リットルの範囲にあるシステムは、第1容器内において活性炭が稠密に重なり合うことがなく、容器内の活性炭すべてに空気中の酸素が十分に供給され、活性炭表面における微生物の増殖と活性化とを促進させることができ、微生物が活性炭の表面に短時間に生物膜を形成する。   In the system in which the packing density of the activated carbon with respect to the volume of the container is in the range of 400 to 450 g / liter, the activated carbon does not overlap closely in the first container, and oxygen in the air is sufficiently supplied to all the activated carbon in the container. The growth and activation of microorganisms on the activated carbon surface can be promoted, and the microorganisms form a biofilm on the activated carbon surface in a short time.

第1および第2散気器の空気供給量が廃水1リットル当たり0.05〜0.1リットル/minの範囲にあるシステムは、第1および第2容器内の活性炭すべてに空気中の酸素を十分に供給することができ、活性炭表面における微生物の増殖と活性化とを促進させることができるので、微生物が活性炭の表面に短時間に生物膜を形成する。このシステムは、廃水中における空気の浮上によって容器内の廃水に旋回流が生じたとしても、活性炭どうしが第1および第2容器内で激しく衝突することがないので、活性炭が損壊することはなく、活性炭の表面に形成された生物膜が剥離することがない。   A system in which the air supply amount of the first and second diffusers is in the range of 0.05 to 0.1 liter / min per liter of wastewater, oxygen in the air is supplied to all the activated carbon in the first and second containers. Since it can supply sufficiently and can promote the proliferation and activation of microorganisms on the activated carbon surface, the microorganisms form a biofilm on the activated carbon surface in a short time. In this system, even if a swirl flow is generated in the wastewater in the container due to the floating of air in the wastewater, the activated carbon does not collide violently in the first and second containers, so that the activated carbon is not damaged. The biofilm formed on the surface of the activated carbon does not peel off.

第1および第2曝気槽がそれら槽内の廃水温度を20〜37℃に保持するヒータを備えたシステムは、それら曝気槽における微生物の増殖に最適な温度環境を作ることができるので、第1および第2曝気槽内における微生物の増殖と活性化とを確実に促進することができ、微生物を利用して一層短時間に廃水を処理することができる。   Since the system provided with the heater in which the first and second aeration tanks hold the waste water temperature in the tanks at 20 to 37 ° C. can create an optimum temperature environment for the growth of microorganisms in the aeration tanks, the first In addition, it is possible to reliably promote the growth and activation of microorganisms in the second aeration tank, and it is possible to treat wastewater in a shorter time using microorganisms.

第1および第2曝気槽がそれら槽内の廃水を循環させるポンプを備え、それら槽内における廃水の流速が1.2〜3.2cm/secの範囲にあるシステムは、第1および第2曝気槽内における廃水の停滞を防ぐことができ、第1および第2曝気槽に貯水された廃水すべてを活性炭に確実に接触させ、活性炭に有機物を効率よく吸着させることができる。このシステムは、廃水の流速が1.2〜3.2cm/secの範囲にあるので、活性炭どうしが第1および第2容器内で衝突したとしても、その衝撃が小さく、活性炭が損壊することはなく、活性炭の表面に形成された生物膜が剥離することはない。   The system in which the first and second aeration tanks are provided with pumps for circulating the waste water in the tanks, and the flow rate of the waste water in the tanks is in the range of 1.2 to 3.2 cm / sec. The stagnation of waste water in the tank can be prevented, and all the waste water stored in the first and second aeration tanks can be surely brought into contact with the activated carbon, and the organic matter can be efficiently adsorbed on the activated carbon. Since this system has a wastewater flow rate in the range of 1.2 to 3.2 cm / sec, even if the activated carbon collides in the first and second containers, the impact is small and the activated carbon is not damaged. In addition, the biofilm formed on the surface of the activated carbon does not peel off.

第1曝気槽に投入される種菌溶液の割合が該第1曝気槽内の廃水の単位体積に対して0.05%以上であるシステムは、第1曝気槽内における廃水中の微生物の量が安定し、常時一定量の微生物を第1曝気槽において確実に増殖、活性化させることができる。   In the system in which the ratio of the inoculum solution introduced into the first aeration tank is 0.05% or more with respect to the unit volume of the wastewater in the first aeration tank, the amount of microorganisms in the wastewater in the first aeration tank is It is stable and can always reliably grow and activate a certain amount of microorganisms in the first aeration tank.

第1曝気槽の廃水貯水量が200〜1000リットルの範囲にあるシステムは、システム自体の小型化を図ることができ、システムを限られた施設内に容易に設置することができる。このシステムは、第1曝気槽の廃水貯水量が大容量の場合と異なり、廃水処理の必要性に応じてシステムの運転と停止とを自由に行うことができ、施設の廃水排出量に適応しつつ廃水を短時間に処理することができる。   The system in which the amount of waste water stored in the first aeration tank is in the range of 200 to 1000 liters can reduce the size of the system itself, and can be easily installed in a limited facility. Unlike the case where the volume of wastewater stored in the first aeration tank is large, this system can be operated and stopped freely according to the need for wastewater treatment, and adapts to the amount of wastewater discharged from the facility. The wastewater can be treated in a short time.

システムが原子力関連施設に設置され、膜装置が廃水に含まれる放射性物質を濾過するシステムは、原子力関連施設から排出される廃水に含まれる放射性物質を早期に除去しつつ、廃水を短時間に処理して外部に排出することができる。このシステムは、廃水に水を混入して希釈化することや廃水を貯水槽に長期間貯留して放射能の減少を確認する手間を省くことができ、システムを利用して廃水を直ちに処理することができるので、原子力関連施設での廃水の処理にかかる時間と費用とを節約することができる。   The system where the system is installed in a nuclear facility and the membrane device filters radioactive substances contained in the wastewater, removes the radioactive material contained in the wastewater discharged from the nuclear facility early and treats the wastewater in a short time. And can be discharged to the outside. This system eliminates the need to mix and dilute wastewater with water and to store wastewater in a water tank for a long time to confirm the decrease in radioactivity. The system is used to process wastewater immediately. As a result, it is possible to save time and cost for treating wastewater in nuclear facilities.

廃水処理システムの工程ブロック図。Process block diagram of a wastewater treatment system. 一例として示すシステムの構成図。The block diagram of the system shown as an example. 曝気槽の斜視図。The perspective view of an aeration tank. 曝気槽と容器とを分離して示すそれらの斜視図。The perspective view which isolate | separates and shows an aeration tank and a container. 培養装置の斜視図。The perspective view of a culture apparatus. 曝気槽と容器とを分離して示す培養装置の斜視図。The perspective view of the culture apparatus which isolate | separates and shows an aeration tank and a container. 微生物による有機物の処理を示す概念図。The conceptual diagram which shows the process of the organic substance by microorganisms. 生物再生の原理を示す模式図。The schematic diagram which shows the principle of biological reproduction.

添付の図面を参照し、本発明に係る廃水処理システムの詳細を説明すると、以下のとおりである。   The details of the wastewater treatment system according to the present invention will be described below with reference to the accompanying drawings.

図1,2は、廃水処理システムの工程ブロック図と、一例として示すシステムの構成図とである。図2では、システムにおける廃水や処理水、濾過水、濃縮水の流れを矢印で示す。図3,4は、第1曝気槽5の斜視図と、第1容器4(容器)と曝気槽5とを分離して示すそれらの斜視図とであり、図5,6は、一例として示す培養装置25の斜視図と、第2容器26と第2曝気槽27とを分離して示す培養装置25の斜視図とである。図3,5では、曝気槽5,27内に貯水された廃水の流れを矢印で示す。なお、この実施の形態では、システムが原子力関連施設のうちの原子力発電所に設置された場合を例として説明する。このシステムを利用可能な原子力関連施設には、原子力発電所の他に、転換工場や濃縮工場、再処理工場、原子力研究所がある。ただし、このシステムは、それを利用可能な施設を原子力関連施設に限定するものではない。   1 and 2 are a process block diagram of a wastewater treatment system and a system configuration diagram shown as an example. In FIG. 2, the flow of waste water, treated water, filtered water, and concentrated water in the system is indicated by arrows. 3 and 4 are a perspective view of the first aeration tank 5 and perspective views showing the first container 4 (container) and the aeration tank 5 separately, and FIGS. 5 and 6 are shown as an example. It is the perspective view of the culture apparatus 25, and the perspective view of the culture apparatus 25 which isolate | separates and shows the 2nd container 26 and the 2nd aeration tank 27. 3 and 5, the flow of waste water stored in the aeration tanks 5 and 27 is indicated by arrows. In this embodiment, a case where the system is installed in a nuclear power plant among the nuclear facilities will be described as an example. In addition to nuclear power plants, nuclear facilities that can use this system include conversion plants, concentration plants, reprocessing plants, and nuclear laboratories. However, this system does not limit the facilities that can use the system to nuclear facilities.

