JP2010192550A - Electromagnetic wave shielding composition, molded body of electromagnetic wave shielding composition, electromagnetic wave shielding sheet, and electric wire for electromagnetic wave shielding - Google Patents

Electromagnetic wave shielding composition, molded body of electromagnetic wave shielding composition, electromagnetic wave shielding sheet, and electric wire for electromagnetic wave shielding Download PDF

Info

Publication number
JP2010192550A
JP2010192550A JP2009033411A JP2009033411A JP2010192550A JP 2010192550 A JP2010192550 A JP 2010192550A JP 2009033411 A JP2009033411 A JP 2009033411A JP 2009033411 A JP2009033411 A JP 2009033411A JP 2010192550 A JP2010192550 A JP 2010192550A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
mass
parts
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009033411A
Other languages
Japanese (ja)
Other versions
JP4897975B2 (en
Inventor
Toshio Miyahara
利雄 宮原
Takuya Tanaka
拓也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009033411A priority Critical patent/JP4897975B2/en
Publication of JP2010192550A publication Critical patent/JP2010192550A/en
Application granted granted Critical
Publication of JP4897975B2 publication Critical patent/JP4897975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave shielding composition that is high in electromagnetic wave shielding efficiency even when it is a thin film and has high flame retardancy even when it is thin as well as of high strength enough to be handled without crack or breakage even when it is bent. <P>SOLUTION: The electromagnetic wave shielding composition contains 50-200 pts.mass of carbon fiber and 100-350 pts.mass of metal hydroxide to 100 pts.mass of compound polymer containing a proportion of 5-30 pts.mass of thermoplastics, 45-85 pts.mass of thermoplastic elastomer and 5-30 pts.mass of rubber. The electromagnetic wave shielding sheet is made by molding the electromagnetic wave shielding composition into a sheet of 0.05-0.30 mm in thickness, and a coaxial cable uses the electromagnetic wave shielding composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品等より発生する電磁波ノイズを遮蔽する組成物などに関する。さらに詳しくは、電子電気機器内にある半導体素子等から発生した電磁波ノイズを効率よく遮蔽する電磁波遮蔽性能に優れ、電子電気製品に使用される電源や光源などから発生する熱を効果的に拡散する熱伝導性にも優れ、難燃性にも優れ、更にシート状にした場合、曲げても千切れず、ひびや割れなども発生しないという取り扱いが可能な強度をも有する電磁波遮蔽用組成物及び成形体に関する。   The present invention relates to a composition that shields electromagnetic noise generated from electronic components and the like. More specifically, it excels in electromagnetic shielding performance that efficiently shields electromagnetic noise generated from semiconductor elements in electronic and electrical equipment, and effectively diffuses heat generated from power sources and light sources used in electronic and electrical products. Excellent thermal conductivity, excellent flame retardancy, and further in the form of a sheet, the composition for shielding electromagnetic waves having such a strength that it can be handled such that it does not break even if bent and does not generate cracks or cracks, and It relates to a molded body.

電子電気機器においては、その内部に組み込まれている半導体素子などの電子部品や電源などから電磁波ノイズが発生する。近年、電子電気機器は高機能化や高速化などが進み電子部品や電源から発生する電磁波ノイズが増加しており、これが電子電気機器の故障や誤作動の要因となるため、電磁波ノイズ対策が非常に重要になってきている。   In electronic and electrical equipment, electromagnetic noise is generated from electronic components such as semiconductor elements incorporated in the electronic equipment and power supplies. In recent years, electronic and electrical equipment has become more sophisticated and faster, and electromagnetic noise generated from electronic components and power supplies has increased. This causes malfunctions and malfunctions of electronic and electrical equipment. Has become important.

その対策の部品の一つに電磁波遮蔽シートがある。その電磁波遮蔽シートとしては銅やアルミニウムなどの金属の箔またはメッシュが知られており、電子電気機器内にある半導体素子等の発生部に貼り付けることにより、内部で生じた電磁波ノイズを効率よく遮蔽するための部材である。   One of the countermeasure parts is an electromagnetic shielding sheet. As the electromagnetic wave shielding sheet, a metal foil or mesh such as copper or aluminum is known, and the electromagnetic wave noise generated inside is effectively shielded by sticking it to a generating part of a semiconductor element or the like in an electronic / electric device. It is a member for doing.

また、鉄を主成分とした軟磁性合金粉末を、ゴムや熱可塑性エラストマーなどの高分子化合物中に分散してなる電磁波吸収シートが開発されている。(例えば、特許文献1を参照)   Further, an electromagnetic wave absorbing sheet has been developed in which a soft magnetic alloy powder mainly composed of iron is dispersed in a polymer compound such as rubber or thermoplastic elastomer. (For example, see Patent Document 1)

特開2002−299112号公報JP 2002-299112 A

しかしながら、金属の箔やメッシュの電磁波遮蔽シートは、密度が大きいことによる質量増大と金属製のため電磁波遮蔽シートの剛性が高くフレキシブル性が損なわれるという欠点がある。   However, the metal foil or mesh electromagnetic wave shielding sheet has a drawback that the mass is increased due to its high density and the rigidity of the electromagnetic wave shielding sheet is high due to the metal and the flexibility is impaired.

また、特許文献1に記載の発明は、透磁率を高めるために扁平形状軟磁性合金粉末を高配合しかつ圧縮により高密度とするため、強力なプレスを行う必要があり、得られた電磁波吸収シートは硬いものとなるという問題点があった。   In addition, the invention described in Patent Document 1 is required to perform a strong press in order to increase the magnetic permeability of the flat-shaped soft magnetic alloy powder and increase the density by compression in order to increase the magnetic permeability. There was a problem that the sheet became hard.

本発明は、上述のような問題点に着目してなされたものであり、その目的は、高い電磁波遮蔽性能を有し、高い難燃性を有し、0.05mmから0.30mmといったシート形状で曲げてもひびや割れが発生しないフレキシブル性に優れると同時に強度をも有する電磁波遮蔽用組成物を提供することである。   The present invention has been made paying attention to the above-described problems, and its purpose is to have a high electromagnetic shielding performance, high flame retardancy, and a sheet shape of 0.05 mm to 0.30 mm. It is an object to provide an electromagnetic wave shielding composition that is excellent in flexibility that does not crack or crack even if bent at the same time and that also has strength.

本発明者らは、特定の数種類のポリマーを特定の量で複合させた複合ポリマー中に、炭素繊維と金属水酸化物を高濃度で含有させ、炭素繊維を一定方向に配向させることで、比誘電率の大きな成形体を得た。この比誘電率の大きな成形体は屈折率が大きく、電磁波を反射し遮蔽することを見出し、その知見に基づき本発明をなすに至った。
すなわち、本発明は、
(1)熱可塑性プラスチック5〜30質量部、熱可塑性エラストマー45〜85質量部、ゴム5〜30質量部の割合で含有する複合ポリマー100質量部に対し、炭素繊維50〜200質量部及び金属水酸化物100〜350質量部を混合してなる電磁波遮蔽用組成物、
(2)前記熱可塑性プラスチックが融点120〜150℃のポリエチレンまたはポリプロピレンであることを特徴とする(1)に記載の電磁波遮蔽用組成物、
(3)前記熱可塑性エラストマーが酢酸ビニル基含有量40〜60%のエチレン酢酸ビニルであることを特徴とする(1)または(2)に記載の電磁波遮蔽用組成物、
(4)前記ゴムが二元共重合体のエチレン・メチルアクリレート共重合体であることを特徴とする(1)〜(3)のいずれかに記載の電磁波遮蔽用組成物、
(5)前記炭素繊維が平均径4〜12μmかつ平均長さ25〜200μmの炭素繊維であることを特徴とする(1)〜(4)のいずれかに記載の電磁波遮蔽用組成物、
(6)前記金属水酸化物の平均粒径が10μm以下であることを特徴とする(1)〜(5)のいずれかに記載の電磁波遮蔽用組成物、
(7)(1)〜(6)のいずれかに記載の電磁波遮蔽用組成物を成形してなる成形体、
(8)(1)〜(6)のいずれかに記載の電磁波遮蔽用組成物を0.05〜0.30mm厚のシート形状に成形してなることを特徴とする電磁波遮蔽シート、
(9)(1)〜(6)のいずれかに記載の電磁波遮蔽用組成物を電線の被覆層の層間に押出被覆したことを特徴とする電磁波遮蔽電線、
(10)(8)に記載の電磁波遮蔽シートをケーブルに載せることを特徴とする電磁波遮蔽方法、
を提供するものである。
The inventors have included a high concentration of carbon fibers and metal hydroxides in a composite polymer in which a specific number of types of polymers are combined in a specific amount, and the carbon fibers are oriented in a certain direction, whereby A molded article having a large dielectric constant was obtained. The molded article having a large relative dielectric constant has a large refractive index, and has been found to reflect and shield electromagnetic waves, and based on the knowledge, the present invention has been made.
That is, the present invention
(1) 50 to 200 parts by mass of carbon fiber and metal water with respect to 100 parts by mass of the composite polymer contained in a ratio of 5 to 30 parts by mass of thermoplastic, 45 to 85 parts by mass of thermoplastic elastomer, and 5 to 30 parts by mass of rubber. An electromagnetic shielding composition obtained by mixing 100 to 350 parts by mass of an oxide;
(2) The electromagnetic shielding composition according to (1), wherein the thermoplastic plastic is polyethylene or polypropylene having a melting point of 120 to 150 ° C,
(3) The electromagnetic shielding composition according to (1) or (2), wherein the thermoplastic elastomer is ethylene vinyl acetate having a vinyl acetate group content of 40 to 60%,
(4) The electromagnetic wave shielding composition according to any one of (1) to (3), wherein the rubber is an ethylene / methyl acrylate copolymer of a binary copolymer,
(5) The electromagnetic shielding composition according to any one of (1) to (4), wherein the carbon fiber is a carbon fiber having an average diameter of 4 to 12 μm and an average length of 25 to 200 μm,
(6) The electromagnetic wave shielding composition according to any one of (1) to (5), wherein an average particle diameter of the metal hydroxide is 10 μm or less,
(7) A molded article obtained by molding the electromagnetic wave shielding composition according to any one of (1) to (6),
(8) An electromagnetic wave shielding sheet formed by molding the electromagnetic wave shielding composition according to any one of (1) to (6) into a sheet shape having a thickness of 0.05 to 0.30 mm,
(9) An electromagnetic shielding wire, wherein the electromagnetic shielding composition according to any one of (1) to (6) is extrusion-coated between layers of the coating layer of the wire,
(10) An electromagnetic wave shielding method comprising placing the electromagnetic wave shielding sheet according to (8) on a cable,
Is to provide.

