JP2010192253A - Thermal switch device and superconducting device - Google Patents

Thermal switch device and superconducting device Download PDF

Info

Publication number
JP2010192253A
JP2010192253A JP2009035531A JP2009035531A JP2010192253A JP 2010192253 A JP2010192253 A JP 2010192253A JP 2009035531 A JP2009035531 A JP 2009035531A JP 2009035531 A JP2009035531 A JP 2009035531A JP 2010192253 A JP2010192253 A JP 2010192253A
Authority
JP
Japan
Prior art keywords
wall surface
superconducting
contact
thermal
thermal switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035531A
Other languages
Japanese (ja)
Inventor
Yoshimasa Ohashi
義正 大橋
Nobuaki Okumura
暢朗 奥村
Hidetoshi Kusumi
秀年 久須美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009035531A priority Critical patent/JP2010192253A/en
Publication of JP2010192253A publication Critical patent/JP2010192253A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal switch device advantageous for restraining heat intrusion from outside and a superconducting device. <P>SOLUTION: The thermal switch device 400 is provided with a base body 4 forming a heat-insulating room 40, and a first member 500 arranged in the heat-insulating room 40, and a second member 600, arranged in the heat-insulating room 40 with at least a part formed of a base material having a higher coefficient of thermal expansion than the first member 500. Accordingly, as the second member 600 is cooled, a mode is changed into a first one in which a contact degree of the first member 500 and the second member 600 gets higher, directly or indirectly. As a temperature of the second member 600 is raised, the mode is changed into a second one in which a contact degree of the first member 500 and the second member 600 becomes, directly or non-directly, lower or becomes non-contacting. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は外部からの熱伝達が抑えられる断熱室を形成する基体を有する熱スイッチ装置、および、熱スイッチ装置を有する超電導装置に関する。   The present invention relates to a thermal switching device having a base that forms a heat insulating chamber in which heat transfer from the outside is suppressed, and a superconducting device having a thermal switching device.

超電導装置を例にとって説明する。従来、臨界温度以下において超電導現象を示す超電導部と、超電導部を真空断熱状態に収容する真空断熱室をもつ基体と、基体の真空断熱室に収容されている超電導部が臨界温度以下となるように超電導部を冷却させるための冷却部とを備えている超電導装置が知られている(特許文献1,2)。このものによれば、超電導部をこれの臨界温度以下に冷却させれば、超電導部の超電導現象が得られ、電気エネルギが節約される。   A superconducting device will be described as an example. Conventionally, a superconducting part exhibiting a superconducting phenomenon below a critical temperature, a base body having a vacuum heat insulating chamber that accommodates the superconducting part in a vacuum heat insulating state, and a superconducting part accommodated in the vacuum heat insulating chamber of the base body become below the critical temperature. There is known a superconducting device including a cooling unit for cooling the superconducting unit (Patent Documents 1 and 2). According to this, if the superconducting part is cooled below its critical temperature, the superconducting phenomenon of the superconducting part can be obtained and the electrical energy can be saved.

特開2007−89345号公報JP 2007-89345 A 特開2008−159828号公報JP 2008-159828 A

上記した超電導装置によれば、超電導部は真空断熱室内に収容されているといえども、冷却部が停止されているときには、外部から真空断熱室への熱侵入により超電導部が昇温するおそれがある。この場合、超電導部の昇温の程度によっては、超電導装置を再起動させるとき、超電導部が超電導状態を示すまで冷却させるのに、時間がかかる不具合がある。   According to the superconducting device described above, even though the superconducting part is accommodated in the vacuum heat insulating chamber, there is a risk that the temperature of the superconducting part will rise due to heat penetration from the outside into the vacuum heat insulating chamber when the cooling unit is stopped. is there. In this case, depending on the degree of temperature rise of the superconducting part, when restarting the superconducting device, there is a problem that it takes time to cool the superconducting part until the superconducting part shows a superconducting state.

本発明は上記した実情に鑑みてなされたものであり、外部からの熱侵入をできるだけ抑制するのに有利な熱スイッチ装置および超電導装置を提供するにある。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a thermal switch device and a superconducting device that are advantageous in suppressing heat intrusion from the outside as much as possible.

(1)様相1に係る本発明の熱スイッチ置は、外部からの熱伝達が抑えられる断熱室を形成する基体と、基体の断熱室に配置された第1部材と、基体の断熱室に配置され、少なくとも一部が第1部材よりも大きい熱膨張率を有する材料を基材として形成された第2部材とを具備しており、第1部材および第2部材は、冷却部により第2部材が冷却されるに伴い第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態と、第2部材が昇温させるに伴い第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態とに切り替え可能とされていることを特徴とする。ここで、第1部材と第2部材とが直接的に接触する接触度とは、第1部材と第2部材とが中間部材を介することなく接触する接触度を意味する。また、第1部材と第2部材とが間接的に接触する接触度とは、第1部材と第2部材とが中間部材を介して接触する接触度を意味する。   (1) The thermal switch device of the present invention according to aspect 1 includes a base that forms a heat insulating chamber in which heat transfer from the outside is suppressed, a first member that is disposed in the heat insulating chamber of the base, and a heat insulating chamber of the base. And at least a part of the second member formed using a material having a thermal expansion coefficient larger than that of the first member as a base material. The first member and the second member are separated from each other by the cooling unit. As the temperature of the first member increases, the first member and the second member come into contact with each other directly or indirectly, and the first member and the second member increase in temperature. It is possible to switch to a second form in which the degree of contact that directly or indirectly contacts decreases or becomes non-contact. Here, the contact degree in which the first member and the second member are in direct contact means the contact degree in which the first member and the second member are in contact without an intermediate member. Moreover, the contact degree which a 1st member and a 2nd member contact indirectly means the contact degree which a 1st member and a 2nd member contact via an intermediate member.

様相1によれば、冷却部により第2部材が冷却されるに伴い、第2部材の熱収縮量が増加するため、熱第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態に切り替えられる。これに対して、第2部材が昇温させるに伴い、第2部材の熱膨張量が増加するため、第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態に切り替えられる。   According to aspect 1, as the second member is cooled by the cooling unit, the amount of thermal contraction of the second member increases, so that the thermal first member and the second member contact directly or indirectly. It is switched to the first form in which the degree is increased. On the other hand, the amount of thermal expansion of the second member increases as the temperature of the second member increases, so does the contact degree between the first member and the second member directly or indirectly decrease? Or, it is switched to the second form that is non-contact.

(2)様相2に係る本発明の超電導装置は、臨界温度以下において超電導現象を示す超電導部と、外部からの熱伝達が抑えられる断熱室を形成すると共に断熱室に超電導部を収容する基体と、超電導部をこれの臨界温度以下に冷却させる冷却部と、超電導部と冷却部との間に介在し冷却部の冷却能を超電導部に伝達させる熱スイッチ装置とを具備しており、熱スイッチ装置は、基体の断熱室に配置された第1部材と、基体の断熱室に配置され、少なくとも一部が第1部材よりも大きな熱膨張率を有する材料を基材として形成された第2部材とを具備しており、
第1部材および第2部材は、冷却部により第2部材が冷却されるに伴い第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態と、第2部材が昇温させるに伴い第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態とに切り替え可能とされていることを特徴とする。
(2) A superconducting device of the present invention according to aspect 2 includes a superconducting portion that exhibits a superconducting phenomenon below a critical temperature, a base that forms a heat insulating chamber in which heat transfer from the outside is suppressed and accommodates the superconducting portion in the heat insulating chamber, A cooling part that cools the superconducting part below the critical temperature, and a thermal switch device that is interposed between the superconducting part and the cooling part and transmits the cooling capacity of the cooling part to the superconducting part. The apparatus includes a first member disposed in the heat insulating chamber of the base member, and a second member formed in the base member of a material that is disposed in the heat insulating chamber of the base member and at least a part of which has a larger coefficient of thermal expansion than the first member. And
The first member and the second member have a first form in which the degree of contact between the first member and the second member directly or indirectly increases as the second member is cooled by the cooling unit; As the temperature of the member rises, the degree of contact with which the first member and the second member are in direct or indirect contact decreases or is switched to the second form in which they are not in contact with each other. Features.

様相2によれば、冷却部により第2部材が冷却されるに伴い、第2部材の熱収縮量が増加するため、第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態に切り替えられる。この場合、冷却部により冷却された第2部材の冷熱は、第2部材から第1部材に効率よく伝達され、超電導部が効率よく冷却される。   According to aspect 2, as the second member is cooled by the cooling unit, the amount of thermal contraction of the second member increases, and thus the contact degree at which the first member and the second member are in direct or indirect contact with each other. Is switched to the first form. In this case, the cold heat of the second member cooled by the cooling unit is efficiently transmitted from the second member to the first member, and the superconducting unit is efficiently cooled.

これに対して冷却部の冷却出力が低下したり停止したりすると、外部からの熱侵入により第2部材が次第に昇温する。これに伴い、第2部材が第1部材から離間するように熱膨張する。このため、第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態に切り替えられる。この場合、第2部材から熱エネルギが超電導部に伝達されることが抑制され、超電導の低温状態が維持され易くなる。   On the other hand, if the cooling output of the cooling unit decreases or stops, the second member gradually increases in temperature due to heat penetration from the outside. Accordingly, the second member is thermally expanded so as to be separated from the first member. For this reason, the contact degree which a 1st member and a 2nd member contact directly or indirectly falls, or it switches to the 2nd form used as non-contact. In this case, it is suppressed that heat energy is transmitted from the second member to the superconducting portion, and the superconducting low temperature state is easily maintained.

(3)様相3に係る本発明の超電導装置は、臨界温度以下において超電導現象を示す超電導部と、外部からの熱伝達が抑えられる断熱室を形成すると共に断熱室に超電導部を収容する基体と、超電導部をこれの臨界温度以下に冷却させるための冷却部と、超電導部に給電する給電部と、超電導部と前記給電部との間に介在し給電部から超電導部に給電させる熱スイッチ装置とを具備しており、
熱スイッチ装置は、基体の断熱室に配置された第1部材と、基体の断熱室に配置され、少なくとも一部が第1部材よりも大きな熱膨張率を有する材料を基材として形成された第2部材とを具備しており、第1部材および第2部材は、冷却部により第2部材が冷却されるに伴い第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態と、第2部材が昇温させるに伴い第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態とに切り替え可能とされていることを特徴とする。
(3) A superconducting device of the present invention according to aspect 3 includes a superconducting portion that exhibits a superconducting phenomenon below a critical temperature, a base that houses a superconducting portion in the heat insulating chamber while forming a heat insulating chamber in which heat transfer from outside is suppressed. A cooling part for cooling the superconducting part below the critical temperature, a power feeding part for feeding power to the superconducting part, and a thermal switch device interposed between the superconducting part and the feeding part to feed power from the feeding part to the superconducting part And
The thermal switch device includes a first member disposed in the heat insulating chamber of the base, and a first member formed in a base material made of a material that is disposed in the heat insulating chamber of the base and has a coefficient of thermal expansion greater than that of the first member. The first member and the second member have a degree of contact with which the first member and the second member are in direct or indirect contact with each other as the second member is cooled by the cooling unit. The 1st form which becomes high, and the 2nd form from which the contact degree which the 1st member and the 2nd member contact directly or indirectly falls or it becomes non-contact as the 2nd member raises temperature It is possible to switch to.

様相3によれば、冷却部により第2部材が冷却されるに伴い、第2部材の熱収縮量が増加するため、第1部材の第1接触面と第2部材の第2接触面とが直接的または間接的に接触する接触度が高くなる第1形態に切り替えられる。この場合、給電部から熱スイッチ装置を介して超電導部に効率よく給電される。   According to aspect 3, since the amount of thermal contraction of the second member increases as the second member is cooled by the cooling unit, the first contact surface of the first member and the second contact surface of the second member Switching to the first form in which the degree of contact with direct or indirect contact is high. In this case, power is efficiently supplied from the power supply unit to the superconducting unit via the thermal switch device.

これに対して冷却部の冷却出力が低下したり停止したりすると、第2部材が次第に昇温する。これに伴い、第2部材の第2接触面が第1部材の第1接触面から離間するように熱膨張する。このため、第1部材の第1接触面と第2部材の第2接触面とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態に切り替えられる。この場合、給電部から超電導部に給電される給電エネルギは低下するか、無しとなる。   On the other hand, when the cooling output of the cooling unit decreases or stops, the second member gradually increases in temperature. Accordingly, the second contact surface of the second member is thermally expanded so as to be separated from the first contact surface of the first member. For this reason, the contact degree which the 1st contact surface of a 1st member and the 2nd contact surface of a 2nd member contact directly or indirectly falls, or it switches to the 2nd form used as non-contact. In this case, the power supply energy supplied from the power supply unit to the superconducting unit is reduced or eliminated.

様相1に係る熱スイッチ装置よれば、冷却部により第2部材が冷却されるに伴い、第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態に切り替えられる。これに対して、第2部材が昇温させるに伴い、第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態に切り替えられる。   According to the thermal switch device according to aspect 1, as the second member is cooled by the cooling unit, the first member and the second member are switched to the first form in which the degree of contact increases directly or indirectly. It is done. On the other hand, as the temperature of the second member increases, the contact degree in which the first member and the second member are in direct or indirect contact with each other decreases or switches to the second form in which they are not in contact with each other. It is done.

様相2に係る超電導装置によれば、冷却部により熱スイッチ装置の第2部材が冷却されるに伴い、熱スイッチ装置は、第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態に切り替えられる。この場合、冷却部により冷却された第2部材の冷熱は、第2部材から熱スイッチ装置を介して第1部材に効率よく伝達され、超電導部が効率よく冷却される。これに対して、熱スイッチ装置の第2部材が昇温するに伴い、第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態に熱スイッチ装置は切り替えられる。この場合、第2部材から熱スイッチ装置を介して熱が超電導部に伝達されることが抑制される。故に、超電導部の低温状態が長時間にわたり維持される。   According to the superconducting device according to aspect 2, as the second member of the thermal switch device is cooled by the cooling unit, the thermal switch device is in contact with the first member and the second member in direct or indirect contact. It is switched to the first form in which the degree is increased. In this case, the cold of the second member cooled by the cooling unit is efficiently transmitted from the second member to the first member via the thermal switch device, and the superconducting unit is efficiently cooled. On the other hand, as the second member of the thermal switch device rises in temperature, the degree of contact between the first member and the second member directly or indirectly decreases or becomes non-contact. The thermal switch device can be switched to two forms. In this case, heat is suppressed from being transmitted from the second member to the superconducting portion via the thermal switch device. Therefore, the low temperature state of the superconducting part is maintained for a long time.

様相3に係る超電導装置によれば、冷却部により熱スイッチ装置の第2部材が冷却されるに伴い、熱スイッチ装置は、第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態に切り替えられる。この場合、給電部から熱スイッチ装置を介して超電導部に効率よく給電される。これに対して、熱スイッチ装置の第2部材が昇温するに伴い、熱スイッチ装置は第2形態に切り替えられ、熱スイッチ装置の遮断性が高くなる。この場合、給電部から熱スイッチ装置を介して超電導部に給電される電気エネルギは抑えられる。   According to the superconducting device according to aspect 3, as the second member of the thermal switch device is cooled by the cooling unit, the thermal switch device is in contact with the first member and the second member in direct or indirect contact. It is switched to the first form in which the degree is increased. In this case, power is efficiently supplied from the power supply unit to the superconducting unit via the thermal switch device. On the other hand, as the temperature of the second member of the thermal switch device rises, the thermal switch device is switched to the second configuration, and the thermal switch device has a higher blocking performance. In this case, electrical energy fed from the power feeding unit to the superconducting unit via the thermal switch device can be suppressed.

実施例1に係り、熱スイッチ装置の第2形態を示す断面図である。It is sectional drawing which concerns on Example 1 and shows the 2nd form of a thermal switch apparatus. 実施例1に係り、熱スイッチ装置の第1形態を示す断面図である。It is sectional drawing which concerns on Example 1 and shows the 1st form of a thermal switch apparatus. 実施例1に係り、熱スイッチ装置の第1形態を示す異なる方向からの断面図である。It is sectional drawing from a different direction which concerns on Example 1 and shows the 1st form of a thermal switch apparatus. 実施例1に係り、熱スイッチ装置の第2形態を示す異なる方向からの断面図である。It is sectional drawing from a different direction which concerns on Example 1 and shows the 2nd form of a thermal switch apparatus. 実施例1に係り、熱スイッチ装置の第2形態を示す異なる方向からの断面図である。It is sectional drawing from a different direction which concerns on Example 1 and shows the 2nd form of a thermal switch apparatus. 実施例2に係り、熱スイッチ装置の第1形態を示す異なる方向からの断面図である。It is sectional drawing from a different direction which concerns on Example 2 and shows the 1st form of a thermal switch apparatus. 実施例3に係り、熱スイッチ装置の第2形態を示す断面図である。It is sectional drawing which concerns on Example 3 and shows the 2nd form of a thermal switch apparatus. 実施例4に係り、熱スイッチ装置の第2形態を示す断面図である。It is sectional drawing which concerns on Example 4 and shows the 2nd form of a thermal switch apparatus. 実施例5に係り、熱スイッチ装置の第2形態を示す断面図である。It is sectional drawing which concerns on Example 5 and shows the 2nd form of a thermal switch apparatus. 実施例6に係り、熱スイッチ装置の第2形態を示す断面図である。It is sectional drawing which concerns on Example 6 and shows the 2nd form of a thermal switch apparatus. 実施例7に係り、熱スイッチ装置の第2形態を示す断面図である。It is sectional drawing which concerns on Example 7 and shows the 2nd form of a thermal switch apparatus. 実施例8に係り、熱スイッチ装置の第2形態を示す異なる方向からの断面図である。It is sectional drawing from a different direction which concerns on Example 8 and shows the 2nd form of a thermal switch apparatus. 実施例9に係り、熱スイッチ装置の第2形態を示す異なる方向からの断面図である。It is sectional drawing from a different direction which concerns on Example 9 and shows the 2nd form of a thermal switch apparatus. 実施例10に係り、熱スイッチ装置の第2形態を示す異なる方向からの断面図である。It is sectional drawing from a different direction which concerns on Example 10 and shows the 2nd form of a thermal switch apparatus. 実施例11に係り、熱スイッチ装置の概念を模式的に示す側面図である。It is a side view which concerns on Example 11 and shows the concept of a heat switch apparatus typically. 実施例12に係り、熱スイッチ装置の概念を模式的に示す側面図である。It is a side view which concerns on Example 12 and shows the concept of a thermal switch apparatus typically. 実施例13に係り、熱スイッチ装置を有する超電導モータ装置の概念を模式的に示す断面図である。It is sectional drawing which concerns on Example 13 and shows typically the concept of the superconducting motor apparatus which has a thermal switch apparatus. 実施例14に係り、熱スイッチ装置を有する超電導モータ装置の概念を模式的に示す断面図である。It is sectional drawing which concerns on Example 14 and shows typically the concept of the superconducting motor apparatus which has a thermal switch apparatus. 材料の熱膨張率と温度との関係を示すグラフである。It is a graph which shows the relationship between the thermal expansion coefficient of material, and temperature. 材料の熱膨張率と温度との関係を示すグラフである。It is a graph which shows the relationship between the thermal expansion coefficient of material, and temperature.

第2部材の少なくとも一部は、第1部材よりも大きな熱膨張率を有する材料を基材として形成されている。熱膨張率は降温時に熱収縮率に対応する。従って、冷却部により第2部材が冷却されるに伴い、第2部材の熱収縮量は、第1部材の熱収縮量よりも大きくなる。これにより、冷却部により第2部材が冷却されるに伴い、第1部材と第2部材とが直接的または間接的に接触する接触度が高くなる第1形態に切り替えられる。冷却部からの冷却能が低下すると、第2部材が昇温する。第2部材の昇温に伴い、第2部材の熱膨張量は、第1部材の熱膨張よりも大きくなる。これにより、第1部材と第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態とに切り替え可能とされている。ここで、熱収縮および熱膨張は、第2部材の径方向でも良いし、第2部材の軸長方向でも良いし、径方向および軸長方向の双方を有効利用しても良い。   At least a part of the second member is formed using a material having a larger coefficient of thermal expansion than that of the first member as a base material. The thermal expansion coefficient corresponds to the thermal contraction ratio when the temperature is lowered. Therefore, as the second member is cooled by the cooling unit, the amount of thermal contraction of the second member becomes larger than the amount of thermal contraction of the first member. Thereby, as the second member is cooled by the cooling unit, the first member and the second member are switched to the first form in which the contact degree is increased directly or indirectly. When the cooling capacity from the cooling unit decreases, the temperature of the second member rises. As the temperature of the second member rises, the amount of thermal expansion of the second member becomes larger than the thermal expansion of the first member. Thereby, it can be switched to the 2nd form from which the contact degree to which a 1st member and a 2nd member contact directly or indirectly falls or it becomes non-contact. Here, the thermal contraction and thermal expansion may be performed in the radial direction of the second member, in the axial length direction of the second member, or in both the radial direction and the axial length direction.

本発明の一視点によれば、好ましくは、第1部材は被冷却体に繋がり、第2部材は、被冷却体を冷却させる冷却能を発揮するための冷却部に繋がり、冷却部による冷却能により冷却されて第1形態となる。被冷却体としては何でも良く、超電導部が例示される。各様相に係る本発明よれば、冷却部としては、冷却部は冷凍機を含む構造であっても良いし、あるいは、冷凍機からの低温を超電導部側に伝熱させる伝熱機構でも良いし、あるいは、冷凍機を搭載せずに、極低温の冷媒(例えば液化ヘリウム、液化窒素、液化酸素)を断熱保持する機構でも良い。   According to one aspect of the present invention, preferably, the first member is connected to a cooled object, and the second member is connected to a cooling unit for exhibiting a cooling capacity for cooling the cooled object, and the cooling capacity by the cooling unit. Is cooled to form the first form. Any object may be used as the object to be cooled, and a superconducting part is exemplified. According to the present invention relating to each aspect, as the cooling unit, the cooling unit may have a structure including a refrigerator, or may be a heat transfer mechanism that transfers the low temperature from the refrigerator to the superconducting unit side. Alternatively, a mechanism that adiabatically holds a cryogenic refrigerant (for example, liquefied helium, liquefied nitrogen, or liquefied oxygen) without mounting a refrigerator may be used.

本発明の一視点によれば、好ましくは、第1部材および第2部材は、第1部材と第2部材との間において電流が流れる通電経路を形成することができる。この場合、熱スイッチは電気スイッチを兼用することもできる。   According to one aspect of the present invention, preferably, the first member and the second member can form an energization path through which a current flows between the first member and the second member. In this case, the thermal switch can also be used as an electrical switch.

本発明の一視点によれば、好ましくは、第1部材は雄部とされており、第2部材は雄部を包囲する雌部とされていることができる。雄部および雌部が嵌合する熱スイッチが形成される。   According to one aspect of the present invention, preferably, the first member may be a male part, and the second member may be a female part surrounding the male part. A thermal switch is formed in which the male part and the female part are fitted.

本発明の一視点によれば、好ましくは、第1部材を形成する雄部は、円筒形状をなす外壁面を有しており、第2部材を形成する雌部は、外壁面と対面すると共に円筒形状をなす内壁面を有しており、第1形態において外壁面と内壁面との接触度が高くなり、第2形態において外壁面と内壁面との接触度が低下するか、または、非接触となる。この場合、雄部の円筒形状をなす外壁面と雌部の円筒形状をなす内壁面とが嵌合する熱スイッチが形成される。   According to one aspect of the present invention, preferably, the male part forming the first member has a cylindrical outer wall surface, and the female part forming the second member faces the outer wall surface. It has a cylindrical inner wall surface, and the contact degree between the outer wall surface and the inner wall surface increases in the first form, and the contact degree between the outer wall surface and the inner wall surface decreases in the second form, or Contact. In this case, a thermal switch is formed in which the outer wall surface having the cylindrical shape of the male portion and the inner wall surface having the cylindrical shape of the female portion are fitted.

本発明の一視点によれば、好ましくは、第1部材を形成する雄部は、断面で傾斜状をなす外壁面を有しており、第2部材を形成する雌部は、断面で外壁面と共通する方向に傾斜する傾斜状をなすと共に外壁面と対面する内壁面を有しており、
第1形態において外壁面と内壁面との接触度が高くなり、第2形態において外壁面と内壁面との接触度が低下するか、または、非接触となる。この場合、雄部の傾斜状をなす外壁面と雌部の傾斜状をなす内壁面とが接触する熱スイッチが形成される。
According to one aspect of the present invention, preferably, the male part forming the first member has an outer wall surface that is inclined in cross section, and the female part forming the second member is an outer wall surface in cross section. And has an inner wall surface that faces the outer wall surface and has an inclined shape that is inclined in a common direction.
In the first form, the contact degree between the outer wall surface and the inner wall surface is increased, and in the second form, the contact degree between the outer wall surface and the inner wall surface is reduced or non-contacted. In this case, a thermal switch is formed in which the outer wall surface forming the male portion and the inner wall surface forming the female portion are in contact with each other.

本発明の一視点によれば、好ましくは、第1部材および第2部材のうちの少なくとも一方は複数の層で形成されており、複数の層のうち、第1部材および第2部材のうちの他方に対面する層は、第2部材が冷却されるに伴い第1部材と第2部材との接触度を高める熱膨張率を有する材料を基材として形成されている。   According to one aspect of the present invention, preferably, at least one of the first member and the second member is formed of a plurality of layers, and among the plurality of layers, of the first member and the second member. The layer facing the other is formed using a material having a coefficient of thermal expansion that increases the degree of contact between the first member and the second member as the second member is cooled.

超電導部は、これの臨界温度以下に冷却されると、超電導状態を示すものであり、形状および構造を問わない。更に、冷却部は、超電導部材の超電導状態を維持するために超電導部をこれの臨界温度以下の低温に維持するものである。低温は極低温が好ましい。極低温とは、超電導部の超電導状態を維持できる温度域以下とすることができる。従って、超電導部を構成する超電導材料の臨界温度または組成によって、極低温状態の温度域は相違する。極低温状態とは、実用的には、窒素ガスの液化温度(77K)以下よりも低温であることが好ましい。但し、極低温状態とは、超電導部材の組成によっては100K以下、150K以下でよい場合がある。基体の断熱室は、高真空状態,低真空状態等の減圧状態とされていることが好ましい。減圧状態とは大気圧よりも低い圧力を意味する。   When the superconducting part is cooled below the critical temperature, the superconducting part exhibits a superconducting state and can be of any shape and structure. Furthermore, the cooling unit maintains the superconducting part at a low temperature below its critical temperature in order to maintain the superconducting state of the superconducting member. The low temperature is preferably a very low temperature. Cryogenic temperature can be below the temperature range which can maintain the superconducting state of a superconducting part. Therefore, the temperature range in the cryogenic state differs depending on the critical temperature or composition of the superconducting material constituting the superconducting portion. Practically, the cryogenic state is preferably lower than the liquefaction temperature of nitrogen gas (77K) or lower. However, the cryogenic state may be 100K or less and 150K or less depending on the composition of the superconducting member. The heat insulating chamber of the substrate is preferably in a reduced pressure state such as a high vacuum state or a low vacuum state. The reduced pressure state means a pressure lower than the atmospheric pressure.

本発明の一視点によれば、第1部材および第2部材の同軸性を高めるために、第1部材および第2部材のうちの少なくとも一方を重力に対して支持する支持部材が設けられていることが好ましい。   According to an aspect of the present invention, a support member that supports at least one of the first member and the second member against gravity is provided in order to increase the coaxiality of the first member and the second member. It is preferable.

図1〜図5は実施例1を示す。熱スイッチ装置400は、外部からの熱伝達が抑えられる断熱室40(真空断熱室)を形成する基体4と、基体4の断熱室40に配置され第1部材500と、基体4の断熱室40に配置された第2部材600とを備えている。第1部材500は、第1中心軸線501をもち長手方向に延びている第1本体部502と、第1本体部502よりも外径が増加するように第1本体部502の先端部に形成された雄部503をもつ。第2部材600は、第2中心軸線601をもち長手方向に延びている第2本体部602と、第2本体部602の先端部に雄部503を嵌合する雌穴604をもつ雌部603をもつ。雌部603の外径は第2本体部602の外径よりも増加している。この場合、雌部603の内径および雄部503の外径を大きくさせるのに貢献できる。   1 to 5 show a first embodiment. The thermal switch device 400 includes a base 4 that forms a heat insulating chamber 40 (vacuum heat insulating chamber) in which heat transfer from the outside is suppressed, a first member 500 disposed in the heat insulating chamber 40 of the base 4, and a heat insulating chamber 40 of the base 4. And a second member 600 disposed on the surface. The first member 500 has a first main body 502 that has a first central axis 501 and extends in the longitudinal direction, and is formed at the distal end of the first main body 502 so that the outer diameter is larger than that of the first main body 502. The male part 503 is provided. The second member 600 includes a second body portion 602 having a second central axis 601 and extending in the longitudinal direction, and a female portion 603 having a female hole 604 for fitting the male portion 503 to the distal end portion of the second body portion 602. It has. The outer diameter of the female part 603 is larger than the outer diameter of the second main body part 602. In this case, it is possible to contribute to increasing the inner diameter of the female part 603 and the outer diameter of the male part 503.

第2部材600のうち少なくとも雌部603は、第1部材500の雄部503の熱膨張率よりも大きな熱膨張率を有する材料を基材として形成されている。熱膨張率は降温時には熱収縮率に対応する。従って、第2部材600の雌部603は、第1部材500の雄部503の熱収縮率よりも大きな熱収縮率を有する材料を基材として形成されている。第1部材500および第2部材600の材料は特に限定されるものではなく、金属、セラミックス、樹脂、補強材強化樹脂のいずれでもよいが、前述した熱膨張率(熱収縮率)の大小関係を有する必要がある。なお、補強材が繊維である場合には、繊維が延びる方向における熱膨張率(熱収縮率)を調整することができることが多い。   At least the female part 603 of the second member 600 is formed using a material having a thermal expansion coefficient larger than that of the male part 503 of the first member 500 as a base material. The thermal expansion coefficient corresponds to the thermal contraction ratio when the temperature is lowered. Therefore, the female part 603 of the second member 600 is formed using a material having a thermal contraction rate larger than that of the male part 503 of the first member 500 as a base material. The material of the first member 500 and the second member 600 is not particularly limited, and any of metal, ceramics, resin, and reinforcing material reinforced resin may be used. The magnitude relationship of the thermal expansion coefficient (thermal contraction ratio) described above may be used. It is necessary to have. When the reinforcing material is a fiber, the thermal expansion coefficient (thermal contraction coefficient) in the direction in which the fiber extends can often be adjusted.

図1に示すように、第1部材500を形成する雄部503の外壁面505(第1接触面)は、軸長方向に沿って外径が実質的に均一な直状の円筒形状をなす。第2部材600を形成する雌部603の内壁面605(第2接触面)は、雄部503の外壁面505と対面すると共に、軸長方向に沿って内径が実質的に均一な直状の円筒形状をなす。   As shown in FIG. 1, the outer wall surface 505 (first contact surface) of the male portion 503 forming the first member 500 has a straight cylindrical shape with a substantially uniform outer diameter along the axial length direction. . The inner wall surface 605 (second contact surface) of the female portion 603 forming the second member 600 faces the outer wall surface 505 of the male portion 503 and has a straight shape with a substantially uniform inner diameter along the axial length direction. It has a cylindrical shape.

冷却部3E等により第2部材600が冷却されて降温されると、径内方向(矢印DA2方向)において、第2部材600の雌部603の熱収縮量は、第1部材500の雄部503の熱収縮量よりも相対的に大きくなる。このため熱スイッチ装置400は、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に接触する接触度が高くなり、第1形態に切り替えられる。第1形態によれば、図3に示すように、雌部603の内壁面605と雄部503の外壁面505とが全周的に接触することが好ましい。この場合、熱スイッチ装置400を構成する第2部材600と第1部材500との間における熱または冷熱の移動性が良好に確保されるためである。また熱スイッチ装置400が通電経路を形成する場合には、第2部材600と第1部材500との間における通電性が確保されるためである。   When the second member 600 is cooled and cooled by the cooling unit 3E or the like, the thermal contraction amount of the female portion 603 of the second member 600 is the male portion 503 of the first member 500 in the radially inward direction (arrow DA2 direction). The amount of heat shrinkage is relatively larger. For this reason, in the thermal switch device 400, the degree of contact with which the inner wall surface 605 of the female portion 603 of the second member 600 contacts the outer wall surface 505 of the male portion 503 of the first member 500 is increased, and the heat switch device 400 is switched to the first form. According to the first embodiment, as shown in FIG. 3, it is preferable that the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are in contact with the entire circumference. This is because heat or cold mobility between the second member 600 and the first member 500 constituting the thermal switch device 400 is ensured satisfactorily. In addition, when the thermal switch device 400 forms an energization path, the electrical conductivity between the second member 600 and the first member 500 is ensured.

これに対して、第2部材600が昇温されると、径外方向(矢印DB2方向)において、第2部材600の雌部603の熱膨張量は、第1部材500の熱膨張量よりも相対的に大きくなる。このため第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505から離間する。よって、熱スイッチ装置400は、内壁面605と外壁面505とが互いに接触する接触度が低下するか、または、内壁面605と外壁面505とが互いに全体的に非接触となる第2形態に切り替えられる。第2形態によれば、図4に示すように、雌部603の内壁面605と雄部503の外壁面505とが全周的に均一に離間し、均一な隙間幅を有する隙間507が内壁面605と外壁面505との間において全周に形成されることが好ましい。この場合、第2部材600の雌部603から第1部材500の雄部503への熱侵入量は、隙間507により効果的に抑えられ、第1部材500の昇温は抑制される。熱スイッチ装置400が、第2部材600から第1部材500へ電流を流す通電経路を形成する場合には、雌部603の内壁面605と雄部503の外壁面505とが全周的に均一に離間することが好ましい。この場合、第2部材600と第1部材500との間における熱または冷熱の移動性が抑えられるためである。また熱スイッチ装置400が通電経路を形成する場合には、第2部材600と第1部材500との間における通電性が抑えられるためである。   On the other hand, when the temperature of the second member 600 is increased, the thermal expansion amount of the female portion 603 of the second member 600 is larger than the thermal expansion amount of the first member 500 in the radially outward direction (the arrow DB2 direction). It becomes relatively large. For this reason, the inner wall surface 605 of the female portion 603 of the second member 600 is separated from the outer wall surface 505 of the male portion 503 of the first member 500. Therefore, the thermal switch device 400 has a second form in which the contact degree between the inner wall surface 605 and the outer wall surface 505 decreases or the inner wall surface 605 and the outer wall surface 505 are not in contact with each other. Can be switched. According to the second embodiment, as shown in FIG. 4, the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are uniformly spaced all around, and a gap 507 having a uniform gap width is formed inside. It is preferable to form the entire circumference between the wall surface 605 and the outer wall surface 505. In this case, the heat penetration amount from the female portion 603 of the second member 600 into the male portion 503 of the first member 500 is effectively suppressed by the gap 507, and the temperature rise of the first member 500 is suppressed. When the thermal switch device 400 forms an energization path through which current flows from the second member 600 to the first member 500, the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are uniform over the entire circumference. It is preferable that they are separated from each other. This is because the mobility of heat or cold between the second member 600 and the first member 500 is suppressed. In addition, when the thermal switch device 400 forms an energization path, the electrical conductivity between the second member 600 and the first member 500 is suppressed.

但し、第2形態においても、熱スイッチ装置400が通電経路を形成しない場合には、図5に示すように、雌部603の内壁面605と雄部503の外壁面505とがほとんど離間しているものの、一部についてのみ、雌部603の内壁面605と雄部503の外壁面505とが接触していても良い。この場合においても、雌部603の内壁面605と雄部503の外壁面505とがほとんど離間しているため、熱スイッチ装置400において、第2部材600の雌部603から第1部材500の雄部503への熱侵入量は抑えられる。なお、良好な隙間507が得られる温度域は、熱スイッチ装置400の用途、使用環境、種類、第1部材500及び第2部材600の基材によっても相違するが、−50℃よりも高温の温度領域、−20℃よりも高温の温度領域、−10℃よりも高温の温度領域、0℃よりも高温の温度領域、常温域の温度領域が例示される。但し、これらに限定されるものではない。   However, also in the second embodiment, when the thermal switch device 400 does not form an energization path, the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are almost separated as shown in FIG. However, only a part of the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 may be in contact with each other. Even in this case, since the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are almost separated from each other, in the thermal switch device 400, the male portion of the first member 500 is separated from the female portion 603 of the second member 600. The amount of heat entering the portion 503 is suppressed. In addition, although the temperature range where the favorable clearance gap 507 is obtained changes also with the use of the thermal switch apparatus 400, use environment, a kind, and the base material of the 1st member 500 and the 2nd member 600, it is higher than -50 degreeC. Examples include a temperature region, a temperature region higher than −20 ° C., a temperature region higher than −10 ° C., a temperature region higher than 0 ° C., and a temperature region in a normal temperature region. However, it is not limited to these.

なお、第1部材500および第2部材600の材料は、共に熱伝導性および/または導電性が良好であることが好ましい。従って、第2部材600の雌部603の基材としてはアルミニウム,アルミニウム合金が例示される。第1部材500の雄部503の基材としては銅,銅合金が例示される。   In addition, it is preferable that the material of the 1st member 500 and the 2nd member 600 has favorable heat conductivity and / or electroconductivity. Therefore, the base material of the female portion 603 of the second member 600 is exemplified by aluminum or an aluminum alloy. Examples of the base material of the male part 503 of the first member 500 include copper and a copper alloy.

図6は実施例2を示す。本実施例は実施例1と同様の構成、同様の作用効果を奏するが、第1部材500の雄部503は、第1中心軸線501と直交する断面で多角形状(六角形状)とされている。第2部材600が冷却されると、第2部材600の雌部603の筒形状をなす内壁面605が第1部材500の雄部503の角部503xに接触する接触度が高くなる第1形態に熱スイッチ装置400は切り替えられる。第2形態によれば、第2部材600の雌部603の筒形状をなす内壁面605が第1部材500の雄部503の角部503xから離間する。   FIG. 6 shows a second embodiment. Although the present embodiment has the same configuration and the same function and effect as the first embodiment, the male portion 503 of the first member 500 has a polygonal shape (hexagonal shape) in a cross section orthogonal to the first central axis 501. . When the second member 600 is cooled, the first form in which the inner wall surface 605 forming the cylindrical shape of the female portion 603 of the second member 600 is in contact with the corner portion 503x of the male portion 503 of the first member 500 is increased. The thermal switch device 400 is switched. According to the second form, the inner wall surface 605 forming the cylindrical shape of the female portion 603 of the second member 600 is separated from the corner portion 503x of the male portion 503 of the first member 500.

図7は実施例3を示す。本実施例は実施例1と同様の構成、同様の作用効果を奏する。第1部材500を形成する雄部503の外壁面505は、第1中心軸線501に沿って第1中心軸線501を通過する断面で傾斜状をなす。第2部材600を形成する雌部603の内壁面605は、同断面で、外壁面505と共通する方向に傾斜する傾斜状をなすと共に、雄部503の外壁面505と対面する。具体的には、図7に示すように、雄部503の外壁面505は、雄部503の先端面503eに向かうにつれて外径が減少する円錐壁面とされている。雌部603の内壁面605は、雌部603の先端面603eに向かうにつれて内径が増加する円錐壁面とされている。第2形態では、内壁面605と外壁面505との間に隙間507が形成され、第2部材600から第1部材500への熱侵入は抑えられる。   FIG. 7 shows a third embodiment. The present embodiment has the same configuration and the same operational effects as the first embodiment. The outer wall surface 505 of the male part 503 forming the first member 500 is inclined in a cross section passing through the first central axis 501 along the first central axis 501. The inner wall surface 605 of the female portion 603 that forms the second member 600 has the same cross section and is inclined in the same direction as the outer wall surface 505, and faces the outer wall surface 505 of the male portion 503. Specifically, as shown in FIG. 7, the outer wall surface 505 of the male portion 503 is a conical wall surface whose outer diameter decreases toward the distal end surface 503 e of the male portion 503. The inner wall surface 605 of the female portion 603 is a conical wall surface whose inner diameter increases toward the tip end surface 603e of the female portion 603. In the second form, a gap 507 is formed between the inner wall surface 605 and the outer wall surface 505, and heat intrusion from the second member 600 to the first member 500 is suppressed.

図7に示すように、第1部材500の雄部503を重力に対して支持する第1支持部材540が設けられている。第2部材600の雌部603を重力に対して支持する第2支持部材640が設けられている。これにより第1部材500の第1中心軸線501の垂下、第2部材600の第2中心軸線601の垂下が抑制されるため、微視的レベルで軸線501,601の同軸性が高くなり、隙間507の隙間幅を全周にわたり均一化させるのに有利である。第1支持部材540および第2支持部材640は熱伝導性が低い材料で形成されていることが好ましい。熱スイッチ装置が通電性を発揮する場合には、第1支持部材540および第2支持部材640は、電気抵抗が高い材料もしくは電気絶縁性をもつ材料で形成されていることが好ましい。   As shown in FIG. 7, the 1st support member 540 which supports the male part 503 of the 1st member 500 with respect to gravity is provided. A second support member 640 that supports the female portion 603 of the second member 600 against gravity is provided. Thereby, the drooping of the first central axis 501 of the first member 500 and the drooping of the second central axis 601 of the second member 600 are suppressed, so that the coaxiality of the axes 501 and 601 becomes high at a microscopic level, and the gap It is advantageous to make the gap width of 507 uniform over the entire circumference. The first support member 540 and the second support member 640 are preferably formed of a material with low thermal conductivity. When the thermal switch device exhibits electrical conductivity, the first support member 540 and the second support member 640 are preferably formed of a material having high electrical resistance or a material having electrical insulation.

図8は実施例4を示す。本実施例は実施例1と同様の構成、同様の作用効果を奏する。第1部材500を形成する雄部503の外壁面505は、第1中心軸線501に沿って第1中心軸線501を通過する断面で傾斜状をなす。第2部材600を形成する雌部603の内壁面605は、同断面で外壁面505と共通する方向に傾斜する傾斜状をなすと共に、外壁面505と対面する。具体的には、図8に示すように、雄部503の外壁面505は、雄部503の先端面503eに向かうにつれて外径が増加する円錐壁面とされている。雌部603の内壁面605は、雌部603の先端面603eに向かうにつれて内径が減少する円錐壁面とされている。内壁面605の円錐角は外壁面505の円錐角と実質的に同一とされていることが好ましい。   FIG. 8 shows a fourth embodiment. The present embodiment has the same configuration and the same operational effects as the first embodiment. The outer wall surface 505 of the male part 503 forming the first member 500 is inclined in a cross section passing through the first central axis 501 along the first central axis 501. The inner wall surface 605 of the female portion 603 that forms the second member 600 has an inclined shape that is inclined in the same section as the outer wall surface 505 and faces the outer wall surface 505. Specifically, as illustrated in FIG. 8, the outer wall surface 505 of the male part 503 is a conical wall surface whose outer diameter increases toward the distal end surface 503 e of the male part 503. The inner wall surface 605 of the female portion 603 is a conical wall surface whose inner diameter decreases toward the distal end surface 603e of the female portion 603. The cone angle of the inner wall surface 605 is preferably substantially the same as the cone angle of the outer wall surface 505.

図8において、冷却部3E等により第2部材600が冷却されて降温されると、径内方向(矢印DA2方向)において、第2部材600の雌部603の熱収縮量は、第1部材500の熱収縮量よりも相対的に大きくなる。このため第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に接触する接触度が高くなり、第1形態に切り替えられる。第1形態によれば、雌部603の内壁面605と雄部503の外壁面505とが全周的に接触することが好ましい。第2部材600と第1部材500との間における熱または冷熱の移動性が確保されるためである。   In FIG. 8, when the second member 600 is cooled and cooled by the cooling unit 3E or the like, the amount of thermal contraction of the female portion 603 of the second member 600 in the radial direction (arrow DA2 direction) is the first member 500. The amount of heat shrinkage is relatively larger. For this reason, the contact degree which the inner wall surface 605 of the female part 603 of the 2nd member 600 contacts with the outer wall surface 505 of the male part 503 of the 1st member 500 becomes high, and it switches to a 1st form. According to the first embodiment, it is preferable that the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are in contact with the entire circumference. This is because heat or cold mobility between the second member 600 and the first member 500 is ensured.

このように熱スイッチ装置400が第1形態に切り替えられるとき、第2部材600が冷却部3E等により冷却される。このとき第2部材600はこれの径内方向(矢印DA2方向)ばかりか、軸長方向(矢印LA2方向)に沿っても熱収縮され、第2部材600の長さが収縮される。雌部603が矢印LA2方向に変異する。この結果、第1形態によれば、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に接触する接触度が更に高くなる。   As described above, when the thermal switch device 400 is switched to the first mode, the second member 600 is cooled by the cooling unit 3E or the like. At this time, the second member 600 is thermally contracted not only in the radial direction (arrow DA2 direction) but also in the axial length direction (arrow LA2 direction), and the length of the second member 600 is contracted. The female part 603 is mutated in the direction of the arrow LA2. As a result, according to the first embodiment, the contact degree at which the inner wall surface 605 of the female portion 603 of the second member 600 contacts the outer wall surface 505 of the male portion 503 of the first member 500 is further increased.

このように熱スイッチ装置400の接触度高くなると、接触を介して第2部材600からの冷熱が第1部材500に伝達される。このため、第1部材500は冷却されて降温される。このとき第1部材500は径内方向(矢印DA1方向)ばかりか、軸長方向(矢印LA1方向)に沿っても熱収縮され、第1部材500の長さは収縮され、雄部503が矢印LA1方向に変位する。この結果、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に接触する接触度が更に一層高くなる利点が得られる。この結果、第2部材600と第1部材500との間における熱または冷熱の移動性が更に高められる。また熱スイッチ装置400が通電経路を形成する場合には、第2部材600と第1部材500との間における通電性が高められる。   Thus, when the contact degree of the thermal switch device 400 becomes high, the cold heat from the second member 600 is transmitted to the first member 500 through the contact. For this reason, the first member 500 is cooled and cooled. At this time, the first member 500 is thermally contracted not only in the radial direction (arrow DA1 direction) but also in the axial length direction (arrow LA1 direction), the length of the first member 500 is contracted, and the male portion 503 is moved to the arrow. Displacement in the direction of LA1. As a result, there is an advantage that the contact degree at which the inner wall surface 605 of the female portion 603 of the second member 600 contacts the outer wall surface 505 of the male portion 503 of the first member 500 is further increased. As a result, the mobility of heat or cold between the second member 600 and the first member 500 is further enhanced. Further, when the thermal switch device 400 forms an energization path, the electrical conductivity between the second member 600 and the first member 500 is enhanced.

これに対して、冷却部3Eから第2部材600に伝達される冷熱が低下する等すると、第2部材600が次第に昇温される。すると、径外方向(矢印DB2方向)において、第2部材600の雌部603の熱膨張量は、第1部材500の雄部503の熱膨張量よりも相対的に大きくなる。このため図8に示すように、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505から離間し、隙間507が形成される。よって、内壁面605と外壁面505とが互いに接触する接触度が低下するか、または、内壁面605と外壁面505とが互いに非接触となり、熱スイッチ装置400が第2形態に切り替えられる。   On the other hand, when the cooling heat transmitted from the cooling unit 3E to the second member 600 decreases, the temperature of the second member 600 is gradually increased. Then, in the radially outward direction (arrow DB2 direction), the thermal expansion amount of the female portion 603 of the second member 600 is relatively larger than the thermal expansion amount of the male portion 503 of the first member 500. Therefore, as shown in FIG. 8, the inner wall surface 605 of the female portion 603 of the second member 600 is separated from the outer wall surface 505 of the male portion 503 of the first member 500, and a gap 507 is formed. Therefore, the degree of contact between the inner wall surface 605 and the outer wall surface 505 decreases, or the inner wall surface 605 and the outer wall surface 505 are not in contact with each other, and the thermal switch device 400 is switched to the second form.

このように熱スイッチ装置400が第2形態に切り替えられるとき、第2部材600が昇温されている。このとき第2部材600は径外方向(矢印DB2方向)ばかりか、軸長方向(矢印LB2方向)に沿っても熱膨張され、第2部材600の長さが伸張される。この結果、第2形態によれば、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505から更に離間するため、隙間507の隙間幅が増加し、非接触度が更に高くなる。   Thus, when the heat switch apparatus 400 is switched to a 2nd form, the 2nd member 600 is heated up. At this time, the second member 600 is thermally expanded not only in the radially outward direction (arrow DB2 direction) but also in the axial length direction (arrow LB2 direction), and the length of the second member 600 is extended. As a result, according to the second embodiment, since the inner wall surface 605 of the female portion 603 of the second member 600 is further separated from the outer wall surface 505 of the male portion 503 of the first member 500, the gap width of the gap 507 increases. The degree of non-contact is further increased.

このように熱スイッチ装置400が第2形態に切り替えられるとき、第1部材500も昇温されると、第1部材500は径外方向(矢印DB1方向)ばかりか、軸長方向(矢印LB1方向)に沿っても熱膨張され、第1部材500の長さが伸張する。この結果、第2形態によれば、第2部材600の雌部603の内壁面605と第1部材500の雄部503の外壁面505とが互いに離間する方向に更に変位する。このため、隙間507の隙間幅が更に増加するようになり、第1部材500と第2部材600と非接触度が更に一層増加する利点が得られる。この場合、第2部材600と第1部材500との間における熱または冷熱の移動性が抑えられる。また熱スイッチ装置400が通電経路を形成する場合には、第2部材600と第1部材500との間における通電性が抑えられる。   As described above, when the temperature of the first member 500 is raised when the thermal switch device 400 is switched to the second configuration, the first member 500 is not only in the radially outward direction (arrow DB1 direction) but also in the axial length direction (arrow LB1 direction). ), The length of the first member 500 extends. As a result, according to the second embodiment, the inner wall surface 605 of the female portion 603 of the second member 600 and the outer wall surface 505 of the male portion 503 of the first member 500 are further displaced in a direction away from each other. For this reason, the gap width of the gap 507 is further increased, and an advantage that the non-contact degree between the first member 500 and the second member 600 is further increased can be obtained. In this case, the mobility of heat or cold between the second member 600 and the first member 500 is suppressed. Further, when the thermal switch device 400 forms an energization path, the electrical conductivity between the second member 600 and the first member 500 is suppressed.

図9は実施例5を示す。本実施例は図8に示す実施例と同様の構成、同様の作用効果を奏する。但し、第2部材600の第2本体部602は、湾曲部609(軸長方向における伸縮吸収部)をもつ。冷却部3Eにより第2部材600が冷却される等して、第2部材600が降温されて第1形態に切り替えられるとき、第2部材600が冷却される。このとき第2部材600は径内方向(矢印DA2方向)ばかりか、軸長方向(矢印LA2方向)に沿っても熱収縮されて、第2部材600の長さは収縮する。この結果、軸長方向(矢印LA2方向)における熱収縮量が大きいとき、第1部材500および第2部材600の基材によっては、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に過剰に接触し過ぎ、第1部材500をこれの長さ方向に過剰に引っ張るおそれがある。   FIG. 9 shows a fifth embodiment. This embodiment has the same configuration and the same function and effect as the embodiment shown in FIG. However, the 2nd main-body part 602 of the 2nd member 600 has the curved part 609 (expansion-absorption absorption part in an axial length direction). When the second member 600 is cooled down by the cooling unit 3E and the second member 600 is cooled down and switched to the first mode, the second member 600 is cooled. At this time, the second member 600 is thermally contracted not only in the radially inward direction (arrow DA2 direction) but also in the axial length direction (arrow LA2 direction), and the length of the second member 600 contracts. As a result, when the amount of thermal contraction in the axial length direction (arrow LA2 direction) is large, the inner wall surface 605 of the female portion 603 of the second member 600 is the first member depending on the base material of the first member 500 and the second member 600. There is a risk of excessive contact with the outer wall surface 505 of the male portion 503 of 500, and excessive pulling of the first member 500 in the length direction thereof.

この点について、図9に示す本実施例によれば、第2部材600の第2本体部602に湾曲部609が形成されており、湾曲部609が軸長方向(矢印LA2方向)における過剰な熱収縮量を吸収する。このため、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に過剰に接触し過ぎるおそれが低減される。   In this regard, according to the present embodiment shown in FIG. 9, the curved portion 609 is formed in the second main body portion 602 of the second member 600, and the curved portion 609 is excessive in the axial length direction (arrow LA2 direction). Absorbs heat shrinkage. For this reason, the possibility that the inner wall surface 605 of the female portion 603 of the second member 600 is excessively in contact with the outer wall surface 505 of the male portion 503 of the first member 500 is reduced.

図10は実施例6を示す。本実施例は、第2部材600の長さ方向における伸縮性を利用している。第2部材600が昇温しているときには、第2部材600の第2接触面605Kと第1部材500の第1接触面505Kとは、軸線501,601が延びる方向において隙間507を形成しつつ互いに対面している。ここで、第1接触面505Kおよび第2接触面605Kは、中心軸線501,601に対して直角方向に沿っている。   FIG. 10 shows a sixth embodiment. In this embodiment, the stretchability of the second member 600 in the length direction is used. When the temperature of the second member 600 is increased, the second contact surface 605K of the second member 600 and the first contact surface 505K of the first member 500 form a gap 507 in the direction in which the axes 501 and 601 extend. Facing each other. Here, the first contact surface 505K and the second contact surface 605K are perpendicular to the central axes 501 and 601.

これに対して、第2部材600が冷却される等して第2部材600が降温されるとき、第2部材600は径内方向ばかりか、軸長方向(矢印LA2方向)に沿っても熱収縮され、第2部材600の長さは収縮する。この結果、軸長方向における熱収縮量が大きいとき、第2部材600は矢印LA2方向に引っ張られ、第2部材600の第2接触面605Kが第1部材500の第1接触面505Kに接触し、第1形態に切り替えられる。   In contrast, when the temperature of the second member 600 is decreased, for example, when the second member 600 is cooled, the second member 600 is heated not only in the radially inward direction but also in the axial length direction (arrow LA2 direction). As a result, the length of the second member 600 contracts. As a result, when the amount of thermal contraction in the axial length direction is large, the second member 600 is pulled in the direction of the arrow LA2, and the second contact surface 605K of the second member 600 contacts the first contact surface 505K of the first member 500. , Switched to the first form.

これに対して冷却部3Eの冷却運転が停止されると、第2部材600が次第に昇温される。このとき第2部材600は径外方向ばかりか、軸長方向(矢印LB2方向)に沿っても熱膨張され、第2部材600の長さは伸張される。この結果、第2部材600は矢印LB2方向に伸張し、第2接触面605Kが第1接触面505Kから離間し、隙間507が形成され、第2形態に切り替えられる。   In contrast, when the cooling operation of the cooling unit 3E is stopped, the temperature of the second member 600 is gradually increased. At this time, the second member 600 is thermally expanded not only in the radially outward direction but also in the axial length direction (the direction of the arrow LB2), and the length of the second member 600 is expanded. As a result, the second member 600 extends in the direction of the arrow LB2, the second contact surface 605K is separated from the first contact surface 505K, a gap 507 is formed, and the second form is switched.

ここで、第2部材600の長さ方向における伸縮量は、第2部材600の径方向における伸縮量よりも大きい。このため、隙間507の隙間幅を大きくしたとしても、熱収縮時に第2接触面605Kと第1接触面505Kとの接触性が良好に確保される。なお、必要に応じて、第1部材500の外周壁面には被覆層508が被覆されていても良い。被覆層508は、高い電気絶縁材および/または高い熱絶縁性をもつ材料(例えばガラス系、セラミックス系)で形成されていることが好ましい。   Here, the amount of expansion / contraction in the length direction of the second member 600 is larger than the amount of expansion / contraction in the radial direction of the second member 600. For this reason, even if the gap width of the gap 507 is increased, good contact between the second contact surface 605K and the first contact surface 505K is ensured during thermal contraction. In addition, the coating layer 508 may be coat | covered by the outer peripheral wall surface of the 1st member 500 as needed. The covering layer 508 is preferably formed of a high electrical insulating material and / or a material having high thermal insulating properties (for example, glass-based or ceramic-based).

図11は実施例7を示す。本実施例は、第2部材600の長さ方向における伸縮性を利用している。第1部材500を形成する雄部503の外壁面505(第1接触面)は、第1中心軸線501に沿って第1中心軸線501を通過する断面で傾斜状をなす。第2部材600はこれの第2中心軸線601と交差する方向に延びる雌部603を有する。雌部603の内壁面605(第2接触面)は、同断面で外壁面505と共通する方向に傾斜する傾斜状をなすと共に、外壁面505と対面する。雌穴604は、第2中心軸線601の方向に貫通しているため、雌穴604の円錐面状をなす内壁面605の加工は、容易である。   FIG. 11 shows a seventh embodiment. In this embodiment, the stretchability of the second member 600 in the length direction is used. The outer wall surface 505 (first contact surface) of the male part 503 forming the first member 500 is inclined in a cross section passing through the first central axis 501 along the first central axis 501. The second member 600 has a female portion 603 extending in a direction intersecting with the second central axis 601 thereof. The inner wall surface 605 (second contact surface) of the female portion 603 has an inclined shape that is inclined in the same section as the outer wall surface 505 and faces the outer wall surface 505. Since the female hole 604 penetrates in the direction of the second central axis 601, it is easy to process the inner wall surface 605 that forms the conical shape of the female hole 604.

具体的には、図11に示すように、雄部503の外壁面505は、雄部503の先端面503eに向かうにつれて外径が増加する円錐壁面とされている。雌部603の内壁面605は、雌部603の先端面603eに向かうにつれて内径が減少する円錐壁面とされている。内壁面605の円錐角は外壁面505の円錐角と実質的に同一とされていることが好ましい。中心軸線501,601は径方向に互いにΔMEぶんずれている。   Specifically, as illustrated in FIG. 11, the outer wall surface 505 of the male portion 503 is a conical wall surface whose outer diameter increases toward the distal end surface 503 e of the male portion 503. The inner wall surface 605 of the female portion 603 is a conical wall surface whose inner diameter decreases toward the distal end surface 603e of the female portion 603. The cone angle of the inner wall surface 605 is preferably substantially the same as the cone angle of the outer wall surface 505. The central axes 501 and 601 are shifted by ΔME in the radial direction.

冷却部3E等により第2部材600が冷却されて降温されると、径内方向(矢印DA2方向)において、熱スイッチ装置400が第1形態に切り替えられる。このように第2部材600が冷却されると、第2部材600は径内方向(矢印DA2方向)ばかりか、軸長方向(矢印LA2方向)においても熱収縮され、第2部材600の長さが収縮される。この結果、雌部603が矢印LA2方向に変位する。よって第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に接触する接触度が更に高くなる。この場合、第2部材600と第1部材500との間における熱または冷熱の移動性が高められる。また熱スイッチ装置400が通電経路を形成する場合には、第2部材600と第1部材500との間における通電性が高められる。   When the second member 600 is cooled and cooled by the cooling unit 3E or the like, the thermal switch device 400 is switched to the first form in the radial direction (arrow DA2 direction). When the second member 600 is thus cooled, the second member 600 is thermally contracted not only in the radial direction (arrow DA2 direction) but also in the axial length direction (arrow LA2 direction). Is shrunk. As a result, the female part 603 is displaced in the direction of the arrow LA2. Accordingly, the contact degree at which the inner wall surface 605 of the female portion 603 of the second member 600 contacts the outer wall surface 505 of the male portion 503 of the first member 500 is further increased. In this case, the mobility of heat or cold between the second member 600 and the first member 500 is enhanced. Further, when the thermal switch device 400 forms an energization path, the electrical conductivity between the second member 600 and the first member 500 is enhanced.

これに対して、冷却部3Eから第2部材600に伝達される冷熱が低下する等すると、第2部材600が次第に昇温される。すると、径外方向(矢印DB2方向)および軸長方向(矢印LB2方向)において、第2部材600の雌部603の熱膨張量は、第1部材500の雄部503の熱膨張量よりも相対的に大きくなる。このため図11に示すように、雌部603が矢印LB2方向に変位する。よって、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505から離間する。このため、内壁面605と外壁面505とが互いに接触する接触度が低下するか、または、内壁面605と外壁面505とが互いに非接触となる第2形態に切り替えられる。   On the other hand, when the cooling heat transmitted from the cooling unit 3E to the second member 600 decreases, the temperature of the second member 600 is gradually increased. Then, in the radially outward direction (arrow DB2 direction) and the axial length direction (arrow LB2 direction), the thermal expansion amount of the female portion 603 of the second member 600 is relative to the thermal expansion amount of the male portion 503 of the first member 500. Become bigger. For this reason, as shown in FIG. 11, the female part 603 is displaced in the direction of the arrow LB2. Accordingly, the inner wall surface 605 of the female portion 603 of the second member 600 is separated from the outer wall surface 505 of the male portion 503 of the first member 500. For this reason, the contact degree in which the inner wall surface 605 and the outer wall surface 505 contact each other decreases, or the inner wall surface 605 and the outer wall surface 505 are switched to the second form in which they are not in contact with each other.

図12は実施例8を示す。本実施例は各実施例と同様の構成、同様の作用効果を奏する。図12に示すように、第2部材600の雌部603は複数の層で形成されており、第1部材500の雄部503に背向する第2外層621と、第1部材500の雄部503の外壁面505に対面する第2内層622とを備えている。第2内層622の熱膨張率は、第2外層621の熱膨張率および第1部材500の雄部503の熱膨張率よりも大きくなるように、第2内層622の基材は選択されている。従って、降温時において、第2内層622の熱収縮率は、第2外層621の熱収縮率および第1部材500の雄部503の熱収縮率よりも大きくなるように、第2内層622の基材は選択されている。ここで、一般的には、熱膨張率が通常材料よりも大きな材料は、一般的にはコスト高である。しかし本実施例によれば、第2部材600の雌部603が第2外層621と第2内層622との複数の層で形成されている。このため、熱膨張率が通常材料よりも大きくコスト高な材料は、第2内層622のみで済むため、熱スイッチ装置400の第1形態および第2形態の切替作用を実現させつつ、熱スイッチ装置400の製造コストを低減させるのに有利である。   FIG. 12 shows an eighth embodiment. The present embodiment has the same configuration and the same operational effects as the respective embodiments. As shown in FIG. 12, the female portion 603 of the second member 600 is formed of a plurality of layers, the second outer layer 621 facing away from the male portion 503 of the first member 500, and the male portion of the first member 500. And a second inner layer 622 facing the outer wall surface 505 of 503. The base material of the second inner layer 622 is selected so that the thermal expansion coefficient of the second inner layer 622 is larger than the thermal expansion coefficient of the second outer layer 621 and the thermal expansion coefficient of the male part 503 of the first member 500. . Accordingly, when the temperature is lowered, the thermal contraction rate of the second inner layer 622 is larger than the thermal contraction rate of the second outer layer 621 and the thermal contraction rate of the male portion 503 of the first member 500. The material is selected. Here, generally, a material having a thermal expansion coefficient larger than that of a normal material is generally high in cost. However, according to this embodiment, the female portion 603 of the second member 600 is formed of a plurality of layers of the second outer layer 621 and the second inner layer 622. For this reason, since only the second inner layer 622 needs to be a material having a higher coefficient of thermal expansion than that of the normal material, the thermal switching device 400 can realize the switching action of the first and second modes of the thermal switching device 400. It is advantageous to reduce the manufacturing cost of 400.

図13は実施例9を示す。本実施例は各実施例と同様の構成、同様の作用効果を奏する。図13に示すように、第1部材500の雄部503は複数の層で形成されており、第2部材600の雌部603の内壁面605に対面する第1外層521と、第2部材600の雌部603の内壁面605に背向する第1内層522とを備えている。第1外層521の熱膨張率は、第1内層522の熱膨張率および第2部材600の雌部603の熱膨張率よりも小さくなるように、第1外層521の基材は選択されている。従って、降温時において、第1外層521の熱収縮率は、第1内層522の熱収縮率および第2部材600の雌部603の熱収縮率よりも小さくなるように、第1外層521の基材は選択されている。一般的には、熱膨張率が通常材料よりも小さな材料は、コスト高である。しかし本実施例によれば、図12に示すように、第1部材500の雄部503が第1外層521と第1内層522とで複数の層で形成されているため、熱膨張率が小さくコスト高な材料は、第1外層521のみで済む。このため、熱スイッチ装置400の第1形態および第2形態の切替作用を実現させつつ、熱スイッチ装置400の製造コストを低減させるのに有利である。   FIG. 13 shows a ninth embodiment. The present embodiment has the same configuration and the same operational effects as the respective embodiments. As shown in FIG. 13, the male part 503 of the first member 500 is formed of a plurality of layers, and the first outer layer 521 facing the inner wall surface 605 of the female part 603 of the second member 600 and the second member 600. The first inner layer 522 facing away from the inner wall surface 605 of the female portion 603 is provided. The base material of the first outer layer 521 is selected so that the thermal expansion coefficient of the first outer layer 521 is smaller than the thermal expansion coefficient of the first inner layer 522 and the thermal expansion coefficient of the female portion 603 of the second member 600. . Accordingly, when the temperature is lowered, the thermal contraction rate of the first outer layer 521 is smaller than the thermal contraction rate of the first inner layer 522 and the thermal contraction rate of the female portion 603 of the second member 600. The material is selected. In general, a material having a coefficient of thermal expansion smaller than that of a normal material is expensive. However, according to the present embodiment, as shown in FIG. 12, since the male portion 503 of the first member 500 is formed of a plurality of layers of the first outer layer 521 and the first inner layer 522, the coefficient of thermal expansion is small. The only expensive material is the first outer layer 521. For this reason, it is advantageous to reduce the manufacturing cost of the thermal switching device 400 while realizing the switching action of the first and second configurations of the thermal switching device 400.

図14は実施例10を示す。本実施例は各実施例と同様の構成、同様の作用効果を奏する。図14に示すように、第2部材600の雌部603は複数の層で形成されており、第1部材500の雄部503に背向する筒状の第2外層621と、第1部材500の雄部503に対面する筒状の第2内層622と、第2内層622と第2外層621との間に介在する筒状の第2中間層623を備えている。雄部503に対面する第2内層622の熱膨張率は、第2外層621の熱膨張率および第1部材500の雄部503の熱膨張率よりも大きくなるように、第2内層622の基材は選択されている。従って、降温時において、第2内層622の熱収縮率は、第2外層621の熱収縮率および第1部材500の雄部503の熱収縮率よりも大きくなるように、第2内層622の基材は選択されている。ここで、熱膨張率が通常材料よりも大きな材料は、一般的にはコスト高である。しかし本実施例によれば、第2部材600が第2外層621と第2内層622とを有するため、熱膨張率(熱収縮率)が大きくコスト高な材料は、第2内層622のみで済む。このため、熱スイッチ装置400の第1形態および第2形態の切替作用を実現させつつ、熱スイッチ装置400の製造コストを低減させるのに有利である。   FIG. 14 shows a tenth embodiment. The present embodiment has the same configuration and the same operational effects as the respective embodiments. As shown in FIG. 14, the female portion 603 of the second member 600 is formed of a plurality of layers, and the cylindrical second outer layer 621 facing the male portion 503 of the first member 500 and the first member 500. A cylindrical second inner layer 622 facing the male portion 503, and a cylindrical second intermediate layer 623 interposed between the second inner layer 622 and the second outer layer 621. The thermal expansion coefficient of the second inner layer 622 facing the male part 503 is larger than the thermal expansion coefficient of the second outer layer 621 and the thermal expansion coefficient of the male part 503 of the first member 500. The material is selected. Accordingly, when the temperature is lowered, the thermal contraction rate of the second inner layer 622 is larger than the thermal contraction rate of the second outer layer 621 and the thermal contraction rate of the male portion 503 of the first member 500. The material is selected. Here, a material having a larger coefficient of thermal expansion than a normal material is generally expensive. However, according to the present embodiment, since the second member 600 includes the second outer layer 621 and the second inner layer 622, only the second inner layer 622 needs to be a material having a large coefficient of thermal expansion (thermal contraction rate) and high cost. . For this reason, it is advantageous to reduce the manufacturing cost of the thermal switching device 400 while realizing the switching action of the first and second configurations of the thermal switching device 400.

更に、第2中間層623は、第2外層621と第2内層622との中間の熱膨張率を有するように基材が選択されている。第2部材600の雌部603が径外方向に熱膨張するとき、あるいは、径内方向に熱収縮するとき、第2部材600は良好に変位できる利点が得られる。なお雄部503に中間層を形成しても良い。   Further, the base material is selected so that the second intermediate layer 623 has an intermediate thermal expansion coefficient between the second outer layer 621 and the second inner layer 622. When the female portion 603 of the second member 600 is thermally expanded in the radially outward direction or when thermally contracted in the radially inward direction, the advantage that the second member 600 can be favorably displaced is obtained. An intermediate layer may be formed on the male portion 503.

図15は実施例11を示す。本実施例は各実施例と同様の構成、同様の作用効果を奏する。図15に示すように、装置は、低温に維持することが好ましい被冷却体700と、外部からの熱伝達が抑えられる真空断熱室40(断熱室)を形成すると共に真空断熱室40に被冷却体700を収容する基体4と、被冷却体700を冷却させるための冷却部3Eと、被冷却体700と冷却部3Eとの間に介在し冷却部3Eの冷熱(冷却出力)を被冷却体700に伝達させる熱スイッチ装置400とを備えている。熱スイッチ装置400は、基体4の真空断熱室40に配置され雄部503をもつ熱伝導性を有する第1部材500と、基体4の真空断熱室40に配置され雌部603をもつ熱伝導性を有する第2部材600とを備えている。雌部603は熱伝導性を有すると共に、径方向において第1部材500の雄部503よりも大きな熱膨張率(熱収縮率)を有する材料を基材として形成されている。   FIG. 15 shows Example 11. The present embodiment has the same configuration and the same operational effects as the respective embodiments. As shown in FIG. 15, the apparatus forms an object 700 to be cooled, which is preferably maintained at a low temperature, and a vacuum heat insulating chamber 40 (heat insulating chamber) in which heat transfer from the outside is suppressed, and is cooled in the vacuum heat insulating chamber 40. The body 4 that accommodates the body 700, the cooling unit 3E for cooling the body 700 to be cooled, and the cooling heat (cooling output) of the cooling unit 3E interposed between the body 700 and the cooling unit 3E. And a thermal switch device 400 to be transmitted to 700. The thermal switch device 400 is disposed in the vacuum heat insulation chamber 40 of the base body 4 and has a first member 500 having a male part 503, and the heat conductivity having a female part 603 disposed in the vacuum heat insulation chamber 40 of the base body 4. The 2nd member 600 which has these. The female part 603 is formed using a material having thermal conductivity and a thermal expansion coefficient (thermal contraction rate) larger than that of the male part 503 of the first member 500 in the radial direction.

ここで、冷却部3Eのコンプレッサがオンとなり、冷却部3Eが冷凍出力を発生させると、冷却部3Eの冷熱により第2部材600が真空断熱室40内において冷却される。ここで第2部材600が極低温(低温)に冷却されると、径内方向において、第2部材600の雌部603の熱収縮量は、第1部材500の雄部503の熱収縮量よりも相対的に大きくなる。このため第2部材600の雌部603の内壁面605が、第1部材500の雄部503の外壁面505に接触する接触度が高くなり、熱スイッチ装置400は第1形態に切り替えられる。このような第1形態によれば、冷却部3Eの冷熱を被冷却体700に効果的に伝達することを考慮すると、第2部材600の雌部603の内壁面605と第1部材500の雄部503の外壁面505とが全周的に接触することが好ましい。   Here, when the compressor of the cooling unit 3E is turned on and the cooling unit 3E generates a refrigeration output, the second member 600 is cooled in the vacuum heat insulating chamber 40 by the cold heat of the cooling unit 3E. Here, when the second member 600 is cooled to an extremely low temperature (low temperature), the amount of thermal contraction of the female portion 603 of the second member 600 is larger than the amount of thermal contraction of the male portion 503 of the first member 500 in the radial direction. Is also relatively large. For this reason, the contact degree with which the inner wall surface 605 of the female part 603 of the 2nd member 600 contacts the outer wall surface 505 of the male part 503 of the 1st member 500 becomes high, and the thermal switch apparatus 400 is switched to a 1st form. According to such a 1st form, when it considers transmitting cold heat of the cooling part 3E to the to-be-cooled body 700 effectively, the inner wall surface 605 of the female part 603 of the 2nd member 600 and the male of the 1st member 500 It is preferable that the outer wall surface 505 of the part 503 contacts the entire circumference.

これに対して、冷却部3Eのコンプレッサがオフとなり、冷却部3Eから第2部材600に伝達される冷熱が低下すると、第2部材600は真空断熱室40において断熱状態に保持されているにもかかわらず、第2部材600は次第に昇温される。すると、径外方向において、第2部材600の雌部603の熱膨張量は、第1部材500の雄部503の熱膨張量よりも相対的に大きくなる。このため第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505から離間し、内壁面605と外壁面505とが互いに接触する接触度が低下するか、または、内壁面605と外壁面505とが互いに非接触となる。結果として熱スイッチ装置400は第2形態に切り替えられる。この結果、第2部材600の雌部603から第1部材500の雄部503へ向かう熱侵入量は、抑えられる。第1部材500に熱的に繋がる被冷却体700の低温状態が長時間にわたり良好に維持される。   On the other hand, when the compressor of the cooling unit 3E is turned off and the cooling heat transmitted from the cooling unit 3E to the second member 600 is reduced, the second member 600 is also kept in the heat insulating state in the vacuum heat insulating chamber 40. Regardless, the temperature of the second member 600 is gradually increased. Then, in the radially outward direction, the thermal expansion amount of the female portion 603 of the second member 600 is relatively larger than the thermal expansion amount of the male portion 503 of the first member 500. For this reason, the inner wall surface 605 of the female portion 603 of the second member 600 is separated from the outer wall surface 505 of the male portion 503 of the first member 500, and the degree of contact between the inner wall surface 605 and the outer wall surface 505 decreases. Alternatively, the inner wall surface 605 and the outer wall surface 505 are not in contact with each other. As a result, the thermal switch device 400 is switched to the second configuration. As a result, the amount of heat penetration from the female part 603 of the second member 600 toward the male part 503 of the first member 500 is suppressed. The low temperature state of the cooled object 700 that is thermally connected to the first member 500 is well maintained for a long time.

このような第2形態によれば、第2部材600の雌部603の内壁面605と第1部材500の雄部503の外壁面505とが全周的に均一に離間し、均一な隙間幅を有する隙間507が全周に形成されることが好ましい。この場合、第2部材600の雌部603から第1部材500の雄部503へ向かう熱侵入量は、効果的に抑えられる。但し、第2形態においても、雌部603の内壁面605と雄部503の外壁面505とがほとんど離間しているものの、一部についてのみ、雌部603の内壁面605と雄部503の外壁面505とが接触されていても良い。この場合においても、雌部603の内壁面605と雄部503の外壁面505とがほとんど離間しているため、第2部材600の雌部603から第1部材500の雄部503への熱侵入量は抑えられる。   According to such a 2nd form, the inner wall surface 605 of the female part 603 of the 2nd member 600 and the outer wall surface 505 of the male part 503 of the 1st member 500 are uniformly spaced on the whole periphery, and uniform gap width It is preferable that the gap 507 having the In this case, the amount of heat penetration from the female part 603 of the second member 600 toward the male part 503 of the first member 500 is effectively suppressed. However, even in the second embodiment, although the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are almost separated from each other, only a part of the inner wall surface 605 and the male portion 503 of the female portion 603 is outside. The wall surface 505 may be in contact. Also in this case, since the inner wall surface 605 of the female part 603 and the outer wall surface 505 of the male part 503 are almost separated from each other, heat intrusion from the female part 603 of the second member 600 to the male part 503 of the first member 500 is performed. The amount is limited.

図16は実施例12を示す。本実施例は図15に示す実施例11と同様の構成、同様の作用効果を奏する。但し、図16に示すように、被冷却体700と冷却部3Eとの間には、熱スイッチ装置400が直列に複数個(2個)並設されている。ここで、1個の熱スイッチ装置400は、第2部材600の雌部603から第1部材500の雄部503への熱侵入量を抑える。熱スイッチ装置400が直列に複数個並設されているため、第2部材600の雌部603から第1部材500の雄部503への熱侵入量が一層抑えられ、被冷却体700への熱侵入量が一層抑制される。   FIG. 16 shows a twelfth embodiment. This example has the same configuration and the same effect as the example 11 shown in FIG. However, as shown in FIG. 16, a plurality (two) of thermal switching devices 400 are arranged in series between the cooled object 700 and the cooling unit 3E. Here, one thermal switch device 400 suppresses the amount of heat intrusion from the female portion 603 of the second member 600 to the male portion 503 of the first member 500. Since a plurality of thermal switch devices 400 are arranged in series, the amount of heat intrusion from the female portion 603 of the second member 600 to the male portion 503 of the first member 500 is further suppressed, and the heat to the cooled object 700 is reduced. The amount of intrusion is further suppressed.

なお熱スイッチ装置400を直列に3個あるいは4個、それ以上並設させていても良い。この場合、各熱スイッチ装置400は熱侵入を遮断させる作用を果たすため、第2部材600の雌部603から第1部材500の雄部503への熱侵入量は一層抑えられる。   Note that three or four thermal switch devices 400 may be arranged in series, or more. In this case, since each thermal switch device 400 functions to block heat penetration, the amount of heat penetration from the female portion 603 of the second member 600 to the male portion 503 of the first member 500 is further suppressed.

図17は実施例13を示す。本実施例は、あくまでも本発明の一例を示すものであり、これに限定されるものではない。本実施例は超電導装置の代表例である磁場発生装置の一例として超電導モータ装置に適用している。図17は、本例に係る超電導モータ装置1を示す。超電導モータ装置1は、車載用、定置用、産業用等に利用できるものであり、磁場発生部として機能する超電導モータ2と、冷却部として機能する極低温発生部3と、容器状をなす基体4とを有する。   FIG. 17 shows a thirteenth embodiment. The present embodiment is merely an example of the present invention, and is not limited to this. The present embodiment is applied to a superconducting motor device as an example of a magnetic field generator that is a typical example of a superconducting device. FIG. 17 shows a superconducting motor device 1 according to this example. The superconducting motor device 1 can be used for in-vehicle use, stationary use, industrial use, and the like, and includes a superconducting motor 2 that functions as a magnetic field generation unit, a cryogenic generation unit 3 that functions as a cooling unit, and a container-shaped substrate. 4.

ここで、超電導モータ2は、位相が120度ずつそれぞれ相違する三相の交流電流を給電するモータを形成する。超電導モータ2は、これの軸心P1の回りを1周する円筒形状をなす固定子20と、固定子20に対して回転可能な可動子として機能する回転子27とを有する。回転子27は、超電導モータ2の軸心P1の回りで回転可能に支持された回転軸28と、回転軸28の外周部にこれの周方向に間隔を隔てて配置された複数個の永久磁石部29とを有する。永久磁石部29は公知の永久磁石で形成できる。   Here, the superconducting motor 2 forms a motor that supplies three-phase alternating currents having phases different from each other by 120 degrees. The superconducting motor 2 includes a cylindrical stator 20 that makes a round around the axis P <b> 1 thereof, and a rotor 27 that functions as a movable element that can rotate with respect to the stator 20. The rotor 27 includes a rotating shaft 28 that is rotatably supported around the axis P1 of the superconducting motor 2, and a plurality of permanent magnets arranged on the outer peripheral portion of the rotating shaft 28 at intervals in the circumferential direction thereof. Part 29. The permanent magnet portion 29 can be formed of a known permanent magnet.

固定子20は、透磁ヨークとして機能する透磁率が高い材料で形成された円筒形状をなす固定鉄心21と、固定鉄心21を構成するティース部210に巻回されて保持された超電導部として機能する超電導コイル22とを有する。ティース部210は、径内方向に均等な間隔を隔てて複数個配置されている。なお、図1において、超電導コイル22において、ティース部210を挟むコイル線22xとコイル線22yとは、互いに逆向きに電流を流す。   The stator 20 functions as a cylindrical fixed iron core 21 made of a material having high magnetic permeability that functions as a magnetically permeable yoke, and a superconducting part that is wound and held around a tooth portion 210 that constitutes the fixed iron core 21. And a superconducting coil 22. A plurality of teeth 210 are arranged at equal intervals in the radial direction. In FIG. 1, in the superconducting coil 22, the coil wire 22 x and the coil wire 22 y sandwiching the tooth portion 210 flow currents in opposite directions.

超電導部として機能する超電導コイル22は、三相の交流電流を通電できるように3個に分割されている。超電導コイル22は公知の超電導材料で形成されている。超電導コイル22は、固定鉄心21の内周部に形成されたスロットル溝21a内に配置されている。三相の交流電流が超電導コイル22に流れると、固定子20の回りつまり軸心P1の回りを回転する回転磁場が発生する。回転磁場により回転子27がこれの軸心P1の回りで回転し、モータ機能が得られる。   The superconducting coil 22 functioning as a superconducting part is divided into three parts so that a three-phase alternating current can be passed. Superconducting coil 22 is made of a known superconducting material. The superconducting coil 22 is disposed in a throttle groove 21 a formed in the inner peripheral portion of the fixed iron core 21. When a three-phase alternating current flows through the superconducting coil 22, a rotating magnetic field that rotates around the stator 20, that is, around the axis P1 is generated. The rotor 27 is rotated around its axis P1 by the rotating magnetic field, and a motor function is obtained.

極低温発生部3は、超電導コイル22の超電導状態を維持するために超電導コイル22を極低温に維持するものである。極低温発生部3で得られる極低温の温度領域は、超電導コイル22を構成する超電導材料の材質に応じて選択されるが、窒素液化温度以下にでき、例えば、例えば0〜150K、殊に1〜100K、1〜80Kとすることができる。但し、超電導材料の材質によってはこれらに限定されるものではない。極低温発生部3は、極低温をコールドヘッド32において発生させる冷凍機30を有する。冷凍機30としては、パルス管冷凍機、スターリング冷凍機、ギホードマクマホン冷凍機、ソルベイ冷凍機、ヴィルマイヤー冷凍機等といった公知の冷凍機を例示できる。   The cryogenic temperature generator 3 maintains the superconducting coil 22 at a cryogenic temperature in order to maintain the superconducting state of the superconducting coil 22. The cryogenic temperature range obtained by the cryogenic generator 3 is selected according to the material of the superconducting material constituting the superconducting coil 22, but can be made lower than the nitrogen liquefaction temperature, for example, 0 to 150 K, especially 1 -100K, 1-80K. However, it is not limited to these depending on the material of the superconducting material. The cryogenic temperature generation unit 3 includes a refrigerator 30 that generates an extremely low temperature in the cold head 32. Examples of the refrigerator 30 include known refrigerators such as a pulse tube refrigerator, a Stirling refrigerator, a Gifod McMahon refrigerator, a Solvay refrigerator, a Villemeier refrigerator, and the like.

冷凍機30のコールドヘッド32と超電導モータ2の固定子20の固定鉄心21とを伝熱可能に繋ぐ伝熱材料を基材とする熱伝導部33が設けられている。熱伝導部33は、コールドヘッド32で低温に冷却されるヘッド33hをもつ。熱伝導部33は、高い伝熱性を有する材料(例えば、銅、銅合金、アルミニウム、アルミニウム合金)等で形成されている。   A heat conducting portion 33 is provided that uses a heat transfer material as a base material that connects the cold head 32 of the refrigerator 30 and the fixed iron core 21 of the stator 20 of the superconducting motor 2 so as to allow heat transfer. The heat conducting unit 33 has a head 33 h that is cooled to a low temperature by the cold head 32. The heat conducting portion 33 is formed of a material having high heat conductivity (for example, copper, copper alloy, aluminum, aluminum alloy) or the like.

図17に示すように、基体4は容器状をなしており、超電導コイル22を断熱させる断熱室40として機能する減圧断熱室として機能する真空断熱室40を形成する。真空とは、充分なる断熱を維持できる程度の減圧状態であることを意味し、例えば10−1Pa以下、10−2Pa以下、あるいは10−5Pa以下とすることができる。基体4の真空断熱室40は、固定子20に巻回されて保持されている超電導コイル22の外周側(外側)を固定子20の外周側(外側)と共に包囲する外側真空断熱室41(例えば10−1Pa以下,10−2Pa以下)と、超電導コイル22の内周側(内側)を固定子20の内周側(内側)と共に包囲する内側真空断熱室42(圧力:例えば10−1Pa以下,10−2Pa以下)とを有する。なお、真空断熱室40は出荷時に高真空状態(大気圧よりも減圧されている状態)に維持されているが、メンテナンス等により長期にわたり高真空状態に維持されることが好ましい。 As shown in FIG. 17, the substrate 4 has a container shape, and forms a vacuum heat insulating chamber 40 that functions as a vacuum heat insulating chamber that functions as a heat insulating chamber 40 that insulates the superconducting coil 22. Vacuum is meant to be a reduced pressure enough to maintain sufficient Naru insulation, for example, 10 -1 Pa or less, can be 10 -2 Pa or less, or 10 -5 Pa or less. The vacuum heat insulating chamber 40 of the base 4 is an outer vacuum heat insulating chamber 41 (for example, surrounding the outer peripheral side (outside) of the superconducting coil 22 wound around the stator 20 together with the outer peripheral side (outer side) of the stator 20. 10 −1 Pa or less, 10 −2 Pa or less) and an inner vacuum heat insulation chamber 42 (pressure: 10 −1 ) surrounding the inner peripheral side (inner side) of the superconducting coil 22 together with the inner peripheral side (inner side) of the stator 20. Pa or less, 10 −2 Pa or less). The vacuum heat insulation chamber 40 is maintained in a high vacuum state (a state where the pressure is reduced from the atmospheric pressure) at the time of shipment, but it is preferable that the vacuum heat insulation chamber 40 be maintained in a high vacuum state for a long time by maintenance or the like.

この場合、超電導コイル22は外側真空断熱室41と内側真空断熱室42とで包囲されているため、超電導コイル22は極低温状態に維持され、ひいては超電導状態が維持される。図17に示すように、外側真空断熱室41は、固定子20の外周部を包囲する第1断熱室部分41aと、熱伝導部33のヘッド部33hおよびコールドヘッド32の外側を包囲する第2断熱室部分41cとを有する。第2断熱室部分41cは、熱伝導部33およびコールドヘッド32を包囲しており、これらの低温を維持する。   In this case, since the superconducting coil 22 is surrounded by the outer vacuum heat insulating chamber 41 and the inner vacuum heat insulating chamber 42, the superconducting coil 22 is maintained in an extremely low temperature state, and thus the superconducting state is maintained. As shown in FIG. 17, the outer vacuum heat insulating chamber 41 includes a first heat insulating chamber portion 41 a that surrounds the outer peripheral portion of the stator 20, and a second outer portion that surrounds the outside of the head portion 33 h and the cold head 32 of the heat conducting portion 33. And a heat insulating chamber portion 41c. The second heat insulating chamber portion 41c surrounds the heat conducting section 33 and the cold head 32, and maintains these low temperatures.

図17に示すように、基体4は、外側から内側にかけて、同軸的に配置された第1容器43、第2容器44、第3容器45、第4容器46を有する。第1容器43および第2容器44は、外側真空断熱室41を形成するように、固定鉄心21の径方向において互いに対面する。第3容器45および第4容器46は、内側真空断熱室42を形成するように、固定鉄心21の径方向において互いに対面する。   As shown in FIG. 17, the base 4 includes a first container 43, a second container 44, a third container 45, and a fourth container 46 that are coaxially arranged from the outside to the inside. The first container 43 and the second container 44 face each other in the radial direction of the fixed iron core 21 so as to form the outer vacuum heat insulation chamber 41. The third container 45 and the fourth container 46 face each other in the radial direction of the fixed iron core 21 so as to form the inner vacuum heat insulation chamber 42.

第4容器46で区画される円筒形状の空間47には、回転子27が回転可能に配置されている。空間47は大気に連通している。回転子27は回転作動体に連結されている。なお、超電導モータ装置1が自動車等の車両に搭載される場合には、回転作動体は走行用のホィール等が例示される。従って、回転子27が回転すると、ホィールが回転することができる。   A rotor 27 is rotatably disposed in a cylindrical space 47 defined by the fourth container 46. The space 47 communicates with the atmosphere. The rotor 27 is connected to a rotary operating body. In addition, when the superconducting motor device 1 is mounted on a vehicle such as an automobile, the rotary operating body is exemplified by a traveling wheel or the like. Therefore, when the rotor 27 rotates, the wheel can rotate.

図17に示すように、第1容器43は、超電導モータ2の外周部を包囲する筒状の第1包囲部431と、コールドヘッド32および熱伝導部33を覆うように第2包囲部434と、超電導コイル22に給電する3相用の電流導入線56を案内する案内室432を形成する筒状をなす案内部433と、冷凍機30の冷媒ガスを圧縮させるコンプレッサ30aのフランジ30cを取り付けるための取付フランジ部435とを有する。図17に示すように、案内部433は、第1容器43のうち超電導モータ2を包囲する第2包囲部434から突設されている。なお、第1容器43の外側は大気開放とすることができるが、これに限定されるものではない。第1容器43の外側は断熱材で覆われていても良い。   As shown in FIG. 17, the first container 43 includes a cylindrical first surrounding portion 431 that surrounds the outer peripheral portion of the superconducting motor 2, and a second surrounding portion 434 that covers the cold head 32 and the heat conducting portion 33. In order to attach a cylindrical guide portion 433 that forms a guide chamber 432 that guides a three-phase current introduction line 56 that supplies power to the superconducting coil 22, and a flange 30c of the compressor 30a that compresses the refrigerant gas of the refrigerator 30. Mounting flange portion 435. As shown in FIG. 17, the guide portion 433 protrudes from the second surrounding portion 434 that surrounds the superconducting motor 2 in the first container 43. In addition, although the outer side of the 1st container 43 can be open | released to air | atmosphere, it is not limited to this. The outside of the first container 43 may be covered with a heat insulating material.

第1容器43を構成する材料としては、漏れ磁束を透過させないか、あるいは、透過させにくいこと、強度を有することが好ましい。このような材料としては、透磁率が低い非磁性等の金属材料(例えばオーステナイト系等のステンレス鋼等の合金鋼)が例示される。第2容器44,第3容器45,第4容器46を構成する材料としては、磁束の変化に基づく渦電流を抑制すべく、電気抵抗が高い材料が好ましい。このような材料としては、樹脂、補強材強化樹脂、セラミックス等が例示される。補強材強化樹脂の補強材はガラス、セラミックス等の無機物が例示される。補強材は補強繊維が好ましく、ガラス繊維、セラミックス繊維等の無機繊維が例示される。樹脂は熱硬化性樹脂、熱可塑性樹脂のいずれでも良い。   As a material constituting the first container 43, it is preferable that the leakage magnetic flux is not transmitted or is difficult to transmit and has strength. Examples of such a material include non-magnetic metal materials having a low magnetic permeability (for example, alloy steel such as austenitic stainless steel). As a material constituting the second container 44, the third container 45, and the fourth container 46, a material having a high electric resistance is preferable in order to suppress an eddy current based on a change in magnetic flux. Examples of such materials include resins, reinforcing material reinforced resins, ceramics, and the like. Examples of the reinforcing material of the reinforcing material-reinforced resin include inorganic substances such as glass and ceramics. The reinforcing material is preferably a reinforcing fiber, and examples thereof include inorganic fibers such as glass fibers and ceramic fibers. The resin may be either a thermosetting resin or a thermoplastic resin.

図17に示すように、第1容器43に部分的に突設されている筒形状をなす案内部433の先端部には、プレート状の固定部70が固定されている。固定部70は、電気的および熱的に絶縁性が高い材料、および/または、磁束を透過させにくい材料で形成されていることが好ましい。例えば、透磁率が低い非磁性,常磁性等の金属材料(例えばオーステナイト系)、樹脂、繊維強化樹脂、セラミックスが例示される。案内室432は外側真空断熱室41に連通しているため、真空断熱状態(減圧断熱状態)とされ、断熱機能を発揮することができる。従って給電部として機能する電極5は、できるだけ低温に維持されやすい。   As shown in FIG. 17, a plate-like fixing portion 70 is fixed to the distal end portion of a cylindrical guide portion 433 projecting partially from the first container 43. The fixing portion 70 is preferably formed of a material that is electrically and thermally highly insulating and / or a material that hardly transmits magnetic flux. For example, nonmagnetic and paramagnetic metal materials (for example, austenite type), resin, fiber reinforced resin, and ceramics having low magnetic permeability are exemplified. Since the guide chamber 432 communicates with the outer vacuum heat insulation chamber 41, the guide chamber 432 is in a vacuum heat insulation state (reduced pressure heat insulation state) and can exhibit a heat insulation function. Therefore, the electrode 5 functioning as a power feeding unit is easily maintained as low a temperature as possible.

図17に示すように、複数(3個)の電極5は、超電導コイル22に電流導入線56を介して電気的に接続されており、超電導コイル22に給電する導電材料を基材とする端子である。電極5は、固定部70から離間する方向に固定部70から突出する突出部55を有する。電極5は、第1容器43の案内部433の先端部の固定部70に固定状態に保持されている。なお、電極5を形成する材料としては導電材料であれば特に限定されず、銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金、銀、銀合金等が例示されるが、これらに限定されるものではなく、要するに導電性を有するものであれば良い。   As shown in FIG. 17, the plurality (three) of electrodes 5 are electrically connected to the superconducting coil 22 via current introduction wires 56, and are terminals based on a conductive material that supplies power to the superconducting coil 22. It is. The electrode 5 has a protruding portion 55 that protrudes from the fixed portion 70 in a direction away from the fixed portion 70. The electrode 5 is held in a fixed state by the fixing portion 70 at the distal end portion of the guide portion 433 of the first container 43. The material for forming the electrode 5 is not particularly limited as long as it is a conductive material, and examples thereof include copper, copper alloy, aluminum, aluminum alloy, iron, iron alloy, silver, and silver alloy, but are not limited thereto. What is necessary is just to have electroconductivity instead of what.

さて、超電導モータ2が駆動されるときには、図略の切替スイッチがオンされると、外部の電源に繋がる電極5に三相の交流が給電される。ひいては超電導コイル22に給電される。この結果、超電導モータ2において回転磁場が軸心P1の回りで発生し、回転子27が軸心P1の回りで回転する。これにより超電導モータ2が駆動される。ここで、磁束は第3容器45,内側真空断熱室42,第4容器46を透過し、回転子27の永久磁石部29に吸引および反発作用を発生させ、回転子27が回転する。このように超電導モータ2が回転駆動されるとき、極低温発生部3が発生する極低温によりコールドヘッド32,熱伝導部33を介して、超電導コイル22および固定鉄心21は極低温状態に良好に維持される。故に、超電導コイル22がこれの臨界温度以下に良好に維持され、超電導モータ2は良好に回転駆動する。なお、超電導コイル22の電気抵抗は0かあるいは著しく低いため、超電導モータ20の出力は高い。   When the superconducting motor 2 is driven, a three-phase alternating current is supplied to the electrode 5 connected to an external power source when a changeover switch (not shown) is turned on. As a result, power is supplied to the superconducting coil 22. As a result, a rotating magnetic field is generated around the axis P1 in the superconducting motor 2, and the rotor 27 rotates around the axis P1. Thereby, the superconducting motor 2 is driven. Here, the magnetic flux passes through the third container 45, the inner vacuum heat insulation chamber 42, and the fourth container 46, causes the permanent magnet portion 29 of the rotor 27 to be attracted and repelled, and the rotor 27 rotates. Thus, when the superconducting motor 2 is rotationally driven, the superconducting coil 22 and the fixed iron core 21 are satisfactorily brought into a cryogenic state through the cold head 32 and the heat conducting unit 33 due to the cryogenic temperature generated by the cryogenic temperature generating unit 3. Maintained. Therefore, the superconducting coil 22 is well maintained below its critical temperature, and the superconducting motor 2 is driven to rotate well. Since the electric resistance of the superconducting coil 22 is 0 or extremely low, the output of the superconducting motor 20 is high.

さて本実施例によれば、図17に示すように、電極5と超電導コイル22とを繋ぐ3相用の電流導入線56のそれぞれには、熱スイッチ装置400Wが配置されている。熱スイッチ装置400Wは、前記した各実施例のうちのいずれかの構造を有する。極低温発生部3により真空断熱室40(案内室432を含む)内が極低温状態に冷却されると、熱スイッチ装置400Wの第2部材600が極低温状態に冷却される。すると、熱スイッチ装置400Wが第1形態に切り替えられ、電気的に導通する。この場合、電極5から電流導入線56および熱スイッチ装置400Wを介して超電導コイル22に向けて給電される。   Now, according to the present embodiment, as shown in FIG. 17, the thermal switching device 400 </ b> W is disposed in each of the three-phase current introduction wires 56 that connect the electrode 5 and the superconducting coil 22. The thermal switch device 400W has any one of the structures described above. When the inside of the vacuum heat insulating chamber 40 (including the guide chamber 432) is cooled to a very low temperature state by the cryogenic temperature generation unit 3, the second member 600 of the thermal switch device 400W is cooled to a very low temperature state. Then, the thermal switch device 400W is switched to the first form and becomes electrically conductive. In this case, power is supplied from the electrode 5 toward the superconducting coil 22 via the current introduction line 56 and the thermal switch device 400W.

これに対して超電導モータ2が停止されるときには、電極5に繋がるスイッチング素子58がオフとされ電極5への給電が停止されると共に、極低温発生部3の冷凍機30がオフとなる。この場合、外部の熱は、電極5から電流導入線56および熱スイッチ装置400Wを介して超電導コイル22に侵入し易い。従って熱スイッチ装置400Wは次第に昇温されて第2形態となる。このように熱スイッチ装置400Wが第2形態になれば、前述したように熱スイッチ装置400Wの内部は熱的および電気的に遮断される。このため、外部の熱が電極5から電流導入線56および熱スイッチ装置400Wを介して超電導コイル22に向けて侵入することが抑制される。従って超電導コイル22を低温状態に長時間にわたり良好に維持させることができる。よって超電導モータ装置を再起動させるときに有利である利点が得られる。   On the other hand, when the superconducting motor 2 is stopped, the switching element 58 connected to the electrode 5 is turned off, power supply to the electrode 5 is stopped, and the refrigerator 30 of the cryogenic temperature generating unit 3 is turned off. In this case, external heat easily enters the superconducting coil 22 from the electrode 5 via the current introduction line 56 and the thermal switch device 400W. Therefore, the temperature of the thermal switch device 400W is gradually increased to be in the second form. Thus, if the thermal switch apparatus 400W becomes a 2nd form, as mentioned above, the inside of the thermal switch apparatus 400W will be interrupted | blocked thermally and electrically. For this reason, it is suppressed that external heat enters the superconducting coil 22 from the electrode 5 via the current introduction line 56 and the thermal switch device 400W. Accordingly, the superconducting coil 22 can be favorably maintained at a low temperature for a long time. Therefore, an advantage that is advantageous when the superconducting motor device is restarted can be obtained.

図18は実施例14を示す。本実施例は、図17に示す実施例13と基本的に同様の構成、同様の作用効果を有する。図18に示すように、電極5と超電導コイル22とを繋ぐ3相用の電流導入線56のそれぞれには、熱スイッチ装置400Wが配置されている。極低温発生部3により真空断熱室内が極低温状態に冷却されると、第2部材600が極低温状態に冷却されると、熱スイッチ装置400Wが第1形態に切り替えられ、熱スイッチ装置400Wが電気的に導通する。このように熱スイッチ装置400Wが導通すると、電極5から電流導入線56および熱スイッチ装置400Wを介して超電導コイル22に向けて給電される。   FIG. 18 shows a fourteenth embodiment. This embodiment has basically the same configuration and the same function and effect as the thirteenth embodiment shown in FIG. As shown in FIG. 18, a thermal switching device 400 </ b> W is disposed in each of the three-phase current introduction wires 56 that connect the electrode 5 and the superconducting coil 22. When the cryogenic chamber 3 is cooled to a cryogenic state by the cryogenic temperature generator 3, when the second member 600 is cooled to a cryogenic state, the thermal switching device 400W is switched to the first configuration, and the thermal switching device 400W is Conducts electrically. When the thermal switching device 400W is thus conducted, power is supplied from the electrode 5 toward the superconducting coil 22 through the current introduction line 56 and the thermal switching device 400W.

これに対して極低温発生部3がオフとなると、前述したように熱スイッチ装置400Wが第2形態となり、熱的および電気的に遮断される。このように熱スイッチ装置400Wが遮断されると、外部の熱が電極5から電流導入線56および熱スイッチ装置400Wを介して超電導コイル22に侵入することが抑制される。従って超電導コイル22を低温状態に長時間にわたり維持させることができる。   On the other hand, when the cryogenic temperature generating unit 3 is turned off, the thermal switching device 400W is in the second form as described above, and is thermally and electrically cut off. When the thermal switching device 400W is thus cut off, external heat is prevented from entering the superconducting coil 22 from the electrode 5 via the current introduction line 56 and the thermal switching device 400W. Accordingly, the superconducting coil 22 can be maintained at a low temperature for a long time.

更に図18に示すように、熱伝導部33のヘッド33hと極低温発生部3のコールドヘッド32との間には、熱スイッチ装置400Xが介在されている。熱スイッチ装置400Xは、雄部503をもつ第1部材500と、雄部503を嵌合する雌穴604を有する雌部603をもつ第2部材600とを有する。ここで極低温発生部3がオンとなり、コールドヘッド32が極低温に冷却されると、熱スイッチ装置400Xの第2部材600はコールドヘッド32により極低温に冷却される。この結果、径内方向(矢印DA2方向)において、第2部材600の雌部603の熱収縮量は、第1部材500の雄部503の熱収縮量よりも相対的に大きくなる。このため第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505に接触する接触度が高くなり、熱スイッチ装置400Xは第1形態に切り替えられる。このような第1形態によれば、コールドヘッド32の冷熱は、熱スイッチ装置400Xを介して超電導コイル22に伝達され、超電導コイル22が効果的に冷却される。   Further, as shown in FIG. 18, a thermal switching device 400 </ b> X is interposed between the head 33 h of the heat conducting unit 33 and the cold head 32 of the cryogenic temperature generating unit 3. The thermal switch device 400X includes a first member 500 having a male part 503 and a second member 600 having a female part 603 having a female hole 604 into which the male part 503 is fitted. Here, when the cryogenic temperature generator 3 is turned on and the cold head 32 is cooled to an extremely low temperature, the second member 600 of the thermal switch device 400X is cooled to an extremely low temperature by the cold head 32. As a result, the amount of thermal contraction of the female portion 603 of the second member 600 is relatively larger than the amount of thermal contraction of the male portion 503 of the first member 500 in the radial direction (arrow DA2 direction). For this reason, the contact degree in which the inner wall surface 605 of the female portion 603 of the second member 600 contacts the outer wall surface 505 of the male portion 503 of the first member 500 is increased, and the thermal switch device 400X is switched to the first form. According to such a 1st form, the cold heat of the cold head 32 is transmitted to the superconducting coil 22 via the thermal switch apparatus 400X, and the superconducting coil 22 is effectively cooled.

これに対して極低温発生部3がオフとなると、コールドヘッド32は次第に昇温される。すると、径外方向(矢印DB2方向)において、第2部材600の雌部603の熱膨張量は第1部材500の熱膨張量よりも相対的に大きくなる。このため熱スイッチ装置400Xは第2形態に切り替えられ、隙間507が形成され、結果として、第2部材600の雌部603の内壁面605が第1部材500の雄部503の外壁面505から離間する。よって内壁面605と外壁面505とが互いに接触する接触度が低下するか、または、内壁面605と外壁面505とが互いに非接触となる。このような第2形態によれば、熱スイッチ装置400Xにおいて、雌部603の内壁面605と雄部503の外壁面505とが全周的に均一に離間し、均一な隙間幅を有する隙間507が全周に形成されることが好ましい。この場合、第2部材600の雌部603から第1部材500の雄部503への熱侵入量は、効果的に抑えられる。場合によっては、熱スイッチ装置400Xにおいて、雌部603の内壁面605と雄部503の外壁面505とが大部分において非接触であれば、雌部603の内壁面605と雄部503の外壁面505とが一部のみ接触していても良い。   On the other hand, when the cryogenic temperature generator 3 is turned off, the cold head 32 is gradually heated. Then, the amount of thermal expansion of the female portion 603 of the second member 600 is relatively larger than the amount of thermal expansion of the first member 500 in the radially outward direction (arrow DB2 direction). For this reason, the heat switch device 400X is switched to the second form, and a gap 507 is formed. As a result, the inner wall surface 605 of the female portion 603 of the second member 600 is separated from the outer wall surface 505 of the male portion 503 of the first member 500. To do. Accordingly, the degree of contact between the inner wall surface 605 and the outer wall surface 505 decreases, or the inner wall surface 605 and the outer wall surface 505 are not in contact with each other. According to such a second embodiment, in the thermal switching device 400X, the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are uniformly spaced all around, and the gap 507 having a uniform gap width. Is preferably formed all around. In this case, the amount of heat penetration from the female portion 603 of the second member 600 into the male portion 503 of the first member 500 is effectively suppressed. In some cases, in the thermal switch device 400X, if the inner wall surface 605 of the female portion 603 and the outer wall surface 505 of the male portion 503 are mostly non-contact, the inner wall surface 605 of the female portion 603 and the outer wall surface of the male portion 503 505 may be in contact with only a part.

図19および図20は基材と熱膨張率との関係を示す。図19および図20を考慮して、第2部材600の熱膨張率(熱収縮率)の基材が第1部材500の基材よりも大きくなるように、第1部材500および第2部材600の基材を、銅、銅合金、鉄、鉄合金、ニッケル、ニッケル合金、チタン、チタン合金等から選択することができる。Invar系,Inco系,Inconel系の合金は熱膨張率が比較的低めである。   19 and 20 show the relationship between the base material and the coefficient of thermal expansion. In consideration of FIGS. 19 and 20, the first member 500 and the second member 600 are configured such that the base material of the thermal expansion coefficient (thermal contraction rate) of the second member 600 is larger than the base material of the first member 500. The base material can be selected from copper, copper alloy, iron, iron alloy, nickel, nickel alloy, titanium, titanium alloy and the like. Invar, Inco and Inconel alloys have a relatively low coefficient of thermal expansion.

上記した超電導モータ装置に適用した実施例によれば、極低温発生部3は冷凍機を含む構造であるが、これに限らず、冷凍機を搭載せずに、極低温の冷媒(例えば液化ヘリウム、液化窒素、液化酸素)を断熱保持する機構でも良い。回転子27は、軸心P1の回りで回転可能に支持された回転軸28と、回転軸28の外周部にこれの周方向に間隔を隔てて配置された複数個の永久磁石部29とを有する。しかしこれに限らず、固定子20側に永久磁石部が設けられており、回転子27側に超電導コイル22が設けられていても良い。車載用の超電導モータ装置1に適用しているが、車載用に限らず、定置用でも良い。上記した超電導モータ装置に適用した実施例によれば、超電導モータ装置1は回転タイプであるため、可動子は回転子27とされているが、可動子を直動させる直動タイプのリニアモータでも良い。この場合、固定子20は一方向に延設された形状となり、可動子を直動させる可動磁場を発生させる。超電導モータ装置1は三相モータであるが、これに限らず、二相モータでも良い。回転子27が永久磁石部29を有し、固定子20は、固定鉄心21と、固定鉄心21に巻回されて保持された超電導コイル22とを有するが、これに限られるものではない。固定子が永久磁石部を有し、回転子が超電導コイルを有する構造でも良い。固定鉄心21は筒形状とされているが、周方向に複数に分割された分割体を周方向に組み付けて筒体としても良い。ある実施例に特有の構造および機能は他の実施例にも適用できる。その他、本発明は上記した実施形態および実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。   According to the embodiment applied to the superconducting motor device described above, the cryogenic generator 3 has a structure including a refrigerator. However, the invention is not limited to this, and a cryogenic refrigerant (e.g., liquefied helium) is not limited to this. , Liquefied nitrogen, liquefied oxygen) may be used. The rotor 27 includes a rotary shaft 28 supported so as to be rotatable around an axis P1 and a plurality of permanent magnet portions 29 arranged on the outer peripheral portion of the rotary shaft 28 at intervals in the circumferential direction thereof. Have. However, the present invention is not limited thereto, and the permanent magnet portion may be provided on the stator 20 side, and the superconducting coil 22 may be provided on the rotor 27 side. Although it is applied to the in-vehicle superconducting motor apparatus 1, it is not limited to in-vehicle use, and may be stationary. According to the embodiment applied to the superconducting motor device described above, since the superconducting motor device 1 is a rotary type, the movable element is the rotor 27. However, a linear motion type linear motor that linearly moves the movable element may be used. good. In this case, the stator 20 has a shape extending in one direction, and generates a movable magnetic field that moves the mover linearly. The superconducting motor device 1 is a three-phase motor, but is not limited thereto, and may be a two-phase motor. The rotor 27 has a permanent magnet portion 29, and the stator 20 has a fixed iron core 21 and a superconducting coil 22 that is wound around the fixed iron core 21, but is not limited thereto. The stator may have a permanent magnet portion and the rotor may have a superconducting coil. Although the fixed iron core 21 has a cylindrical shape, a plurality of divided bodies divided in the circumferential direction may be assembled in the circumferential direction to form a cylindrical body. Structures and functions specific to one embodiment can be applied to other embodiments. In addition, the present invention is not limited to the above-described embodiments and examples, and can be implemented with appropriate modifications within a range not departing from the gist.

上記した記載から次の技術的思想も把握できる。
[付記項1]臨界温度以下において超電導現象を示す超電導部と、外部からの熱伝達が抑えられる断熱室を形成すると共に前記断熱室に前記超電導部を収容する基体と、前記超電導部をこれの臨界温度以下に冷却させるための冷却部と、前記超電導部と前記冷却部との間に介在し前記冷却部の冷却能を前記超電導部に伝達させる熱スイッチ装置とを具備する超電導装置。
The following technical idea can also be grasped from the above description.
[Additional Item 1] A superconducting portion exhibiting a superconducting phenomenon below a critical temperature, a heat insulating chamber in which heat transfer from the outside is suppressed, and a base body in which the superconducting portion is accommodated in the heat insulating chamber, and the superconducting portion are A superconducting device comprising: a cooling unit for cooling to a critical temperature or less; and a thermal switch device interposed between the superconducting unit and the cooling unit to transmit the cooling capacity of the cooling unit to the superconducting unit.

本発明は例えば産業用、車載用、医療用の超電導装置に利用することができる。   The present invention can be used for, for example, industrial, in-vehicle, and medical superconducting devices.

1は超電導モータ装置(超電導装置)、2は超電導モータ、20は固定子、21は固定鉄心、22は超電導コイル(超電導部)、27は回転子(可動子)、3は極低温発生部(冷却部)、30は冷凍機、30aはコンプレッサ、32はコールドヘッド、33は熱伝導部、4は容器(基体)、41は外側真空断熱室、42は内側真空断熱室、43は第1容器、432は案内室(真空断熱室)、44は第2容器、45は第3容器、46は第4容器、41は外側真空断熱室、42は内側真空断熱室、5は電極(給電部)、400は熱スイッチ装置、500は第1部材、503は雄部、505は外壁面、507は隙間、521は第1外層、522は第2内層、600は第2部材、603は雌部、605は内壁面、700は被冷却体、621は第2層層、622は第2内層を示す。   1 is a superconducting motor device (superconducting device), 2 is a superconducting motor, 20 is a stator, 21 is a fixed iron core, 22 is a superconducting coil (superconducting portion), 27 is a rotor (movable element), 3 is a cryogenic generator ( (Cooling unit), 30 is a refrigerator, 30a is a compressor, 32 is a cold head, 33 is a heat conduction unit, 4 is a container (base), 41 is an outer vacuum heat insulation chamber, 42 is an inner vacuum heat insulation chamber, and 43 is a first container. 432 is a guide chamber (vacuum heat insulation chamber), 44 is a second container, 45 is a third container, 46 is a fourth container, 41 is an outer vacuum heat insulation chamber, 42 is an inner vacuum heat insulation chamber, and 5 is an electrode (power supply unit). , 400 is a thermal switch device, 500 is a first member, 503 is a male part, 505 is an outer wall surface, 507 is a gap, 521 is a first outer layer, 522 is a second inner layer, 600 is a second member, 603 is a female part, 605 is an inner wall surface, 700 is an object to be cooled, and 621 is a second layer. 622 shows a second inner layer.

Claims (9)

外部からの熱伝達が抑えられる断熱室を形成する基体と、
前記基体の前記断熱室に配置された第1部材と、
前記基体の前記断熱室に配置され、少なくとも一部が前記第1部材よりも大きな熱膨張率を有する材料を基材として形成された第2部材とを具備しており、
前記第1部材および前記第2部材は、前記第2部材が降温されるに伴い前記第1部材と前記第2部材とが直接的または間接的に接触する接触度が高くなる第1形態と、前記第2部材が昇温させるに伴い前記第1部材と前記第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態とに切り替え可能とされていることを特徴とする熱スイッチ装置。
A base body that forms a heat insulating chamber capable of suppressing heat transfer from the outside;
A first member disposed in the heat insulation chamber of the base;
A second member that is disposed in the heat insulating chamber of the base body and at least a part of which is formed using a material having a thermal expansion coefficient larger than that of the first member as a base material;
The first member and the second member have a first form in which the degree of contact between the first member and the second member directly or indirectly increases as the temperature of the second member decreases, As the temperature of the second member increases, the degree of contact with which the first member and the second member come into direct or indirect contact decreases, or the second member can be switched to a second form in which it is non-contact. The thermal switch device characterized by being made.
請求項1において、前記第1部材は被冷却体に繋がり、前記第2部材は、前記被冷却体を冷却させる冷却能を発揮するための冷却部に繋がり、前記第1部材および前記第2部材は、前記冷却部による冷却能により冷却されて第1形態となることを特徴とする熱スイッチ装置。   2. The first member and the second member according to claim 1, wherein the first member is connected to an object to be cooled, and the second member is connected to a cooling unit for exhibiting a cooling ability for cooling the object to be cooled. Is a first form after being cooled by the cooling ability of the cooling section. 請求項1または2おいて、前記第1部材および前記第2部材は、前記第1部材と前記第2部材との間において電流が流れる通電経路を形成することを特徴とする熱スイッチ装置。   The thermal switch device according to claim 1, wherein the first member and the second member form an energization path through which a current flows between the first member and the second member. 請求項1〜3のうちの一項において、前記第1部材は雄部を有しており、前記第2部材は前記雄部を包囲する雌部を有することを特徴とする熱スイッチ装置。   The thermal switch device according to claim 1, wherein the first member has a male part, and the second member has a female part surrounding the male part. 請求項4において、前記第1部材の前記雄部は、円筒形状をなす外壁面を有しており、前記第2部材の前記雌部は、前記外壁面と対面すると共に円筒形状をなす内壁面を有しており、
前記第1形態において前記外壁面と前記内壁面との接触度が高くなり、前記第2形態において前記外壁面と前記内壁面との接触度が低下するか、または、非接触となることを特徴とする熱スイッチ装置。
5. The male part of the first member according to claim 4, wherein the male part has a cylindrical outer wall surface, and the female part of the second member faces the outer wall surface and has a cylindrical inner wall surface. Have
In the first embodiment, the contact degree between the outer wall surface and the inner wall surface is increased, and in the second embodiment, the contact degree between the outer wall surface and the inner wall surface is reduced or non-contacted. Thermal switch device.
請求項4において、前記第1部材の前記雄部は、断面で傾斜状をなす外壁面を有しており、前記第2部材の前記雌部は、断面で前記外壁面と共通する方向に傾斜する傾斜状をなすと共に前記外壁面と対面する内壁面を有しており、
前記第1形態において前記外壁面と前記内壁面との接触度が高くなり、前記第2形態において前記外壁面と前記内壁面との接触度が低下するか、または、非接触となることを特徴とする熱スイッチ装置。
5. The male part of the first member has an outer wall surface inclined in a cross section, and the female part of the second member is inclined in a direction common to the outer wall surface in a cross section. And has an inner wall surface that faces the outer wall surface.
In the first embodiment, the contact degree between the outer wall surface and the inner wall surface is increased, and in the second embodiment, the contact degree between the outer wall surface and the inner wall surface is reduced or non-contacted. Thermal switch device.
請求項1〜6のうちの一項において、前記第1部材および前記第2部材のうちの少なくとも一方は複数の層で形成されており、前記複数の層のうち、前記第1部材および前記第2部材のうちの他方に対面する層は、前記第2部材が降温されるに伴い前記第1部材と前記第2部材との接触度を高める熱膨張率を有する材料を基材として形成されていることを特徴とする熱スイッチ装置。   7. The device according to claim 1, wherein at least one of the first member and the second member is formed of a plurality of layers, and the first member and the first of the plurality of layers are formed. The layer facing the other of the two members is formed using a material having a coefficient of thermal expansion that increases the degree of contact between the first member and the second member as the temperature of the second member is lowered. A thermal switch device characterized by comprising: 臨界温度以下において超電導現象を示す超電導部と、外部からの熱伝達が抑えられる断熱室を形成すると共に前記断熱室に前記超電導部を収容する基体と、前記超電導部をこれの臨界温度以下に冷却させるための冷却部と、前記超電導部と前記冷却部との間に介在し前記冷却部の冷却能を前記超電導部に伝達させる熱スイッチ装置とを具備しており、
前記熱スイッチ装置は、
前記基体の前記断熱室に配置された第1部材と、
前記基体の前記断熱室に配置され、少なくとも一部が前記第1部材よりも大きな熱膨張率を有する材料を基材として形成された第2部材とを具備しており、
前記第1部材および前記第2部材は、前記冷却部により前記第2部材が冷却されるに伴い前記第1部材と前記第2部材とが直接的または間接的に接触する接触度が高くなる第1形態と、前記第2部材が昇温させるに伴い前記第1部材と前記第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態とに切り替え可能とされていることを特徴とする超電導装置。
A superconducting portion exhibiting a superconducting phenomenon below a critical temperature, a heat insulating chamber that suppresses heat transfer from the outside, a base that accommodates the superconducting portion in the heat insulating chamber, and the superconducting portion cooled below the critical temperature And a thermal switching device that is interposed between the superconducting unit and the cooling unit and transmits the cooling capacity of the cooling unit to the superconducting unit,
The thermal switch device is:
A first member disposed in the heat insulation chamber of the base;
A second member that is disposed in the heat insulating chamber of the base body and at least a part of which is formed using a material having a thermal expansion coefficient larger than that of the first member as a base material;
The first member and the second member have a higher degree of contact with which the first member and the second member are in direct or indirect contact with each other as the second member is cooled by the cooling unit. 1 form and the 2nd form from which the contact degree which the said 1st member and the said 2nd member contact directly or indirectly falls or it becomes non-contact as the said 2nd member heats up A superconducting device characterized in that it can be switched to.
臨界温度以下において超電導現象を示す超電導部と、外部からの熱伝達が抑えられる断熱室を形成すると共に断熱室に前記超電導部を収容する基体と、前記超電導部をこれの臨界温度以下に冷却させるための冷却部と、前記超電導部に給電する給電部と、前記超電導部と前記給電部との間に介在し前記給電部から前記超電導部に給電させる熱スイッチ装置とを具備しており、
前記熱スイッチ装置は、
前記基体の前記断熱室に配置された第1部材と、
前記基体の前記断熱室に配置され、少なくとも一部が前記第1部材よりも大きな熱膨張率を有する材料を基材として形成された第2部材とを具備しており、
前記第1部材および前記第2部材は、前記冷却部により前記第2部材が冷却されるに伴い前記第1部材と前記第2部材とが直接的または間接的に接触する接触度が高くなる第1形態と、前記第2部材が昇温させるに伴い前記第1部材と前記第2部材とが直接的または間接的に接触する接触度が低下するか、または、非接触となる第2形態とに切り替え可能とされていることを特徴とする超電導装置。
A superconducting portion exhibiting a superconducting phenomenon below a critical temperature, a heat insulating chamber that suppresses heat transfer from the outside, a base that accommodates the superconducting portion in the heat insulating chamber, and the superconducting portion are cooled below the critical temperature A cooling unit, a power feeding unit that feeds power to the superconducting unit, and a thermal switch device that is interposed between the superconducting unit and the power feeding unit and feeds power from the power feeding unit to the superconducting unit,
The thermal switch device is:
A first member disposed in the heat insulation chamber of the base;
A second member that is disposed in the heat insulating chamber of the base body and at least a part of which is formed using a material having a thermal expansion coefficient larger than that of the first member as a base material;
The first member and the second member have a higher degree of contact with which the first member and the second member are in direct or indirect contact with each other as the second member is cooled by the cooling unit. 1 form and the 2nd form from which the contact degree which the said 1st member and the said 2nd member contact directly or indirectly falls or it becomes non-contact as the said 2nd member heats up A superconducting device characterized in that it can be switched to.
JP2009035531A 2009-02-18 2009-02-18 Thermal switch device and superconducting device Pending JP2010192253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035531A JP2010192253A (en) 2009-02-18 2009-02-18 Thermal switch device and superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035531A JP2010192253A (en) 2009-02-18 2009-02-18 Thermal switch device and superconducting device

Publications (1)

Publication Number Publication Date
JP2010192253A true JP2010192253A (en) 2010-09-02

Family

ID=42818069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035531A Pending JP2010192253A (en) 2009-02-18 2009-02-18 Thermal switch device and superconducting device

Country Status (1)

Country Link
JP (1) JP2010192253A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177144A (en) * 2014-03-18 2015-10-05 株式会社日立製作所 Superconducting magnet device
JP2019169664A (en) * 2018-03-26 2019-10-03 株式会社デンソー Integrated circuit device and electronic device
EP4068312A1 (en) 2021-04-01 2022-10-05 Koninklijke Philips N.V. Switching a ramp current for super conducting windings of a superconducting magnet assembly switch assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177144A (en) * 2014-03-18 2015-10-05 株式会社日立製作所 Superconducting magnet device
JP2019169664A (en) * 2018-03-26 2019-10-03 株式会社デンソー Integrated circuit device and electronic device
JP7043918B2 (en) 2018-03-26 2022-03-30 株式会社デンソー Integrated circuit equipment and electronic equipment
EP4068312A1 (en) 2021-04-01 2022-10-05 Koninklijke Philips N.V. Switching a ramp current for super conducting windings of a superconducting magnet assembly switch assembly

Similar Documents

Publication Publication Date Title
JP4598855B2 (en) Superconducting device
JP4701294B2 (en) Superconducting device
JP4790000B2 (en) Vacuum container for superconducting device and superconducting device
US20120165198A1 (en) Superconducting electric motor
KR101273642B1 (en) Conduction cooling type superconducting rotator
JP2010192253A (en) Thermal switch device and superconducting device
JP2007089345A (en) Cooling structure of superconducting motor
JP2007247896A (en) High temperature superconduction magnetic bearing
JP7237537B2 (en) rotating machine
JP2004023921A (en) Motive power or electric power generator
JP6462490B2 (en) Superconducting motor and superconducting generator
KR102056132B1 (en) Rotor assembly and superconducting generator having the same
US20110277953A1 (en) Superconducting motor
JP2006352150A (en) Superconducting magnet
JP5337179B2 (en) Superconducting device
JP5367393B2 (en) Superconducting device
JP5362446B2 (en) Superconducting device
JP2011250503A (en) Superconducting motor
JP2012143044A (en) Superconducting motor
JP4732053B2 (en) Superconducting rotating electrical machine rotor
JP4706350B2 (en) Inductor type motor
JP7437579B2 (en) Field coil support structure and modular field coil design in superconducting machines
KR20130022673A (en) Superconducting generator
JP2010154698A (en) Superconducting motor apparatus
JP2010148200A (en) Superconducting motor