このシステムは、好気性微生物の増殖と代謝活性とを利用して原子力発電所で排出される廃水中の有機物を分解するとともに、廃水に含まれる放射性物質を除去する。有機物の分解と放射性物質の除去とが行われた処理水は、海洋や河川に放水される。このシステムは、前処理工程100、生物処理工程101、微生物培養工程102、濾過処理工程103、膜処理工程104、検査工程105とから構成されている。原子力発電所における処理対象の廃水は、原子力発電所内で排出される機材の洗浄廃水や作業衣類等の洗濯廃水、厨房廃水、浴室廃水等の雑廃水(放射性物質に高度に汚染された水は除く)であり、それら廃水には微量の放射性物質が含まれている。雑廃水に含まれる有機物には、生分解性有機物と難分解性有機物とがある。このシステムを使用しない原子力発電所では、通常、雑廃水に水を混入して希釈化したり、廃水を貯水槽に長期間貯留して放射能が規定値以下に減少したことを確認した後に処理しなければならない。   This system uses the growth and metabolic activity of aerobic microorganisms to decompose organic matter in wastewater discharged from nuclear power plants and remove radioactive substances contained in wastewater. The treated water that has been subjected to the decomposition of organic matter and the removal of radioactive substances is discharged into the ocean and rivers. This system includes a pretreatment process 100, a biological treatment process 101, a microorganism culturing process 102, a filtration treatment process 103, a membrane treatment process 104, and an inspection process 105. Wastewater to be treated at nuclear power plants is waste water for washing equipment, laundry wastewater for work clothes, kitchen wastewater, bathroom wastewater, and other miscellaneous wastewater (excluding highly contaminated water) These wastewaters contain trace amounts of radioactive substances. Organic substances contained in miscellaneous wastewater include biodegradable organic substances and persistent organic substances. Nuclear power plants that do not use this system are usually treated after mixing and diluting miscellaneous wastewater, or after confirming that the radioactivity has decreased below the specified value by storing the wastewater in a storage tank for a long time. There must be.

前処理工程100では、廃水に含まれる懸濁浮遊物質や油脂等の粗大なフロックが除去される。前処理工程100は、廃水受けタンク1と、タンク1内に設置された濾過器2とから形成されている。廃水は、廃水管3から濾過器2に通水され、濾過器2によって粗大なフロックが除去された後、タンク1内に貯水される。タンク1内の廃水は、必要に応じてBOD(生物化学的酸素消費量)やCOD(化学的酸素要求量)、SS(浮遊物質)、放射能量が検査される。濾過器2内には、順に並ぶ金網、フィルタメッシュ0.1〜0.2mmのバグフィルタが設置されている(図示せず)。金網やバグフィルタは、汚れに応じて洗浄または交換される。廃水は、処理の必要性に応じてタンク1から生物処理工程101に送水される。   In the pretreatment process 100, coarse flocs such as suspended suspended matters and oils and fats contained in the wastewater are removed. The pretreatment process 100 is formed from a waste water receiving tank 1 and a filter 2 installed in the tank 1. Waste water is passed through the waste water pipe 3 to the filter 2, and after the coarse floc is removed by the filter 2, the waste water is stored in the tank 1. The waste water in the tank 1 is inspected for BOD (biochemical oxygen consumption), COD (chemical oxygen demand), SS (floating matter), and radioactivity as needed. Inside the filter 2, a wire mesh and a filter filter with a filter mesh of 0.1 to 0.2 mm are installed in sequence (not shown). The wire mesh and the bag filter are cleaned or replaced according to dirt. Waste water is sent from the tank 1 to the biological treatment process 101 according to the necessity of treatment.

生物処理工程101では、好気性微生物の増殖と代謝活性とを利用して廃水に含まれる有機物が分解される。生物処理工程101は、図3に示すように、濾材を収容する通気通水性の第1容器4(容器)と、容器4を収容する第1曝気槽5と、曝気槽5内に配置された第1散気器6およびヒータ7と、廃水を曝気槽5内において循環させるポンプ8とから形成されている。曝気槽5は、配水管9を介して廃水受けタンク1に連結されている。配水管9には、廃水を曝気槽5に流したり廃水の流れを止めるバルブ10が取り付けられている。タンク1から流入した廃水は、曝気槽5内に貯水され、それに含まれる有機物が微生物によって分解された後、処理水として濾過処理工程103に送水される。   In the biological treatment process 101, organic substances contained in the wastewater are decomposed using the growth and metabolic activity of aerobic microorganisms. As shown in FIG. 3, the biological treatment process 101 is disposed in the aeration tank 5, a first water-permeable first container 4 (container) that houses the filter medium, a first aeration tank 5 that houses the container 4, and the aeration tank 5. The first diffuser 6 and the heater 7 and a pump 8 for circulating the waste water in the aeration tank 5 are formed. The aeration tank 5 is connected to the waste water receiving tank 1 through a water distribution pipe 9. A valve 10 is attached to the water distribution pipe 9 to flow waste water to the aeration tank 5 or stop the flow of waste water. The waste water flowing in from the tank 1 is stored in the aeration tank 5, and the organic matter contained therein is decomposed by microorganisms, and then sent to the filtration process 103 as treated water.

濾材には、廃水中の有機物を吸着する粒状活性炭11が使用されている。活性炭11は、容器4内に収容されている。容器4は、底壁12と、底壁12の周縁から上方へ延びる円筒型の周壁13と、周壁13の頂縁に囲繞された頂部開口14とを有する。容器4では、底壁12が開口14へ向かって凹む上げ底半球状を呈する。底壁12と周壁13とは、それら壁12,13を貫通する多数の貫通孔15が形成されたメッシュ状を呈する。貫通孔15は、活性炭11が壁12,13を通過して容器4の外側に漏れ出すことがないように、活性炭11の最小粒径よりも小さな開口径を有する。容器4では、廃水や空気がそれら壁12,13の貫通孔15を通過することはできるが、活性炭11がそれら壁12,13の貫通孔15を通過することはできない。   As the filter medium, granular activated carbon 11 that adsorbs organic substances in wastewater is used. The activated carbon 11 is accommodated in the container 4. The container 4 includes a bottom wall 12, a cylindrical peripheral wall 13 that extends upward from the periphery of the bottom wall 12, and a top opening 14 that is surrounded by the top edge of the peripheral wall 13. In the container 4, the bottom wall 12 has a raised bottom hemisphere that is recessed toward the opening 14. The bottom wall 12 and the peripheral wall 13 have a mesh shape in which a large number of through holes 15 penetrating the walls 12 and 13 are formed. The through hole 15 has an opening diameter smaller than the minimum particle diameter of the activated carbon 11 so that the activated carbon 11 does not pass through the walls 12 and 13 and leak to the outside of the container 4. In the container 4, waste water and air can pass through the through holes 15 in the walls 12 and 13, but the activated carbon 11 cannot pass through the through holes 15 in the walls 12 and 13.

曝気槽5は、底壁16と、底壁16の周縁から上方へ延びる円筒型の周壁17と、周壁17の頂縁に囲繞された頂部開口18とを有する。曝気槽5は、容器4全体を収容可能である。曝気槽5の周壁17には、廃水および後記する濃縮水の流入口19,20と、処理水を排出する排出口21とが形成されている。曝気槽5に容器4を収容すると、容器4が曝気槽5の略中央に位置するとともに、容器4の底壁12が曝気槽5の底壁16から上方へ所定寸法離間し、容器4の開口14が曝気槽5の開口18の下方に位置する。周壁13と周壁17との間には、スペース22が形成されている。曝気槽5に廃水が流入すると、容器4全体が廃水に漬かる。散気器6は、容器4の底壁12と曝気槽5の底壁16との間に配置されている。散気器6には、送風機(図示せず)が連結されている。ヒータ7は、曝気槽5の底壁16に配置されている。ポンプ8から延びる給水管23は、曝気槽5の底壁16と周壁17とに連結されている。   The aeration tank 5 includes a bottom wall 16, a cylindrical peripheral wall 17 extending upward from the periphery of the bottom wall 16, and a top opening 18 surrounded by the top edge of the peripheral wall 17. The aeration tank 5 can accommodate the entire container 4. The peripheral wall 17 of the aeration tank 5 is formed with inlets 19 and 20 for waste water and concentrated water described later, and an outlet 21 for discharging treated water. When the container 4 is accommodated in the aeration tank 5, the container 4 is positioned substantially at the center of the aeration tank 5, and the bottom wall 12 of the container 4 is spaced upward by a predetermined dimension from the bottom wall 16 of the aeration tank 5. 14 is located below the opening 18 of the aeration tank 5. A space 22 is formed between the peripheral wall 13 and the peripheral wall 17. When waste water flows into the aeration tank 5, the entire container 4 is immersed in the waste water. The air diffuser 6 is disposed between the bottom wall 12 of the container 4 and the bottom wall 16 of the aeration tank 5. A blower (not shown) is connected to the air diffuser 6. The heater 7 is disposed on the bottom wall 16 of the aeration tank 5. A water supply pipe 23 extending from the pump 8 is connected to the bottom wall 16 and the peripheral wall 17 of the aeration tank 5.