本発明により、電子電気機器内にある半導体素子等で生じた電磁波を効率よく反射遮蔽するため、電磁波ノイズが機器の内外に放射されることが無く、誤動作や不具合の原因を除去することができる。更に金属と比べて軽く、薄くても難燃性を有しかつ曲げたりしても千切れたりもしくはひびや割れなどが発生しないといった取り扱いが可能な強度をも有するといった電磁波遮蔽に優れた組成物を得ることができる。   According to the present invention, electromagnetic waves generated by semiconductor elements and the like in electronic and electrical equipment are efficiently reflected and shielded, so that electromagnetic noise is not radiated into and out of the equipment, and the cause of malfunction or malfunction can be eliminated. . Furthermore, it is lighter than metal, has flame retardancy even if it is thin, and has excellent strength for electromagnetic wave shielding such that it can be handled without tearing or cracking or cracking even if bent. Can be obtained.

本発明に係る電磁波遮蔽シートの断面を模式的に示す模式図である。It is a schematic diagram which shows typically the cross section of the electromagnetic wave shielding sheet which concerns on this invention. 本発明に係る実施例における電磁波遮蔽性能試験の方法を示す図である。It is a figure which shows the method of the electromagnetic wave shielding performance test in the Example which concerns on this invention. 本発明に係る実施例1の電磁波遮蔽性能試験の結果を示す図である。It is a figure which shows the result of the electromagnetic wave shielding performance test of Example 1 which concerns on this invention. 本発明に係る実施例9の同軸ケーブルのシールド特性を示す図である。It is a figure which shows the shielding characteristic of the coaxial cable of Example 9 which concerns on this invention.

以下、本発明の実施形態を詳細に説明する。
本発明の電磁波遮蔽用組成物は、熱可塑性プラスチック、熱可塑性エラストマー及びゴムという数種類のポリマーを特定の比率で混合させた複合ポリマーに、炭素繊維と金属水酸化物を含有する組成物である。前記複合ポリマーを用いることで、電磁波遮蔽性を有する炭素繊維と難燃剤の金属水酸化物粉末の高濃度の含有が可能となり、かつその高濃度の含有量であっても0.05mmから0.30mm厚といった薄膜シートとしても曲げても千切れもしくはひびや割れが発生しないといった取り扱いが可能な強度を有する電磁波遮蔽性能と難燃性と強度とを有するものである。
Hereinafter, embodiments of the present invention will be described in detail.
The electromagnetic wave shielding composition of the present invention is a composition containing carbon fiber and metal hydroxide in a composite polymer obtained by mixing several kinds of polymers such as thermoplastic, thermoplastic elastomer and rubber in a specific ratio. By using the composite polymer, it becomes possible to contain the carbon fiber having electromagnetic shielding properties and the metal hydroxide powder of the flame retardant at a high concentration, and even at a high content of 0.05 to 0. The thin film sheet having a thickness of 30 mm has an electromagnetic wave shielding performance, a flame retardance, and a strength capable of handling such that no tearing or cracking or cracking occurs even when bent.

まず、本発明に用いられる複合ポリマーは、熱可塑性プラスチック及び熱可塑性エラストマー及びゴムといったように数種類のポリマーを所定の比率、すなわち、熱可塑性プラスチック5〜30質量部、熱可塑性エラストマー45〜85質量部、ゴム5〜30質量部の割合で、全体量として100質量部となるものである。   First, the composite polymer used in the present invention includes several kinds of polymers such as thermoplastics, thermoplastic elastomers, and rubbers in a predetermined ratio, that is, 5-30 parts by mass of thermoplastics, 45-85 parts by mass of thermoplastic elastomers. The ratio of rubber is 5 to 30 parts by mass, and the total amount is 100 parts by mass.

本発明に用いられる複合ポリマー100質量部における熱可塑性プラスチックの含有量は5〜30質量部であり、好ましくは10〜25質量部、さらに好ましくは15〜25質量部である。熱可塑性プラスチックの割合が少なすぎる場合、シート強度に大きく寄与している熱可塑性プラスチックの含有比率が低くなるために、0.05mmから0.30mmといった薄さでは千切れやすいなどといった取り扱いが難しくなってくる。一方、熱可塑性プラスチックの割合が多すぎる場合、組成物が硬くなりすぎて、例えば0.05mmから0.30mmといった薄さのシートでは脆くなってしまい、湾曲時にひびや割れが発生することがある。   Content of the thermoplastic in 100 mass parts of composite polymers used for this invention is 5-30 mass parts, Preferably it is 10-25 mass parts, More preferably, it is 15-25 mass parts. If the proportion of thermoplastic is too small, the content of thermoplastic that greatly contributes to sheet strength will be low, and handling such as being easily broken at thicknesses from 0.05 mm to 0.30 mm will be difficult. Come. On the other hand, if the proportion of the thermoplastic is too high, the composition becomes too hard, for example, a sheet having a thickness of 0.05 mm to 0.30 mm becomes brittle, and cracks and cracks may occur during bending. .

本発明に用いられる熱可塑性プラスチックとしては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどが挙げられる。なかでも難燃剤として含有される金属水酸化物の脱水が極力始まらないように160℃前後といったポリマーの混合温度としては最低限低い温度での混合が可能となる融点が120〜150℃、好ましくは120〜130℃のポリエチレンまたはポリプロピレンが好適である。その中でも、結晶化度が高いことから強度が高いポリプロピレンが更に好ましい。   Examples of the thermoplastic used in the present invention include polypropylene, polyethylene, polyethylene terephthalate, and polybutylene terephthalate. Among them, a melting point of 120 to 150 ° C., which enables mixing at a minimum temperature as the mixing temperature of the polymer such as around 160 ° C. so as to prevent dehydration of the metal hydroxide contained as a flame retardant as much as possible, preferably Polyethylene or polypropylene at 120 to 130 ° C. is preferred. Among them, polypropylene having higher strength is more preferable because of high crystallinity.

本発明に好適に用いられるポリエチレンは、上記の融点を持つものであって、繰り返し単位のエチレンが分岐をほとんど持たず直鎖状に結合していることにより密度が高い高密度ポリエチレンや繰り返し単位のエチレンがランダムに分岐を持って結合していることにより密度が低い低密度ポリエチレン、及び繰り返し単位のエチレンと若干量のα‐オレフィンを共重合させた直鎖状で密度が低い直鎖状低密度ポリエチレンのいずれであっても良い。更には、特殊な官能基や酸などを付加した変性ポリエチレンなども用いることができる。   The polyethylene suitably used in the present invention has the above-mentioned melting point, and the high-density polyethylene or the repeating unit having a high density due to the fact that the ethylene of the repeating unit has almost no branch and is linearly bonded. Low-density polyethylene with low density due to ethylene being randomly branched and bonded, and linear low-density with low density and linear units copolymerized with repeating units of ethylene and a small amount of α-olefin Any of polyethylene may be sufficient. Furthermore, modified polyethylene to which a special functional group or acid is added can also be used.

本発明に好適に用いられるポリプロピレンは、上記の融点を持つものであって、単独重合体のホモタイプやエチレンとプロピレンなどをブロック的に共重合させたブロックタイプ及びエチレンとプロピレンなどをランダムに共重合させたランダムタイプのいずれであっても良い。   Polypropylene suitably used in the present invention has the above melting point, and is a homopolymer of a homopolymer, a block type in which ethylene and propylene are block-copolymerized, and a copolymer of ethylene and propylene at random. Any of the random types may be used.

ポリエチレン及びポリプロピレンは、単体で使用しても良いし任意の数種類をブレンドして使用しても良い。   Polyethylene and polypropylene may be used alone or in combination with any of several kinds.

熱可塑性プラスチックの融点が低すぎる場合、例えば融点120℃未満のポリエチレンなどを含有させ120℃以上の熱の履歴を与えた場合、劣化が進行しやすくなるといった耐熱性に劣るという問題が生じることがある。そうすると、実際の電子電気機器内に組み込まれて使用された際に放熱体から発生する熱でシートが硬く脆くなり、その組み込まれた箇所から脱落してしまうなどの不具合が生じる可能性があり好ましくない。
一方、熱可塑性プラスチックの融点が高すぎる場合、例えば融点150℃を超えたポリプロピレンなどを含有させた場合、その組成の材料をバンバリーミキサーやニーダーなどで混合する時に200℃以上といった混合温度が必要となってくる。そうすると、その200℃以上の混合温度により、難燃性に寄与する金属水酸化物において脱水が始まってしまい、結果その組成の材料の難燃性が低下してしまうことがあり好ましくない。
When the melting point of the thermoplastic is too low, for example, when polyethylene having a melting point of less than 120 ° C. is included and a heat history of 120 ° C. or higher is given, there is a problem that the heat resistance is inferior such that deterioration tends to proceed. is there. In that case, there is a possibility that the sheet becomes hard and brittle due to the heat generated from the heat radiating body when it is incorporated and used in an actual electronic / electrical device, and there is a possibility that it may fall off from the incorporated part. Absent.
On the other hand, when the melting point of the thermoplastic is too high, for example, when polypropylene or the like having a melting point exceeding 150 ° C. is contained, a mixing temperature of 200 ° C. or higher is required when the material of the composition is mixed with a Banbury mixer or a kneader. It becomes. If it does so, dehydration will start in the metal hydroxide which contributes to a flame retardance by the mixing temperature of 200 degreeC or more, and as a result, the flame retardance of the material of the composition may fall and it is unpreferable.

本発明に用いられる複合ポリマー100質量部における熱可塑性エラストマーの含有量は45〜85質量部であり、好ましくは50〜80質量部、さらに好ましくは60〜70質量部である。熱可塑性エラストマーは電磁波遮蔽性粉末の炭素繊維と難燃剤の金属水酸化物粉末の高濃度の含有に寄与しており、熱可塑性エラストマーの割合が少なすぎると炭素繊維や金属水酸化物の粉末の高濃度含有も困難になってくる。そうすると所望の電磁波遮蔽性や難燃性を得ることができず、もしくは含有できたとしても得られた薄膜シートが非常に脆く曲げたりするとひびや割れが発生することがある。更に、熱可塑性エラストマーは着火時に炭化層を形成することによりその着火性が低いために難燃性の向上に大きく寄与しており、その含有量が減ることでも難燃性が低下してしまう。一方、熱可塑性エラストマーの割合が多すぎる場合、熱可塑性プラスチックより強度に劣る熱可塑性エラストマーの含有量が増えることでその組成の材料の強度が低下してしまう。そうすると、0.05mmから0.30mmといった薄膜シートの場合千切れてしまい、取り扱いができないといった問題が生じることがある。   The content of the thermoplastic elastomer in 100 parts by mass of the composite polymer used in the present invention is 45 to 85 parts by mass, preferably 50 to 80 parts by mass, and more preferably 60 to 70 parts by mass. Thermoplastic elastomers contribute to the inclusion of high concentrations of carbon fiber in electromagnetic shielding powder and metal hydroxide powder of flame retardant, and if the proportion of thermoplastic elastomer is too small, carbon fiber and metal hydroxide powder High concentration is also difficult. If it does so, desired electromagnetic wave shielding property and a flame retardance cannot be acquired, or even if it can be contained, if the obtained thin film sheet is bent very brittle, a crack and a crack may generate | occur | produce. Furthermore, since the thermoplastic elastomer forms a carbonized layer at the time of ignition and thus its ignitability is low, it greatly contributes to the improvement of flame retardancy. Even if its content is reduced, the flame retardancy is also lowered. On the other hand, when the ratio of the thermoplastic elastomer is too large, the content of the thermoplastic elastomer that is inferior in strength to that of the thermoplastic plastic increases, so that the strength of the material having the composition decreases. Then, in the case of a thin film sheet having a thickness of 0.05 mm to 0.30 mm, it may be broken, and there may be a problem that it cannot be handled.

本発明に用いられる熱可塑性エラストマーとしては、エチレン酢酸ビニル、エチレンアクリル酸エチルなどが挙げられる。なかでも難燃性や強度の付与に効果的である酢酸ビニル基含有量が40〜60%、好ましくは40〜50%のエチレン酢酸ビニルが好適である。   Examples of the thermoplastic elastomer used in the present invention include ethylene vinyl acetate and ethylene ethyl acrylate. Among them, ethylene vinyl acetate having a vinyl acetate group content of 40 to 60%, preferably 40 to 50%, which is effective for imparting flame retardancy and strength, is suitable.

酢酸ビニル基含有量が少なすぎる場合、0.05mmから0.30mm厚でのUL94「機器の部品用プラスチック材料の燃焼性試験」にある20mm垂直燃焼試験94V−2以上もしくは薄手材料垂直燃焼試験94VTM−2以上の垂直難燃性を得ることができなくなってくるために好ましくない。というのも、酢酸ビニル基含有量が少ないと結晶性が増加してポリエチレンやポロプロピレンといった熱可塑性プラスチックに近い挙動を示すものとなり、着火時の炭化層の形成が減少して燃えやすくなり難燃性が低下するためである。尚、酢酸ビニル基含有量が多いと非結晶で柔軟なゴムに近いものとなり、着火時の炭化層の形成が増加することで着火性が低くなり難燃性が向上する。   If the vinyl acetate group content is too small, 20mm vertical combustion test 94V-2 or higher in UL94 "Plastic material flammability test for equipment parts" at 0.05mm to 0.30mm thickness or thin material vertical combustion test 94VTM It is not preferable because it becomes impossible to obtain a vertical flame retardancy of −2 or more. This is because if the vinyl acetate group content is low, the crystallinity increases and the behavior becomes similar to that of thermoplastics such as polyethylene and polypropylene, and the formation of a carbonized layer during ignition is reduced, making it more flammable and flame retardant. This is because the property decreases. When the vinyl acetate group content is large, the rubber is close to an amorphous and flexible rubber, and the formation of a carbonized layer at the time of ignition increases, so that the ignitability is lowered and the flame retardancy is improved.

一方、酢酸ビニル基含有量が多すぎると、厚さが0.05mmから0.30mmといった薄膜シートの場合千切れてしまい取り扱いができないといった問題が生じることがあり好ましくない。というのも、酢酸ビニル基含有量が多いと上述したように非結晶で柔軟なゴムに近い挙動を示すものとなり、強度が低下してしまうためである。   On the other hand, if the vinyl acetate group content is too large, a thin film sheet having a thickness of 0.05 mm to 0.30 mm may be broken and cannot be handled. This is because, if the vinyl acetate group content is large, as described above, it becomes a behavior close to that of an amorphous and flexible rubber, and the strength is lowered.

本発明に用いられる複合ポリマー100質量部におけるゴムの含有量は5〜30質量部であり、好ましくは5〜25質量部、さらに好ましくは10〜20質量部である。ゴムの割合が少なすぎる場合、ゴムは電磁波遮蔽用粉末の炭素繊維と難燃剤の金属水酸化物粉末の高濃度の含有に大きく寄与しており、その割合が下がるとそれら炭素繊維と金属水酸化物の粉末の高濃度の含有が困難になってくる。そうすると所望の電磁波遮蔽性や難燃性を得ることができず、もしくは含有できたとしても得られた薄膜シートが非常に脆く、曲げたりするとひびや割れが発生し取り扱いができないことがある。一方、ゴムの割合が多すぎる場合、熱可塑性プラスチックや熱可塑性エラストマーに比べ強度に劣るゴムの含有比率が増加してその組成の強度が下がり、結果0.05mmから0.30mm厚の薄膜シートが千切れてしまい取り扱いができないといった問題が生じることがある。
なお、本発明において、「ゴム」には、熱可塑性エラストマーは含まないものである。
The rubber content in 100 parts by mass of the composite polymer used in the present invention is 5 to 30 parts by mass, preferably 5 to 25 parts by mass, and more preferably 10 to 20 parts by mass. When the proportion of rubber is too small, the rubber contributes greatly to the inclusion of high concentrations of carbon fiber in the electromagnetic shielding powder and metal hydroxide powder of the flame retardant. When the proportion decreases, the carbon fiber and the metal hydroxide It becomes difficult to contain a high concentration of the powder of the product. If it does so, desired electromagnetic wave shielding property and flame retardance cannot be obtained, or even if it can be contained, the obtained thin film sheet is very brittle, and if bent, cracks and cracks may occur and handling may not be possible. On the other hand, when the ratio of rubber is too large, the content ratio of rubber inferior in strength compared to thermoplastics and thermoplastic elastomers increases, and the strength of the composition decreases, resulting in a thin film sheet having a thickness of 0.05 mm to 0.30 mm. There are cases where problems arise, such as being broken and unable to be handled.
In the present invention, the “rubber” does not include a thermoplastic elastomer.

本発明に好適に用いられるゴムには、アクリルゴム、エチレンプロピレンゴム、エチレン・メチルアクリレート共重合体などが挙げられる。中でもエチレン・メチルアクリレート共重合体が好ましい。その理由は、材料の混合においてその混合温度で熱可塑性プラスチックや熱可塑性エラストマーは熱がかかると可塑化して粘度が下がるが、ゴムは軟化するだけで比較的粘度が高いために、混合時のせん断発熱により温度が上昇しやすくなるのに対し、エチレン・メチルアクリレート共重合体は粘度やグリーン強度が低いために材料混合時のせん断発熱が低く好適であるためである。   Examples of the rubber suitably used in the present invention include acrylic rubber, ethylene propylene rubber, and ethylene / methyl acrylate copolymer. Of these, an ethylene / methyl acrylate copolymer is preferable. The reason for this is that during the mixing of materials, thermoplastics and thermoplastic elastomers plasticize and decrease in viscosity when heated, but rubber only softens and has a relatively high viscosity. This is because the temperature is likely to rise due to heat generation, whereas the ethylene / methyl acrylate copolymer is suitable because it has low viscosity and green strength and thus has low shear heat generation during mixing of materials.

エチレン・メチルアクリレート共重合体には二元型共重合体と三元型共重合体があり、どちらを用いても良いが二元型共重合体のほうがより好ましい。その理由は、三元型共重合体の場合は特定のアミンと反応して架橋点となるカルボン酸モノマーを有するため、必要に応じてアミン材料を含有した場合にそのエチレン・メチルアクリレート共重合体が架橋して薄膜シートの強度が上昇しすぎてしまい薄膜シートが脆くなってしまうためである。また、他に含有されたポリマーや粉末に不純物として微量のアミンが含有されている場合やそのようなアミンが存在しない場合でも、高温や高湿度といった環境下でカルボン酸モノマーを架橋点として、微少ではあるが架橋が進行してしまう懸念があるためである。それに対し二元型共重合体は、架橋点となるカルボン酸モノマーを有しないためにそのような懸念はなくなる。   The ethylene / methyl acrylate copolymer includes a binary copolymer and a ternary copolymer, either of which may be used, but the binary copolymer is more preferable. The reason is that, in the case of a ternary copolymer, it has a carboxylic acid monomer that reacts with a specific amine to become a crosslinking point, and therefore, if necessary, an ethylene / methyl acrylate copolymer containing an amine material. This is because the strength of the thin film sheet is excessively increased and the thin film sheet becomes brittle. Even when other polymers or powders contain trace amounts of amines as impurities or when such amines do not exist, the carboxylic acid monomer is used as a crosslinking point in high temperature and high humidity environments. However, there is a concern that the crosslinking may proceed. On the other hand, since the binary copolymer does not have a carboxylic acid monomer serving as a crosslinking point, such a concern is eliminated.

本発明におけるポリマーは、以上のような熱可塑性プラスチック及び熱可塑性エラストマー及びゴムという複数種のポリマーを所定の割合で混合してなる複合ポリマーとなる。   The polymer in the present invention is a composite polymer obtained by mixing a plurality of types of polymers such as the above-described thermoplastics, thermoplastic elastomers, and rubbers at a predetermined ratio.

本発明の電磁波遮蔽用組成物において、上記の複合ポリマー100質量部に対し、炭素繊維は50〜200質量部、好ましくは75〜175質量部、さらに好ましくは100〜150質量部を含有される。炭素繊維の含有量が少なすぎる場合、シート内部における炭素繊維間の距離が離れすぎていて所望の電磁波遮蔽性能を得ることができなくなる。一方、炭素繊維の含有量が多すぎる場合は、複合ポリマーに対するその炭素繊維粉末と金属水酸化物粉末の双方を合わせた粉末材料の含有比率が高すぎて混合が困難になる、もしくは混合できたとしてもそれら粉末をポリマーで十分にバインドすることができずに薄膜シートが非常に脆くなり曲げたりするとひびや割れが発生することがある。   In the electromagnetic wave shielding composition of the present invention, the carbon fiber contains 50 to 200 parts by mass, preferably 75 to 175 parts by mass, and more preferably 100 to 150 parts by mass with respect to 100 parts by mass of the composite polymer. If the carbon fiber content is too small, the distance between the carbon fibers inside the sheet is too large, and the desired electromagnetic shielding performance cannot be obtained. On the other hand, when the carbon fiber content is too high, the content ratio of the powder material including both the carbon fiber powder and the metal hydroxide powder with respect to the composite polymer is too high, and mixing becomes difficult or mixing was possible. However, if the powder cannot be sufficiently bound with the polymer and the thin film sheet becomes very brittle and bent, cracks and cracks may occur.

炭素繊維は有機繊維を加熱、酸化といった焼成させることで作り上げられるが、本発明に用いられる炭素繊維は、ポリアクリロニトリルという特殊なアクリル繊維を原料とするPAN系であっても、コールタールピッチや石油ピッチまたは石炭ピッチを原料にしているピッチ系のいずれであってもよい。炭素繊維の平均径は、好ましくは4〜12μm、さらに好ましくは6〜10μmである。炭素繊維の平均長さは、好ましくは25〜200μm、さらに好ましくは30〜70μmである。   Carbon fibers are made by firing organic fibers such as heating and oxidation, but the carbon fibers used in the present invention may be coal tar pitch or petroleum, even if they are PAN-based polyacrylonitrile as a raw material. Any pitch system using pitch or coal pitch as a raw material may be used. The average diameter of the carbon fibers is preferably 4 to 12 μm, more preferably 6 to 10 μm. The average length of the carbon fiber is preferably 25 to 200 μm, more preferably 30 to 70 μm.

炭素繊維の平均径が細すぎる場合や平均長さが短すぎる場合は、炭素繊維のかさ密度が大きくなり、混合しずらく、コンパウンドが硬くなって柔軟性が損なわれる。   When the average diameter of the carbon fiber is too thin or the average length is too short, the bulk density of the carbon fiber is increased, it is difficult to mix, the compound is hardened, and the flexibility is impaired.

一方、炭素繊維の平均径が大きすぎる場合や平均長さが長すぎる場合、薄膜シートが脆く曲げたりするとひびや割れが発生し取り扱いができないものになってしまい好ましくない。なぜなら、太いまたは長い繊維状の粉末はその周囲にポリマーがまとわり付きにくくなるためにバインドされにくくなる為である。   On the other hand, when the average diameter of the carbon fibers is too large or the average length is too long, if the thin film sheet is bent brittlely, it becomes unpreferable because cracks and cracks are generated and the film cannot be handled. This is because thick or long fibrous powders are less likely to be bound because the polymer is less likely to cling to the surroundings.

本発明の電磁波遮蔽用組成物において、上記の複合ポリマー100質量部に対し、金属水酸化物は100〜350質量部、好ましくは200〜300質量部、さらに好ましくは240〜300質量部を含有される。金属水酸化物の含有量が少なすぎる場合、0.05mmから0.30mm厚といった薄膜でUL94にある20mm垂直燃焼試験94V−2以上もしくは薄手材料垂直燃焼試験94VTM−2以上の垂直難燃性といった高い難燃性を得ることができなくなる。一方、金属水酸化物の含有量が多すぎる場合、複合ポリマーに対するその金属水酸化物粉末と炭素繊維粉末の双方を合わせた粉末材料の含有比率が高すぎて混合が困難になる、もしくは混合できたとしてもそれら粉末をポリマーで十分にバインドすることができずに薄膜シートが非常に脆く曲げたりするとひびや割れが発生することがある。   In the electromagnetic wave shielding composition of the present invention, the metal hydroxide contains 100 to 350 parts by mass, preferably 200 to 300 parts by mass, and more preferably 240 to 300 parts by mass with respect to 100 parts by mass of the composite polymer. The If the metal hydroxide content is too low, the thin flame of 0.05mm to 0.30mm and the vertical flame retardant of ULV94 20mm vertical combustion test 94V-2 or more or thin material vertical combustion test 94VTM-2 or more High flame retardance cannot be obtained. On the other hand, if the content of the metal hydroxide is too high, the content ratio of the powder material including both the metal hydroxide powder and the carbon fiber powder with respect to the composite polymer is too high, and mixing becomes difficult or cannot be mixed. Even if these powders cannot be sufficiently bound with the polymer and the thin film sheet is bent very brittle, cracks and cracks may occur.

本発明に好適に用いられる金属水酸化物には、水酸化マグネシウムや水酸化アルミニウムなどが挙げられ、その表面を脂肪酸処理やチタネート処理やシラン処理されたものであっても良い。金属水酸化物の平均粒径は10μm以下が好ましく、0.8〜2.0μmがさらに好ましい。
平均粒径が大きすぎた場合、粒度分布によっては50μm以上の粒径物が存在し、0.05mm厚から0.30mm厚での0.05mm厚などといった場合にシートの厚みを越える粒径物が存在することとなり、そのシート厚より大きな粒径である金属水酸化物粉末を起点として千切れてしまったりするために好ましくない。
Examples of the metal hydroxide suitably used in the present invention include magnesium hydroxide and aluminum hydroxide, and the surface thereof may be subjected to fatty acid treatment, titanate treatment or silane treatment. The average particle size of the metal hydroxide is preferably 10 μm or less, and more preferably 0.8 to 2.0 μm.
When the average particle size is too large, there are particles with a particle size of 50 μm or more depending on the particle size distribution, and particles with a particle size exceeding the thickness of the sheet when the thickness is 0.05 mm to 0.05 mm. This is not preferable because the metal hydroxide powder having a particle size larger than the sheet thickness is broken off.

尚、本発明の電磁波遮蔽用組成物には、本発明の特性を損なわない範囲で、必要に応じ老化防止剤、滑剤、着色剤、可塑剤、オイル等を含有しても良い。   The electromagnetic wave shielding composition of the present invention may contain an anti-aging agent, a lubricant, a colorant, a plasticizer, an oil and the like as necessary within the range not impairing the characteristics of the present invention.

本実施形態によれば、本実施形態に係る電磁波遮蔽用組成物は、炭素繊維を高濃度で含有するため、高い比誘電率を有する。また、炭素繊維を一定方向に配向させることで、本実施形態に係る電磁波遮蔽用組成物は、さらに大きな比誘電率を達成できる。本実施形態に係る電磁波遮蔽用組成物は、比誘電率が高いため、電磁波を全反射することが可能であり、高い電磁波遮蔽性能を有する。   According to this embodiment, the electromagnetic wave shielding composition according to this embodiment has a high relative dielectric constant because it contains carbon fiber at a high concentration. Further, by orienting the carbon fibers in a certain direction, the electromagnetic shielding composition according to the present embodiment can achieve a larger relative dielectric constant. The electromagnetic wave shielding composition according to this embodiment has a high relative dielectric constant, and thus can totally reflect electromagnetic waves and has high electromagnetic wave shielding performance.

また、本実施形態に係る電磁波遮蔽用組成物は、金属水酸化物化合物を高濃度で含有するため、高い難燃性を有する。   Moreover, since the composition for electromagnetic wave shielding which concerns on this embodiment contains a metal hydroxide compound in high concentration, it has high flame retardance.

また、本実施形態に係る電磁波遮蔽用組成物は、0.05mmから0.30mm厚といった薄膜シートとしても曲げても千切れもしくはひびや割れが発生しないといった取り扱いが可能な強度を有する。   Moreover, the electromagnetic wave shielding composition according to the present embodiment has such a strength that it can be handled such that even if it is bent as a thin film sheet having a thickness of 0.05 mm to 0.30 mm, it will not be broken or cracked or cracked.

また、本実施形態に係る電磁波遮蔽用組成物は、熱伝導性粉末の炭素繊維を高濃度で含有するため、高い熱伝導性を有する。   Moreover, since the composition for electromagnetic wave shielding which concerns on this embodiment contains the carbon fiber of heat conductive powder in high concentration, it has high heat conductivity.

また、本実施形態に係る電磁波遮蔽用組成物は、ハロゲン元素を含む物質を用いていないため、ハロゲンフリーである。   In addition, the electromagnetic wave shielding composition according to the present embodiment is halogen-free because no substance containing a halogen element is used.

また、本実施形態に係る電磁波遮蔽用組成物は、シリコーンゴムを使用せずに成形体を作製可能であるため、成形体からシロキサンの発生がなく、電気的な接点部分に悪影響を及ぼさない。   In addition, since the electromagnetic wave shielding composition according to this embodiment can produce a molded body without using silicone rubber, siloxane is not generated from the molded body, and the electrical contact portion is not adversely affected.

本発明の別の実施態様は、本発明に係る電磁波遮蔽用組成物を0.05〜0.30mm厚のシート状に成形してなる電磁波遮蔽シートである。シートの厚みは0.08〜0.20mm厚が好ましく、0.08〜0.12mm厚がさらに好ましい。シート厚が薄すぎる場合、所定の組成材料でも千切れたりして取り扱いが困難となる。一方、シート厚が厚すぎると、シート内の炭素繊維の並びが面方向と厚み方向でランダムに並び電磁波遮蔽性が低下してしまうために好ましくない。   Another embodiment of the present invention is an electromagnetic wave shielding sheet obtained by molding the electromagnetic wave shielding composition according to the present invention into a sheet shape having a thickness of 0.05 to 0.30 mm. The thickness of the sheet is preferably 0.08 to 0.20 mm, and more preferably 0.08 to 0.12 mm. When the sheet thickness is too thin, even a predetermined composition material may be broken and difficult to handle. On the other hand, if the sheet thickness is too thick, the arrangement of the carbon fibers in the sheet is randomly arranged in the surface direction and the thickness direction, which is not preferable because the electromagnetic wave shielding property is lowered.

図1は、本発明に係る電磁波遮蔽シートの断面を模式的に示す模式図である。図示された電磁波遮蔽シート1は、複合ポリマー2中に炭素繊維3および金属水酸化物4がほぼ均一に分散された状態で成型され、炭素繊維3はほぼ一定方向に並んだ状態となっている。特に、電磁波遮蔽シートをカレンダーロール成形や押出成形により成形した場合、炭素繊維3は高い配向性を有し、電磁波遮蔽シート1の比誘電率がより高くなり、より高い電磁波遮蔽性能を有する。   FIG. 1 is a schematic view schematically showing a cross section of an electromagnetic wave shielding sheet according to the present invention. The illustrated electromagnetic wave shielding sheet 1 is molded in a state where the carbon fibers 3 and the metal hydroxides 4 are almost uniformly dispersed in the composite polymer 2, and the carbon fibers 3 are arranged in a substantially constant direction. . In particular, when the electromagnetic wave shielding sheet is formed by calendar roll molding or extrusion molding, the carbon fiber 3 has high orientation, the relative dielectric constant of the electromagnetic wave shielding sheet 1 is higher, and the electromagnetic wave shielding performance is higher.

また、本発明の別の実施形態は、本発明に係る電磁波遮蔽用組成物で被覆した電磁波遮蔽電線である。本発明に係る電磁波遮蔽用組成物は、一般的な電線やケーブルなどを被覆可能である。炭素繊維が電磁波遮蔽電線の長手方向に配向しているため、本発明に係る電磁波遮蔽電線は、より高い電磁波遮蔽性能を有する。   Another embodiment of the present invention is an electromagnetic wave shielding electric wire coated with the electromagnetic wave shielding composition according to the present invention. The electromagnetic wave shielding composition according to the present invention can cover general electric wires and cables. Since the carbon fibers are oriented in the longitudinal direction of the electromagnetic shielding wire, the electromagnetic shielding wire according to the present invention has higher electromagnetic shielding performance.

本発明の電磁波遮蔽成形体の成形方法は特に限定されるものではないが、例えば、材料を通常用いられるバンバリーミキサーやニーダー等を用いて混合し、該混合物を常法によるカレンダーロール成形、オープンロール成形、プレス成形、押出成形等によりシート状へ成形することができる。また、これらの成形の単独、或は組み合わせにより、異形状や線状、チューブ状、電線への被覆等へ成形することができる。   The method for molding the electromagnetic wave shielding molded product of the present invention is not particularly limited. For example, the materials are mixed using a commonly used Banbury mixer, kneader, etc., and the mixture is calendered by an ordinary method, open roll It can be formed into a sheet by molding, press molding, extrusion molding or the like. In addition, these shapes can be formed into a different shape, a line shape, a tube shape, a coating on an electric wire, or the like by a single or a combination.

以下、実施例及び比較例に基づき本発明をより詳細に説明するが本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to this.

(実施例1〜実施例8)
熱可塑性プラスチックであるポリプロピレンに融点が125℃の日本ポリプロ(株)製ノバテックFX4Gを用い、熱可塑性エラストマーであるエチレン−酢酸ビニル共重合体に酢酸ビニル基含有量が40%のバイエル(株)製レバプレン400HVを用い、ゴムであるエチレン・メチルアクリレート共重合体に二元型共重合体の三井デュポンポリケミカル(株)製ベイマックDPを用い、炭素繊維に平均径が8μmで平均長が50μmの帝人(株)製ラヒーマR−A201を用い、金属水酸化物である水酸化マグネシウムに平均粒径が1.1μmの神島化学(株)製マグシーズN−4を用いた。それらを表1〜2に示す各例での配合量(質量部)をバンバリーミキサーで混練し、電磁波遮蔽用組成物を得た、この電磁波遮蔽用組成物をカレンダーロールでシート状に成形し、表1に示す0.05mmから0.30mmの各厚みのシートを得た。
(Example 1 to Example 8)
Novatec FX4G manufactured by Nippon Polypro Co., Ltd., which has a melting point of 125 ° C., is used for polypropylene, which is a thermoplastic plastic, and is made by Bayer Co., Ltd., which has a 40% vinyl acetate group content in an ethylene-vinyl acetate copolymer, which is a thermoplastic elastomer. Tevajin using Revaprene 400HV, a binary copolymer, Baymac DP manufactured by Mitsui DuPont Polychemical Co., Ltd., as the rubber ethylene-methyl acrylate copolymer, with carbon fiber having an average diameter of 8 μm and an average length of 50 μm Lacima R-A201 manufactured by Co., Ltd. was used, and Mag Seeds N-4 manufactured by Kamishima Chemical Co., Ltd. having an average particle size of 1.1 μm was used for magnesium hydroxide, which is a metal hydroxide. Compounding amounts (parts by mass) in each example shown in Tables 1 and 2 were kneaded with a Banbury mixer to obtain an electromagnetic wave shielding composition. This electromagnetic wave shielding composition was molded into a sheet shape with a calender roll, Sheets having thicknesses of 0.05 mm to 0.30 mm shown in Table 1 were obtained.

(比較例1〜比較例10)
表2に示す混合割合であること以外は実施例1〜実施例7と同じ同一の材料を用い同様の方法で成形し、表2に示す0.05mmから0.30mmの各厚みのシートを得た。
(Comparative Examples 1 to 10)
Except for the mixing ratios shown in Table 2, the same materials as in Examples 1 to 7 were used and molded by the same method to obtain sheets having thicknesses of 0.05 mm to 0.30 mm shown in Table 2. It was.

(ノイズ低減量測定)
図2で示すようなフラットケーブルの上に試料シートを載せ、スペクトラムアナライザーにてノイズの測定を行った。まず、BNCコネクタ1(以下BNC1と示す。)に発信器(トラッキングジェネレーター)から信号(Po)を入れ、BNC2の出力をスペクトラムアナライザー100〜1000MHzで読み取る。この値をPinとする。この時,BNC3とBNC4は50オームを組み込んだBNCコネクタで終端する。(以下“50Ω終端”と記す。)
BNC1にPinの測定と同じ信号を入力する。BNC2とBNC3は50Ω終端をする。BNC4の出力を同様にアナライザーで測定し、この値をFEPoutとする。遠端漏話(FEXT)を以下の式により求める。
FEXT[dB]=(FEPout)−(Pin)
フラットケーブルの上に試料シートを載せない場合と載せる場合の両方のFEXTを測定し、比較を行う。図3(a)に実施例1に係る試料シートを載せない場合のFEXT特性を示す。また、図3(b)に実施例1に係る試料シートを載せた場合のFEXT特性を示す。図3(a)と図3(b)を比較し、遠端漏話特性で100〜1000MHz領域で10dB以上の低減効果がある試料シートが合格である。
(Measurement of noise reduction)
A sample sheet was placed on a flat cable as shown in FIG. 2, and noise was measured with a spectrum analyzer. First, a signal (Po) is input from a transmitter (tracking generator) to the BNC connector 1 (hereinafter referred to as BNC1), and the output of the BNC2 is read by a spectrum analyzer 100 to 1000 MHz. This value is Pin. At this time, BNC3 and BNC4 terminate with a BNC connector incorporating 50 ohms. (Hereafter referred to as “50Ω termination”)
Input the same signal as the Pin measurement to BNC1. BNC2 and BNC3 are 50Ω terminated. Similarly, the output of BNC4 is measured with an analyzer, and this value is defined as FEPout. The far end crosstalk (FEXT) is obtained by the following equation.
FEXT [dB] = (FEPout) − (Pin)
Measure FEXT for both the case where the sample sheet is not placed on the flat cable and the case where the sample sheet is placed. FIG. 3A shows FEXT characteristics when the sample sheet according to Example 1 is not placed. FIG. 3B shows FEXT characteristics when the sample sheet according to Example 1 is placed. Comparing FIG. 3 (a) and FIG. 3 (b), a sample sheet having a reduction effect of 10 dB or more in the 100 to 1000 MHz region with a far-end crosstalk characteristic is acceptable.

(UL94 薄手材料垂直燃焼試験)
材料・装置・部品・道具類などから製品に至るまでの、機能や安全性に関する標準化を目的とした製品安全規格を満たしたものに対し認可を与える機関であるUnderwriters Laboratoriesで実施評価されるUL94「機器の部品用プラスチック材料の燃焼性試験」にある薄手材料垂直燃焼試験に準拠した。本試験は同じくUL94にある20mm垂直燃焼試験を行った場合、材料が薄いためにゆがんだり、縮んだりまたはクランプの所まで燃え尽きてしまう材料について実施するためのものである。本発明の電磁波遮蔽性薄膜シートは0.05mmから0.30mmと薄いものであることから、この薄手材料垂直燃焼試験を行った。
94VTM−2以上で合格である。
(UL94 thin material vertical combustion test)
UL94, which is evaluated and evaluated by Underwriters Laboratories, an organization that grants approval for products that meet product safety standards aimed at standardization of functions and safety, from materials, equipment, parts, tools, etc. to products. It conformed to the thin material vertical combustion test in "Flammability test of plastic materials for equipment parts". This test is also performed for a material that is distorted, shrunk, or burns out to the clamp because the material is thin when the 20 mm vertical combustion test in UL94 is performed. Since the electromagnetic wave shielding thin film sheet of the present invention is as thin as 0.05 mm to 0.30 mm, this thin material vertical combustion test was performed.
It is 94VTM-2 or higher.

(シート巻き付け試験)
例えば規定のシートを電子電気機器内にセットなどする場合にそれを曲げたりしなければならない状況がある。その際に、多少の曲げでも千切れたりもしくはひびや割れが発生したりすると、その電気電子機器の組み立て作業の生産性を大きく低下させる原因となり製品としては成り立たなくなる。取り扱いが可能な強度を有するというのはそのように曲げても千切れたりもしくはひびや割れが発生することがない強度を意味する。
それを受け、JIS C 3005ゴム・プラスチック絶縁電線試験方法の巻付加熱試験を参考にした。それは電線試料を規定の径をもつ円筒に緊密に規定回数巻き付け、または屈曲し、そのままの状態で、規定温度の恒温槽で1時間加熱した後に取り出して、試料の表面にひび及び割れが生じているかどうかを目視で調べるものである。本試験では、径1.0mmの円筒の棒に規定のシートを巻き付けた際に、千切れもしくはそれにひびや割れが発生するかで行った。それを現品で行い、千切れもしくはひびや割れが発生しなかった規定のシートについては更に120℃で1000時間の熱履歴を与えたもので同様の試験を行った。
千切れもしくはひびや割れが発生しないものが合格である。
(Sheet winding test)
For example, there is a situation where a specified sheet must be bent when it is set in an electronic or electrical device. At this time, if the piece is broken or cracked or cracked even if it is bent slightly, the productivity of assembling the electrical and electronic equipment is greatly reduced, and the product cannot be realized. Having strength that can be handled means strength that does not cause tearing or cracking or cracking even if it is bent.
In response to this, the winding additional heat test of the JIS C 3005 rubber / plastic insulated wire test method was referred to. That is, a wire sample is tightly wound or bent around a cylinder with a specified diameter for a specified number of times, and is left as it is for 1 hour after being heated in a constant temperature bath and cracked and cracked on the surface of the sample. It is to check whether it is visually. In this test, when a specified sheet was wound around a cylindrical rod having a diameter of 1.0 mm, it was determined whether it was torn or cracked or cracked. This was carried out with the actual product, and the same test was carried out with a specified sheet in which no tearing or cracking or cracking occurred and a thermal history of 1000 hours at 120 ° C.
Those that do not tear or crack or crack are acceptable.

表1に示されるように、実施例1から実施例8の電磁波遮蔽シートはノイズ低減効果10dB以上を有する。UL94薄手材料垂直燃焼試験においては、平均径1.1μmの水酸化マグネシウムが100質量部配合の実施例6は94VTM−2で、270質量部と350質量部配合の実施例1から実施例5及び実施例6から実施例8は94VTM−0を有する。更に、シート巻き付け試験では現品及び120℃1000時間の熱履歴後で径1.0mmの円筒の棒への巻き付けでも千切れもしくはひびや割れが発生することのない強度を有する。以上のように、本発明の電磁波遮蔽性薄膜シートは電磁波遮蔽性に優れ更に薄くても高い難燃性を有しかつ取り扱いが可能な強度をも有することが確認される。   As shown in Table 1, the electromagnetic wave shielding sheets of Examples 1 to 8 have a noise reduction effect of 10 dB or more. In the UL94 thin material vertical combustion test, Example 6 containing 100 parts by mass of magnesium hydroxide having an average diameter of 1.1 μm was 94 VTM-2, and Examples 1 to 5 containing 270 parts by mass and 350 parts by mass were used. Examples 6 through 8 have 94VTM-0. Furthermore, in the sheet winding test, it has a strength that does not cause tearing or cracking or cracking even when it is wound around the actual product and a cylindrical rod having a diameter of 1.0 mm after a heat history of 120 ° C. for 1000 hours. As described above, it is confirmed that the electromagnetic wave shielding thin film sheet of the present invention is excellent in electromagnetic wave shielding properties and has high flame resistance even when it is thinner, and also has a strength that can be handled.

それに対し、表2の熱可塑性プラスチックであるポリプロピレンが5質量部未満である比較例1の0.15mm厚シートは強度が低く、径1.0mmの円筒の棒に巻き付ける際に千切れてしまい取り扱いが困難なことがわかる。
表2の熱可塑性プラスチックであるポリプロピレンが30質量部を越えた比較例2の0.15mm厚シートは、その組成物が硬すぎて径1.0mmの円筒の棒に巻き付けるとひびや割れが発生し取り扱いが困難なことがわかる。
表2の熱可塑性エラストマーであるエチレン酢酸ビニルが45質量部未満である比較例3の0.15mm厚シートは脆く、径1.0mmの円筒の棒に巻き付けるとひびや割れが発生し取り扱いが困難なことがわかる。
表2の熱可塑性エラストマーであるエチレン酢酸ビニルが90質量部を越えた比較例4の0.15mm厚シートは強度が低く、径1.0mmの円筒の棒に巻き付ける際に千切れてしまい取り扱いが困難なことがわかる。
表2のゴムであるエチレン・メチルアクリレート共重合体が5質量部未満である比較例5の0.15mm厚シートは脆く、径1.0mmの円筒の棒に巻き付けるとひびや割れが発生し取り扱いが困難なことがわかる。
On the other hand, the 0.15 mm thick sheet of Comparative Example 1 in which the thermoplastic plastic of Table 2 is less than 5 parts by mass has low strength and is broken when handled around a cylindrical rod having a diameter of 1.0 mm. It turns out that is difficult.
The 0.15 mm thick sheet of Comparative Example 2 in which the thermoplastic plastic of Table 2 exceeds 30 parts by mass was cracked and cracked when wound around a cylindrical rod having a diameter of 1.0 mm because the composition was too hard. It turns out that it is difficult to handle.
The 0.15 mm thick sheet of Comparative Example 3 with less than 45 parts by mass of ethylene vinyl acetate, which is the thermoplastic elastomer of Table 2, is brittle, and cracking and cracking occur when wound around a cylindrical rod with a diameter of 1.0 mm, making it difficult to handle I understand that.
The 0.15 mm thick sheet of Comparative Example 4 in which ethylene vinyl acetate, which is the thermoplastic elastomer of Table 2, exceeds 90 parts by mass, has low strength and is broken when handled around a cylindrical rod having a diameter of 1.0 mm. I find it difficult.
The 0.15 mm thick sheet of Comparative Example 5 in which the ethylene / methyl acrylate copolymer, which is the rubber of Table 2, is less than 5 parts by mass is brittle, and when wound around a cylindrical rod having a diameter of 1.0 mm, cracks and cracks are generated and handled. It turns out that is difficult.

表2のゴムであるエチレン・メチルアクリレート共重合体が30質量部を越えた比較例6の0.15mm厚シートは強度が低く、径1.0mmの円筒の棒に巻き付ける際に千切れてしまい取り扱いが困難なことがわかる。
表2の炭素繊維が50質量部未満である比較例7の0.15mm厚シートはノイズ低減量が5dBと低く、電磁波遮蔽に劣ることがわかる。
表2の炭素繊維が200質量部を越えた比較例8の0.15mm厚シートは脆く、径1.0mmの円筒の棒に巻き付けるとひびや割れが発生し取り扱いが困難なことがわかる。
表2の金属水酸化物である水酸化マグネシウムが100質量部未満である比較例9の0.30mm厚シートは、UL94の薄手材料垂直燃焼試験94VTM−2以上といった垂直難燃性がないことがわかる。
表2の金属水酸化物である水酸化マグネシウムが350質量部を越えた比較例10の0.15mm厚シートは脆く、径1.0mmの円筒の棒に巻き付けるとひびや割れが発生し取り扱いが困難なことがわかる。
The 0.15 mm thick sheet of Comparative Example 6 in which the ethylene / methyl acrylate copolymer, which is the rubber of Table 2, exceeds 30 parts by mass has low strength and is broken when wound on a cylindrical rod having a diameter of 1.0 mm. It turns out that handling is difficult.
It can be seen that the 0.15 mm thick sheet of Comparative Example 7 in which the carbon fiber of Table 2 is less than 50 parts by mass has a low noise reduction amount of 5 dB and is inferior in electromagnetic wave shielding.
It can be seen that the 0.15 mm thick sheet of Comparative Example 8 in which the carbon fiber in Table 2 exceeds 200 parts by mass is brittle and cracks and cracks occur when wound around a cylindrical rod having a diameter of 1.0 mm, making it difficult to handle.
The 0.30 mm thick sheet of Comparative Example 9 in which magnesium hydroxide, which is the metal hydroxide of Table 2, is less than 100 parts by mass does not have vertical flame retardancy such as the UL94 thin material vertical combustion test 94 VTM-2 or higher. Recognize.
The 0.15 mm thick sheet of Comparative Example 10 in which magnesium hydroxide, which is the metal hydroxide of Table 2, exceeds 350 parts by mass is brittle, and when wound around a cylindrical rod having a diameter of 1.0 mm, cracks and cracks are generated and handled. I find it difficult.

(実施例9)
実施例1に記載の電磁波遮蔽用組成物で被覆された同軸ケーブルを試作した。導体としては直径0.65mmの軟銅線を用い、この導体を、絶縁体として厚さ1.69mmの架橋ポリエチレンで覆い、さらに第1シールドとして厚さ0.50mmの実施例1に記載の電磁波遮蔽用組成物で覆い、さらに第2シールドとして編組密度85%の直径0.12mmの軟銅線の編組で覆い、さらにシースとして厚さ1.0mmの黒いノンハロゲンシースで多い、前記同軸ケーブルを試作した。
Example 9
A coaxial cable coated with the electromagnetic wave shielding composition described in Example 1 was prototyped. An annealed copper wire having a diameter of 0.65 mm is used as the conductor, and the conductor is covered with a crosslinked polyethylene having a thickness of 1.69 mm as an insulator, and the electromagnetic shielding described in Example 1 having a thickness of 0.50 mm is used as a first shield. The coaxial cable, which is covered with a composition for use, further covered with a braid of an annealed copper wire with a braid density of 85% and a diameter of 0.12 mm as a second shield, and further with a black non-halogen sheath having a thickness of 1.0 mm as a sheath, was made as an experiment.

(同軸ケーブルのシールド特性評価)
同軸ケーブルをアブソービングクランプ法にて、30MHz以上の周波数領域でのシールド特性を評価した。その結果を、図4に示す。
(Evaluation of shielding characteristics of coaxial cable)
The shielding characteristics of the coaxial cable in the frequency region of 30 MHz or higher were evaluated by the absorbing clamp method. The result is shown in FIG.

図4に示すように、実施例9に係る同軸ケーブルは、30MHz以上の周波数の領域において、−50dBm以上のシールド特性を示した。一方、電磁波遮蔽用組成物での被覆を行わない場合、つまり、編組密度85%の軟銅線の編組のみでシールドする場合には、−30dBm程度のシールド特性を示すことが知られている。よって、実施例1に係る電磁波遮蔽用組成物で被覆を行うことで、20dB以上のノイズ低減効果を得られた。   As shown in FIG. 4, the coaxial cable according to Example 9 exhibited a shielding characteristic of −50 dBm or more in a frequency region of 30 MHz or more. On the other hand, when the coating with the electromagnetic wave shielding composition is not performed, that is, when shielding is performed only with a braid of an annealed copper wire having a braid density of 85%, it is known that a shielding characteristic of about −30 dBm is exhibited. Therefore, a noise reduction effect of 20 dB or more was obtained by coating with the electromagnetic wave shielding composition according to Example 1.

1………電磁波遮蔽シート
2………複合ポリマー
3………炭素繊維
4………金属水酸化物
DESCRIPTION OF SYMBOLS 1 ......... Electromagnetic wave shielding sheet 2 ......... Composite polymer 3 ......... Carbon fiber 4 ......... Metal hydroxide

Claims (10)

熱可塑性プラスチック5〜30質量部、熱可塑性エラストマー45〜85質量部、ゴム5〜30質量部の割合で含有する複合ポリマー100質量部に対し、炭素繊維50〜200質量部及び金属水酸化物100〜350質量部を含有してなることを特徴とする電磁波遮蔽用組成物。   Carbon fiber 50-200 parts by mass and metal hydroxide 100 with respect to 100 parts by mass of the composite polymer contained in a proportion of 5-30 parts by mass of thermoplastic, 45-85 parts by mass of thermoplastic elastomer, 5-30 parts by mass of rubber. The composition for electromagnetic wave shielding characterized by including -350 mass parts. 前記熱可塑性プラスチックが融点120〜150℃のポリエチレンまたはポリプロピレンであることを特徴とする請求項1項記載の電磁波遮蔽用組成物。   The electromagnetic shielding composition according to claim 1, wherein the thermoplastic plastic is polyethylene or polypropylene having a melting point of 120 to 150 ° C. 前記熱可塑性エラストマーが酢酸ビニル基含有量40〜60質量%のエチレン−酢酸ビニル共重合体であることを特徴とする請求項1または2項記載の電磁波遮蔽用組成物。   The electromagnetic shielding composition according to claim 1 or 2, wherein the thermoplastic elastomer is an ethylene-vinyl acetate copolymer having a vinyl acetate group content of 40 to 60 mass%. 前記ゴムが二元型共重合体のエチレン・メチルアクリレート共重合体であることを特徴とする請求項1〜3のいずれか1項に記載の電磁波遮蔽用組成物。   The electromagnetic wave shielding composition according to any one of claims 1 to 3, wherein the rubber is an ethylene / methyl acrylate copolymer of a binary copolymer. 前記炭素繊維が平均径4〜12μmかつ平均長さ25〜200μmの炭素繊維であることを特徴とする請求項1〜4のいずれか1項に記載の電磁波遮蔽用組成物。   5. The electromagnetic wave shielding composition according to claim 1, wherein the carbon fibers are carbon fibers having an average diameter of 4 to 12 μm and an average length of 25 to 200 μm. 前記金属水酸化物の平均粒径が10μm以下であることを特徴とする請求項1〜5のいずれか1項に記載の電磁波遮蔽用組成物。   6. The electromagnetic wave shielding composition according to claim 1, wherein the metal hydroxide has an average particle size of 10 μm or less. 請求項1〜6のいずれか1項に記載の電磁波遮蔽用組成物からなる成形体。   The molded object which consists of a composition for electromagnetic wave shielding of any one of Claims 1-6. 請求項1〜6のいずれか1項に記載の電磁波遮蔽用組成物を0.05〜0.30mm厚のシート形状に成形してなることを特徴とする電磁波遮蔽シート。   An electromagnetic wave shielding sheet formed by molding the electromagnetic wave shielding composition according to any one of claims 1 to 6 into a sheet shape having a thickness of 0.05 to 0.30 mm. 請求項1〜6のいずれか1項に記載の電磁波遮蔽用組成物を電線の被覆層の層間に押出被覆したことを特徴とする電磁波遮蔽電線。   An electromagnetic wave shielding electric wire obtained by extrusion coating the electromagnetic wave shielding composition according to any one of claims 1 to 6 between layers of an electric wire covering layer. 請求項8に記載の電磁波遮蔽シートをケーブルに載せることを特徴とする電磁波遮蔽方法。   An electromagnetic wave shielding method comprising placing the electromagnetic wave shielding sheet according to claim 8 on a cable.
JP2009033411A 2009-02-17 2009-02-17 Electromagnetic wave shielding composition, molded body of electromagnetic wave shielding composition, electromagnetic wave shielding sheet, electromagnetic wave shielding wire Expired - Fee Related JP4897975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033411A JP4897975B2 (en) 2009-02-17 2009-02-17 Electromagnetic wave shielding composition, molded body of electromagnetic wave shielding composition, electromagnetic wave shielding sheet, electromagnetic wave shielding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033411A JP4897975B2 (en) 2009-02-17 2009-02-17 Electromagnetic wave shielding composition, molded body of electromagnetic wave shielding composition, electromagnetic wave shielding sheet, electromagnetic wave shielding wire

Publications (2)

Publication Number Publication Date
JP2010192550A true JP2010192550A (en) 2010-09-02
JP4897975B2 JP4897975B2 (en) 2012-03-14

Family

ID=42818294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033411A Expired - Fee Related JP4897975B2 (en) 2009-02-17 2009-02-17 Electromagnetic wave shielding composition, molded body of electromagnetic wave shielding composition, electromagnetic wave shielding sheet, electromagnetic wave shielding wire

Country Status (1)

Country Link
JP (1) JP4897975B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140186A (en) * 2011-04-08 2011-08-03 青岛科技大学 Natural rubber composite with electromagnetic shielding property and preparation method thereof
JP2016009809A (en) * 2014-06-26 2016-01-18 住友ベークライト株式会社 Film for electromagnetic wave shield and electronic component mounting board
JP2016092118A (en) * 2014-10-31 2016-05-23 北川工業株式会社 Thermally-conductive electromagnetic wave-absorbing sheet
CN110556208A (en) * 2019-09-16 2019-12-10 湖南华菱线缆股份有限公司 Ultralow temperature cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468018B1 (en) * 2013-05-21 2014-12-02 한국생산기술연구원 EMI Shield sheet comprising carbon complex fiber manufactured by electrospinning and a preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290806A (en) * 1985-10-16 1987-04-25 日立電線株式会社 Power cable
JPH04311745A (en) * 1991-04-09 1992-11-04 Mitsubishi Cable Ind Ltd Crosslinkable semiconducting resin composition capable of preventing discoloration and corrosion of copper tape
JPH11167825A (en) * 1997-12-02 1999-06-22 Tsuchiya Rubber Kk Electric wire/cable and cable cover
JPH11286609A (en) * 1998-04-02 1999-10-19 Mitsubishi Chemical Corp Resin composition for high-frequency contact point and high-frequency propagating component
JP2002299112A (en) * 2001-04-02 2002-10-11 Daido Steel Co Ltd Method of manufacturing soft magnetic powder dispersed sheet
JP2004311063A (en) * 2003-04-02 2004-11-04 Fujikura Ltd Power cable
JP2006182875A (en) * 2004-12-27 2006-07-13 Advanced Plastics Compounds Co Flame-retardant thermoplastic resin composition
JP2007123668A (en) * 2005-10-31 2007-05-17 I-Pulse Co Ltd Surface mounter
JP2008034823A (en) * 2006-06-30 2008-02-14 Toray Ind Inc Cabinet for electronic device and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290806A (en) * 1985-10-16 1987-04-25 日立電線株式会社 Power cable
JPH04311745A (en) * 1991-04-09 1992-11-04 Mitsubishi Cable Ind Ltd Crosslinkable semiconducting resin composition capable of preventing discoloration and corrosion of copper tape
JPH11167825A (en) * 1997-12-02 1999-06-22 Tsuchiya Rubber Kk Electric wire/cable and cable cover
JPH11286609A (en) * 1998-04-02 1999-10-19 Mitsubishi Chemical Corp Resin composition for high-frequency contact point and high-frequency propagating component
JP2002299112A (en) * 2001-04-02 2002-10-11 Daido Steel Co Ltd Method of manufacturing soft magnetic powder dispersed sheet
JP2004311063A (en) * 2003-04-02 2004-11-04 Fujikura Ltd Power cable
JP2006182875A (en) * 2004-12-27 2006-07-13 Advanced Plastics Compounds Co Flame-retardant thermoplastic resin composition
JP2007123668A (en) * 2005-10-31 2007-05-17 I-Pulse Co Ltd Surface mounter
JP2008034823A (en) * 2006-06-30 2008-02-14 Toray Ind Inc Cabinet for electronic device and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140186A (en) * 2011-04-08 2011-08-03 青岛科技大学 Natural rubber composite with electromagnetic shielding property and preparation method thereof
CN102140186B (en) * 2011-04-08 2013-04-10 青岛科技大学 Natural rubber composite with electromagnetic shielding property and preparation method thereof
JP2016009809A (en) * 2014-06-26 2016-01-18 住友ベークライト株式会社 Film for electromagnetic wave shield and electronic component mounting board
JP2016092118A (en) * 2014-10-31 2016-05-23 北川工業株式会社 Thermally-conductive electromagnetic wave-absorbing sheet
CN110556208A (en) * 2019-09-16 2019-12-10 湖南华菱线缆股份有限公司 Ultralow temperature cable

Also Published As

Publication number Publication date
JP4897975B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2017026391A1 (en) Dc cable, and method for manufacturing composition and dc cable
CN101578334B (en) Non-halogen flame retardant resin composite and electric wire/cable using the same
JP4897975B2 (en) Electromagnetic wave shielding composition, molded body of electromagnetic wave shielding composition, electromagnetic wave shielding sheet, electromagnetic wave shielding wire
WO2008112393A1 (en) Stress/thermal cracking resistant cable sheath material
JP6320692B2 (en) DC cable and electrical insulation composition
JP5163597B2 (en) Non-halogen flame retardant resin composition, method for producing the same, and electric wire / cable using the same
WO2019202870A1 (en) Resin composition, inorganic filler, dc power cable, and method for producing dc power cable
JP5328104B2 (en) Insulated wire manufacturing method
JP2015199819A (en) Resin composition for shielding electromagnetic wave and cable
JP2006310092A (en) Non-halogen-based insulated electric wire and wire harness
JP6652182B2 (en) Resin composition, inorganic filler, DC power cable, and method for manufacturing DC power cable
JPH10245456A (en) Flame retardant polyolefin composition, and power cable using the composition
JP7272276B2 (en) Insulating resin composition, insulating material, insulated wire and cable
JP6326351B2 (en) Electromagnetic wave shielding resin composition and cable
CN105670195B (en) Halogen crosslinkable resin composition, cross linked insulation electric wire and cable
JP5089417B2 (en) Thermally conductive sheet and heat dissipation device
KR101577070B1 (en) Thermoplastic Ester Elastomer Based Composition for Insulation Layers and Electric Cable Equipped Therewith
KR101770351B1 (en) Semiconductive composition
JP2014072133A (en) Dc power cable
JP6699074B2 (en) Insulating resin composition and insulated wire
CN108659325B (en) Phosphorus-free halogen-free flame-retardant resin composition and wire and cable using same
JP2003096306A (en) Flame-retardant resin composition
JP2010126649A (en) Thermoplastic resin composition and molded article produced by using the same
CN110305395B (en) Flame-retardant resin composition and insulated wire
JP2010108683A (en) Insulation wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111223

R151 Written notification of patent or utility model registration

Ref document number: 4897975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees