JP2010194435A - Method and apparatus for protecting denitration catalyst - Google Patents

Method and apparatus for protecting denitration catalyst Download PDF

Info

Publication number
JP2010194435A
JP2010194435A JP2009041024A JP2009041024A JP2010194435A JP 2010194435 A JP2010194435 A JP 2010194435A JP 2009041024 A JP2009041024 A JP 2009041024A JP 2009041024 A JP2009041024 A JP 2009041024A JP 2010194435 A JP2010194435 A JP 2010194435A
Authority
JP
Japan
Prior art keywords
denitration catalyst
exhaust gas
temperature
set temperature
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041024A
Other languages
Japanese (ja)
Other versions
JP5615502B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2009041024A priority Critical patent/JP5615502B2/en
Publication of JP2010194435A publication Critical patent/JP2010194435A/en
Application granted granted Critical
Publication of JP5615502B2 publication Critical patent/JP5615502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent in a simple structure an abnormal temperature rise originated in combustion caused by adsorption of hydrocarbon components to a denitration catalyst. <P>SOLUTION: In a method for protecting a denitration catalyst by preventing the abnormal temperature rise of the nitrification catalyst for reducing nitrogen oxides in an exhaust gas containing the nitrogen oxides into which ammonia or urea is blown as a reduction agent, the amount of hydrocarbon adsorbed to the nitrification catalyst is sought by integrating for a predetermined time a product signal 108 obtained by multiplying the signal 106 of the total flow rate of an exhaust gas by the difference between hydrocarbon concentration signals 100, 102 of an exhaust gas inlet and an exhaust gas outlet of the denitration catalyst, and when the amount of hydrocarbon sought exceeds a predetermined set threshold value 112, the flow rate of the exhaust gas is controlled corresponding to the temperature signal 116 of the nitrification catalyst. Thus, the denitration catalyst is prevented from an abnormal temperature rise by vaporizing or even by burning the hydrocarbon adsorbed to the nitrification catalyst to increase the quantity of heat absorbed by the exhaust gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃焼排ガスに含まれる窒素酸化物を還元する脱硝触媒の保護方法と保護装置に係り、特に、脱硝触媒に吸着された排ガス中の燃料油成分などの炭化水素が燃焼して異常温度上昇するのを防止する技術に関する。   The present invention relates to a protection method and a protection device for a denitration catalyst that reduces nitrogen oxides contained in combustion exhaust gas, and in particular, an abnormal temperature due to combustion of hydrocarbons such as fuel oil components in the exhaust gas adsorbed on the denitration catalyst. The present invention relates to a technique for preventing a rise.

発電所、各種工場、自動車などから排出される排煙中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニアや尿素を還元剤とした選択的接触還元による排煙脱硝法がボイラ排ガスの処理を中心に世界中で広く用いられている。   NOx in flue gas discharged from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As an effective removal method, selective catalytic reduction using ammonia or urea as a reducing agent The flue gas denitration method is widely used around the world, mainly in boiler exhaust gas treatment.

排煙脱硝装置は装置構造が簡単であることに加え、バナジウムV,モリブデンMo,タングステンWなどを活性成分とする酸化チタン系触媒(Ti系触媒)が極めて長寿命であるため、環境装置のなかでもメンテナンスが容易でかつトラブルの少ないものの一つである。   In addition to the simple structure of the flue gas denitration device, the titanium oxide catalyst (Ti catalyst) containing vanadium V, molybdenum Mo, tungsten W, etc. as the active component has a very long life, so it is an environmental device. However, it is one of the easy maintenance and less trouble.

しかしながら、脱硝装置においても、ボイラの起動時の失火や着火バーナを長時間使用した場合などに、オイルミスト(或いは蒸気)や未燃炭化水素ガスが触媒に吸着され、それが装置停止時に断熱状態で酸化、或いは通ガス時に一気に燃焼することにより触媒が高温にさらされて劣化する場合がある。   However, even in a denitration system, oil mist (or steam) or unburned hydrocarbon gas is adsorbed by the catalyst when the fire is started or the ignition burner is used for a long time. In some cases, the catalyst may be exposed to high temperatures due to oxidation or burning at a time when gas is passed.

特許文献1には、燃焼排ガス中に炭化水素ガスが検出された場合、FDF(押し込みファン)を制御してエアパージを行なうことにより、炭化水素ガスの脱硝触媒への吸着、付着を防止することが記載されている。   In Patent Document 1, when hydrocarbon gas is detected in combustion exhaust gas, the adsorption and adhesion of hydrocarbon gas to the denitration catalyst can be prevented by controlling the FDF (push-in fan) and performing air purge. Are listed.

特開平2−275211号公報JP-A-2-275211

しかしながら、特許文献1に記載された技術は、燃焼排ガス中に炭化水素ガスが検出されるたびにFDF(押し込みファン)を制御してエアパージを行なうので、FDFの頻繁な風量制御が生じ脱硝装置の制御が煩雑になるおそれがある。   However, the technique described in Patent Document 1 performs air purge by controlling the FDF (push-in fan) every time hydrocarbon gas is detected in the combustion exhaust gas. Control may be complicated.

そこで、本発明は、脱硝触媒に炭化水素成分が吸着して燃焼することに起因する異常温度上昇を簡便な制御で防止することを課題とする。   Accordingly, an object of the present invention is to prevent an abnormal temperature rise caused by adsorption and combustion of a hydrocarbon component on a denitration catalyst by simple control.

本発明の脱硝触媒保護方法は、アンモニア或いは尿素が還元剤として吹き込まれた窒素酸化物を含有する排ガス中の窒素酸化物を還元する脱硝触媒の異常温度上昇を防止するものであり、上記課題を解決するため、脱硝触媒に吸着された炭化水素量を計測し、この計測された炭化水素量があらかじめ設定された閾値を超えたら、脱硝触媒の温度に応じて排ガスの流量を制御することを特徴としている。   The denitration catalyst protection method of the present invention prevents abnormal temperature rise of a denitration catalyst that reduces nitrogen oxides in exhaust gas containing nitrogen oxides in which ammonia or urea is blown as a reducing agent. In order to solve the problem, the amount of hydrocarbon adsorbed on the denitration catalyst is measured, and when the measured hydrocarbon amount exceeds a preset threshold, the flow rate of exhaust gas is controlled according to the temperature of the denitration catalyst. It is said.

すなわち、本発明は脱硝触媒への炭化水素ガスの吸着自体を抑制するのではなく、脱硝触媒に炭化水素がある程度吸着した段階で、脱硝触媒の温度に応じて排ガスの流量を例えば現状維持するか或いは増加させるように制御するものである。これによれば、脱硝触媒に吸着した炭化水素を蒸散させるか、燃焼しても排ガスが奪う熱量を大きくすることができる。その結果、煩雑な制御を伴うことなく簡便に脱硝触媒が異常温度上昇に至ることを抑制することができる。   That is, the present invention does not suppress the adsorption of hydrocarbon gas to the denitration catalyst itself, but at the stage where hydrocarbons are adsorbed to some extent by the denitration catalyst, whether the flow rate of exhaust gas is maintained, for example, according to the temperature of the denitration catalyst Or it controls to increase. According to this, the amount of heat taken away by the exhaust gas can be increased even if the hydrocarbon adsorbed on the denitration catalyst is evaporated or burned. As a result, it is possible to easily suppress the denitration catalyst from rising to an abnormal temperature without complicated control.

より具体的には、計測された炭化水素量があらかじめ設定された閾値を超え、脱硝触媒の温度が第1の設定温度以上或いは第1の設定温度未満の第2の設定温度以下の場合は、排ガスの流量の減少を禁止し、計測された炭化水素量があらかじめ設定された閾値を超え、脱硝触媒の温度が第2の設定温度を超え第1の設定温度未満の場合は、排ガスの流量をあらかじめ設定された値まで上昇させるとともに脱硝触媒の温度を第1の設定温度以上にすることができる。   More specifically, when the measured hydrocarbon amount exceeds a preset threshold value and the temperature of the denitration catalyst is equal to or higher than the first set temperature or lower than the second set temperature that is lower than the first set temperature, When the flow rate of the exhaust gas is prohibited, the measured hydrocarbon amount exceeds the preset threshold value, and the temperature of the denitration catalyst exceeds the second set temperature and is lower than the first set temperature, the exhaust gas flow rate is reduced. The temperature can be raised to a preset value and the temperature of the denitration catalyst can be made higher than the first set temperature.

これによれば、脱硝触媒に炭化水素がある程度吸着したとしても、脱硝触媒に吸着した炭化水素が蒸散するか、燃焼しても排ガスが奪う熱量が大きくなるので異常温度上昇に至ることを抑制することができる。   According to this, even if hydrocarbons are adsorbed to some extent on the denitration catalyst, the hydrocarbon adsorbed on the denitration catalyst evaporates or the amount of heat taken up by the exhaust gas increases even if it is burned, thereby preventing an abnormal temperature rise. be able to.

また、脱硝触媒の温度に応じて排ガスの流量等を自動制御するのではなく、計測された炭化水素量があらかじめ設定された閾値を超えたら脱硝触媒が異常温度上昇する可能性があることの警報を発生させるとともに、脱硝触媒の温度が第1の設定温度以上或いは第1の設定温度未満の第2の設定温度以下の場合は、排ガスの流量の減少を禁止し、脱硝触媒の温度が第2の設定温度を超え第1の設定温度未満の場合は、排ガスの流量をあらかじめ設定された値まで上昇させるとともに脱硝触媒の温度を第1の設定温度以上にすべき内容の警報を発生させることもできる。   Also, instead of automatically controlling the flow rate of exhaust gas according to the temperature of the denitration catalyst, an alarm that the denitration catalyst may rise abnormally if the measured hydrocarbon amount exceeds a preset threshold When the temperature of the denitration catalyst is equal to or higher than the first set temperature or equal to or lower than the second set temperature that is lower than the first set temperature, the reduction of the exhaust gas flow rate is prohibited and the temperature of the denitration catalyst is set to the second temperature. When the temperature exceeds the preset temperature and is less than the first preset temperature, the flow rate of the exhaust gas is increased to a preset value, and an alarm is generated that indicates that the temperature of the denitration catalyst should be higher than the first preset temperature. it can.

これによれば、警報を受けた作業者等が警報の内容に沿って排ガスの流量等をマニュアルで制御することができ、その結果、脱硝触媒に炭化水素がある程度吸着したとしても、脱硝触媒に吸着した炭化水素が蒸散するか、燃焼しても排ガスが奪う熱量が大きくなるので異常温度上昇に至ることを抑制することができる。   According to this, the worker who received the alarm can manually control the flow rate of the exhaust gas in accordance with the content of the alarm, and as a result, even if hydrocarbons are adsorbed to some extent on the denitration catalyst, Even if the adsorbed hydrocarbons evaporate or burn, the amount of heat taken up by the exhaust gas increases, so that it is possible to suppress an abnormal temperature rise.

また、本発明の脱硝触媒保護装置は、アンモニア或いは尿素が還元剤として吹き込まれた窒素酸化物を含有する排ガス中の窒素酸化物を還元する脱硝触媒の異常温度上昇を防止するものであり、上記課題を解決するため、脱硝触媒の排ガスの入口と出口の排ガス中の炭化水素の濃度を計測する炭化水素計と、脱硝触媒の排ガスの入口と出口の炭化水素の濃度の差分を求める差分計と、求められた差分と排ガスの流量計で得られた排ガス流量とを乗算する掛け算器と、掛け算器で求められた乗算結果をあらかじめ設定された時間積分する積分器と、積分器で求められた積分結果とあらかじめ設定された閾値とを比較する比較器と、比較器で求められた比較結果と脱硝触媒の温度センサで得られた脱硝触媒の温度とに基づいて排ガスの流量を制御する制御手段とを備えて構成される。   Further, the denitration catalyst protection device of the present invention prevents an abnormal temperature rise of the denitration catalyst that reduces nitrogen oxides in exhaust gas containing nitrogen oxides in which ammonia or urea is blown as a reducing agent. In order to solve the problem, a hydrocarbon meter that measures the concentration of hydrocarbons in the exhaust gas at the inlet and the outlet of the denitration catalyst, and a difference meter that calculates the difference in hydrocarbon concentration between the inlet and outlet of the exhaust gas of the denitration catalyst, A multiplier that multiplies the obtained difference by the exhaust gas flow rate obtained by the exhaust gas flow meter, an integrator that integrates the multiplication result obtained by the multiplier for a preset time, and an integrator. A comparator that compares the integration result with a preset threshold value, and controls the exhaust gas flow rate based on the comparison result obtained by the comparator and the temperature of the denitration catalyst obtained by the temperature sensor of the denitration catalyst. Constructed and a that control means.

本発明によれば、脱硝触媒に炭化水素成分が吸着して燃焼することに起因する異常温度上昇を簡便な制御で防止することができる。   According to the present invention, it is possible to prevent an abnormal temperature rise caused by adsorption and combustion of a hydrocarbon component on a denitration catalyst by simple control.

脱硝触媒保護装置を含んで構成される排ガス処理システムの全体構成を示す図である。It is a figure which shows the whole structure of the waste gas processing system comprised including a denitration catalyst protection apparatus. 一般的な脱硝触媒に軽油を0.5wt%染み込ませた後、空気を流しながら昇温した場合の燃焼に伴うCOとCO2の発生量をプロットした図である。It is the figure which plotted the generation | occurrence | production amount of CO and CO2 accompanying combustion at the time of making it heat up, flowing air after making a typical denitration catalyst soak in 0.5 wt% of light oil. 本実施形態の脱硝装置の制御信号の内容を示す図である。It is a figure which shows the content of the control signal of the denitration apparatus of this embodiment.

以下、本発明を適用してなる脱硝触媒保護装置を含んで構成される排ガス処理システムの実施形態を説明する。図1は、脱硝触媒保護装置を含んで構成される排ガス処理システムの全体構成を示す図である。   Hereinafter, an embodiment of an exhaust gas treatment system including a denitration catalyst protection device to which the present invention is applied will be described. FIG. 1 is a diagram showing an overall configuration of an exhaust gas treatment system including a denitration catalyst protection device.

図1に示すように、排ガス処理システムは、排ガス源となるボイラ10と、ボイラ10から排出された後アンモニア(NH3)或いは尿素が還元剤として吹き込まれ、窒素酸化物を含有する排ガスから窒素酸化物を還元無害化する脱硝触媒を有する脱硝触媒反応器12と、脱硝触媒反応器12で窒素酸化物が還元除去された排ガスと空気との熱交換を行なう空気予熱器14と、熱交換後の排ガスから粉粒体を捕集する集塵機16と、集塵後の排ガスから硫黄酸化物を除去する脱硫装置18と、脱硫された排ガスを排出する煙突20等を有して構成される。   As shown in FIG. 1, the exhaust gas treatment system includes a boiler 10 serving as an exhaust gas source, and ammonia (NH 3) or urea after being discharged from the boiler 10 as a reducing agent, and nitrogen oxidation from exhaust gas containing nitrogen oxides. A denitration catalyst reactor 12 having a denitration catalyst for reducing and detoxifying the product, an air preheater 14 for performing heat exchange between the exhaust gas from which nitrogen oxides have been reduced and removed in the denitration catalyst reactor 12, and air, and after the heat exchange The apparatus includes a dust collector 16 that collects particulate matter from exhaust gas, a desulfurization device 18 that removes sulfur oxide from the exhaust gas after dust collection, and a chimney 20 that discharges the desulfurized exhaust gas.

ところで、このような排ガス処理システムにおいては、排ガス源であるボイラやガスタービンの事故、運転ミス、あるいは点検時の限度を越えた燃焼試験などにより、排ガス中に未燃の燃料成分(炭化水素)がミストや蒸気として含まれることがある。すると、排ガス中に含まれる炭化水素が脱硝触媒反応器12に設けられた脱硝触媒に吸着して蓄積され、その後急激に燃焼して脱硝触媒が異常温度上昇して劣化するおそれがある。   By the way, in such an exhaust gas treatment system, an unburned fuel component (hydrocarbon) in the exhaust gas due to an accident, an operation error, or a combustion test exceeding the limit at the time of inspection of a boiler or a gas turbine which is an exhaust gas source. May be included as mist or steam. Then, hydrocarbons contained in the exhaust gas are adsorbed and accumulated on the denitration catalyst provided in the denitration catalyst reactor 12, and then suddenly burned, so that the denitration catalyst may increase in abnormal temperature and deteriorate.

この点、本発明者等は、排ガス中に燃料油成分などの炭化水素化合物が含有されても大半の場合は脱硝触媒の異常温度上昇には至らず、一定の条件を満足する場合にのみ異常温度上昇が生じて脱硝触媒の劣化に繋がることを見出した。   In this regard, the present inventors have found that even if hydrocarbon compounds such as fuel oil components are contained in the exhaust gas, in most cases, the temperature of the denitration catalyst does not rise abnormally and is abnormal only when certain conditions are satisfied. It has been found that the temperature rises and leads to deterioration of the denitration catalyst.

一方、炭化水素化合物が排ガスに多量に含まれる原因も、ボイラなどの燃焼器に於けるバーナの失火、未燃分の多い着火バーナの長時間使用、誤動作による未着火バーナへの燃料油の供給、あるいは燃焼器の試運転などにより未燃分の発生領域での試験など多岐にわたり、類型的な対処が難しい。   On the other hand, the cause of the large amount of hydrocarbon compounds contained in the exhaust gas is that the burner misfires in a combustor such as a boiler, the use of an ignition burner with a large amount of unburned fuel for a long time, and the supply of fuel oil to the unignition burner due to malfunction Also, it is difficult to deal with a variety of types, such as tests in the unburned area by trial operation of the combustor.

このような状況に鑑みて、脱硝触媒に炭化水素成分が吸着して燃焼することに起因する異常温度上昇を簡便な制御で防止するため、本発明者等は脱硝触媒上に吸着した炭化水素化合物の燃焼挙動、ならびに異常温度上昇に至る過程を工学的に研究して本発明に至った。この現象を列記すると下記の様になる。   In view of such circumstances, in order to prevent abnormal temperature rise caused by adsorption and combustion of hydrocarbon components on the denitration catalyst with simple control, the present inventors have adsorbed hydrocarbon compounds adsorbed on the denitration catalyst. The present inventors have studied the combustion behavior and the process leading to an abnormal temperature rise from an engineering point of view. This phenomenon is listed as follows.

(1)炭化水素化合物が脱硝触媒に一旦吸着しても温度が高くかつ排ガスの流量が大きければ、炭化水素が蒸散するか、燃焼しても排ガスが奪う熱量が大きいので異常温度上昇には至らない。逆に流量が減少または通ガスが停止された場合は奪われる熱量が減少し異常温度上昇にいたる。   (1) If the temperature is high and the flow rate of the exhaust gas is large even if the hydrocarbon compound is once adsorbed on the denitration catalyst, the amount of heat that the exhaust gas takes away even if it is evaporated or burned, so that the abnormal temperature rises. Absent. Conversely, if the flow rate is reduced or the gas flow is stopped, the amount of heat lost is reduced, leading to an abnormal temperature rise.

(2)低温で炭化水素が吸着した触媒であっても、十分な通ガス量のもとで昇温されれば燃焼熱が奪われる方が早く異常温度上昇に至らない。奪われる熱量が少ない低流量条件で昇温されると加速度的な温度上昇を引き起こす。   (2) Even if the catalyst adsorbs hydrocarbons at a low temperature, if the temperature is raised with a sufficient amount of gas passing, the heat of combustion is deprived earlier and the abnormal temperature does not rise. When the temperature is raised under low flow conditions where the amount of heat taken is small, an accelerated temperature rise is caused.

(3)図2は一般的な脱硝触媒に軽油を0.5wt%染み込ませた後、空気を流しながら昇温した場合の燃焼に伴うCOとCO2の発生量をプロットした図であるが、図3に示すように燃焼は300℃近辺から開始し350℃以上から急速に進行する。したがって、十分なガス量の基、350℃の以上の条件に触媒を保持すれば触媒中の炭化水素成分は消失する。   (3) FIG. 2 is a graph plotting the generation amounts of CO and CO2 accompanying combustion when the temperature is raised while flowing air after impregnating 0.5 wt% of light oil into a general denitration catalyst. As shown in FIG. 3, combustion starts around 300 ° C. and proceeds rapidly from 350 ° C. or higher. Therefore, the hydrocarbon component in the catalyst disappears if the catalyst is kept under the condition of a sufficient gas amount and 350 ° C. or more.

本実施形態では、これらの現象に基づいて、脱硝触媒に吸着された炭化水素量を計測し、計測された炭化水素量があらかじめ設定された閾値を超えたら、脱硝触媒の温度に応じて排ガスの流量を制御している。以下、脱硝触媒保護装置及び保護方法について説明する。   In the present embodiment, based on these phenomena, the amount of hydrocarbons adsorbed on the denitration catalyst is measured, and when the measured hydrocarbon amount exceeds a preset threshold, the exhaust gas according to the temperature of the denitration catalyst is measured. The flow rate is controlled. Hereinafter, a denitration catalyst protection device and a protection method will be described.

図1に示すように、脱硝触媒保護装置は、脱硝触媒反応器12の排ガスの入口及び出口からのサンプリング配管22及び24から導かれた排ガスの炭化水濃度を計測する炭化水素計26及び28と、炭化水素計26及び28で計測された炭化水素濃度信号100と102の差信号104(100信号−102信号)を発生する差分器30と、差信号104と脱硝装置制御ユニット32の排ガス流量計から送られた排ガス総流量信号106との積信号108を発生する掛け算器34を備えて構成されている。   As shown in FIG. 1, the denitration catalyst protection device includes hydrocarbon meters 26 and 28 that measure the hydrocarbon concentration of exhaust gas led from sampling pipes 22 and 24 from the exhaust gas inlet and outlet of the denitration catalyst reactor 12. The differencer 30 that generates the difference signal 104 (100 signal−102 signal) between the hydrocarbon concentration signals 100 and 102 measured by the hydrocarbon meters 26 and 28, and the exhaust gas flow meter of the difference signal 104 and the denitration device control unit 32. Is provided with a multiplier 34 for generating a product signal 108 with the exhaust gas total flow rate signal 106 sent from.

また、掛け算器34からの積信号108をあらかじめ設定された時間積分して触媒層への炭化水素の吸着量を求める積分器36と、積分信号110と脱硝触媒への吸着濃度の限界値(警報レベル)でありあらかじめ設定された閾値信号112とを比較する比較器38と、その比較信号114と脱硝装置制御ユニット32の脱硝触媒の温度センサから送られる温度信号116とに基づいて、脱硝装置の制御信号118を発生する制御信号発生器40とを備えて構成されている。   In addition, the product signal 108 from the multiplier 34 is integrated for a preset time to obtain the amount of adsorption of hydrocarbons on the catalyst layer, the integration signal 110 and the limit value of the adsorption concentration on the denitration catalyst (alarm). Level) and a preset threshold signal 112, and the comparison signal 114 and a temperature signal 116 sent from the temperature sensor 116 of the denitration catalyst of the denitration device control unit 32, the denitration device And a control signal generator 40 for generating a control signal 118.

ここで炭化水素計26及び28は、FID式の炭化水素計、赤外式の炭化水素計などの一般的な炭化水素計が使用できるが、発熱量に比例した情報が得やすいFID式の全炭化水素計を用いると好結果が得られる。   Here, as the hydrocarbon meters 26 and 28, general hydrocarbon meters such as an FID type hydrocarbon meter and an infrared type hydrocarbon meter can be used, but all of the FID type can easily obtain information proportional to the calorific value. Good results are obtained with a hydrocarbon meter.

得られた信号はアナログもしくはデジタル式の差分器で炭化水素濃度信号100−炭化水素濃度信号102が演算され差信号104が求められ、続いて排ガス総流量信号106と差信号104との積信号108が掛け算器34で求められる。さらに、積分器36により積信号108をあらかじめ設定された時間積分して触媒層への炭化水素の吸着量が求められる。ここでの演算の内容は、吸着に伴う濃度変化と排ガス総流量とから単位時間当たりの脱硝触媒層への吸着量を積算して脱硝触媒に吸着した総炭化水素量を求めることに相当する。   The obtained signal is calculated by calculating a hydrocarbon concentration signal 100-hydrocarbon concentration signal 102 by an analog or digital differencer to obtain a difference signal 104, and subsequently a product signal 108 of the exhaust gas total flow signal 106 and the difference signal 104. Is obtained by the multiplier 34. Further, the amount of hydrocarbon adsorbed on the catalyst layer is obtained by integrating the product signal 108 by the integrator 36 for a preset time. The content of the calculation here corresponds to obtaining the total amount of hydrocarbons adsorbed on the denitration catalyst by integrating the amount of adsorption to the denitration catalyst layer per unit time from the concentration change accompanying adsorption and the total exhaust gas flow rate.

この触媒層に吸着した炭化水素総量である積分信号110と、脱硝触媒層の異常温度上昇現象を引き起こすレベルに到達したことを警報するレベルでありあらかじめ設定された閾値信号112との比較が比較器38で行われ、積分信号110が閾値信号112を超えると、その旨が比較信号114として発生される。   A comparison is made between the integrated signal 110, which is the total amount of hydrocarbons adsorbed on the catalyst layer, and a threshold signal 112, which is a level for warning that the denitration catalyst layer has reached a level causing an abnormal temperature rise phenomenon, and is set in advance. 38, when the integration signal 110 exceeds the threshold signal 112, this is generated as a comparison signal 114.

比較信号114と脱硝装置制御ユニット32から送られた脱硝触媒層の温度信号116とに基づいて脱硝装置の制御信号118が発生され、脱硝装置制御ユニット32を介して脱硝装置に送られる。言い換えると、積分信号110が閾値信号112を超えると、脱硝触媒層の温度信号116に応じて脱硝装置の制御信号118が発生される。発生される制御信号118は、脱硝装置の制御方法により異なる部分はあるが、本実施形態では図3の様になる。   Based on the comparison signal 114 and the denitration catalyst layer temperature signal 116 sent from the denitration device control unit 32, a denitration device control signal 118 is generated and sent to the denitration device via the denitration device control unit 32. In other words, when the integral signal 110 exceeds the threshold signal 112, the control signal 118 of the denitration device is generated in accordance with the temperature signal 116 of the denitration catalyst layer. Although the generated control signal 118 differs depending on the control method of the denitration apparatus, it is as shown in FIG. 3 in this embodiment.

図3は、本実施形態の脱硝装置の制御信号の内容を示す図である。図3に示すように、脱硝触媒層の温度条件が、300℃±50℃以上つまり第1の設定温度である350℃以上或いは第2の設定温度である250℃以下の場合は、脱硝触媒の異常温度上昇を防止するのに十分な排ガス流量が得られていると判断して、排ガス流量制御として排ガスの流量の減少を禁止するとともに、ロック信号として装置の停止を禁止する。言い換えれば、排ガスの流量を少なくとも現状維持させるものである。   FIG. 3 is a diagram showing the contents of the control signal of the denitration apparatus of the present embodiment. As shown in FIG. 3, when the temperature condition of the denitration catalyst layer is 300 ° C. ± 50 ° C. or more, that is, the first set temperature is 350 ° C. or more or the second set temperature is 250 ° C. or less, It is determined that an exhaust gas flow rate sufficient to prevent an abnormal temperature rise is obtained, and a reduction in the exhaust gas flow rate is prohibited as exhaust gas flow rate control, and a stop of the apparatus is prohibited as a lock signal. In other words, at least the current flow rate of the exhaust gas is maintained.

一方、脱硝触媒層の温度条件が、300℃±50℃未満すなわち第2の設定温度である250度を超え第1の設定温度である350℃未満の場合は、排ガス流量制御として排ガスの流量をあらかじめ設定された値まで上昇(増加)させるとともに、脱硝触媒の温度を第1の設定温度である350℃以上にする。言い換えれば、積極的に炭化水素を燃焼させるとともに燃焼熱が奪われるような制御を行う。ただし異常温度(例えば650℃)まで脱硝触媒の温度を上昇させるわけではない。排ガスの流量を上昇させるためには例えば押し込みファン(FDF)或いは誘引ファン(IDF)の回転数を上昇させればよい。   On the other hand, when the temperature condition of the denitration catalyst layer is less than 300 ° C. ± 50 ° C., that is, more than 250 ° C. which is the second set temperature and less than 350 ° C. which is the first set temperature, the exhaust gas flow rate is controlled as the exhaust gas flow rate control. The temperature is increased (increased) to a preset value, and the temperature of the denitration catalyst is set to 350 ° C. or higher which is the first set temperature. In other words, control is performed so that hydrocarbons are actively burned and the heat of combustion is lost. However, the temperature of the denitration catalyst is not increased to an abnormal temperature (for example, 650 ° C.). In order to increase the flow rate of the exhaust gas, for example, the rotational speed of the pushing fan (FDF) or the induction fan (IDF) may be increased.

これによれば、脱硝触媒への炭化水素ガスの吸着自体を抑制するのではなく、脱硝触媒に炭化水素がある程度吸着した段階で、脱硝触媒の温度に応じて排ガスの流量を例えば現状維持するか或いは増加させるので、脱硝触媒に炭化水素がある程度吸着したとしても、煩雑な制御を伴うことなく簡便に脱硝触媒に吸着した炭化水素を蒸散させるか、燃焼しても排ガスが奪う熱量を大きくさせて異常温度上昇に至ることを抑制することができる。   According to this, whether the flow rate of exhaust gas is maintained, for example, in accordance with the temperature of the denitration catalyst at the stage where hydrocarbons are adsorbed to the denitration catalyst to some extent, rather than suppressing the adsorption of hydrocarbon gas to the denitration catalyst itself. Alternatively, even if hydrocarbons are adsorbed to some extent on the denitration catalyst, the hydrocarbons adsorbed on the denitration catalyst can be easily evaporated without complicated control, or the amount of heat taken away by the exhaust gas can be increased even if burned. It can suppress reaching abnormal temperature rise.

以上、本実施形態の脱硝触媒保護装置及び脱硝触媒保護方法について説明したが、本発明は本実施形態に限定されない。例えば、本実施形態は、脱硝装置の制御信号118に応じて自動で排ガスの流量等を制御する実施形態を示している。しかし、排ガスの流量等を自動制御するのではなく、積分信号110が閾値信号112を超えたら脱硝触媒が異常温度上昇する可能性があることの警報を発生させるとともに、脱硝触媒の温度に応じて排ガスの流量等をどのように制御すべきかを警報として発生させることができる。   The denitration catalyst protection device and the denitration catalyst protection method of this embodiment have been described above, but the present invention is not limited to this embodiment. For example, this embodiment shows an embodiment in which the flow rate of exhaust gas is automatically controlled in accordance with a control signal 118 of the denitration apparatus. However, instead of automatically controlling the exhaust gas flow rate or the like, if the integral signal 110 exceeds the threshold signal 112, an alarm is generated that the denitration catalyst may rise abnormally, and depending on the temperature of the denitration catalyst. It is possible to generate an alarm as to how the flow rate of exhaust gas should be controlled.

具体的には、脱硝触媒層の温度条件が第1の設定温度である350℃以上或いは第2の設定温度である250℃以下の場合は、排ガス流量制御として排ガスの流量の減少を禁止するとともに、ロック信号として装置の停止を禁止すべき内容の警報を発生し、脱硝触媒層の温度条件が第2の設定温度である250度を超え第1の設定温度である350℃未満の場合は、排ガス流量制御として排ガスの流量をあらかじめ設定された値まで上昇(増加)させるとともに、脱硝触媒の温度を第1の設定温度である350℃以上にすべき内容の警告を発生させることができる。   Specifically, when the temperature condition of the denitration catalyst layer is 350 ° C. or more which is the first set temperature or 250 ° C. or less which is the second set temperature, the reduction of the exhaust gas flow rate is prohibited as the exhaust gas flow rate control. , An alarm indicating that the stop of the apparatus should be prohibited is generated as a lock signal, and when the temperature condition of the denitration catalyst layer exceeds the second set temperature of 250 degrees and is less than the first set temperature of 350 degrees Celsius, As the exhaust gas flow rate control, the exhaust gas flow rate can be increased (increased) to a preset value, and a warning that the temperature of the denitration catalyst should be set to 350 ° C. or higher, which is the first preset temperature, can be generated.

これによれば、警報を受けた作業者等が警報の内容に沿って排ガスの流量等をマニュアルで制御することができ、その結果、脱硝触媒に炭化水素がある程度吸着したとしても、脱硝触媒に吸着した炭化水素が蒸散するか、燃焼しても排ガスが奪う熱量が大きくなるので異常温度上昇に至ることを抑制することができる。   According to this, the worker who received the alarm can manually control the flow rate of the exhaust gas in accordance with the content of the alarm, and as a result, even if hydrocarbons are adsorbed to some extent on the denitration catalyst, Even if the adsorbed hydrocarbons evaporate or burn, the amount of heat taken up by the exhaust gas increases, so that it is possible to suppress an abnormal temperature rise.

また、本実施形態で用いた積分器36は、通常の排ガス中に含まれる微量の炭化水素量が積算されて誤動作を起こすことを防止する為、入力信号に閾値を設けて一定上の場合に積分するようにすることができる。また、脱硝触媒の温度が一定時間以上350℃以上で保持された場合には、積分値がリセットされるようにしておくことにより、異常温度上昇の原因にまで至らない炭化水素の突発的な発生が積算されることが無く、警報の信頼度を向上させることができる。   In addition, the integrator 36 used in the present embodiment provides a threshold value for the input signal in order to prevent malfunction due to accumulation of a small amount of hydrocarbons contained in normal exhaust gas. It can be integrated. In addition, when the temperature of the denitration catalyst is maintained at 350 ° C or higher for a certain time or longer, the integral value is reset so that sudden generation of hydrocarbons that does not lead to an abnormal temperature rise occurs. Are not accumulated, and the reliability of the alarm can be improved.

10 ボイラ
12 脱硝触媒反応器
26,28 炭化水素計
30 差分器
32 脱硝装置制御ユニット
34 掛け算器
36 積分器
38 比較器
40 制御信号発生器
100,102 炭化水素濃度信号
104 差信号
106 排ガス総流量信号
108 積信号
110 積分信号
112 閾値信号
114 比較信号
116 温度信号
118 制御信号
DESCRIPTION OF SYMBOLS 10 Boiler 12 Denitration catalyst reactor 26, 28 Hydrocarbon meter 30 Difference unit 32 Denitration device control unit 34 Multiplier 36 Integrator 38 Comparator 40 Control signal generator 100, 102 Hydrocarbon concentration signal 104 Difference signal 106 Exhaust gas total flow signal 108 product signal 110 integral signal 112 threshold signal 114 comparison signal 116 temperature signal 118 control signal

Claims (6)

アンモニア或いは尿素が還元剤として吹き込まれた窒素酸化物を含有する排ガス中の前記窒素酸化物を還元する脱硝触媒の異常温度上昇を防止する脱硝触媒保護方法であって、
前記脱硝触媒に吸着された炭化水素量を計測し、該計測された炭化水素量があらかじめ設定された閾値を超えたら、前記脱硝触媒の温度に応じて前記排ガスの流量を制御することを特徴とする脱硝触媒保護方法。
A denitration catalyst protection method for preventing an abnormal temperature rise of a denitration catalyst for reducing the nitrogen oxide in exhaust gas containing nitrogen oxide blown with ammonia or urea as a reducing agent,
The amount of hydrocarbon adsorbed on the denitration catalyst is measured, and when the measured hydrocarbon amount exceeds a preset threshold, the flow rate of the exhaust gas is controlled according to the temperature of the denitration catalyst. A denitration catalyst protection method.
前記計測された炭化水素量があらかじめ設定された閾値を超え、
前記脱硝触媒の温度が第1の設定温度以上或いは前記第1の設定温度未満の第2の設定温度以下の場合、前記排ガスの流量の減少を禁止し、
前記脱硝触媒の温度が前記第2の設定温度を超え前記第1の設定温度未満の場合、前記排ガスの流量をあらかじめ設定された値まで上昇させるとともに前記脱硝触媒の温度を前記第1の設定温度以上にする請求項1の脱硝触媒保護方法。
The measured hydrocarbon amount exceeds a preset threshold,
When the temperature of the denitration catalyst is equal to or higher than the first set temperature or equal to or lower than the second set temperature lower than the first set temperature, the reduction of the exhaust gas flow rate is prohibited,
When the temperature of the denitration catalyst exceeds the second set temperature and is less than the first set temperature, the flow rate of the exhaust gas is increased to a preset value and the temperature of the denitration catalyst is set to the first set temperature. The method for protecting a denitration catalyst according to claim 1 as described above.
前記計測された炭化水素量があらかじめ設定された閾値を超えたら前記脱硝触媒が異常温度上昇する可能性があることの警報を発生させるとともに、
前記脱硝触媒の温度が第1の設定温度以上或いは前記第1の設定温度未満の第2の設定温度以下の場合、前記排ガスの流量の減少を禁止し、
前記脱硝触媒の温度が前記第2の設定温度を超え前記第1の設定温度未満の場合、前記排ガスの流量をあらかじめ設定された値まで上昇させるとともに前記脱硝触媒の温度を前記第1の設定温度以上にすべき内容の警報を発生させる請求項1の脱硝触媒保護方法。
When the measured hydrocarbon amount exceeds a preset threshold, an alarm is generated that the denitration catalyst may increase in abnormal temperature,
When the temperature of the denitration catalyst is equal to or higher than the first set temperature or equal to or lower than the second set temperature lower than the first set temperature, the reduction of the exhaust gas flow rate is prohibited,
When the temperature of the denitration catalyst exceeds the second set temperature and is less than the first set temperature, the flow rate of the exhaust gas is increased to a preset value and the temperature of the denitration catalyst is set to the first set temperature. The method for protecting a denitration catalyst according to claim 1, wherein an alarm having the above contents is generated.
アンモニア或いは尿素が還元剤として吹き込まれた窒素酸化物を含有する排ガス中の前記窒素酸化物を還元する脱硝触媒の異常温度上昇を防止する脱硝触媒保護装置であって、
前記脱硝触媒の排ガスの入口と出口の排ガス中の炭化水素の濃度を計測する炭化水素計と、前記脱硝触媒の排ガスの入口と出口の炭化水素の濃度の差分を求める差分計と、求められた差分と前記排ガスの流量計で得られた排ガス流量とを乗算する掛け算器と、該掛け算器で求められた乗算結果をあらかじめ設定された時間積分する積分器と、該積分器で求められた積分結果とあらかじめ設定された閾値とを比較する比較器と、該比較器で求められた比較結果と前記脱硝触媒の温度センサで得られた脱硝触媒の温度とに基づいて前記排ガスの流量を制御する制御手段とを備えてなることを特徴とする脱硝触媒保護装置。
A denitration catalyst protection device for preventing an abnormal temperature rise of a denitration catalyst for reducing the nitrogen oxide in exhaust gas containing nitrogen oxide blown with ammonia or urea as a reducing agent,
A hydrocarbon meter that measures the concentration of hydrocarbons in the exhaust gas at the inlet and outlet of the exhaust gas of the denitration catalyst, and a difference meter that calculates a difference in the concentration of hydrocarbons at the exhaust gas inlet and outlet of the denitration catalyst. A multiplier that multiplies the difference by the exhaust gas flow rate obtained by the exhaust gas flow meter, an integrator that integrates a multiplication result obtained by the multiplier for a preset time, and an integral obtained by the integrator A comparator for comparing the result with a preset threshold value, and the flow rate of the exhaust gas is controlled based on the comparison result obtained by the comparator and the temperature of the denitration catalyst obtained by the temperature sensor of the denitration catalyst. A denitration catalyst protection device comprising a control means.
前記制御手段は、前記比較器により前記積分器で求められた積分結果が前記あらかじめ設定された閾値を超えており、
前記脱硝触媒の温度が第1の設定温度以上或いは前記第1の設定温度未満の第2の設定温度以下の場合、前記排ガスの流量の減少を禁止し、
前記脱硝触媒の温度が前記第2の設定温度を超え前記第1の設定温度未満の場合、前記排ガスの流量をあらかじめ設定された値まで上昇させるとともに前記脱硝触媒の温度を前記第1の設定温度以上にする請求項4の脱硝触媒保護装置。
The control means, the integration result obtained by the integrator by the comparator exceeds the preset threshold,
When the temperature of the denitration catalyst is equal to or higher than the first set temperature or equal to or lower than the second set temperature lower than the first set temperature, the reduction of the exhaust gas flow rate is prohibited,
When the temperature of the denitration catalyst exceeds the second set temperature and is less than the first set temperature, the flow rate of the exhaust gas is increased to a preset value and the temperature of the denitration catalyst is set to the first set temperature. The denitration catalyst protection device according to claim 4 as described above.
前記制御手段は、前記比較器により前記積分器で求められた積分結果が前記あらかじめ設定された閾値を超えたら前記脱硝触媒が異常温度上昇する可能性があることの警報を発生させるとともに、
前記脱硝触媒の温度が第1の設定温度以上或いは前記第1の設定温度未満の第2の設定温度以下の場合、前記排ガスの流量の減少を禁止し、
前記脱硝触媒の温度が前記第2の設定温度を超え前記第1の設定温度未満の場合、前記排ガスの流量をあらかじめ設定された値まで上昇させるとともに前記脱硝触媒の温度を前記第1の設定温度以上にすべき内容の警報を発生させる請求項4の脱硝触媒保護方法。
The control means generates an alarm that the denitration catalyst may rise abnormally if the integration result obtained by the integrator exceeds the preset threshold value by the comparator,
When the temperature of the denitration catalyst is equal to or higher than the first set temperature or equal to or lower than the second set temperature lower than the first set temperature, the reduction of the exhaust gas flow rate is prohibited,
When the temperature of the denitration catalyst exceeds the second set temperature and is less than the first set temperature, the flow rate of the exhaust gas is increased to a preset value and the temperature of the denitration catalyst is set to the first set temperature. The method for protecting a denitration catalyst according to claim 4, wherein an alarm having the contents to be described above is generated.
JP2009041024A 2009-02-24 2009-02-24 Denitration catalyst protection method and denitration catalyst protection device Active JP5615502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041024A JP5615502B2 (en) 2009-02-24 2009-02-24 Denitration catalyst protection method and denitration catalyst protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041024A JP5615502B2 (en) 2009-02-24 2009-02-24 Denitration catalyst protection method and denitration catalyst protection device

Publications (2)

Publication Number Publication Date
JP2010194435A true JP2010194435A (en) 2010-09-09
JP5615502B2 JP5615502B2 (en) 2014-10-29

Family

ID=42819734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041024A Active JP5615502B2 (en) 2009-02-24 2009-02-24 Denitration catalyst protection method and denitration catalyst protection device

Country Status (1)

Country Link
JP (1) JP5615502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105824278A (en) * 2016-03-10 2016-08-03 大唐淮南洛河发电厂 Denitration monitoring method and system for 300-MW set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106668A (en) * 1977-03-02 1978-09-16 Tdk Corp Method and apparatus for deodorizing
JPS53147674A (en) * 1977-05-31 1978-12-22 Caterpillar Tractor Co Reduction of nitrogen oxides by two catalysts
JPS55114839A (en) * 1979-02-26 1980-09-04 Mazda Motor Corp Superheating preventer for catalytic converter
JPH02275211A (en) * 1989-04-14 1990-11-09 Babcock Hitachi Kk Abnormal temperature rise prevention method of denitration device or air preheater
JPH105548A (en) * 1996-06-26 1998-01-13 Babcock Hitachi Kk Refuse incinerating equipment
JP2008231966A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Exhaust emission control device for compression-ignition internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106668A (en) * 1977-03-02 1978-09-16 Tdk Corp Method and apparatus for deodorizing
JPS53147674A (en) * 1977-05-31 1978-12-22 Caterpillar Tractor Co Reduction of nitrogen oxides by two catalysts
JPS55114839A (en) * 1979-02-26 1980-09-04 Mazda Motor Corp Superheating preventer for catalytic converter
JPH02275211A (en) * 1989-04-14 1990-11-09 Babcock Hitachi Kk Abnormal temperature rise prevention method of denitration device or air preheater
JPH105548A (en) * 1996-06-26 1998-01-13 Babcock Hitachi Kk Refuse incinerating equipment
JP2008231966A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Exhaust emission control device for compression-ignition internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105824278A (en) * 2016-03-10 2016-08-03 大唐淮南洛河发电厂 Denitration monitoring method and system for 300-MW set
CN105824278B (en) * 2016-03-10 2019-01-29 大唐淮南洛河发电厂 A kind of 300MW unit denitration monitoring method and system

Also Published As

Publication number Publication date
JP5615502B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
US8480984B2 (en) Biomass boiler SCR NOx and CO reduction system
JP5297215B2 (en) Exhaust gas purification device
US20120023911A1 (en) Detection of exhaust particulate filter substrate failure
JP3924150B2 (en) Gas combustion treatment method and apparatus
US9062569B2 (en) Systems, methods, and apparatus for regenerating a catalytic material
JP2008142602A (en) Mercury removing method and mercury removing system
US11174770B2 (en) Power generating systems and methods for reducing startup NOx emissions in fossile fueled power generation system
JP2011027111A (en) Method for monitoring hydrocarbon level of diesel particulate filter
CN102233239A (en) System and method for controlling and reducing NOx emissions
BR112018002339B1 (en) METHOD AND SYSTEM TO REDUCE PARTICULATE MATTER IN AN EXHAUST GAS
KR101699641B1 (en) Method and apparatus for treating exhaust gas
JP5615502B2 (en) Denitration catalyst protection method and denitration catalyst protection device
US9046025B2 (en) Selective catalytic reduction device monitoring system
US9084966B2 (en) Diesel oxidation catalyst aging level determination using NOX sensor NO2 interference
JP3558737B2 (en) Exhaust gas denitration method and exhaust gas treatment method
CN108779695B (en) Method for optimizing the consumption of a reducing agent in an exhaust line of a motor vehicle
CN107407218A (en) Torque control system for DPF regeneration
JP6349535B2 (en) Exhaust gas purification device with exhaust gas temperature raising device
JP2013205003A (en) Non-catalytic denitration method and device
JP5418774B2 (en) Flue gas denitration equipment
JP5230698B2 (en) Waste monitoring device
WO2012026114A1 (en) Exhaust gas processing device
JP5591158B2 (en) COS processing apparatus and COS processing method in product gas
JP5968206B2 (en) Exhaust gas treatment equipment
JP6489743B2 (en) Mercury removal equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350