生物処理工程101では、1ミリリットル当たり10〜1010個の微生物を含む種菌溶液と微生物の増殖を促進させる栄養源とが曝気槽5に投入される。生物処理工程101では、散気器6から曝気槽5内の廃水に空気24が供給され、曝気槽5内の廃水がヒータ7によって所定温度に加熱されるとともに、ポンプ8によって曝気槽5内の廃水が循環する。空気24は、散気器6から気泡となって廃水内に放出され、容器4の底壁12から開口14へ向かって廃水中を浮上する。曝気槽5内の廃水は、散気器6から放出される空気24とポンプ8による廃水の吸入、排出とによって、容器4の底壁12から開口14へ向かって流動するとともに、開口14から周壁13と周壁17との間のスペース22を通って曝気槽5の底壁16へ向かって流動する。容器4内では、廃水の流動と廃水中における空気24の浮上とによって活性炭11が静かに浮上と沈降とを繰り返す。 In the biological treatment process 101, an inoculum solution containing 10 7 to 10 10 microorganisms per milliliter and a nutrient source that promotes the growth of the microorganisms are introduced into the aeration tank 5. In the biological treatment process 101, air 24 is supplied from the diffuser 6 to waste water in the aeration tank 5, the waste water in the aeration tank 5 is heated to a predetermined temperature by the heater 7, and in the aeration tank 5 by the pump 8. Wastewater circulates. The air 24 is released as bubbles from the diffuser 6 into the waste water, and floats in the waste water from the bottom wall 12 of the container 4 toward the opening 14. Waste water in the aeration tank 5 flows from the bottom wall 12 of the container 4 toward the opening 14 by the air 24 discharged from the diffuser 6 and the suction and discharge of the waste water by the pump 8, and from the opening 14 to the peripheral wall. It flows toward the bottom wall 16 of the aeration tank 5 through the space 22 between the wall 13 and the peripheral wall 17. In the container 4, the activated carbon 11 gently and repeatedly floats and sinks due to the flow of the wastewater and the rising of the air 24 in the wastewater.

廃水に含まれる有機物は、曝気槽5内を循環する間に活性炭11に吸着される。微生物は、廃水中の有機物と栄養源とを捕捉しながら廃水中で次第に増殖、活性化し、時間の経過にともなって活性炭11の表面に生物膜を形成する。活性炭11に吸着された有機物は、生物膜中の微生物によって分解される。廃水は、それに含まれる有機物が微生物に分解された後、処理水となって濾過処理工程103に送水される。活性炭11は、それの有機物吸着能力が飽和したときに交換または再生処理が行われる。   Organic substances contained in the wastewater are adsorbed by the activated carbon 11 while circulating in the aeration tank 5. The microorganisms gradually grow and activate in the wastewater while capturing organic substances and nutrients in the wastewater, and form a biofilm on the surface of the activated carbon 11 with the passage of time. The organic matter adsorbed on the activated carbon 11 is decomposed by microorganisms in the biofilm. The waste water is decomposed into microorganisms after the organic matter contained therein is converted into treated water, which is sent to the filtration process 103. The activated carbon 11 is exchanged or regenerated when its organic matter adsorption capacity is saturated.

微生物培養工程102では、微生物を培養する培養装置25を介して曝気槽5に投入する種菌溶液が生産される。培養装置25は、図5に示すように、濾材を収容する通気通水性の第2容器26と、容器26を収容する第2曝気槽27と、曝気槽27内に配置された第2散気器28およびヒータ29と、廃水を曝気槽27内において循環させるポンプ30とから形成されている。曝気槽27は、配水管31を介して廃水受けタンク1に連結されている。配水管31には、バルブ32が取り付けられている。タンク1から流入した廃水は、曝気槽27内に貯水される。廃水には、曝気槽5で処理される廃水と同一のそれが使用される。培養装置25では、微生物が所定量に増殖する。培養工程102では、培養装置25を利用して、微生物の有機物に対する分解能力や分解時間、微生物の増殖時間、微生物の増殖に適する廃水温度等を試験する。さらに、所定時間経過後の廃水のBODやCOD、SSを検査する。   In the microorganism culturing step 102, an inoculum solution to be introduced into the aeration tank 5 is produced through a culture apparatus 25 for culturing microorganisms. As shown in FIG. 5, the culture apparatus 25 includes an aeration-permeable second container 26 that contains a filter medium, a second aeration tank 27 that contains the container 26, and a second air diffuser disposed in the aeration tank 27. And a pump 30 for circulating the waste water in the aeration tank 27. The aeration tank 27 is connected to the wastewater receiving tank 1 through a water distribution pipe 31. A valve 32 is attached to the water distribution pipe 31. The waste water flowing from the tank 1 is stored in the aeration tank 27. As the waste water, the same waste water treated in the aeration tank 5 is used. In the culture device 25, microorganisms grow to a predetermined amount. In the culturing step 102, the culturing apparatus 25 is used to test the ability of the microorganisms to decompose organic substances, the decomposition time, the growth time of the microorganisms, the temperature of the wastewater suitable for the growth of microorganisms, and the like. Further, the BOD, COD, and SS of the waste water after a predetermined time has been inspected.

濾材には、有機物を吸着する粒状活性炭11が使用されている。活性炭11は、容器26内に収容されている。容器26は、底壁33と、底壁33の周縁から上方へ延びる円筒型の周壁34と、周壁34の頂縁に囲繞された頂部開口35とを有する。容器26では、底壁33が開口35へ向かって凹む上げ底半球状を呈する。底壁33と周壁34とは、それら壁33,34を貫通する多数の貫通孔36が形成されたメッシュ状を呈する。貫通孔36は、活性炭11が壁33,34を通過して容器26の外側に漏れ出すことがないように、活性炭11の最小粒径よりも小さな開口径を有する。容器26では、廃水や空気がそれら壁33,34の貫通孔36を通過することはできるが、活性炭11がそれら壁33,34の貫通孔36を通過することはできない。   For the filter medium, granular activated carbon 11 that adsorbs organic substances is used. The activated carbon 11 is accommodated in the container 26. The container 26 includes a bottom wall 33, a cylindrical peripheral wall 34 that extends upward from the periphery of the bottom wall 33, and a top opening 35 that is surrounded by the top edge of the peripheral wall 34. In the container 26, the bottom wall 33 has a raised bottom hemisphere that is recessed toward the opening 35. The bottom wall 33 and the peripheral wall 34 have a mesh shape in which a large number of through holes 36 penetrating the walls 33 and 34 are formed. The through hole 36 has an opening diameter smaller than the minimum particle diameter of the activated carbon 11 so that the activated carbon 11 does not pass through the walls 33 and 34 and leak to the outside of the container 26. In the container 26, waste water and air can pass through the through holes 36 of the walls 33 and 34, but the activated carbon 11 cannot pass through the through holes 36 of the walls 33 and 34.

曝気槽27は、底壁37と、底壁37の周縁から上方へ延びる円筒型の周壁38と、周壁38の頂縁に囲繞された頂部開口39とを有する。曝気槽27は、容器26全体を収容可能である。曝気槽27の周壁38には、廃水の流入口40が形成されている。曝気槽27に容器26を収容すると、容器26が曝気槽27の略中央に位置するとともに、容器26の底壁33が曝気槽27の底壁37から上方へ所定寸法離間し、容器26の開口35が曝気槽27の開口39の下方に位置する。周壁34と周壁38との間には、スペース41が形成されている。曝気槽27に廃水が流入すると、容器26全体が廃水に漬かる。散気器28は、容器26の底壁33と曝気槽27の底壁37との間に配置されている。散気器28には、送風機(図示せず)が連結されている。ヒータ29は、曝気槽27の底壁37に配置されている。ポンプ30から延びる給水管42は、曝気槽27の底壁37と周壁38とに連結されている。   The aeration tank 27 has a bottom wall 37, a cylindrical peripheral wall 38 extending upward from the periphery of the bottom wall 37, and a top opening 39 surrounded by the top edge of the peripheral wall 38. The aeration tank 27 can accommodate the entire container 26. A wastewater inlet 40 is formed in the peripheral wall 38 of the aeration tank 27. When the container 26 is accommodated in the aeration tank 27, the container 26 is positioned at the approximate center of the aeration tank 27, and the bottom wall 33 of the container 26 is spaced upward by a predetermined dimension from the bottom wall 37 of the aeration tank 27. 35 is located below the opening 39 of the aeration tank 27. A space 41 is formed between the peripheral wall 34 and the peripheral wall 38. When the wastewater flows into the aeration tank 27, the entire container 26 is immersed in the wastewater. The air diffuser 28 is disposed between the bottom wall 33 of the container 26 and the bottom wall 37 of the aeration tank 27. A blower (not shown) is connected to the air diffuser 28. The heater 29 is disposed on the bottom wall 37 of the aeration tank 27. A water supply pipe 42 extending from the pump 30 is connected to the bottom wall 37 and the peripheral wall 38 of the aeration tank 27.

培養工程102では、微生物の種菌と微生物の増殖を促進させる栄養源とが曝気槽27に投入される。培養工程102では、散気器28から曝気槽27内の廃水に気泡状の空気24が供給され、曝気槽27内の廃水がヒータ29によって所定温度に加熱されるとともに、ポンプ30によって曝気槽27内の廃水が循環する。曝気槽27内の廃水は、散気器28から放出される空気24とポンプ30による廃水の吸入、排出とによって、容器26の底壁33から開口35へ向かって流動するとともに、開口35から周壁34と周壁38との間のスペース41を通って曝気槽27の底壁37へ向かって流動する。容器26内では、廃水の流動と廃水中における空気24の浮上とによって活性炭11が静かに浮上と沈降とを繰り返す。   In the culturing step 102, seeds of microorganisms and nutrient sources that promote the growth of microorganisms are introduced into the aeration tank 27. In the culturing step 102, the bubble-like air 24 is supplied from the diffuser 28 to the waste water in the aeration tank 27, and the waste water in the aeration tank 27 is heated to a predetermined temperature by the heater 29 and at the same time by the pump 30. The waste water inside circulates. Waste water in the aeration tank 27 flows from the bottom wall 33 of the container 26 toward the opening 35 by the air 24 discharged from the diffuser 28 and the suction and discharge of the waste water by the pump 30, and from the opening 35 to the peripheral wall. The fluid flows toward the bottom wall 37 of the aeration tank 27 through the space 41 between the peripheral wall 34 and the peripheral wall 38. In the container 26, the activated carbon 11 gently and repeatedly floats and sinks due to the flow of the wastewater and the rising of the air 24 in the wastewater.

廃水に含まれる有機物は、曝気槽27内を循環する間に活性炭11に吸着される。種菌から成長した微生物は、廃水中の有機物と栄養源とを捕捉しながら廃水中で次第に増殖、活性化し、時間の経過にともなって活性炭11の表面に生物膜を形成する。活性炭11に吸着された有機物は、生物膜中の微生物によって分解される。培養工程102では、微生物が曝気槽27内の廃水1ミリリットル当たり10〜1010個に増殖し、一定量の微生物を含む種菌溶液が生産される。培養工程102で生産された種菌溶液は、曝気槽5に投入され、廃水中の有機物の分解に利用される。 Organic substances contained in the wastewater are adsorbed by the activated carbon 11 while circulating in the aeration tank 27. Microorganisms grown from the inoculum gradually grow and activate in the wastewater while capturing organic substances and nutrient sources in the wastewater, and form a biofilm on the surface of the activated carbon 11 with the passage of time. The organic matter adsorbed on the activated carbon 11 is decomposed by microorganisms in the biofilm. In the culturing step 102, microorganisms grow to 10 7 to 10 10 per 1 ml of waste water in the aeration tank 27, and an inoculum solution containing a certain amount of microorganisms is produced. The inoculum solution produced in the culturing step 102 is put into the aeration tank 5 and used for decomposing organic substances in the wastewater.

なお、培養装置25は、第2容器26およびポンプ30と容器26に収容される活性炭11とを除く、第2曝気槽27と第2散気器28とから形成されていてもよい。この場合は、微生物の種菌と微生物の増殖を促進させる栄養源とを曝気槽27に投入し、散気器28から曝気槽27内の廃水に気泡状の空気24を供給して微生物を培養する。また、培養工程102では、廃水ではなく脱塩水を使用することもできる。   In addition, the culture apparatus 25 may be formed from the second aeration tank 27 and the second diffuser 28 excluding the second container 26 and the pump 30 and the activated carbon 11 accommodated in the container 26. In this case, an inoculum of microorganisms and a nutrient source that promotes the growth of microorganisms are introduced into the aeration tank 27, and bubbled air 24 is supplied from the diffuser 28 to the waste water in the aeration tank 27 to culture the microorganisms. . In the culture step 102, desalted water can be used instead of waste water.

容器4,26や曝気槽5,27は、合成樹脂や金属から作られている。散気器6,28には、散気板や円形式散気板、多孔性散気筒、ディスクディフューザを使用することができる。微生物には、チューリージェンシス・サブチルスやプルミス等のバチルス・ズブチルス(バチルス菌)が使用される。栄養源には、ブドウ糖、アミノ酸、核酸、窒素、カリ、ビタミン、キトサン、ミネラル等が使用される。ミネラルには、カリウム、カルシウム、マグネシウム、ナトリウム、ケイ素、リン、ホウ素、硫黄、マンガン、鉄、亜鉛、ゲルマニウム等が使用される。曝気槽5に投入される栄養源の種類と量とは、培養装置25における試験の結果にしたがって適宜決定される。   The containers 4 and 26 and the aeration tanks 5 and 27 are made of synthetic resin or metal. As the diffusers 6 and 28, a diffuser plate, a circular diffuser plate, a porous diffuser cylinder, or a disk diffuser can be used. As the microorganism, Bacillus subtilis (Bacillus bacteria) such as Tulee Gensis subtilis and Purmis is used. Glucose, amino acids, nucleic acids, nitrogen, potash, vitamins, chitosan, minerals, etc. are used as nutrient sources. As minerals, potassium, calcium, magnesium, sodium, silicon, phosphorus, boron, sulfur, manganese, iron, zinc, germanium, etc. are used. The kind and amount of the nutrient source to be introduced into the aeration tank 5 are appropriately determined according to the test result in the culture apparatus 25.

活性炭11は、その平均粒径が1.3〜2.0mmの範囲にある。活性炭11の平均粒径が1.3mm未満では、活性炭11の比重にもよるが、廃水の流動によって活性炭11が容器4,26の開口14,35へ向かって容易に上昇し、活性炭11が容器4,26の開口14,35から曝気槽5,27へ漏れ出してしまう場合がある。活性炭11の平均粒径が2.0mmを超過すると、活性炭11が容器4,26内で静止してそれら活性炭11どうしが当接し、微生物が活性炭11の表面に生物膜を形成したときに、活性炭11どうしが生物膜で連結されてその自由度が一層失われる結果、活性炭11の有機物吸着能力が低下し、曝気槽5,27における廃水処理機能が低下する。   The activated carbon 11 has an average particle size in the range of 1.3 to 2.0 mm. If the average particle diameter of the activated carbon 11 is less than 1.3 mm, depending on the specific gravity of the activated carbon 11, the activated carbon 11 easily rises toward the openings 14 and 35 of the containers 4 and 26 due to the flow of the waste water. In some cases, the air may leak into the aeration tanks 5 and 27 from the openings 14 and 35 of the holes 4 and 26. When the average particle size of the activated carbon 11 exceeds 2.0 mm, the activated carbon 11 stops in the containers 4 and 26 and the activated carbon 11 comes into contact with each other, and when the microorganisms form a biofilm on the surface of the activated carbon 11, activated carbon As a result of 11 being connected to each other by a biofilm, the degree of freedom is further lost. As a result, the organic matter adsorption capacity of the activated carbon 11 is lowered, and the wastewater treatment function in the aeration tanks 5 and 27 is lowered.

活性炭11の容器4,26に対する充填密度は、400〜450g/リットルの範囲にある。活性炭11の充填密度が400g/リットル未満では、活性炭11の量が少なく、廃水内の有機物の大部分を活性炭11に吸着させることができず、有機物が廃水内に高い濃度で残存し、活性炭11と微生物との生物再生による有機物の分解が不十分となる。活性炭11の充填密度が450g/リットルを超過すると、活性炭11が容器4,26の底壁12,33に沈殿して容器4,26内で稠密に重なり合うので、容器4,26内の活性炭11すべてに空気中の酸素を十分に供給することができず、活性炭11表面における微生物の増殖と活性化とが不十分となる。活性炭11を前記充填密度で容器4,26に収容した曝気槽5,27では、容器4,26内の活性炭11すべてに酸素が十分に供給され、活性炭11表面における微生物の増殖と活性化とを促進させることができ、微生物が活性炭11の表面に短時間に生物膜を形成する。   The packing density of the activated carbon 11 into the containers 4 and 26 is in the range of 400 to 450 g / liter. When the packing density of the activated carbon 11 is less than 400 g / liter, the amount of the activated carbon 11 is small, and most of the organic matter in the waste water cannot be adsorbed on the activated carbon 11, and the organic matter remains in the waste water at a high concentration. Decomposition of organic substances due to biological regeneration with microorganisms becomes insufficient. When the packing density of the activated carbon 11 exceeds 450 g / liter, the activated carbon 11 settles on the bottom walls 12 and 33 of the containers 4 and 26 and closely overlaps in the containers 4 and 26. Insufficient oxygen in the air can be supplied to the surface of the activated carbon 11, and the growth and activation of microorganisms on the surface of the activated carbon 11 is insufficient. In the aeration tanks 5 and 27 in which the activated carbon 11 is accommodated in the containers 4 and 26 at the filling density, oxygen is sufficiently supplied to all the activated carbons 11 in the containers 4 and 26, and the growth and activation of microorganisms on the surface of the activated carbon 11 are performed. It can be promoted, and microorganisms form a biofilm on the surface of the activated carbon 11 in a short time.

散気器6,28の空気供給量は、廃水1リットル当たり0.05〜0.1リットル/minの範囲にある。空気供給量が廃水1リットル当たり0.05リットル/min未満では、廃水中の微生物に十分な酸素が供給されず、微生物の増殖と活性化とが不十分となり、有機物の分解に長時間を要する。空気供給量が廃水1リットル当たり0.1リットル/minを超過すると、廃水中における空気24の浮上によって容器4,26内の廃水に必要以上の旋回流が生じ、容器4,26の底壁12,33に位置する活性炭11どうしが激しく衝突し、活性炭11が損壊したり、活性炭11の表面に形成された生物膜が剥離してしまう場合がある。空気供給量が前記範囲にある曝気槽5,27では、容器4,26内の活性炭11すべてに酸素を十分に供給することができ、活性炭11表面における微生物の増殖と活性化とを促進させることができるので、微生物が活性炭11の表面に短時間に生物膜を形成する。さらに、活性炭11どうしが容器4,26内で激しく衝突することがないので、活性炭11が損壊することはなく、活性炭11の表面に形成された生物膜が剥離することがない。   The air supply amount of the diffusers 6 and 28 is in the range of 0.05 to 0.1 liter / min per liter of waste water. When the air supply rate is less than 0.05 liter / min per liter of wastewater, sufficient oxygen is not supplied to the microorganisms in the wastewater, and the growth and activation of the microorganisms are insufficient, and it takes a long time to decompose organic matter. . When the air supply amount exceeds 0.1 liter / min per liter of wastewater, the swirling flow more than necessary occurs in the wastewater in the containers 4 and 26 due to the floating of the air 24 in the wastewater, and the bottom wall 12 of the containers 4 and 26 , 33 may collide violently with each other, the activated carbon 11 may be damaged, or the biofilm formed on the surface of the activated carbon 11 may be peeled off. In the aeration tanks 5 and 27 in which the air supply amount is in the above range, oxygen can be sufficiently supplied to all the activated carbons 11 in the containers 4 and 26, and the growth and activation of microorganisms on the surface of the activated carbon 11 can be promoted. Therefore, microorganisms form a biofilm on the surface of the activated carbon 11 in a short time. Furthermore, since the activated carbons 11 do not collide violently in the containers 4 and 26, the activated carbon 11 is not damaged, and the biofilm formed on the surface of the activated carbon 11 does not peel off.

曝気槽5,27内の廃水温度は、ヒータ7,29によって20〜37℃に保持されている。廃水温度が20℃未満または廃水温度が37℃を超過すると、微生物の増殖と活性化とが不十分となり、有機物の分解に長時間を要する。廃水温度が前記範囲に保持された曝気槽5,27では、最適な温度環境下に微生物の増殖と活性化とが促進され、微生物を利用して短時間に廃水を処理することができる。   The waste water temperature in the aeration tanks 5 and 27 is maintained at 20 to 37 ° C. by the heaters 7 and 29. If the waste water temperature is less than 20 ° C. or the waste water temperature exceeds 37 ° C., the growth and activation of microorganisms become insufficient, and it takes a long time to decompose organic substances. In the aeration tanks 5 and 27 in which the wastewater temperature is maintained in the above range, the growth and activation of microorganisms are promoted under an optimum temperature environment, and wastewater can be treated in a short time using microorganisms.

曝気槽5,27内における廃水の流速は、1.2〜3.2cm/secの範囲にある。廃水の流速が1.2cm/sec未満では、曝気槽5,27内において廃水が停滞し、曝気槽5,27に貯水された廃水を活性炭11に十分に接触させることができず、廃水に含まれる有機物を活性炭11に効率よく吸着させることができない。廃水の流速が3.2cm/secを超過すると、容器4,26内に生じる旋回流によって活性炭11どうしが激しく衝突し、活性炭11が損壊したり、活性炭11の表面に形成された生物膜が剥離してしまう。廃水の流速が前記範囲にある曝気槽5,27では、曝気槽5,27内における廃水の停滞を防ぐことができ、曝気槽5,27に貯水された廃水すべてを活性炭11に確実に接触させ、活性炭11に有機物を効率よく吸着させることができる。さらに、活性炭11どうしが容器4,26内で衝突したとしても、その衝撃が小さく、活性炭11が損壊することはなく、活性炭11の表面に形成された生物膜が剥離することはない。   The flow rate of the wastewater in the aeration tanks 5 and 27 is in the range of 1.2 to 3.2 cm / sec. If the flow rate of the waste water is less than 1.2 cm / sec, the waste water stagnates in the aeration tanks 5 and 27, and the waste water stored in the aeration tanks 5 and 27 cannot be brought into sufficient contact with the activated carbon 11 and is included in the waste water. The organic matter to be absorbed cannot be efficiently adsorbed on the activated carbon 11. When the flow rate of the waste water exceeds 3.2 cm / sec, the activated carbons 11 collide violently due to the swirling flow generated in the containers 4 and 26 and the activated carbons 11 are damaged or the biofilm formed on the surface of the activated carbon 11 is peeled off. Resulting in. In the aeration tanks 5 and 27 in which the flow rate of the waste water is in the above range, the stagnation of the waste water in the aeration tanks 5 and 27 can be prevented, and all the waste water stored in the aeration tanks 5 and 27 is reliably brought into contact with the activated carbon 11. The organic matter can be efficiently adsorbed on the activated carbon 11. Furthermore, even if the activated carbons 11 collide with each other in the containers 4 and 26, the impact is small, the activated carbon 11 is not damaged, and the biofilm formed on the surface of the activated carbon 11 is not peeled off.

曝気槽5に投入される種菌溶液の割合は、曝気槽5内に流入する廃水の単位体積に対して0.05%以上である。種菌溶液の割合が0.05%未満では、廃水の単位体積に対する微生物の量が少なく、微生物を短時間に増殖させることができず、廃水中の有機物の分解に長時間を要する。種菌溶液が前記割合で投入された曝気槽5では、曝気槽5内における廃水中の微生物の量が安定し、常時一定量の微生物を曝気槽5において確実に増殖、活性化させることができる。   The ratio of the inoculum solution introduced into the aeration tank 5 is 0.05% or more with respect to the unit volume of waste water flowing into the aeration tank 5. If the proportion of the inoculum solution is less than 0.05%, the amount of microorganisms per unit volume of waste water is small, the microorganisms cannot be grown in a short time, and it takes a long time to decompose organic substances in the waste water. In the aeration tank 5 in which the inoculum solution is introduced at the above-mentioned ratio, the amount of microorganisms in the wastewater in the aeration tank 5 is stable, and a constant amount of microorganisms can always be reliably grown and activated in the aeration tank 5.

曝気槽5の廃水貯水量は、200〜1000リットルの範囲にある。廃水貯水量が1000リットルを超過すると、システム自体が大型化し、システムを原子力発電所内の限られた場所に設置することができないのみならず、原子力発電所の廃水処理の必要性に応じてシステムの運転と停止とを自由に行うことができず、原子力発電所の廃水排出量に適応しつつ廃水を短時間に処理することができない。   The amount of waste water stored in the aeration tank 5 is in the range of 200 to 1000 liters. If the amount of wastewater stored exceeds 1000 liters, the system itself will become large, and not only can the system be installed in a limited location within the nuclear power plant, but the system will be able to meet the needs of wastewater treatment at the nuclear power plant. Operation and shutdown cannot be performed freely, and wastewater cannot be treated in a short time while adapting to the amount of wastewater discharged from nuclear power plants.

濾過処理工程103では、処理水に含まれる微細なクロックが除去される。濾過処理工程103は、処理水が順次流入する3つの濾過器43,44,45から形成されている。濾過器43は、配水管46を介して曝気槽5に連結されている。配水管46には、バルブ47と処理水をそれら濾過器43に強制的に送水する給水ポンプ48とが取り付けられている。   In the filtration process 103, the fine clock contained in the treated water is removed. The filtration process 103 is formed from three filters 43, 44, and 45 into which treated water sequentially flows. The filter 43 is connected to the aeration tank 5 through a water distribution pipe 46. A valve 47 and a water supply pump 48 for forcibly supplying treated water to the filter 43 are attached to the water distribution pipe 46.

濾過処理工程103では、濾過器43から濾過器45に向かうにつれて処理水中の微細なクロックを次第に除去する。それら濾過器43,44,45内には、中空紙膜フィルタや多孔質平膜フィルタが設置されている(図示せず)。濾過器43には、フィルタメッシュ15〜30ミクロンのフィルタが使用され、濾過器44には、フィルタメッシュ5〜10ミクロンのフィルタが使用されている。濾過器45には、フィルタメッシュ1〜3ミクロンのフィルタが使用されている。それら濾過器43,44,45を透過した処理水は、膜処理工程104に送水される。フィルタは、汚れに応じて交換される。   In the filtration processing step 103, fine clocks in the treated water are gradually removed from the filter 43 toward the filter 45. In these filters 43, 44, and 45, a hollow paper membrane filter and a porous flat membrane filter are installed (not shown). The filter 43 has a filter mesh of 15 to 30 microns, and the filter 44 has a filter mesh of 5 to 10 microns. The filter 45 uses a filter with a filter mesh of 1 to 3 microns. The treated water that has passed through the filters 43, 44, 45 is sent to the membrane treatment step 104. The filter is replaced in response to dirt.

膜処理工程104では、処理水が膜装置49を介して濾過水と濃縮水とに分水される。膜装置49は、その内部に膜が設置され(図示せず)、膜によって処理水に含まれる10μm〜1nmの微細な不純物を除去するとともに、膜の逆浸透の原理によって処理水に含まれる低分子やイオンを除去する。さらに、廃水に含まれる放射性物質を除去する。膜装置49には、処理水の流入口50と、濾過水を排出する排出口51と、濃縮水を曝気槽5に環流させる環流口52とが形成されている。膜装置49は、配水管53を介して濾過器45に連結されている。配水管53には、バルブ54と処理水を膜装置49に強制的に送水する給水ポンプ55とが取り付けられている。膜装置49は、配水管56を介して曝気槽5に連結されている。配水管56には、バルブ57が取り付けられている。   In the membrane treatment step 104, the treated water is divided into filtered water and concentrated water through the membrane device 49. The membrane device 49 has a membrane installed therein (not shown), removes fine impurities of 10 μm to 1 nm contained in the treated water by the membrane, and is low in the treated water by the reverse osmosis principle of the membrane. Remove molecules and ions. Furthermore, radioactive materials contained in the wastewater are removed. The membrane device 49 is formed with an inlet 50 for treated water, an outlet 51 for discharging filtered water, and a reflux port 52 for circulating concentrated water to the aeration tank 5. The membrane device 49 is connected to the filter 45 via the water distribution pipe 53. A valve 54 and a water supply pump 55 that forcibly supplies treated water to the membrane device 49 are attached to the water distribution pipe 53. The membrane device 49 is connected to the aeration tank 5 through a water distribution pipe 56. A valve 57 is attached to the water distribution pipe 56.

膜装置49には、平膜型モジュール、回転平膜型モジュール、チューブラー型モジュール、スパイラル型モジュール、中空糸型モジュールの少なくとも1つが使用される。濃縮水は、配水管56を介して曝気槽5に送水される。曝気槽5では、濃縮水に含まれる微量の有機物が微生物を介して廃水とともに分解される。濾過水は、濾過水受けタンク58に送水される。   As the membrane device 49, at least one of a flat membrane type module, a rotating flat membrane type module, a tubular type module, a spiral type module, and a hollow fiber type module is used. The concentrated water is sent to the aeration tank 5 through the water distribution pipe 56. In the aeration tank 5, a small amount of organic matter contained in the concentrated water is decomposed together with the waste water through the microorganisms. The filtered water is sent to the filtered water receiving tank 58.

膜には、精密濾過膜(MF:Micro Filtration Membrane)、限外濾過膜(UF:Ultra
Filtration Membrane)、逆浸透膜(RO:Reverse Osmosis Membrane)、ナノ濾過膜(NF:Nano Filtration Membrane)のうちの少なくとも限外濾過膜と逆浸透膜とが使用されている。それら膜は、酢酸セルロース、ポリアミド、ポリアクリルニトリル、ポリスルホン、ポリフッ化ビニルデン、テフロン(登録商標)、ポリプロピレンから作られている。膜は、性能劣化に応じて交換される。
Microfiltration membrane (MF: Micro Filtration Membrane), ultrafiltration membrane (UF: Ultra)
At least an ultrafiltration membrane and a reverse osmosis membrane are used among Filtration Membrane), Reverse Osmosis Membrane (RO), and Nano Filtration Membrane (NF). The membranes are made from cellulose acetate, polyamide, polyacrylonitrile, polysulfone, polyvinylidene fluoride, Teflon (registered trademark), and polypropylene. The membrane is replaced in response to performance degradation.

検査工程105では、濾過水受けタンク58に貯水された濾過水のBODやCOD、SS、放射能量が検査される。タンク58は、配水管60を介して膜装置49に連結されている。配水管60には、バルブ61が取り付けられている。検査の結果、濾過水のBODやCOD、SS、放射能量が所定の値以下を示した場合、濾過水が下水道や河川に放水される。検査の結果、濾過水のBODやCOD、SS、放射能量が所定の値以上を示した場合、濾過水は、再びタンク1に戻され、曝気槽5において再処理される。   In the inspection step 105, the BOD, COD, SS, and the amount of radioactivity of the filtered water stored in the filtered water receiving tank 58 are inspected. The tank 58 is connected to the membrane device 49 via the water distribution pipe 60. A valve 61 is attached to the water distribution pipe 60. As a result of the inspection, if the BOD, COD, SS, and the amount of radioactivity of the filtered water are below predetermined values, the filtered water is discharged into the sewer or river. As a result of the inspection, if the BOD, COD, SS, and the amount of radioactivity of the filtered water show a predetermined value or more, the filtered water is returned again to the tank 1 and reprocessed in the aeration tank 5.

図7は、微生物による有機物の処理を示す概念図である。生分解性有機物は、図7に示すように、生物膜中の微生物に捕捉された後、微生物の生分解を受けて分解生成物となり、無機物(二酸化炭素)にまで分解されて微生物から排出される。無機物まで分解されなかった中間体(有機物)は、微生物から排出されて廃水中に混入したり、活性炭に吸着される。活性炭表面の生物膜が十分に形成されていない場合、生物膜中の微生物は最大量の有機物を捕捉しており、微生物は分解、排出によって空いた分だけ有機物を捕捉する状態となる。すると、有機物は微生物に分解されないまま生物膜を通過して活性炭に吸着される。活性炭は有機物に対する吸着、脱離作用があるので、活性炭から脱離した有機物は再び微生物に捕捉、分解される。これを生物再生という。   FIG. 7 is a conceptual diagram showing processing of organic matter by microorganisms. As shown in FIG. 7, the biodegradable organic matter is captured by the microorganisms in the biofilm, then undergoes biodegradation of the microorganisms to become decomposition products, is decomposed into inorganic substances (carbon dioxide), and is discharged from the microorganisms. The Intermediates (organic substances) that have not been decomposed to inorganic substances are discharged from microorganisms and mixed in wastewater or adsorbed on activated carbon. If the biofilm on the surface of the activated carbon is not sufficiently formed, the microorganisms in the biofilm capture the maximum amount of organic matter, and the microorganisms are in a state of capturing the organic matter as much as free by decomposition and discharge. Then, the organic matter passes through the biofilm without being decomposed by microorganisms and is adsorbed on the activated carbon. Since activated carbon has an adsorption and desorption action on organic matter, the organic matter desorbed from the activated carbon is again captured and decomposed by microorganisms. This is called biological regeneration.

図8は、生物再生の原理を示す模式図である。図8では、生分解性有機物61を白丸で示し、難分解性有機物62を黒丸で示す。活性炭11の有機物に対する吸着、脱離機能が略平衡している場合、図8(a)に示すように、生分解性有機物61と難分解性有機物62とは、同じように活性炭11の細孔63内に進入する。微生物は、図8(b)に示すように、活性炭11に吸着される生分解性有機物61を捕捉しつつ活性炭11表面で増殖し、活性炭11の表面に生物膜64を形成する。微生物が活性炭11の表面に生物膜64を形成して微生物による生分解性有機物61の分解が活発になると、図8(c)に示すように、液相における生分解性有機物61が減少する。活性炭11の吸着量は平衡関係に支配されるため、液相中の生分解性有機物61の濃度が減少すると、図8(d)に示すように、活性炭11の細孔63内に吸着された生分解性有機物61が活性炭11から脱離し、脱離した生分解性有機物61が生物膜64中に進入して微生物に捕捉、分解される。この作用によって、全体的な活性炭吸着座が空くので、図8(e)に示すように、活性炭11が新たな有機物を吸着することができるようになる。最終的には、図8(f)に示すように、難分解性有機物62を吸着した状態で活性炭11の吸着機能が飽和する。生分解性有機物61は微生物によって分解され、活性炭11の吸着量は難分解性有機物62に左右される。生物再生では、廃水に含まれる生分解性有機物61が微生物によって処理され、廃水に含まれる難分解性有機物62が活性炭11によって除去される。   FIG. 8 is a schematic diagram showing the principle of biological regeneration. In FIG. 8, the biodegradable organic substance 61 is indicated by a white circle, and the hardly decomposable organic substance 62 is indicated by a black circle. When the adsorption and desorption functions of the activated carbon 11 with respect to the organic matter are substantially balanced, as shown in FIG. 8A, the biodegradable organic matter 61 and the hardly degradable organic matter 62 are similarly pores of the activated carbon 11. Enter 63. As shown in FIG. 8B, the microorganism grows on the surface of the activated carbon 11 while capturing the biodegradable organic matter 61 adsorbed on the activated carbon 11, and forms a biofilm 64 on the surface of the activated carbon 11. When the microorganisms form the biofilm 64 on the surface of the activated carbon 11 and the biodegradable organic matter 61 is actively decomposed by the microorganisms, the biodegradable organic matter 61 in the liquid phase decreases as shown in FIG. Since the adsorption amount of the activated carbon 11 is governed by the equilibrium relationship, when the concentration of the biodegradable organic substance 61 in the liquid phase is decreased, it is adsorbed in the pores 63 of the activated carbon 11 as shown in FIG. The biodegradable organic substance 61 is desorbed from the activated carbon 11, and the desorbed biodegradable organic substance 61 enters the biofilm 64 and is captured and decomposed by the microorganism. By this action, the entire activated carbon adsorption seat is vacant, so that the activated carbon 11 can adsorb new organic matter as shown in FIG. Finally, as shown in FIG. 8F, the adsorption function of the activated carbon 11 is saturated in a state where the hardly decomposable organic substance 62 is adsorbed. The biodegradable organic substance 61 is decomposed by microorganisms, and the adsorption amount of the activated carbon 11 depends on the hardly decomposable organic substance 62. In the biological regeneration, the biodegradable organic matter 61 contained in the wastewater is treated with microorganisms, and the hardly degradable organic matter 62 contained in the wastewater is removed by the activated carbon 11.

曝気槽5内の廃水中のCODは、曝気槽5に廃水を流入させた直後(経過時間0)の値が120mg/リットルであった。30分経過後のCODの値は73mg/リットル、1時間経過後のCODの値は35mg/リットル、2時間経過後のCODの値は22mg/リットルであった。3時間経過後のCODの値は14mg/リットル、6時間経過後のCODの値は9mg/リットル、24時間経過後のCODの値は8mg/リットルであった。曝気槽5では、廃水中のCODが時間の経過にともなって減少し、廃水中のCODを約6時間で大幅に減少させることができた。   The COD in the wastewater in the aeration tank 5 was 120 mg / liter immediately after the wastewater was allowed to flow into the aeration tank 5 (elapsed time 0). The COD value after 30 minutes was 73 mg / liter, the COD value after 1 hour was 35 mg / liter, and the COD value after 2 hours was 22 mg / liter. The COD value after 3 hours was 14 mg / liter, the COD value after 6 hours was 9 mg / liter, and the COD value after 24 hours was 8 mg / liter. In the aeration tank 5, the COD in the wastewater decreased with the passage of time, and the COD in the wastewater could be significantly reduced in about 6 hours.

このシステムは、常時一定量の微生物を曝気槽5において増殖、活性化させることができ、微生物を利用して短時間に廃水に含まれる有機物を分解することができる。システムは、有機物が濾材を形成する粒状活性炭11に吸着され、微生物が活性炭11の表面に生物膜を作るので、廃水中の有機物と微生物とが活性炭11に集中し、活性炭11と微生物とによる生物再生を利用しつつ、活性炭の有機物吸着作用と有機物に対する微生物の生分解との相乗効果によって短時間に効率よく有機物を分解することができる。   This system can always grow and activate a certain amount of microorganisms in the aeration tank 5, and can decompose organic substances contained in wastewater in a short time using the microorganisms. In the system, organic substances are adsorbed on the granular activated carbon 11 forming the filter medium, and microorganisms form a biofilm on the surface of the activated carbon 11. Therefore, organic substances and microorganisms in the wastewater are concentrated on the activated carbon 11, and the organisms by the activated carbon 11 and the microorganisms. While utilizing regeneration, the organic matter can be efficiently decomposed in a short time by the synergistic effect of the organic matter adsorbing action of activated carbon and the biodegradation of microorganisms with respect to the organic matter.

このシステムは、培養装置25を使用して微生物を曝気槽27内の廃水1ミリリットル当たり10〜1010個に増殖させることができるので、一定量の微生物を曝気槽5内の廃水に混入することができ、微生物の量的不安定によるシステムの廃水処理能力の低下を防ぐことができる。システムでは、培養装置25を利用して、微生物の有機物に対する分解能力や分解時間、微生物の増殖時間、微生物の増殖に適する廃水温度等を試験することができ、廃水の種類による微生物の選別や微生物の最適な増殖条件を決定してそれを曝気槽5の運転条件に適用することができる。システムは、選別した微生物を曝気槽5に投入することができ、曝気槽5を微生物の増殖に最適な条件で運転することができるので、曝気槽5における廃水処理能力を常時一定に保持することができる。 Since this system can grow 10 7 to 10 10 microorganisms per milliliter of waste water in the aeration tank 27 using the culture device 25, a certain amount of microorganisms are mixed into the waste water in the aeration tank 5. It is possible to prevent a reduction in wastewater treatment capacity of the system due to microbial instability. In the system, the culturing device 25 can be used to test the ability to decompose microorganisms into organic matter, the decomposition time, the growth time of microorganisms, the temperature of wastewater suitable for the growth of microorganisms, etc. It is possible to determine the optimum growth conditions of the aeration tank 5 and apply them to the operating conditions of the aeration tank 5. The system can put the selected microorganisms into the aeration tank 5 and can operate the aeration tank 5 under the optimum conditions for the growth of microorganisms, so that the wastewater treatment capacity in the aeration tank 5 is always kept constant. Can do.

このシステムは、膜装置49を介して処理水に含まれる微細な不純物を除去することができるとともに、膜装置49を介して分離された濃縮水を曝気槽5に戻し、濃縮水に含まれる有機物を廃水とともに曝気槽5において分解することができるので、濃縮水に含まれる微量の有機物を減少させることができる。   This system can remove fine impurities contained in the treated water via the membrane device 49, and returns the concentrated water separated via the membrane device 49 to the aeration tank 5, so that the organic matter contained in the concentrated water can be obtained. Can be decomposed together with the waste water in the aeration tank 5, so that a trace amount of organic substances contained in the concentrated water can be reduced.

このシステムは、原子力発電所で排出される廃水に含まれる放射性物質を膜装置49を介して除去することができるので、廃水に水を混入して希釈化することや廃水を貯水槽に長期間貯留して放射能の減少を確認する手間を省くことができ、原子力発電所での廃水の処理にかかる時間と費用とを節約することができる。   This system can remove radioactive substances contained in waste water discharged from nuclear power plants through the membrane device 49, so that the waste water can be mixed with water and diluted, or the waste water can be stored in the storage tank for a long time. It saves the trouble of storing and confirming the decrease in radioactivity, and saves the time and cost for treating the wastewater at the nuclear power plant.

4 第1容器(容器)
5 第1曝気槽
6 第1散気器
7 ヒータ
8 ポンプ
11 粒状活性炭
25 培養装置
26 第2容器
27 第2曝気槽
28 第2散気器
29 ヒータ
30 ポンプ
49 膜装置
50 流入口
51 流出口
52 環流口
64 生物膜
4 First container (container)
5 First Aeration Tank 6 First Air Diffuser 7 Heater 8 Pump 11 Granular Activated Carbon 25 Culture Device 26 Second Container 27 Second Aeration Tank 28 Second Air Diffuser 29 Heater 30 Pump 49 Membrane Device 50 Inlet 51 Outlet 52 Reflux port 64 Biofilm

Claims (10)

表面に好気性微生物を付着させる濾材を収容した通気通水性の容器と、所定量の廃水を貯水可能かつ前記容器を収容可能な第1曝気槽と、前記第1曝気槽内の廃水に空気を供給する第1散気器とを有し、前記微生物の増殖と代謝活性とを利用して前記廃水に含まれる有機物を分解する廃水処理システムにおいて、
前記濾材が、1.3〜2.0mmの平均粒径を有して前記有機物を吸着する多数の粒状活性炭から形成され、1ミリリットル当たり10〜1010個の前記微生物を含む種菌溶液と該微生物の増殖を促進させる栄養源とが、前記廃水とともに前記第1曝気槽に投入され、前記微生物が、時間の経過にともなって前記活性炭の表面に生物膜を形成しつつ前記有機物を分解することを特徴とする前記廃水処理システム。
Aeration-permeable container containing a filter medium for attaching aerobic microorganisms to the surface, a first aeration tank capable of storing a predetermined amount of waste water and capable of containing the container, and air to the waste water in the first aeration tank A wastewater treatment system for decomposing organic matter contained in the wastewater by using the growth and metabolic activity of the microorganism,
The filter medium is formed from a number of granular activated carbons having an average particle size of 1.3 to 2.0 mm and adsorbing the organic matter, and a seed solution containing 10 7 to 10 10 microorganisms per milliliter, A nutrient source that promotes the growth of microorganisms is introduced into the first aeration tank together with the wastewater, and the microorganisms decompose the organic matter while forming a biofilm on the surface of the activated carbon over time. The wastewater treatment system characterized by the above.
前記廃水処理システムが、前記微生物を培養して前記種菌溶液を生産する培養装置を備え、前記培養装置が、所定量の前記廃水を貯水可能な第2曝気槽と、前記第2曝気槽内の廃水に空気を供給する第2散気器とから形成され、前記培養装置では、前記微生物の種菌と該微生物の増殖を促進させる栄養源とが前記廃水とともに第2曝気槽に投入され、前記微生物が時間の経過にともなって前記第2曝気槽内の廃水1ミリリットル当たり10〜1010個に増殖する請求項1記載の廃水処理システム。 The wastewater treatment system includes a culture device that cultures the microorganism to produce the seed solution, and the culture device includes a second aeration tank capable of storing a predetermined amount of the wastewater, and a second aeration tank. A second air diffuser for supplying air to waste water, and in the culture apparatus, the microorganism inoculum and a nutrient source for promoting the growth of the microorganism are introduced into the second aeration tank together with the waste water, and the microorganism 2. The wastewater treatment system according to claim 1, wherein the wastewater treatment system grows to 10 7 to 10 10 per 1 ml of waste water in the second aeration tank as time passes. 前記廃水処理システムが、前記第1曝気槽の下流に配置されて該第1曝気槽を介して浄化された処理水を濾過する膜装置を備え、前記膜装置が、前記処理水の流入口と、前記処理水を濾過した濾過水を排出する排出口と、前記濾過水を除く残余の濃縮水を前記第1曝気槽に環流させる環流口とを有し、前記濃縮水に含まれる有機物が、前記廃水とともに前記第1曝気槽内で分解される請求項1または請求項2に記載の廃水処理システム。   The wastewater treatment system includes a membrane device that is disposed downstream of the first aeration tank and filters the treated water purified through the first aeration tank, and the membrane device includes an inlet of the treatment water An exhaust port for discharging the filtered water obtained by filtering the treated water, and a reflux port for circulating the remaining concentrated water excluding the filtered water to the first aeration tank, and the organic matter contained in the concentrated water, The wastewater treatment system according to claim 1 or 2, wherein the wastewater treatment system is decomposed in the first aeration tank together with the wastewater. 前記容器の容積に対する前記活性炭の充填密度が、400〜450g/リットルの範囲にある請求項1ないし請求項3いずれかに記載の廃水処理システム。   The wastewater treatment system according to any one of claims 1 to 3, wherein a packing density of the activated carbon with respect to a volume of the container is in a range of 400 to 450 g / liter. 前記第1および第2散気器の空気供給量が、前記廃水1リットル当たり0.05〜0.1リットル/minの範囲にある請求項2ないし請求項4いずれかに記載の廃水処理システム。   The wastewater treatment system according to any one of claims 2 to 4, wherein an air supply amount of the first and second diffusers is in a range of 0.05 to 0.1 liter / min per liter of the wastewater. 前記第1および第2曝気槽が、それら槽内の廃水を加熱するヒータを備え、それら槽内の廃水温度が、前記ヒータによって20〜37℃に保持される請求項2ないし請求項5いずれかに記載の廃水処理システム。   The said 1st and 2nd aeration tank is equipped with the heater which heats the wastewater in these tanks, The wastewater temperature in these tanks is hold | maintained at 20-37 degreeC with the said heater, Either of Claim 2 thru | or 5 The wastewater treatment system described in 1. 前記第1および第2曝気槽が、それら槽内の廃水を循環させるポンプを備え、それら槽内における廃水の流速が、1.2〜3.2cm/secの範囲にある請求項2ないし請求項6いずれかに記載の廃水処理システム。   The said 1st and 2nd aeration tank is equipped with the pump which circulates the wastewater in these tanks, The flow rate of the wastewater in these tanks exists in the range of 1.2-3.2 cm / sec. 6. The wastewater treatment system according to any one of 6. 前記第1曝気槽に投入される前記種菌溶液の割合が、該第1曝気槽内の廃水の単位体積に対して0.05%以上である請求項1ないし請求項7いずれかに記載の廃水処理システム。   The wastewater according to any one of claims 1 to 7, wherein a ratio of the inoculum solution introduced into the first aeration tank is 0.05% or more with respect to a unit volume of the wastewater in the first aeration tank. Processing system. 前記第1曝気槽の廃水貯水量が、200〜1000リットルの範囲にある請求項1ないし請求項8いずれかに記載の廃水処理システム。   The wastewater treatment system according to any one of claims 1 to 8, wherein an amount of wastewater stored in the first aeration tank is in a range of 200 to 1000 liters. 前記システムが、原子力関連施設に設置され、前記廃水に含まれる放射性物質が、前記膜装置によって濾過される請求項3ないし請求項9いずれかに記載の廃水処理システム。
The wastewater treatment system according to any one of claims 3 to 9, wherein the system is installed in a nuclear facility, and radioactive materials contained in the wastewater are filtered by the membrane device.
JP2010111971A 2010-05-14 2010-05-14 Wastewater treatment system Expired - Fee Related JP5118722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111971A JP5118722B2 (en) 2010-05-14 2010-05-14 Wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111971A JP5118722B2 (en) 2010-05-14 2010-05-14 Wastewater treatment system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004304187A Division JP4563134B2 (en) 2004-10-19 2004-10-19 Wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2010194541A true JP2010194541A (en) 2010-09-09
JP5118722B2 JP5118722B2 (en) 2013-01-16

Family

ID=42819830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111971A Expired - Fee Related JP5118722B2 (en) 2010-05-14 2010-05-14 Wastewater treatment system

Country Status (1)

Country Link
JP (1) JP5118722B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910727A (en) * 2011-08-01 2013-02-06 北京佰润泽环境科技发展有限公司 Biological filter material and preparation method thereof
CN103922860A (en) * 2014-05-04 2014-07-16 扬州大学 Production method of long-acting ammonium phosphate salt slow release fertilizer granules
CN103922859A (en) * 2014-05-04 2014-07-16 扬州大学 Preparation method of ammonium phosphate salt-coated fertilizer storage ceramsite
KR20200076986A (en) * 2018-12-20 2020-06-30 (주)바이오테라 Air purifying filter for decreasing level of radioactivity and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458008B1 (en) * 2013-05-28 2014-11-04 한국원자력연구원 Purification method for removal of uranium from liquid waste using brown algae biosorbents

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118699A (en) * 1977-03-25 1978-10-17 Daicel Chem Ind Ltd Process of radioactive waste water
JPH02222898A (en) * 1988-09-20 1990-09-05 Fumio Onuki Contaminant removal using single cell green algae of clamydomonas genus from industrial waste water containing radioactive substances and others
JPH0338290A (en) * 1989-07-06 1991-02-19 Toshiba Corp Biologically activated carbon water-treatment apparatus
JPH05169090A (en) * 1991-12-24 1993-07-09 Meidensha Corp Device for supplying nitrification bacteria in biological activated carbon treatment tower
JPH0647399A (en) * 1992-07-10 1994-02-22 Ebara Infilco Co Ltd Water purifying treatment method
JPH09187792A (en) * 1995-12-30 1997-07-22 Tsutomu Nishimura Drainage treatment method and usable bacteria activating tank
JPH10290993A (en) * 1997-04-18 1998-11-04 Hitachi Zosen Corp Purified water treating apparatus
JPH1157762A (en) * 1997-08-19 1999-03-02 Nippon Soda Co Ltd Aerobic treating method of sewage
JPH11109092A (en) * 1997-10-01 1999-04-23 Mitsubishi Heavy Ind Ltd Processing method for radioactive material-containing waste liquid using reverse osmosis membrane
JP2002326095A (en) * 2001-05-04 2002-11-12 Fukunaga Kazuji Method and device for biologically treating waste water containing oil
JP2004216358A (en) * 2002-11-18 2004-08-05 Aisin Seiki Co Ltd Sewage cleaning apparatus
JP2004276017A (en) * 2003-02-25 2004-10-07 Kobelco Eco-Solutions Co Ltd Treatment system and treatment method of organic waste water

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118699A (en) * 1977-03-25 1978-10-17 Daicel Chem Ind Ltd Process of radioactive waste water
JPH02222898A (en) * 1988-09-20 1990-09-05 Fumio Onuki Contaminant removal using single cell green algae of clamydomonas genus from industrial waste water containing radioactive substances and others
JPH0338290A (en) * 1989-07-06 1991-02-19 Toshiba Corp Biologically activated carbon water-treatment apparatus
JPH05169090A (en) * 1991-12-24 1993-07-09 Meidensha Corp Device for supplying nitrification bacteria in biological activated carbon treatment tower
JPH0647399A (en) * 1992-07-10 1994-02-22 Ebara Infilco Co Ltd Water purifying treatment method
JPH09187792A (en) * 1995-12-30 1997-07-22 Tsutomu Nishimura Drainage treatment method and usable bacteria activating tank
JPH10290993A (en) * 1997-04-18 1998-11-04 Hitachi Zosen Corp Purified water treating apparatus
JPH1157762A (en) * 1997-08-19 1999-03-02 Nippon Soda Co Ltd Aerobic treating method of sewage
JPH11109092A (en) * 1997-10-01 1999-04-23 Mitsubishi Heavy Ind Ltd Processing method for radioactive material-containing waste liquid using reverse osmosis membrane
JP2002326095A (en) * 2001-05-04 2002-11-12 Fukunaga Kazuji Method and device for biologically treating waste water containing oil
JP2004216358A (en) * 2002-11-18 2004-08-05 Aisin Seiki Co Ltd Sewage cleaning apparatus
JP2004276017A (en) * 2003-02-25 2004-10-07 Kobelco Eco-Solutions Co Ltd Treatment system and treatment method of organic waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910727A (en) * 2011-08-01 2013-02-06 北京佰润泽环境科技发展有限公司 Biological filter material and preparation method thereof
CN103922860A (en) * 2014-05-04 2014-07-16 扬州大学 Production method of long-acting ammonium phosphate salt slow release fertilizer granules
CN103922859A (en) * 2014-05-04 2014-07-16 扬州大学 Preparation method of ammonium phosphate salt-coated fertilizer storage ceramsite
KR20200076986A (en) * 2018-12-20 2020-06-30 (주)바이오테라 Air purifying filter for decreasing level of radioactivity and preparation method therefor
KR102233936B1 (en) * 2018-12-20 2021-03-30 (주)바이오테라 Air purifying filter for decreasing level of radioactivity and preparation method therefor

Also Published As

Publication number Publication date
JP5118722B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
CN107531527B (en) Water treatment system and water treatment method
JP2005279447A (en) Water treatment method and apparatus
EP2651833B1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JP5366402B2 (en) Water treatment method
JP6750930B6 (en) Sewage purification system
JP5118722B2 (en) Wastewater treatment system
KR102170601B1 (en) Advanced sewage and wastewater separation membrane device using low temperature plasma
CN110431114A (en) Waste water treatment system and method
JPH0970598A (en) Ultrapure water producing device
JP2004261711A (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2006082024A (en) Biological treatment apparatus
CN205803101U (en) MBR based on ceramic membrane and MBBR compound sewage processing system
JP4563134B2 (en) Wastewater treatment system
KR100294075B1 (en) System for treating landfill leachate
JP2006314991A (en) Apparatus and method for treating high-concentration nitrogen-containing dirty waste water such as waste water from livestock farmer and excreta
JP2007064732A (en) Radioactive waste water treatment equipment and treatment method
JP2002210486A (en) Method and apparatus for treating waste water after washing
KR20160093875A (en) Energy-saving septic tank
JP4838872B2 (en) Water treatment apparatus and water treatment method
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
JP4482419B2 (en) Waste water treatment equipment
KR20050049437A (en) A high pollution waste water disposal plant
JP6267567B2 (en) Vegetable wastewater filtration equipment
JP5448285B2 (en) Membrane separation activated sludge treatment method
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

R150 Certificate of patent or registration of utility model

Ref document number: 5118722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees