JP2010194042A - Structure for living body - Google Patents

Structure for living body Download PDF

Info

Publication number
JP2010194042A
JP2010194042A JP2009041057A JP2009041057A JP2010194042A JP 2010194042 A JP2010194042 A JP 2010194042A JP 2009041057 A JP2009041057 A JP 2009041057A JP 2009041057 A JP2009041057 A JP 2009041057A JP 2010194042 A JP2010194042 A JP 2010194042A
Authority
JP
Japan
Prior art keywords
micro
materials
molded
living body
molded products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009041057A
Other languages
Japanese (ja)
Inventor
Mariko Takayama
満利子 高山
Masahiko Suzuki
正彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Corp
Original Assignee
Pilot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Corp filed Critical Pilot Corp
Priority to JP2009041057A priority Critical patent/JP2010194042A/en
Publication of JP2010194042A publication Critical patent/JP2010194042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for a living body having high strength such as an artificial bone, a bone prosthetic material, and a cell-culturing carrier and the like, capable of fixing and supporting cells and invading cells from various directions, obtaining enough efficiency for fixation, increase, and culture of cells, and promoting the growth. <P>SOLUTION: A structure for a living body configured with an aggregate of the fine forms is obtained by kneading and forming at least a main material and a binding material to produce a raw material of a columnar fine form having at least one penetrating hole in the longitudinal direction, and collecting by the raw materials at random to the three-dimensional direction and interconnected, and then by drying or calcining. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、貫通孔を有する微小成形物からなる生体用構造体に関し、さらに詳しくは骨補填材等の生体組織補填材や細胞培養担体等に用いられ、骨や血管となる細胞を定着、担持させ、増殖、培養させるのに適する生体用構造体に関するものである。   The present invention relates to a biological structure composed of a micro-molded product having a through-hole, and more specifically, used for a biological tissue filling material such as a bone filling material, a cell culture carrier, etc., to fix and carry cells that become bones or blood vessels. It is related with the structure for biological bodies suitable for making it propagate, culture | cultivate and culture | cultivate.

従来から骨腫瘍摘出や外傷等による骨の欠損や細胞の培養に対し、金属やセラミック等からなる成形体を生体組織補填材あるいは細胞培養基盤として用いることが検討されている。この成形体としては、例えば、骨芽細胞等の細胞を進入、定着させ、増殖あるいは培養させるために多数の気孔を有する多孔質体が知られている。しかし、通常の多孔質体は製造上気孔の大きさや分布を制御することが困難であるため、細胞の進入がスムーズにいかない場合が多々生じ、十分に生長が促進されないという問題がある。   Conventionally, it has been studied to use a molded body made of metal, ceramic or the like as a biological tissue filling material or a cell culture base for bone loss or cell culture due to bone tumor extraction or trauma. As this molded body, for example, a porous body having a large number of pores for allowing cells such as osteoblasts to enter, settle, proliferate or culture is known. However, since it is difficult to control the size and distribution of pores in the production of a normal porous body, there are many cases where cells do not enter smoothly, and there is a problem that growth is not sufficiently promoted.

このため、フォーム状のものや一定方向の貫通孔を多数有するハニカム状のもの等種々検討されている。例えばフォーム状成形体は、樹脂フォームにセラミックスラリーを含浸させ、樹脂部を脱脂したのち焼結して得られるもので、三次元網状構造体として知られている。この成形体は、前記多孔質体のものと比べると、気孔を大きくできると同時に気孔径がある程度設定でき、しかも多方向性を有する等好ましい特徴を有する。しかし、製造上骨格部にクラックが発生しやすく、強度が極端に低くなるという問題があり、また、一通の貫通部が全くないため、細胞の増殖が十分に促進させることが出来ないという問題がある。   For this reason, various studies have been made such as foam-like ones and honeycomb-like ones having many through holes in a certain direction. For example, a foam-shaped molded body is obtained by impregnating a resin foam with a ceramic slurry, degreasing a resin portion and then sintering, and is known as a three-dimensional network structure. Compared with the porous body, this molded body has preferable characteristics such as being able to enlarge the pores and setting the pore diameter to some extent and having multi-directionality. However, there is a problem that cracks are easily generated in the skeleton part due to production, and the strength becomes extremely low, and there is no one penetration part, so that the proliferation of cells cannot be sufficiently promoted. is there.

他の例として押出成形等により得られるハニカム形状のものは、気孔の制御が容易であり、かつ均一な径を有する一通の貫通孔が得られるため細胞の十分な生長が望まれ、強度も安定したものであるが、貫通孔が全て一定方向に向いているため他方向からの細胞進入が困難となり、場所によっては細胞を定着、担持させ、増殖、培養させるのに十分な効果が得られない。   As another example, a honeycomb-shaped one obtained by extrusion molding or the like can easily control the pores, and a single through-hole having a uniform diameter is obtained, so that sufficient cell growth is desired and the strength is stable. However, since all the through-holes are oriented in a certain direction, it becomes difficult to enter cells from other directions, and depending on the location, sufficient effects cannot be obtained for colonizing, supporting, growing and culturing cells. .

このため、貫通孔を有するビーズ状の成形体つまり球形を主体とする塊状物を集合させて用いる方法が知られている(特許文献1参照)。この方法を用いることにより、一定の長さの貫通孔を有し、しかもその方向が多方向にわたる構造が可能となるのである。   For this reason, a method is known in which bead-shaped molded bodies having through-holes, that is, aggregates mainly composed of spherical shapes, are used together (see Patent Document 1). By using this method, it is possible to have a structure having a through-hole having a certain length and extending in multiple directions.

しかしながら、上記方法では例えば骨補填材として用いる場合、欠陥部分にビーズ状のものをそのままバラで集合させて埋植させるため、成形体が埋植後に移動してしまったり、あるいは埋植中にとび散ったりする等管理上の問題が生じ、また、ビーズどうしを結合した場合でも、貫通孔の孔方向のランダムさが明瞭には得られ難い等の問題もある。   However, in the above method, for example, when used as a bone grafting material, beads are gathered as they are in the defective part and embedded as they are, so that the molded body may move after implantation or jump during implantation. Management problems such as scattering occur, and even when beads are joined together, there is a problem that it is difficult to clearly obtain randomness in the direction of the through holes.

特開2003−335574号公報JP 2003-335574 A

本発明は、多方向からの細胞の進入が可能であり、細胞の定着、増殖、培養の十分な効果が得られ生長が促進される、強度が高い、生体用構造体を提供するものである。   The present invention provides a high-strength biological structure capable of entering cells from multiple directions, obtaining sufficient effects of cell colonization, proliferation and culture, promoting growth, and having high strength. .

本発明は、柱状の微小成形物の素材を作製し、該素材を三次元方向にランダムに集合させて素材どうしを接合させた後、乾燥もしくは焼成するという一連のプロセスを経て製造される微小成形物の集合体からなる生体用構造体とすること等により、上記課題が解決され、本発明を完成するに至った。すなわち、本発明は、
「1.少なくとも主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製し、該素材を三次元方向にランダムに集合させて素材どうしを接合させた後、乾燥もしくは焼成することにより得られる微小成形物の集合体からなる生体用構造体。
2.前記素材どうしの接合が、該素材の表面を活性化処理して接合することを特徴とする、第1項に記載の生体用構造体。
3.前記素材どうしの接合が、該素材の表面に粘着材を塗布して接合することを特徴とする、第1項に記載の生体用構造体。
4.少なくとも主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製し、該素材を焼成することにより得られた柱状の微小成形物の表面を粘着材で塗布し、三次元方向にランダムに集合させて微小成形物を接合させた後、乾燥もしくは焼成することにより得られる微小成形物の集合体からなる生体用構造体。
5.生体用構造体が微小成形物の素材間で三次元網状の気孔を有するように、該素材を三次元方向にランダムに集合させて形成することを特徴とする、第1項ないし第4項のいずれか1項に記載の生体用構造体。
6.主材がリン酸カルシウムであることを特徴とする、第1項ないし第5項のいずれか1項に記載の生体用構造体。」に関する。
The present invention is a micro-molding manufactured through a series of processes in which a material of a columnar micro-molded product is produced, the materials are assembled randomly in a three-dimensional direction, the materials are joined together, and then dried or fired. The above-described problems have been solved by using a living body structure composed of a collection of objects, and the present invention has been completed. That is, the present invention
"1. At least the main material and the binder are kneaded and molded to produce a columnar micro-molded material having at least one through hole in the longitudinal direction, and the material is assembled randomly in the three-dimensional direction. A living body structure comprising an aggregate of micromolded articles obtained by bonding or joining and drying or firing.
2. The biological structure according to claim 1, wherein the joining of the materials is performed by activating the surfaces of the materials.
3. The biological structure according to claim 1, wherein the bonding between the materials is performed by applying an adhesive material to the surfaces of the materials.
4). A columnar micromolded material obtained by kneading at least a main material and a binder and forming a columnar micromolded material having at least one through hole in the longitudinal direction and firing the material. A biological structure comprising an assembly of micro-molded products obtained by applying a surface with an adhesive material, randomly assembling them in a three-dimensional direction, joining the micro-molded products, and drying or firing.
5). Items 1 to 4 are characterized in that the living body structure is formed by randomly assembling the materials in a three-dimensional direction so as to have three-dimensional network pores between the materials of the micro-molded product. The living body structure according to any one of the above.
6). 6. The biological structure according to any one of items 1 to 5, wherein the main material is calcium phosphate. ".

本発明によれば、柱状の微小成形物の素材を作製し、該素材を三次元方向にランダムに集合させ素材どうしを接合した後に微小成形物の集合体からなる生体用構造体としたため、微小成形物の貫通孔が適度の直線性を有し、しかも孔方向が任意の方向にランダムに向いているため、血管の形成や細胞の増殖を促進させると同時に、多方向からの細胞進入が容易となる。したがって、埋入の仕方や方向を気にすることなく容易に埋め込むことができ、更に、微小成形物の貫通孔の孔径や長さ、生体用構造体の大きさを任意に変えることが可能であるため、培養する細胞の種類や量あるいは補填場所に適した形状に成形することができる等、優れた効果を奏するものである。   According to the present invention, a columnar micro-molded material is prepared, and the material is randomly assembled in a three-dimensional direction, and the materials are joined to each other. The through-holes in the molded product have moderate linearity, and the direction of the holes is randomly oriented in any direction, facilitating the formation of blood vessels and cell proliferation, and at the same time easy cell entry from multiple directions It becomes. Therefore, it is possible to easily embed without worrying about the way and direction of embedding, and it is possible to arbitrarily change the diameter and length of the through hole of the micro-molded product and the size of the body structure. Therefore, it has excellent effects such as being able to be formed into a shape suitable for the type and amount of cells to be cultured or a place for supplementation.

本発明の生体用構造体の一例を示す正面図である。It is a front view which shows an example of the biological body of this invention. 本発明に使用する微小成形物の一例を示す斜視図である。It is a perspective view which shows an example of the micromolding used for this invention.

本発明は、少なくとも主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製し、該素材を三次元方向にランダムに集合させて素材どうしを接合した後、乾燥もしくは焼成することにより得られる微小成形物の集合体からなる生体用構造体とすること等で達成される。   In the present invention, at least a main material and a binder are kneaded, molded to produce a columnar micro-molded material having at least one through-hole in the longitudinal direction, and the materials are randomly assembled in a three-dimensional direction. This is achieved by, for example, forming a living body structure composed of an assembly of micro-molded products obtained by joining materials together and then drying or firing.

本発明の主材としては、骨補填材や細胞培養担体等に用いられている従来公知のものであればいずれの材料を使用してもよく、例えば金属、セラミック、樹脂等が挙げられるが、中でも酸化アルミニウム、酸化ジルコニウム、リン酸カルシウム等のセラミックが好ましく、特にはリン酸カルシウム系のセラミックが生体材に近い特質を有することから好適であり、具体的には例えば第一リン酸カルシウム、メタリン酸カルシウム、第二リン酸カルシウム、ピロリン酸カルシウム、リン酸三カルシウム、リン酸四カルシウム、リン酸八カルシウム、ハイドロキシアパタイト、Ca不足ハイドロキシアパタイト等が挙げられる。これら主材は、単独あるいは二種以上を組み合わせて用いることができる。   As the main material of the present invention, any conventionally known material used for bone grafting materials, cell culture carriers and the like may be used, and examples thereof include metals, ceramics, resins, etc. Among these, ceramics such as aluminum oxide, zirconium oxide, and calcium phosphate are preferable, and in particular, a calcium phosphate-based ceramic is preferable because it has properties close to that of a biological material. Examples include calcium pyrophosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, hydroxyapatite, and Ca-deficient hydroxyapatite. These main materials can be used alone or in combination of two or more.

本発明に用いる結合材としては、樹脂、生体吸収性高分子、炭素等が挙げられ、より具体的には、ポリビニルアルコール、ポリビニルピロリドン、コラーゲン、ゼラチン等が挙げられる。これら結合材は、単独あるいは二種以上を組み合わせて用いることができる。   Examples of the binder used in the present invention include resins, bioabsorbable polymers, carbon, and the like, and more specifically, polyvinyl alcohol, polyvinyl pyrrolidone, collagen, gelatin, and the like. These binders can be used alone or in combination of two or more.

前記主材、結合材のほかに他の材料が添加されていてもよく、例えば主材、結合材の材料として用いられる以外のセラミック、樹脂や生体用として好適に用いられている材料が挙げられる。   Other materials may be added in addition to the main material and the binder, and examples thereof include ceramics other than those used as the main material and the material for the binder, resins and materials suitably used for living bodies. .

本発明は、少なくとも主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製し、該素材を三次元方向にランダムに集合させて素材どうしを接合させた後、乾燥もしくは焼成すること等により微小成形物の集合体からなる生体用構造体が得られる。   In the present invention, at least a main material and a binder are kneaded, molded to produce a columnar micro-molded material having at least one through-hole in the longitudinal direction, and the materials are randomly assembled in a three-dimensional direction. After the raw materials are joined together, a biological structure composed of an assembly of micro-molded products can be obtained by drying or firing.

主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製する方法としては、主材に結合材を加え、必要に応じて水や有機溶剤等の、溶媒を加え通常知られている方法により混練した後、押出成形、射出成形、プレス成形等により、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材として作製することが出来る。このとき、外径、内径、長さを適宜調整することで、狙いとする微小成形物の素材が作製される。   As a method of kneading and molding the main material and the binder, and forming a columnar micro-molded material having at least one through hole in the longitudinal direction, the binder is added to the main material, and water or Columnar micro-molded material having at least one through hole in the longitudinal direction after adding a solvent such as an organic solvent and kneading by a generally known method, followed by extrusion molding, injection molding, press molding, etc. Can be produced. At this time, by appropriately adjusting the outer diameter, the inner diameter, and the length, a target material for a minute molded article is produced.

前記素材を三次元方向にランダムに集合させて素材どうしを接合させる方法は、少なくとも前記素材複数個を集合させて押圧等により素材どうしを接合させる。このとき、素材どうしの接合が、該素材の表面を活性化処理して接合することが好ましい。素材の表面を活性化処理するには、水や有機溶剤等の、溶媒を塗布すること等により、行うことが出来る。溶媒としては、1,4−ジオキサン等のエーテル類、塩化メチレンやクロロホルム等の含ハロゲン系溶剤類、酢酸エチル等のエステル類、メタノールやエタノール等のアルコール類、アセトン等のケトン類、等の有機溶剤、水等が挙げられ、単独あるいは二種以上組み合わせて用いることができる。最適には、作業環境等の観点から、水である。さらに、微小成形物の集合体からなる生体用構造体を得る為に行う乾燥等の速度を向上させる目的で、活性化処理をする為に用いる水は、水溶性揮発性有機溶剤を併用して混合溶媒とすることができる。水溶性揮発性有機溶剤としては、メタノール、エタノール等のアルコール類、アセトン等のケトン類等が挙げられる。   The method of joining the materials by randomly gathering the materials in a three-dimensional direction gathers at least a plurality of the materials and joins the materials by pressing or the like. At this time, it is preferable that the materials are joined by activating the surfaces of the materials. The surface of the material can be activated by applying a solvent such as water or an organic solvent. Examples of the solvent include ethers such as 1,4-dioxane, halogen-containing solvents such as methylene chloride and chloroform, esters such as ethyl acetate, alcohols such as methanol and ethanol, ketones such as acetone, and the like. A solvent, water, etc. are mentioned, It can use individually or in combination of 2 or more types. Optimally, it is water from the viewpoint of the working environment. Furthermore, for the purpose of improving the speed of drying and the like performed to obtain a biological structure composed of an assembly of micromolded products, water used for the activation treatment is combined with a water-soluble volatile organic solvent. It can be a mixed solvent. Examples of the water-soluble volatile organic solvent include alcohols such as methanol and ethanol, and ketones such as acetone.

なお、本発明の素材の表面を活性化処理するということは、溶媒を塗布することにより、柱状の微小成形物の素材の表面の結合材が溶媒に濡れ、結合材の一部が溶解、膨潤等の変化を起こすことにより、該素材が集合して接合する能力を発現することである。素材の表面を活性化処理するには、製造がしやすいという観点等から、溶媒を前記素材の表面に散布、あるいは、前記素材を溶媒に浸漬する方法をとることが好ましい。   The surface of the material of the present invention is activated, which means that by applying a solvent, the binding material on the surface of the columnar micro-molded material becomes wet with the solvent, and a part of the binding material dissolves and swells. By causing such changes, the ability of the materials to gather and join is expressed. In order to activate the surface of the material, it is preferable to take a method of spraying a solvent on the surface of the material or immersing the material in a solvent from the viewpoint of easy production.

また、柱状の微小成形物の素材どうしの接合が、該素材の表面に粘着材を塗布して接合しても良い。素材の表面に粘着材を塗布するには、素材を作製する時、素材を三次元方向にランダムに集合させた後等、に行うことが出来る。塗布方法としては、製造がしやすいという観点等から、素材の表面に散布、あるいは、前記素材を粘着材溶液中に浸漬する方法をとることが好ましい。粘着材を用いる場合、粘着材の種類としては、天然樹脂、合成樹脂あるいはコラーゲン、ゼラチン等が挙げられ、これらの水溶液等を用いても良い。粘着材を用いた場合、実用上は十分であるが、素材どうしの接合が、素材の表面を活性化処理して接合する場合に比べ、若干ランダムさが劣る傾向が見られ、製造上やや煩雑になる傾向が見られる。   Moreover, the joining of the raw materials of the columnar micro-molded product may be performed by applying an adhesive material to the surface of the raw material. The adhesive material can be applied to the surface of the material, for example, when the material is randomly assembled in a three-dimensional direction. As a coating method, it is preferable to take a method of spraying on the surface of the material or immersing the material in an adhesive material solution from the viewpoint of easy manufacture. In the case of using an adhesive material, examples of the adhesive material include natural resins, synthetic resins, collagen, gelatin, and the like, and these aqueous solutions may be used. When using an adhesive material, it is practically sufficient, but the joining of materials tends to be slightly inferior in randomness compared to the case where the surfaces of the materials are activated and joined, which is somewhat complicated in production. There is a tendency to become.

前記素材を三次元方向にランダムに集合させて素材どうしを接合させた後、乾燥もしくは焼成して微小成形物の集合体として生体用構造体を得る方法は、素材を三次元方向にランダムに集合させて素材どうしを接合させた後、常温または加温による乾燥、もしくは、600℃以上の高温で焼成することにより微小成形物の集合体からなる生体用構造体が得られる。   The method of gathering the materials randomly in the three-dimensional direction and joining the materials together, followed by drying or firing, to obtain a biological structure as an aggregate of micro-molded products is assembling the materials randomly in the three-dimensional direction. After joining the materials together, a living body structure made of an aggregate of micro-molded products can be obtained by drying at room temperature or heating, or baking at a high temperature of 600 ° C. or higher.

このとき、乾燥のみの場合には、素材どうしの接合が素材の表面を活性化処理をして接合した場合、該素材中の結合材が媒介となり、素材どうしの接合が素材の表面に粘着材を塗布して接合した場合は、粘着材自体が媒介となり、微小成形物の集合体からなる生体用構造体が得られるのである。また、焼成する場合には、素材どうしの接合に素材の表面を活性化処理して接合した場合は、素材中の主材の焼結力および/または結合材が焼成することにより得られた炭素が媒介となり、微小成形物の集合体からなる生体用構造体が得られる。更に、素材どうしの接合に素材の表面に粘着材を塗布して接合した場合は、焼成により粘着材中から得られた炭素が媒介となり、微小成形物の集合体からなる生体用構造体が得られる。   At this time, in the case of only drying, when the bonding between the materials is performed by activating the surface of the material, the bonding material in the material serves as a medium, and the bonding between the materials is bonded to the surface of the material. When the material is applied and bonded, the adhesive material itself serves as a medium, and a biological structure composed of an assembly of micro-molded products is obtained. In addition, in the case of firing, when the surfaces of the materials are activated to join the materials, the carbon obtained by firing the sintering force of the main material in the materials and / or the binder is fired. As a medium, a biological structure composed of an aggregate of micro-molded products can be obtained. In addition, when adhesive materials are applied to the surfaces of the materials for bonding, the carbon obtained from the pressure-sensitive adhesive material is mediated by firing, and a biological structure consisting of aggregates of micro-molded products is obtained. It is done.

また、本発明は、少なくとも主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製し、該素材を焼成することにより得られた微小成形物の表面に粘着材を塗布し、三次元方向にランダムに集合させてさせた後、乾燥もしくは焼成することにより微小成形物の集合体からなる生体用構造体を得ることが出来る。このとき、微小成形物の表面に粘着材を塗布する方法は、前記素材どうしの接合に、素材の表面に粘着材を塗布して接合する方法と同じ方法を用いることができる。更に、微小成形物の表面に粘着材を塗布し、三次元方向にランダムに集合させて微小成形物を接合させた後、乾燥もしくは焼成して微小成形物の集合体として生体用構造体を得る方法についても、前記素材を三次元方向にランダムに集合させて素材どうしを接合させた後、乾燥もしくは焼成して微小成形物の集合体として生体用構造体を得る方法と同じ方法で得ることが出来る。   Further, the present invention is obtained by kneading at least a main material and a binder, forming a columnar micro-molded material having at least one through-hole in the longitudinal direction, and firing the material. An adhesive material is applied to the surface of the micromolded product, randomly assembled in the three-dimensional direction, and then dried or baked to obtain a biological structure composed of the aggregate of micromolded products. At this time, the method of applying the adhesive material to the surface of the micro-molded product can be the same method as the method of applying the adhesive material to the surface of the material and joining the materials. Further, an adhesive material is applied to the surface of the micro-molded product, and the micro-molded product is joined in a random manner in the three-dimensional direction, and then dried or fired to obtain a biological structure as an aggregate of the micro-molded product. As for the method, the materials can be obtained in the same manner as the method of obtaining the living body structure as an aggregate of micro-molded products by randomly assembling the materials in a three-dimensional direction and joining the materials together, followed by drying or firing. I can do it.

次に本発明の生体用構造体について、図面を用いて説明する。図1は、本発明の生体用構造体1を示す正面図で、図2は本発明に使用する微小成形物2を示す斜視図である。本発明の微小成形物2は、柱状で長手方向に少なくとも1つの貫通孔3を有し、この貫通孔3の方向を三次元方向にランダムに集合させ、微小成形物2の集合体からなる生体用構造体1を構成し、集合体中の微小成形物2間の間隙には、三次元網状の気孔4が形成されている。該気孔4は、貫通孔3が三次元方向にランダムに配置することにより形成されるが、三次元網状の気孔4を有すると本発明の生体用構造体が、血管の形成や細胞の増殖を促進させると同時に多方向からの細胞進入が容易となる効果を、更に大きくすることが出来る。   Next, the biological structure of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing a living body structure 1 of the present invention, and FIG. 2 is a perspective view showing a micro-molded product 2 used in the present invention. The micro-molded product 2 of the present invention has a columnar shape and has at least one through-hole 3 in the longitudinal direction, the direction of the through-hole 3 is randomly gathered in a three-dimensional direction, and is a living body composed of an assembly of micro-molded products 2. The structure 1 for a structure is comprised, and the three-dimensional network-like pore 4 is formed in the gap | interval between the micromolded products 2 in an assembly. The pores 4 are formed by randomly arranging the through-holes 3 in the three-dimensional direction. However, when the three-dimensional network-like pores 4 are provided, the biological structure of the present invention causes the formation of blood vessels and the proliferation of cells. At the same time, the effect of facilitating cell entry from multiple directions can be further increased.

本発明に使用する微小成形物2の外形形状としては柱状のものが用いられ、例えば円柱状、三角柱状、四角柱状、六角柱状等が挙げられる。これらの微小成形物は、一種類の外形形状のもの、あるいは、二種類以上の外形形状のものを組み合わせて、用いることができる。柱状とすることで、微小成形物を三次元方向にランダムに配置することが容易となり、さらにその結果として微小成形物2間の間隙に目的とする気孔4が得られ易くなるのである。すなわち、柱状の微小成形物をランダムに集合させるとその表面の一部のみが相互に接合し合うようになり、表面の大部分が接合しないまま三次元的に入り組んだ状態となるため、結果としてこの空隙部が微小成形物間の三次元網状の気孔を呈することになるのである。微小成形物は柱状であればいずれの形状のものも用いることができるが、特には三次元網状の気孔4が明瞭な形態を保持した状態のものが得られ易いという点で、円柱状であることが好ましい。   As the external shape of the micro-molded product 2 used in the present invention, a columnar shape is used, and examples thereof include a columnar shape, a triangular column shape, a quadrangular column shape, and a hexagonal column shape. These micro-molded products can be used in combination of one type of outer shape or two or more types of outer shapes. By using the columnar shape, it becomes easy to randomly arrange the micro-molded products in the three-dimensional direction, and as a result, the desired pores 4 are easily obtained in the gaps between the micro-molded products 2. That is, when the columnar micro-molded products are assembled at random, only a part of the surface is joined to each other, and most of the surface is in a three-dimensional intricate state without joining. This void portion presents three-dimensional network pores between the micro-molded products. The micro-molded product can be used in any shape as long as it is columnar, but in particular, it is cylindrical in that a three-dimensional network-like pore 4 having a clear shape is easily obtained. It is preferable.

本発明の生体用構造体における微小成形物2のL/D(L:長さ、D:外径)は任意であるが、好ましくは1.5以上がよく、特には3以上が好適である。L/Dが1.5未満だと、限りなく円板状になるかあるいは球状化してしまうため、貫通孔の孔方向をランダムに位置させようとしても密に重なり易くなり、生体用構造体1の作製が困難となる恐れがある。その結果、微小成形物間の間隙に気孔を得られにくくなる可能性がある。   The L / D (L: length, D: outer diameter) of the micromolded product 2 in the biological structure of the present invention is arbitrary, but is preferably 1.5 or more, and particularly preferably 3 or more. . When L / D is less than 1.5, it becomes infinitely disk-shaped or spheroidized, so that it is easy to overlap closely even if the hole directions of the through holes are randomly positioned. There is a risk that it will be difficult to manufacture. As a result, it may be difficult to obtain pores in the gaps between the micro-molded products.

微小成形物2が有する貫通孔3の孔径は、細胞、血管、骨等が十分に生成し、生長できる範囲であればよく、使用条件に応じて適宜設定できるが、例えば10〜1000μm、特には細胞進入に適切な径である200〜1000μmの範囲が好ましい。また、貫通孔の数は少なくとも1つであり、代表的には図2のようにパイプ形状のものが好ましいが、複数の貫通孔を有するハニカム状のものも用いることができ、さらに1つの柱状の微小成形物において孔径の異なった貫通孔を有するものも用いることができる。貫通孔の断面形状は円形、楕円形、三角形、四角形、六角形等任意であるが、円形のものが好適に用いられる。   The pore diameter of the through-hole 3 included in the micro-molded product 2 may be set as long as cells, blood vessels, bones, etc. are sufficiently generated and can be grown, and can be set as appropriate according to use conditions, for example, 10 to 1000 μm. A range of 200 to 1000 μm, which is a diameter suitable for cell entry, is preferable. Further, the number of through holes is at least one, and typically a pipe shape is preferable as shown in FIG. 2, but a honeycomb shape having a plurality of through holes can also be used, and one columnar shape Of these micro-molded products, those having through-holes having different hole diameters can be used. The cross-sectional shape of the through hole is arbitrary, such as a circle, an ellipse, a triangle, a quadrangle, and a hexagon, but a circular one is preferably used.

本発明の生体用構造体は、柱状の微小成形物の表面の一部である接触部の接合だけで構造体を維持しているのであるが、強度が高い柱状の微小成形物を三次元的にランダムに絡み合い組み合わさった集合形状としているために、つぶれにくく破壊されにくいという特徴を有する。   The living body structure of the present invention maintains the structure only by joining the contact portions that are part of the surface of the columnar micromolded product. Since it is a collective shape that is randomly entangled with each other, it has a feature that it is difficult to be crushed and broken.

本発明において素材どうしもしくは微小成形物どうしの接合に、粘着材を塗布して接合した場合、微小成形物の表面に塗布された粘着材あるいは焼成により粘着材中から得られた炭素と、微小成形物に内包された材質とが同材質の場合には接合力が向上し、破壊されにくい等の特徴を有する等特に好ましいものとなる。   In the present invention, when the adhesive material is applied and bonded to each other between the raw materials or the micro-molded products, the adhesive material applied to the surface of the micro-molded product or the carbon obtained from the adhesive material by firing, and the micro-molding In the case where the material contained in the object is the same material, the bonding force is improved, and it is particularly preferable that the material is difficult to break.

さらに、素材どうしの接合を素材の表面を活性化処理して接合した場合、余分な材料が入り込まず、かつ作り勝手がよく、工程上の煩雑さが少ないのでランダムさの程度を十分に向上することができ、結果として微小成形物2間の間隙がそのまま明瞭な形態を保持した状態のものが得られ易くなり、三次元網状の気孔4の有効な活用が可能となる等種々の利点を有する点で好ましい。   Furthermore, when joining materials together by activating the surfaces of the materials, extra materials do not enter, it is easy to make, and there is less complexity in the process, so the degree of randomness is sufficiently improved. As a result, it is easy to obtain a state in which the gap between the micro-molded products 2 maintains a clear shape as it is, and there are various advantages such that the three-dimensional network-like pores 4 can be effectively used. This is preferable.

この様に、本発明の生体用構造体の製造プロセスによれば、柱状の微小成形物の素材を作製し、該素材を三次元方向にランダムに集合させて素材どうしを接合させた後、乾燥もしくは焼成することにより微小成形物の集合体からなる生体用構造体を得ることができ、従来の課題を解決した優れた生体用構造体が得られるのである。   Thus, according to the manufacturing process of the biological structure of the present invention, a columnar micromolded material is produced, the materials are assembled randomly in a three-dimensional direction, and the materials are joined together, and then dried. Alternatively, it is possible to obtain a living body structure composed of an assembly of micro-molded products by firing, and to obtain an excellent living body structure that solves the conventional problems.

以下、本発明の実施例を説明するが、本発明はこれによって限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1
リン酸三カルシウム(主材) 80質量部
ポリビニルアルコール(結合材) 20質量部
イオン交換水 100質量部
上記配合を混練後に押出成形をして、長さ2.0mm、外径0.5mm、孔径300μmの貫通孔を有する円柱状の微小成形物の素材を多数作製した。この素材を、一辺が0.5cmの立方内にランダムに集合させた。この集合させたものに、水を散布し、素材中の結合材を水に濡らして素材の表面を活性化した後、軽く押圧することで、前記素材どうしが接合した状態でその集合物が得られた。この集合物を、酸素雰囲気中において、最高温度1100℃で焼成し、リン酸三カルシウムからなる貫通孔の方向が三次元方向にランダムな微小成形物の集合体からなる生体用構造体を得た。この生体用構造体は、主材の焼結力が媒介となり、円柱状の微小成形物どうしが接合していた。
この生体用構造体は白色でランダムさの程度がきわめて良好であり、破壊されにくい等の特徴を有し、さらに微小成形物間の間隙には、三次元網状の構造を有する気孔が明瞭に形成された。この生体用構造体をうさぎに対する骨充填材として埋設し、4週間後に取り出したところ、貫通孔内および間隙の気孔内に骨芽細胞が増殖し、十分な生長がみられた。
Example 1
Tricalcium phosphate (main material) 80 parts by mass
Polyvinyl alcohol (binding material) 20 parts by mass
100 parts by mass of ion-exchanged water The above compound was kneaded and extruded to produce a large number of cylindrical micromolded materials having through-holes having a length of 2.0 mm, an outer diameter of 0.5 mm, and a pore diameter of 300 μm. This material was assembled at random in a cube with a side of 0.5 cm. After spraying water on this aggregate, wetting the binder in the material with water to activate the surface of the material, and then pressing it lightly, the aggregate is obtained with the materials joined together. It was. This aggregate was baked in an oxygen atmosphere at a maximum temperature of 1100 ° C. to obtain a biological structure composed of aggregates of micro-molded articles in which the direction of the through hole made of tricalcium phosphate was random in the three-dimensional direction. . In this biological structure, the sintering force of the main material serves as a medium, and cylindrical micro-molded products are joined to each other.
This living body structure is white and has a very good degree of randomness and is not easily destroyed. In addition, pores with a three-dimensional network structure are clearly formed in the gaps between micro-molded products. It was done. When this biological structure was embedded as a bone filler for rabbits and taken out after 4 weeks, osteoblasts proliferated in the through holes and in the pores of the gaps, and sufficient growth was observed.

実施例2
実施例1と同じ方法により、円柱状の微小成形物の素材を多数作製した。この素材を、一辺が0.5cmの立方内にランダムに集合させた。この集合させたものに、水/エタノール(1/1質量比)混合溶媒を散布し、素材中の結合材を水に濡らして素材の表面を活性化した後、軽く押圧することで、前記素材どうしが接合した状態でその集合物が得られた。この集合物を、アルゴン雰囲気中において、最高温度1100℃で焼成し、リン酸三カルシウムおよび炭素からなる貫通孔の方向が三次元方向にランダムな微小成形物の集合体からなる生体用構造体を得た。この生体用構造体は、アルゴン雰囲気中で焼成することにより結合材から得られた炭素が媒介となり、円柱状の微小成形物どうしが接合していた。
この生体用構造体は黒色であることを除けば、実施例1と同じ特徴を有していた。
Example 2
A large number of cylindrical micromolded materials were produced by the same method as in Example 1. This material was assembled at random in a cube with a side of 0.5 cm. By spraying a mixed solvent of water / ethanol (1/1 mass ratio) on this aggregate, wetting the binding material in the material with water to activate the surface of the material, and then pressing the material lightly, the material The aggregate was obtained with the two joined. This aggregate is baked in an argon atmosphere at a maximum temperature of 1100 ° C., and a biological structure composed of aggregates of micro-molded products in which the direction of the through holes made of tricalcium phosphate and carbon is random in a three-dimensional direction. Obtained. In this biological structure, carbon obtained from the binder was mediated by firing in an argon atmosphere, and cylindrical micro-molded products were joined to each other.
This biological structure had the same characteristics as Example 1 except that it was black.

実施例3
リン酸三カルシウム(主材) 80質量部
ゼラチン(結合材) 20質量部
イオン交換水 100質量部
上記配合を混練後に押出成形をして、長さ2.0mm、外径0.5mm、孔径300μmの貫通孔を有する円柱状の微小成形物の素材を多数作製した。この素材を、一辺が0.5cmの立方内にランダムに集合させた。この集合させたものに、水/エタノール(1/1質量比)混合溶媒を散布し、素材中の結合材を水に濡らして素材の表面を活性化した後、軽く押圧することで、前記素材どうしが接合した状態でその集合物が得られた。この集合物を、空気雰囲気中において、100℃で乾燥し、リン酸三カルシウムおよび結合材からなる貫通孔の方向が三次元方向にランダムな微小成形物の集合体からなる生体用構造体を得た。この生体用構造体は、結合材の接着力によって円柱状の微小成形物どうしが接合していた。
この生体用構造体は白色で、実施例1と同じ特徴を有していた。
Example 3
Tricalcium phosphate (main material) 80 parts by mass
Gelatin (binding material) 20 parts by mass
100 parts by mass of ion-exchanged water The above compound was kneaded and extruded to produce a large number of cylindrical micromolded materials having through-holes having a length of 2.0 mm, an outer diameter of 0.5 mm, and a pore diameter of 300 μm. This material was assembled at random in a cube with a side of 0.5 cm. By spraying a mixed solvent of water / ethanol (1/1 mass ratio) on this aggregate, wetting the binding material in the material with water to activate the surface of the material, and then pressing the material lightly, the material The aggregate was obtained with the two joined. This aggregate is dried at 100 ° C. in an air atmosphere to obtain a biological structure composed of aggregates of micro-molded articles in which the direction of the through hole made of tricalcium phosphate and a binder is random in a three-dimensional direction. It was. In this structure for living body, cylindrical micro-molded products were joined together by the adhesive force of the binding material.
This living body structure was white and had the same characteristics as in Example 1.

実施例4
実施例1と同じ方法により、円柱状の微小成形物の素材を多数作製した。この素材に、粘着材としてポリビニルアルコール(結合材と同じもの)の20%水溶液を散布することにより、前記素材の表面を粘着材で覆った。この表面を粘着材で覆った素材を、一辺が0.5cmの立方内にランダムに集合させた。この集合させたものを、軽く押圧することで、素材どうしが接合した状態でその集合物が得られた。この集合物を、アルゴン雰囲気中において、最高温度1100℃で焼成し、リン酸三カルシウムおよび炭素からなる貫通孔の方向が三次元方向にランダムな微小成形物の集合体からなる生体用構造体を得た。この生体用構造体は、アルゴン雰囲気中で焼成することにより結合材と粘着材から得られた炭素が媒介となり、円柱状の微小成形物どうしが接合していた。
この生体用構造体は黒色で、ランダムさの程度が実施例1に比べやや少なく、三次元網状の気孔が、やや少なくなっていたが、破壊されにくい等の特徴を有していた。
Example 4
A large number of cylindrical micromolded materials were produced by the same method as in Example 1. By spraying a 20% aqueous solution of polyvinyl alcohol (the same as the binder) on the material as an adhesive, the surface of the material was covered with the adhesive. The material whose surface was covered with an adhesive material was randomly assembled in a cube having a side of 0.5 cm. By pressing the assembled materials lightly, the aggregates were obtained with the materials joined together. This aggregate is baked in an argon atmosphere at a maximum temperature of 1100 ° C., and a biological structure composed of aggregates of micro-molded products in which the direction of the through holes made of tricalcium phosphate and carbon is random in a three-dimensional direction. Obtained. This living body structure was baked in an argon atmosphere, and the carbon obtained from the binder and the adhesive was used as a medium, and the cylindrical micro-molded products were joined together.
This living body structure was black and had a characteristic that the degree of randomness was slightly less than that of Example 1 and the number of three-dimensional network pores was slightly reduced, but it was difficult to break.

実施例5
実施例1と同じ方法により、円柱状の微小成形物の素材を多数作製した。この素材を酸素雰囲気中において、最高温度1100℃で焼成し、円柱状の微小成形物を得た。この微小成形物を、粘着材としてコラーゲンの20%水溶液に浸漬することにより、微小成形物の表面を粘着材で覆った。この表面を粘着材で覆った微小成形物を、一辺が0.5cmの立方内にランダムに集合させた。この集合させたものを、軽く押圧することで、微小成形物どうしが接合した状態で集合物が得られた。この集合物を、空気雰囲気中において、100℃で乾燥し、リン酸三カルシウムからなる貫通孔の方向が三次元方向にランダムな微小成形物の集合体からなる生体用構造体を得た。この生体用構造体は、粘着材の接着力によって円柱状の微小成形物どうしが接合していた。
この生体用構造体は白色で、ランダムさの程度が実施例1に比べやや少なく、三次元網状の気孔が、やや少なくなっていたが、破壊されにくい等の特徴を有していた。
Example 5
A large number of cylindrical micromolded materials were produced by the same method as in Example 1. This material was fired in an oxygen atmosphere at a maximum temperature of 1100 ° C. to obtain a cylindrical micro-molded product. The surface of the micro-molded product was covered with an adhesive material by immersing this micro-molded product in a 20% aqueous solution of collagen as an adhesive material. The micro-molded product whose surface was covered with an adhesive material was randomly assembled into a cube having a side of 0.5 cm. By pressing this assembled material lightly, an aggregate was obtained in a state where the micro-molded products were joined together. This aggregate was dried at 100 ° C. in an air atmosphere to obtain a biological structure composed of aggregates of micro-molded articles in which the direction of the through hole made of tricalcium phosphate was random in the three-dimensional direction. In this living body structure, cylindrical micro-molded products were joined together by the adhesive force of the adhesive material.
This living body structure was white, and the degree of randomness was slightly less than that of Example 1, and the three-dimensional network-like pores were slightly less, but had characteristics such as being hard to break.

実施例6
実施例1と同じ方法により、円柱状の微小成形物の素材を多数作製した。この素材を酸素雰囲気中において、最高温度1100℃で焼成し、円柱状の微小成形物を得た。この微小成形物に、粘着材としてコラーゲンの20%水溶液を散布することにより、微小成形物の表面を粘着材で覆った。この表面に粘着材で覆った微小成形物を、一辺が0.5cmの立方内にランダムに集合させた。この集合させたものを、軽く押圧することで、微小成形物どうしが接合した状態でその集合物が得られた。この集合物を、アルゴン雰囲気中において、最高温度1100℃で焼成し、リン酸三カルシウムからなる貫通孔の方向が三次元方向にランダムな微小成形物の集合体からなる生体用構造体を得た。この生体用構造体は、アルゴン雰囲気中で焼成することにより粘着材から得られた炭素が媒介となり、円柱状の微小成形物どうしが接合していた。
この生体用構造体は黒色で、ランダムさの程度が実施例1に比べやや少なく、三次元網状の気孔が、やや少なくなっていたが、破壊されにくい等の特徴を有していた。
Example 6
A large number of cylindrical micromolded materials were produced by the same method as in Example 1. This material was fired in an oxygen atmosphere at a maximum temperature of 1100 ° C. to obtain a cylindrical micro-molded product. By spraying a 20% aqueous solution of collagen as an adhesive material on the micromolded product, the surface of the micromolded product was covered with the adhesive material. The micro-molded product covered with an adhesive on the surface was randomly assembled in a cube having a side of 0.5 cm. By pressing this assembled material lightly, the assembly was obtained in a state where the micro-molded products were joined together. This aggregate was baked in an argon atmosphere at a maximum temperature of 1100 ° C. to obtain a biological structure composed of an aggregate of micro-molded articles in which the direction of the through hole made of tricalcium phosphate was random in the three-dimensional direction. . In this biological structure, carbon obtained from an adhesive material was mediated by firing in an argon atmosphere, and cylindrical micro-molded products were joined to each other.
This living body structure was black and had a characteristic that the degree of randomness was slightly less than that of Example 1 and the number of three-dimensional network pores was slightly reduced, but it was difficult to break.

実施例7
リン酸三カルシウム(主材) 80質量部
コラーゲン(結合材) 20質量部
イオン交換水 100質量部
上記配合を混練後に押出成形をして、長さ2.0mm、外径0.5mm、孔径300μmの貫通孔を有する円柱状の微小成形物の素材を多数作製した。この素材に、粘着材としてコラーゲン(結合材と同じもの)の20%水溶液を散布することにより、前記素材の表面に粘着材で覆った。この表面に粘着材で覆った素材を、一辺が0.5cmの立方内にランダムに集合させた。この集合させたものを、軽く押圧することで、素材どうしが接合した状態でその集合物が得られた。この集合物を、アルゴン雰囲気中において、最高温度1100℃で焼成し、リン酸三カルシウムおよび炭素からなる貫通孔の方向が三次元方向にランダムな微小成形物の集合体からなる生体用構造体を得た。この生体用構造体は、アルゴン雰囲気中で焼成することにより結合材と粘着材から得られた炭素が媒介となり、円柱状の微小成形物どうしが接合していた。
この生体用構造体は黒色で、ランダムさの程度が実施例1に比べやや少なく、三次元網状の気孔が、やや少なくなっていたが、破壊されにくい等の特徴を有していた。
Example 7
Tricalcium phosphate (main material) 80 parts by mass
Collagen (binding material) 20 parts by mass
100 parts by mass of ion-exchanged water The above compound was kneaded and extruded to produce a large number of cylindrical micromolded materials having through-holes having a length of 2.0 mm, an outer diameter of 0.5 mm, and a pore diameter of 300 μm. The surface of the material was covered with an adhesive material by spraying a 20% aqueous solution of collagen (same as the binding material) on the material as an adhesive material. The material covered with an adhesive on the surface was randomly assembled in a cube having a side of 0.5 cm. By pressing the assembled materials lightly, the aggregates were obtained with the materials joined together. This aggregate is baked in an argon atmosphere at a maximum temperature of 1100 ° C., and a biological structure composed of aggregates of micro-molded products in which the direction of the through holes made of tricalcium phosphate and carbon is random in a three-dimensional direction. Obtained. This living body structure was baked in an argon atmosphere, and the carbon obtained from the binder and the adhesive was used as a medium, and the cylindrical micro-molded products were joined together.
This living body structure was black and had a characteristic that the degree of randomness was slightly less than that of Example 1 and the number of three-dimensional network pores was slightly reduced, but it was difficult to break.

比較例1
リン酸三カルシウム(主材) 80質量部
ポリビニルアルコール(結合材) 20質量部
イオン交換水 100質量部
上記配合を混練後、この混練物中に、一辺が0.5cmのポリウレタンフォームを浸漬し、上記混練物をポリウレタンフォーム中に含浸した。この混練物を含浸したポリウレタンフォームを乾燥後、酸素雰囲気中において、最高温度1100℃で焼成し、三次元網状構造体を得た。構造体は、クラックが入っており、強度が弱く、生体用構造体として用いることができなかった。
Comparative Example 1
Tricalcium phosphate (main material) 80 parts by mass
Polyvinyl alcohol (binding material) 20 parts by mass
100 parts by mass of ion-exchanged water After kneading the above blend, a polyurethane foam having a side of 0.5 cm was immersed in the kneaded product, and the kneaded product was impregnated in the polyurethane foam. The polyurethane foam impregnated with the kneaded product was dried and then fired in an oxygen atmosphere at a maximum temperature of 1100 ° C. to obtain a three-dimensional network structure. The structure was cracked and weak in strength, and could not be used as a biological structure.

比較例2
リン酸三カルシウム(主材) 80質量部
ポリビニルアルコール(結合材) 20質量部
イオン交換水 100質量部
上記配合を混練後に押出成形をして、微小成形物の素材を多数作製した。
この微小成形物の素材をアルゴン雰囲気中で最高温度1100℃で焼成した後、ビーズ状に加工して外径約1mm、孔径300μmの貫通孔を有する略球形をした微小成形物を得た。この略球形のビーズ状に加工された微小成形物に粘着材としてポリビニルアルコール(結合材と同じもの)の20%水溶液を散布することにより、表面に粘着材で覆った。表面に粘着材で覆った略球形のビーズ状微小成形物を、一辺が0.5cmの立方内にランダムに集合させ、軽く押圧することで、微小成形物どうしが接合した状態でその集合体が得られた。この微小成形物どうしを接合したものを、アルゴン雰囲気中において、最高温度1100℃で焼成し、生体用構造体を得た。この生体用構造体は、アルゴン雰囲気中で焼成することにより結合材と粘着材から得られた炭素が媒介となり、微小成形物どうしが接合していた。
この生体用構造体は黒色で、微小成形物がビーズ状をしているため多重に重なってしまい、貫通孔のランダムさが失われ、また、微小成形物間の間隙にも三次元網状の構造を有する気孔は得られていなかった。
Comparative Example 2
Tricalcium phosphate (main material) 80 parts by mass
Polyvinyl alcohol (binding material) 20 parts by mass
100 parts by mass of ion-exchanged water The above blend was kneaded and extruded to produce a large number of micromolded materials.
The micromolded material was fired in an argon atmosphere at a maximum temperature of 1100 ° C., and then processed into a bead shape to obtain a substantially spherical micromolded product having a through hole having an outer diameter of about 1 mm and a hole diameter of 300 μm. The surface was covered with an adhesive material by spraying a 20% aqueous solution of polyvinyl alcohol (same as the binding material) as an adhesive material on the micro-molded product processed into a substantially spherical bead shape. The roughly spherical bead-shaped micro-molded product covered with an adhesive material on the surface is randomly assembled in a cube with one side of 0.5 cm, and the aggregate is formed in a state where the micro-molded products are joined by lightly pressing. Obtained. The joined micro-molded products were baked at a maximum temperature of 1100 ° C. in an argon atmosphere to obtain a biological structure. This biostructure was baked in an argon atmosphere, and the carbon obtained from the binder and the adhesive was used as a medium, and the micro-molded products were joined together.
This living body structure is black, and the micro-molded product has a bead shape, so it overlaps multiple layers, the randomness of the through holes is lost, and the three-dimensional network structure is also formed in the gap between the micro-molded products. No pores having had been obtained.

本発明の生体用構造体は、血管の形成や細胞の増殖を促進し、かつ多方向からの細胞進入が容易となるため、良好な骨補填材あるいは細胞培養担体となり、医療分野の要請に対して十分適用できる。   The living body structure of the present invention promotes the formation of blood vessels and cell proliferation, and facilitates cell entry from multiple directions, and thus becomes a good bone filling material or cell culture carrier. Can be applied.

1 生体用構造体
2 微小成形物
3 微小成形物2の貫通孔
4 生体用構造体1の気孔
DESCRIPTION OF SYMBOLS 1 Structure for biological body 2 Micromolded article 3 Through-hole of micromolded article 2 4 Pore of structure 1 for biological body

Claims (6)

少なくとも主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製し、該素材を三次元方向にランダムに集合させて素材どうしを接合させた後、乾燥もしくは焼成することにより得られる微小成形物の集合体からなる生体用構造体。   At least the main material and the binder are kneaded and molded to produce a columnar micro-molded material having at least one through hole in the longitudinal direction, and the materials are assembled randomly in the three-dimensional direction to join the materials together A living body structure comprising an aggregate of micro-molded products obtained by drying or firing after being formed. 前記素材どうしの接合が、該素材の表面を活性化処理して接合することを特徴とする、請求項1に記載の生体用構造体。   The living body structure according to claim 1, wherein the joining of the materials is performed by activating the surfaces of the materials. 前記素材どうしの接合が、該素材の表面に粘着材を塗布して接合することを特徴とする、請求項1に記載の生体用構造体。   The living body structure according to claim 1, wherein the bonding between the materials is performed by applying an adhesive material to the surfaces of the materials. 少なくとも主材と結合材を混練し、成形して長手方向に少なくとも1つの貫通孔を有する柱状の微小成形物の素材を作製し、該素材を焼成することにより得られた柱状の微小成形物の表面を粘着材で塗布し、三次元方向にランダムに集合させて微小成形物を接合させた後、乾燥もしくは焼成することにより得られる微小成形物の集合体からなる生体用構造体。   A columnar micromolded material obtained by kneading at least a main material and a binder and forming a columnar micromolded material having at least one through hole in the longitudinal direction and firing the material. A biological structure comprising an assembly of micro-molded products obtained by applying a surface with an adhesive material, randomly assembling them in a three-dimensional direction, joining the micro-molded products, and drying or firing. 生体用構造体が微小成形物の素材間で三次元網状の気孔を有するように、該素材を三次元方向にランダムに集合させて形成することを特徴とする、請求項1ないし4のいずれか1項に記載の生体用構造体。   5. The structure according to claim 1, wherein the living body structure is formed by randomly assembling the materials in a three-dimensional direction so as to have three-dimensional network pores between the materials of the micro-molded product. The biological structure according to item 1. 主材がリン酸カルシウムであることを特徴とする、請求項1ないし5のいずれか1項に記載の生体用構造体。   The biological structure according to any one of claims 1 to 5, wherein the main material is calcium phosphate.
JP2009041057A 2009-02-24 2009-02-24 Structure for living body Pending JP2010194042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041057A JP2010194042A (en) 2009-02-24 2009-02-24 Structure for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041057A JP2010194042A (en) 2009-02-24 2009-02-24 Structure for living body

Publications (1)

Publication Number Publication Date
JP2010194042A true JP2010194042A (en) 2010-09-09

Family

ID=42819412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041057A Pending JP2010194042A (en) 2009-02-24 2009-02-24 Structure for living body

Country Status (1)

Country Link
JP (1) JP2010194042A (en)

Similar Documents

Publication Publication Date Title
AU778651B2 (en) Porous ceramic body
EP2015792B1 (en) Implant for tissue engineering
US20100075419A1 (en) Biomaterial, method of constructing the same and use thereof
CN106518143A (en) Three-dimensional connected honeycomb porous calcium phosphate ceramic artificial bone material and preparation method thereof
CN103055352A (en) Calcium phosphate/collagen composite biologic ceramic material and preparation method thereof
CN103462729B (en) The preparation method of the biomimetic artificial bone of a kind of multistage [micrometer/nanometer] pore structure
Nandakumar et al. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering
CN104645408B (en) A kind of preparation method of gradient β phase tricalcium phosphate bone alternate material
CN100546938C (en) Porous ceramic material for repairing bone and its production and application
JPH11276510A (en) Surface modifying bone prothesis member and method for manufacturing the same
Feng et al. Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin
US20130266721A1 (en) Preparation of controlled drug release porous hydroxyapatite microspheres with interconnected pore channels
Despang et al. Synthesis and physicochemical, in vitro and in vivo evaluation of an anisotropic, nanocrystalline hydroxyapatite bisque scaffold with parallel‐aligned pores mimicking the microstructure of cortical bone
JP7231570B2 (en) scaffold for tissue engineering
CN110087699B (en) Bone graft substitute
CN104274860A (en) Preparation method of controllable porous ceramic/polymer-based composite bone scaffold
de Sousa et al. Sintered hydroxyapatite latticework for bone substitute
JP2015526170A (en) Multi-component joining system of plastic preparations for the production of medical products with functional surfaces
JP5138313B2 (en) Biological structure
JP2010194042A (en) Structure for living body
CN104606718A (en) Preparation method of composite material bionic bone scaffold containing drug carrying microsphere
JP5360869B2 (en) Method for producing cultured skin and cultured skin having elastic fiber tissue layer
JP5382919B2 (en) Biological structure
JP4925315B2 (en) Calcium phosphate-containing composite porous body and method for producing the same
JP2010188023A (en) Structure for living body