JP2010192214A - Photoelectric conversion element and method of manufacturing the same - Google Patents

Photoelectric conversion element and method of manufacturing the same Download PDF

Info

Publication number
JP2010192214A
JP2010192214A JP2009034396A JP2009034396A JP2010192214A JP 2010192214 A JP2010192214 A JP 2010192214A JP 2009034396 A JP2009034396 A JP 2009034396A JP 2009034396 A JP2009034396 A JP 2009034396A JP 2010192214 A JP2010192214 A JP 2010192214A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
fine particles
silicon
conversion element
sensitizing dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009034396A
Other languages
Japanese (ja)
Other versions
JP5371476B2 (en
JP2010192214A5 (en
Inventor
Tomohiro Nagata
智啓 永田
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009034396A priority Critical patent/JP5371476B2/en
Publication of JP2010192214A publication Critical patent/JP2010192214A/en
Publication of JP2010192214A5 publication Critical patent/JP2010192214A5/ja
Application granted granted Critical
Publication of JP5371476B2 publication Critical patent/JP5371476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element of which an absorption wavelength range is wide and conversion efficiency is high, and provide a method of manufacturing the same. <P>SOLUTION: The photoelectric conversion element 1 is formed by laminating a conductive support body, a photoelectric conversion layer 4, an electrolyte layer 5, and a counter electrode 3 sequentially. The photoelectric conversion layer includes semiconductor particles 41, and at least one or more types of sensitizing pixels 43, and silicon-containing fine particles having a light absorption wavelength range different from that of the sensitizing pixel. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は光電変換素子及びその製造方法に関する。   The present invention relates to a photoelectric conversion element and a manufacturing method thereof.

現在主流である太陽電池としては、結晶系シリコンやアモルファスシリコンを用いたシリコン系太陽電池、GaAs、CuInSe(S)やCdTe等の化合物を用いた化合物系太陽電池、有機薄膜を用いた有機薄膜系太陽電池、色素を増感剤として吸着させた色素増感型太陽電池がある。色素増感型太陽電池は、透明導電膜が形成されたガラス基板に光電変換層が積層されたものと対向電極とを電解質層を介して設置した光電変換素子を用いている。光電変換層は、例えば、酸化チタン微粒子と、この酸化チタン微粒子に付着した光増感剤としての色素(ルテニウム錯体)とを備えている。このような色素増感型太陽電池は、前述したシリコン系太陽電池よりも発電効率が低い。発電効率が低い要因の一つとして、太陽光の波長領域に対する色素の吸収波長領域がシリコン系太陽電池に比べて狭いため、太陽光のエネルギーを十分に吸収しきれていないことが挙げられる。   Current solar cells include silicon solar cells using crystalline silicon and amorphous silicon, compound solar cells using compounds such as GaAs, CuInSe (S) and CdTe, and organic thin film systems using organic thin films. There are solar cells and dye-sensitized solar cells in which a dye is adsorbed as a sensitizer. The dye-sensitized solar cell uses a photoelectric conversion element in which a photoelectric conversion layer is laminated on a glass substrate on which a transparent conductive film is formed and a counter electrode is disposed via an electrolyte layer. The photoelectric conversion layer includes, for example, titanium oxide fine particles and a dye (ruthenium complex) as a photosensitizer attached to the titanium oxide fine particles. Such a dye-sensitized solar cell has lower power generation efficiency than the silicon-based solar cell described above. One of the causes of low power generation efficiency is that the absorption wavelength region of the dye with respect to the wavelength region of sunlight is narrower than that of silicon solar cells, so that the energy of sunlight is not fully absorbed.

このため、吸収波長領域の異なる色素を有する光電変換層を二層有することで、吸収波長領域を拡大した色素増感型太陽電池が知られている(例えば、特許文献1参照)。
特開2002−222971号公報(請求項1、図1)
For this reason, the dye-sensitized solar cell which expanded the absorption wavelength area | region by having two photoelectric conversion layers which have the pigment | dye from which an absorption wavelength area | region differs is known (for example, refer patent document 1).
JP 2002-222971 A (Claim 1, FIG. 1)

しかしながら、色素増感型太陽電池で用いられる増感色素は、どれも最大感度吸収波長領域(吸収ピーク)が長波長領域(700nm〜)にないために、上記特許文献1に記載されている色素増感型太陽電池では、十分に吸収波長領域を長波長側まで拡大できていない。このため、太陽光のエネルギーを十分に活用できていないという問題がある。   However, since none of the sensitizing dyes used in the dye-sensitized solar cell has the maximum sensitivity absorption wavelength region (absorption peak) in the long wavelength region (700 nm to), the dye described in Patent Document 1 above. In the sensitized solar cell, the absorption wavelength region cannot be sufficiently expanded to the long wavelength side. For this reason, there exists a problem that the energy of sunlight cannot fully be utilized.

そこで、本発明の課題は、上記従来技術の問題点を解決することにあり、長波長領域の波長も吸収できるように吸収波長領域が広く変換効率の高い光電変換素子及びその製造方法を提供しようとするものである。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a photoelectric conversion element having a wide absorption wavelength range and high conversion efficiency so as to be able to absorb wavelengths in the long wavelength range, and a method for manufacturing the same. It is what.

本発明の光電変換素子は、導電性支持体と、光電変換層と、電解質層と、対向電極とをこの順で積層してなる光電変換素子において、前記光電変換層が、半導体粒子と、少なくとも一種以上の増感色素及びこの増感色素とは異なる光の吸収波長領域を有するシリコン含有微粒子とを備えたことを特徴とする。   The photoelectric conversion element of the present invention is a photoelectric conversion element in which a conductive support, a photoelectric conversion layer, an electrolyte layer, and a counter electrode are laminated in this order, wherein the photoelectric conversion layer includes at least semiconductor particles, It is characterized by comprising at least one sensitizing dye and silicon-containing fine particles having a light absorption wavelength region different from that of the sensitizing dye.

この増感色素とは異なる光の吸収波長領域を有するシリコン含有微粒子を備えたことで、色素とは異なる波長の光を吸収できるので、本発明の光電変換素子は吸収波長領域が広い。このため、本発明の光電変換素子はより変換効率を高めることが可能である。なお、ここでいう付着は、化学的に吸着した状態をいう。化学的に吸着した状態とは、共有結合又はイオン結合によって原子や分子が結合した状態をいう。また、吸収波長領域は、太陽光のスペクトルのうちその物質が吸収できる波長領域をいい、異なる吸収波長領域とは、吸収波長領域が完全に異なる場合だけでなく、最大感度波長領域が異なり、その他の波長領域は同一である場合も含む。   Since the silicon-containing fine particles having a light absorption wavelength region different from that of the sensitizing dye are provided, light having a wavelength different from that of the dye can be absorbed. Therefore, the photoelectric conversion element of the present invention has a wide absorption wavelength region. For this reason, the photoelectric conversion element of this invention can improve conversion efficiency more. Here, the term “adhesion” refers to a chemically adsorbed state. The chemically adsorbed state refers to a state in which atoms and molecules are bonded by a covalent bond or an ionic bond. The absorption wavelength region refers to the wavelength region that can be absorbed by the substance in the sunlight spectrum. Different absorption wavelength regions are different not only when the absorption wavelength region is completely different, but also with different maximum sensitivity wavelength regions, and others. This includes the case where the wavelength regions are the same.

光電変換層は、半導体粒子にシリコン含有微粒子が付着し、さらにこれらのまわりに前記増感色素が付着していることが好ましい。このように光電変換層が構成されていることで、シリコン含有微粒子での電荷分離により生じた電子と、増感色素での電荷分離により生じた電子とがそれぞれ干渉せずに半導体粒子へ注入され導電性支持体に到達することができる。また、シリコン含有微粒子が付着した半導体粒子に増感色素が付着しているので、増感色素の表面積が大きくなり、増感色素による発電量自体も向上する。従って、広い吸収波長領域に応じた変換効率を得ることができる。   In the photoelectric conversion layer, it is preferable that silicon-containing fine particles are attached to semiconductor particles, and the sensitizing dye is attached around them. Since the photoelectric conversion layer is configured in this way, electrons generated by charge separation in the silicon-containing fine particles and electrons generated by charge separation in the sensitizing dye are injected into the semiconductor particles without interfering with each other. A conductive support can be reached. Further, since the sensitizing dye is attached to the semiconductor particles to which the silicon-containing fine particles are attached, the surface area of the sensitizing dye is increased, and the power generation amount itself by the sensitizing dye is also improved. Therefore, conversion efficiency corresponding to a wide absorption wavelength region can be obtained.

前記シリコン含有微粒子が、結晶性シリコンからなり、かつ、前記増感色素がルテニウム錯体からなることが好ましい。このシリコン含有微粒子と増感色素の組み合わせによれば、吸収波長領域は約400〜約1200nmまで及ぶので発電効率が最も高くなる。   It is preferable that the silicon-containing fine particles are made of crystalline silicon and the sensitizing dye is made of a ruthenium complex. According to the combination of the silicon-containing fine particles and the sensitizing dye, since the absorption wavelength region extends from about 400 to about 1200 nm, the power generation efficiency is the highest.

本発明の光電変換素子の製造方法は、導電性支持体上に、光電変換層を形成する光電変換層形成工程と、対向電極を設置した後に前記光電変換層と対向電極との間に電解液を注入して電解質層を形成する電解質層形成工程とを備えた光電変換素子の製造方法において、前記光電変換層形成工程は、前記導電性支持体上に半導体粒子からなる半導体粒子層を設け、次いで、この半導体粒子層の表面にシリコン含有微粒子を付着させ、その後増感色素を半導体粒子層全体に付着させることを特徴とする。   In the method for producing a photoelectric conversion element of the present invention, a photoelectric conversion layer forming step for forming a photoelectric conversion layer on a conductive support, and an electrolytic solution between the photoelectric conversion layer and the counter electrode after the counter electrode is installed In the method of manufacturing a photoelectric conversion element comprising an electrolyte layer forming step of forming an electrolyte layer by injecting a liquid crystal, the photoelectric conversion layer forming step includes providing a semiconductor particle layer made of semiconductor particles on the conductive support, Next, silicon-containing fine particles are attached to the surface of the semiconductor particle layer, and then a sensitizing dye is attached to the entire semiconductor particle layer.

本発明の製造方法によれば、増感色素とは異なる光の吸収波長領域を有するシリコン含有微粒子を備えた光電変換層を有する光電変換素子を製造できる。この光電変換素子では、増感色素とは異なる波長の光を吸収できるので、本発明の光電変換素子は吸収波長領域が広い。このため、本発明の光電変換素子は変換効率を高めることが可能である。   According to the production method of the present invention, it is possible to produce a photoelectric conversion element having a photoelectric conversion layer provided with silicon-containing fine particles having a light absorption wavelength region different from that of the sensitizing dye. Since this photoelectric conversion element can absorb light having a wavelength different from that of the sensitizing dye, the photoelectric conversion element of the present invention has a wide absorption wavelength region. For this reason, the photoelectric conversion element of this invention can improve conversion efficiency.

本発明の光電変換素子及びその製造方法によれば、長波長領域の波長も吸収できるため、変換効率が向上するという優れた効果を奏し得る。   According to the photoelectric conversion element of the present invention and the method for manufacturing the photoelectric conversion element, since the wavelength in the long wavelength region can be absorbed, an excellent effect of improving the conversion efficiency can be obtained.

実施形態にかかる光電変換素子の(a)模式図、(b)一部拡大図である。It is the (a) schematic diagram of the photoelectric conversion element concerning embodiment, (b) It is a partially expanded view. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example.

本発明の光電変換素子の構成を、図1に示す。図1は、本実施形態の光電変換素子を説明するための図であり、(a)は断面模式図、(b)は(a)の一部拡大図である。   The structure of the photoelectric conversion element of the present invention is shown in FIG. 1A and 1B are diagrams for explaining the photoelectric conversion element of the present embodiment, in which FIG. 1A is a schematic cross-sectional view, and FIG. 1B is a partially enlarged view of FIG.

光電変換素子1は、透明導電性基板2(導電性支持体)を備える。透明導電性基板2は、ガラス基板などの透光性を有する基板に透明導電膜が形成されて、集電電極して機能するものである。透明導電膜としては、公知の透明導電膜を用いることができ、公知の透明導電膜材料としては、例えば、酸化インジウム、酸化錫、酸化亜鉛、酸化カドミウム、酸化ガリウム、In(ZnO)、及びInGaO(ZnO)等や、これら酸化物にドーパントを添加したもの、例えば、錫添加酸化インジウム(ITO)、アンチモン添加酸化錫(ATO)、亜鉛添加酸化インジウム(IZO)及びアルミニウム添加酸化亜鉛(AZO)等が挙げられる。 The photoelectric conversion element 1 includes a transparent conductive substrate 2 (conductive support). The transparent conductive substrate 2 functions as a current collecting electrode by forming a transparent conductive film on a light-transmitting substrate such as a glass substrate. A known transparent conductive film can be used as the transparent conductive film. Examples of the known transparent conductive film material include indium oxide, tin oxide, zinc oxide, cadmium oxide, gallium oxide, and In 2 O 3 (ZnO). m , InGaO 3 (ZnO) m and the like, and those obtained by adding a dopant to these oxides, for example, tin-added indium oxide (ITO), antimony-added tin oxide (ATO), zinc-added indium oxide (IZO), and aluminum added Examples thereof include zinc oxide (AZO).

透明導電性基板2と対向して対向電極3が設けられている。対向電極3は、透明な基板上に透明導電膜が形成されて構成されていてもよく、また、基板上に不透明な導電膜が形成されて構成されていてもよい。不透明な導電膜を形成する場合には、この導電膜が反射性を有していれば、透明導電性基板2から入射した光をこの対向電極で反射させることができ、光電変換素子1内部で光電変換層を通過した光を反射させて吸収でき、変換効率を向上させる。導電膜としては、公知の金属膜(例えば、金、銀、銅、白金等からなる金属膜やこれらのうちの少なくとも1種を含む合金膜)や炭素膜を用いることが可能である。   A counter electrode 3 is provided to face the transparent conductive substrate 2. The counter electrode 3 may be configured by forming a transparent conductive film on a transparent substrate, or may be configured by forming an opaque conductive film on the substrate. In the case of forming an opaque conductive film, if the conductive film has reflectivity, light incident from the transparent conductive substrate 2 can be reflected by the counter electrode, and the photoelectric conversion element 1 can be reflected inside. Light that has passed through the photoelectric conversion layer can be reflected and absorbed, improving conversion efficiency. As the conductive film, a known metal film (for example, a metal film made of gold, silver, copper, platinum, or the like, or an alloy film containing at least one of them) or a carbon film can be used.

透明導電性基板2と対向電極3との間には、透明導電性基板2側から、光電変換層4と電解質層5とがこの順で積層されている。   Between the transparent conductive substrate 2 and the counter electrode 3, the photoelectric conversion layer 4 and the electrolyte layer 5 are laminated | stacked in this order from the transparent conductive substrate 2 side.

光電変換層4は、半導体粒子41からなる半導体粒子層42を備える。また、この半導体粒子41には、増感剤として、増感色素43と増感色素43とは異なる吸収波長領域を有するシリコン微粒子44とが付着している。シリコン微粒子44は、半導体粒子層42の表面近くに全体的に分布して付着しており、増感色素43は、これらの半導体粒子41及びシリコン微粒子44の周囲にほぼ全体的に付着し、一部半導体粒子41とシリコン微粒子44との表面が電解質層5に露出している。   The photoelectric conversion layer 4 includes a semiconductor particle layer 42 made of semiconductor particles 41. Further, the sensitizing dye 43 and silicon fine particles 44 having an absorption wavelength region different from that of the sensitizing dye 43 are attached to the semiconductor particle 41 as a sensitizer. The silicon fine particles 44 are distributed and attached as a whole near the surface of the semiconductor particle layer 42, and the sensitizing dye 43 is attached almost entirely around the semiconductor particles 41 and the silicon fine particles 44. The surfaces of the partial semiconductor particles 41 and the silicon fine particles 44 are exposed to the electrolyte layer 5.

本実施形態の光電変換素子1は、増感色素43と、増感色素43とは異なる吸収波長領域を有するシリコン微粒子44とを備えることで、光電変換素子1で吸収できる波長領域を広げ、これにより発電効率を向上させるものである。即ち、シリコン微粒子44は、所定の波長領域の光を吸収して電荷分離を行い電子を供給し、増感色素43も別の所定の波長領域の光を吸収して電荷分離を行って電子を供給する。このように、増感色素43の吸収波長領域と異なる吸収波長領域を有するシリコン微粒子44を用いているので、一つの色素のみを用いる光電変換素子よりもシリコン微粒子44の分だけ吸収波長領域を広げることができる。その結果、変換効率を向上させることが可能である。   The photoelectric conversion element 1 of the present embodiment includes the sensitizing dye 43 and the silicon fine particles 44 having an absorption wavelength region different from that of the sensitizing dye 43, thereby expanding the wavelength region that can be absorbed by the photoelectric conversion element 1. This improves power generation efficiency. That is, the silicon fine particles 44 absorb light in a predetermined wavelength region and charge-separate and supply electrons, and the sensitizing dye 43 also absorbs light in another predetermined wavelength region and charges-separate to emit electrons. Supply. Thus, since the silicon fine particles 44 having an absorption wavelength region different from the absorption wavelength region of the sensitizing dye 43 are used, the absorption wavelength region is widened by the silicon fine particles 44 rather than the photoelectric conversion element using only one dye. be able to. As a result, conversion efficiency can be improved.

これらの増感色素43及びシリコン微粒子44における励起電子の流れは、干渉せずそれぞれ独立している。即ち、本実施形態においては、電子の生成ルートが二つあり、増感色素43による光電変換とシリコン微粒子44による光電変換とは別々に行われている。この点について図1(b)を用いて説明する。図1(b)に示すように、増感色素43内で電荷分離により生成され励起された電子e1は、増感色素43中を通過して半導体粒子41に注入され、透明導電性基板2に到達する。他方で、シリコン微粒子44内で電荷分離により励起された電子e2は、シリコン微粒子44から半導体粒子41へ流入し、透明導電性基板2に到達する。このように、本実施形態においては、電荷分離による各励起電子は、それぞれ干渉せずに独立に集電電極である透明導電性基板2に到達して集電されるように構成されていることから、上述したような幅広い吸収波長領域に対応して集電を行うことができ、変換効率をより高めることを可能としている。なお、電荷分離により生成された正孔はそれぞれ電解質層5へ注入され、電解質層5において再結合されるのでチャージアップの問題は生じない。因みに、シリコン微粒子44で生成された正孔のうち、電解質層5に流入しないでシリコン微粒子44に留まったものについては、増感色素43において生成された電子e1と再結合する。この場合、再結合する電子e1は少ないので、全体としてシリコン微粒子44を有しない光電変換素子に比べて幅広い吸収波長領域に対応して集電を行うことができ、変換効率をより高めることを可能としている。   The flow of excited electrons in the sensitizing dye 43 and the silicon fine particles 44 are independent without interfering with each other. That is, in this embodiment, there are two electron generation routes, and the photoelectric conversion by the sensitizing dye 43 and the photoelectric conversion by the silicon fine particles 44 are performed separately. This point will be described with reference to FIG. As shown in FIG. 1B, the electrons e1 generated and excited by charge separation in the sensitizing dye 43 pass through the sensitizing dye 43 and are injected into the semiconductor particles 41 to enter the transparent conductive substrate 2. To reach. On the other hand, the electrons e <b> 2 excited by charge separation in the silicon fine particles 44 flow into the semiconductor particles 41 from the silicon fine particles 44 and reach the transparent conductive substrate 2. As described above, in the present embodiment, each excited electron by charge separation is configured to be collected by independently reaching the transparent conductive substrate 2 that is a current collecting electrode without interfering with each other. Therefore, current collection can be performed corresponding to the wide absorption wavelength region as described above, and the conversion efficiency can be further increased. The holes generated by the charge separation are respectively injected into the electrolyte layer 5 and recombined in the electrolyte layer 5, so that there is no charge-up problem. Incidentally, among the holes generated by the silicon fine particles 44, those remaining in the silicon fine particles 44 without flowing into the electrolyte layer 5 are recombined with the electrons e 1 generated in the sensitizing dye 43. In this case, since the number of electrons e1 to be recombined is small, it is possible to collect current corresponding to a wide absorption wavelength region as compared with a photoelectric conversion element having no silicon fine particles 44 as a whole, and it is possible to further increase the conversion efficiency. It is said.

また、本実施形態においては、後述するように半導体粒子41にシリコン微粒子44を付着させ、その後全体に増感色素43を付着させているので、より増感色素43が付着している面積が広くなっているため、変換効率が上昇する。   In the present embodiment, as will be described later, since the silicon fine particles 44 are attached to the semiconductor particles 41, and then the sensitizing dye 43 is attached to the whole, the area to which the sensitizing dye 43 is attached is larger. Therefore, conversion efficiency increases.

従って、本実施形態では、シリコン微粒子44が増感色素43による集電をほとんど妨げないので、増感色素43による集電と、シリコン微粒子44による集電とがほぼ独立して行われている。かつ、増感色素43の付着面積(比表面積)が広くなっている。これらの結果、本実施形態の光電変換素子1では、太陽光のエネルギーをより多く吸収でき、変換効率をより高めているのである。   Therefore, in the present embodiment, since the silicon fine particles 44 hardly interfere with the current collection by the sensitizing dye 43, the current collection by the sensitizing dye 43 and the current collection by the silicon fine particles 44 are performed almost independently. In addition, the adhesion area (specific surface area) of the sensitizing dye 43 is widened. As a result, in the photoelectric conversion element 1 of the present embodiment, more sunlight energy can be absorbed, and the conversion efficiency is further increased.

半導体粒子41としては、公知の半導体、即ち、Si、Ge等のIV族元素や、GaAsInP等のIII―V族化合物、カルコゲン化合物、酸化物、有機化合物などが挙げられる。特に、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Crの酸化物が好ましい。この中でも特にTiの酸化物であるTiO2が、電解液中への光溶解の回避と高い光電変換特性の点で最も好ましい。 Examples of the semiconductor particles 41 include known semiconductors, that is, group IV elements such as Si and Ge, group III-V compounds such as GaAsInP, chalcogen compounds, oxides, and organic compounds. In particular, oxides of Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, and Cr are preferable. Of these, TiO 2 , which is an oxide of Ti, is most preferable in terms of avoiding photodissolution in the electrolyte and high photoelectric conversion characteristics.

半導体粒子41は、例えば粒径が5〜300nmであり、好ましくは20〜50nmである。この範囲であることにより、表面積を十分に大きくさせることができるので、半導体粒子41に付着する増感色素43の表面積が大きくなり、変換効率を高めることができる。他方で、粒径が5nm未満であると、作製が困難であることに加え、色素分子と同程度の大きさになってしまうので色素を半導体粒子層の内部まで定着させることも困難であり、さらにまた電解質が半導体粒子の内部まで入り込めず発電性能が低下してしまう。また、半導体粒子層42の厚さは、5〜20μmであることが好ましく、より好ましくは、10〜14μmである。膜厚が20μmを超えると、電子が透明導電性基板まで到達する経路が長くなるため、電子が失活する可能性が高くなる。また、薄すぎると色素吸着量が少なすぎて変換効率が減少する。   The semiconductor particles 41 have, for example, a particle size of 5 to 300 nm, preferably 20 to 50 nm. By being in this range, the surface area can be made sufficiently large, so the surface area of the sensitizing dye 43 adhering to the semiconductor particles 41 is increased, and the conversion efficiency can be increased. On the other hand, if the particle size is less than 5 nm, it is difficult to produce the dye, and it is difficult to fix the dye to the inside of the semiconductor particle layer because it becomes the same size as the dye molecule. Furthermore, the electrolyte does not enter the inside of the semiconductor particles and power generation performance is reduced. Moreover, it is preferable that the thickness of the semiconductor particle layer 42 is 5-20 micrometers, More preferably, it is 10-14 micrometers. When the film thickness exceeds 20 μm, the path for electrons to reach the transparent conductive substrate becomes long, and the possibility that the electrons are deactivated increases. On the other hand, if it is too thin, the amount of dye adsorption is too small and the conversion efficiency decreases.

シリコン微粒子44は、アモルファスシリコンや結晶型シリコンが挙げられ、ノンドープシリコンでもドープシリコンでもよいが、リンやガリウム、ホウ素などの通常ドーパントとして用いられる物質がドープされたものが好ましい。特に広い吸収波長領域とするために、長波長領域で広い吸収波長領域(400〜1200nm、最大感度吸収波長領域約900nm)を有する結晶型シリコン微粒子を用いることが好ましい。このような結晶型シリコン微粒子としては、通常シリコン系太陽電池で用いられる増感色素43としては、結晶型シリコン微粒子とは異なる波長吸収領域を有するものを選択し、可視光域で広い吸収波長領域(400〜800nm、最大感度吸収波長領域約550nm)を有するルテニウム錯体色素、特にルテニウム−ビス(RuL2)タイプの遷移金属錯体を増感色素として用いることが好ましい。この場合には、両者を光電変換層に有することで、最も幅広い吸収波長領域を有する発電効率の高い太陽電池として用いることが可能である。 Examples of the silicon fine particles 44 include amorphous silicon and crystalline silicon. The silicon fine particles 44 may be non-doped silicon or doped silicon, but are preferably doped with a substance usually used as a dopant such as phosphorus, gallium, or boron. In order to obtain a particularly wide absorption wavelength region, it is preferable to use crystalline silicon fine particles having a long absorption wavelength region (400 to 1200 nm, maximum sensitivity absorption wavelength region of about 900 nm). As such a crystalline silicon fine particle, as a sensitizing dye 43 usually used in a silicon-based solar cell, one having a wavelength absorption region different from that of the crystalline silicon fine particle is selected, and a wide absorption wavelength region in the visible light region. It is preferable to use a ruthenium complex dye having a (400 to 800 nm, maximum sensitivity absorption wavelength region of about 550 nm), particularly a ruthenium-bis (RuL 2 ) type transition metal complex as a sensitizing dye. In this case, by having both in the photoelectric conversion layer, it is possible to use as a solar cell with high power generation efficiency having the widest absorption wavelength region.

増感色素43としては、上記のルテニウム−ビス(RuL2)タイプの遷移金属錯体以外にも、例えば、RuL2(H2O)2タイプのルテニウム−シス−ジアクア−ビピリジル錯体又はルテニウム−トリス(RuL3)、オスニウム−トリス(OsL3)、オスニウム−ビス(OsL2)タイプの遷移金属錯体、若しくは亜鉛−テトラ(4−カルボキシフェニル)ポルフィリン、鉄−ヘキサシアニド錯体、フタロシアニンなどを含有させてさらに吸収波長領域を拡大させて変換効率を上昇させてもよい。また、有機色素を含有させてもよい。有機色素としては、9−フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素などが挙げられる。これらの一又は二以上の増感色素43を選択して光電変換層4中に二以上の増感色素を含有させてもよい。 As the sensitizing dye 43, in addition to the ruthenium-bis (RuL 2 ) type transition metal complex, for example, a RuL 2 (H 2 O) 2 type ruthenium-cis-diaqua-bipyridyl complex or ruthenium-tris ( RuL 3 ), osnium-tris (OsL 3 ), osnium-bis (OsL 2 ) type transition metal complex, or zinc-tetra (4-carboxyphenyl) porphyrin, iron-hexocyanide complex, phthalocyanine, and the like for further absorption The conversion efficiency may be increased by expanding the wavelength region. Moreover, you may contain an organic pigment | dye. As organic dyes, 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, cyanine dyes, merocyanine dyes Examples thereof include dyes and xanthene dyes. One or more sensitizing dyes 43 may be selected and two or more sensitizing dyes may be contained in the photoelectric conversion layer 4.

シリコン微粒子44は、その粒径が20nm以下、特に1〜6nmであることが好ましい。この範囲であることで、増感色素43の付着を妨げることがなく、また、シリコン微粒子44自体が光電変換に十分に寄与することができる。   The silicon fine particles 44 preferably have a particle size of 20 nm or less, particularly 1 to 6 nm. By being in this range, adhesion of the sensitizing dye 43 is not hindered, and the silicon fine particles 44 themselves can sufficiently contribute to photoelectric conversion.

電解質層5は、酸化体と還元体からなる一対の酸化還元系物質が溶媒中に含まれていれば特に限定されない。例えば、一対の酸化還元系物質としては、塩素化合物−塩素、ヨウ素化合物−ヨウ素、臭素化合物−臭素や、金属イオン(例えば水銀イオン(II)−水銀イオン(I)、銅イオン(II)−銅イオン(I)、鉄イオン(III)−鉄イオン(II)、マンガン酸イオン−過マンガン酸イオン)などが挙げられる。特に、ヨウ素化合物−ヨウ素が好ましく、ヨウ素化合物としては、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物、テトラアルキルアンモニウムヨージド、ピリジニウムヨージド等のヨウ化4級アンモニウム塩化合物、ヨウ化ジメチルプロピルイミダゾリウム等のヨウ化ジイミダゾリウム化合物が特に好ましい。   The electrolyte layer 5 is not particularly limited as long as a pair of redox substances consisting of an oxidant and a reductant are contained in the solvent. For example, as a pair of redox substances, chlorine compound-chlorine, iodine compound-iodine, bromine compound-bromine, metal ions (for example, mercury ion (II) -mercury ion (I), copper ion (II) -copper) Ion (I), iron ion (III) -iron ion (II), manganate ion-permanganate ion) and the like. In particular, an iodine compound-iodine is preferable. Examples of the iodine compound include metal iodides such as lithium iodide and potassium iodide, quaternary ammonium iodide compounds such as tetraalkylammonium iodide and pyridinium iodide, and dimethylpropyl iodide. Particularly preferred are diimidazolium iodide compounds such as imidazolium.

一対の酸化還元系物質が含まれる溶媒は、酸化還元系構成物質を溶解してイオン伝導性に優れた化合物が好ましい。溶媒としては水性溶媒及び有機溶媒のいずれも使用できるが、酸化還元系構成物質をより安定化するため、有機溶媒が好ましい。例えば、有機溶媒としては、エステル化合物、エーテル化合物、複素環化合物、ニトリル化合物及び非プロトン性極性化合物などが挙げられる。これらはそれぞれ単独で用いることもでき、また、2種類以上を混合してもよい。特に、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル化合物を用いることが好ましい。   The solvent containing the pair of redox substances is preferably a compound that dissolves the redox constituents and has excellent ion conductivity. As the solvent, any of an aqueous solvent and an organic solvent can be used, but an organic solvent is preferable in order to further stabilize the redox component. For example, examples of the organic solvent include ester compounds, ether compounds, heterocyclic compounds, nitrile compounds, and aprotic polar compounds. These may be used alone or in combination of two or more. In particular, carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazodilinone and 2-methylpyrrolidone, and nitrile compounds such as acetonitrile, methoxyacetonitrile and propionitrile are preferably used.

このような光電変換素子1の形成方法について説明する。   A method for forming such a photoelectric conversion element 1 will be described.

初めに、透明導電性基板2に、半導体粒子層42を形成する。形成方法としては、公知の湿式塗布法やスパッタリング法等が挙げられるが、湿式塗布法、特にスキージ法により塗布成膜した後に例えば120℃で乾燥させて半導体粒子41を形成することが好ましい。   First, the semiconductor particle layer 42 is formed on the transparent conductive substrate 2. Examples of the forming method include known wet coating methods, sputtering methods, and the like, but it is preferable to form the semiconductor particles 41 by, for example, drying at 120 ° C. after coating and forming by a wet coating method, particularly by a squeegee method.

次いで、シリコン微粒子44を半導体粒子41上に付着させる。この場合、シリコン微粒子44は、半導体粒子41に化学的に吸着した状態となるように形成する。これは、半導体粒子41に単にシリコン微粒子44が単に接触している状態であると、その後の工程においてシリコン微粒子44が半導体粒子41からとれやすいからである。シリコン微粒子44を付着させるには、シリコン微粒子44を形成しながら半導体粒子41上に付着させる方法と、形成されたシリコン微粒子44を半導体粒子41上に付着させる方法とがある。シリコン微粒子44を形成しながら半導体粒子41上に付着させるには、例えばCVD法、スパッタリング法、真空蒸着法、アークプラズマ蒸着法等が挙げられる。特に、簡易に所望の粒径となるように制御して粒子を形成できるアークプラズマ蒸着法が好ましい。このアークプラズマ蒸着法について、以下説明する。   Next, silicon fine particles 44 are attached on the semiconductor particles 41. In this case, the silicon fine particles 44 are formed so as to be chemically adsorbed to the semiconductor particles 41. This is because if the silicon particles 44 are simply in contact with the semiconductor particles 41, the silicon particles 44 are likely to be removed from the semiconductor particles 41 in the subsequent steps. In order to attach the silicon fine particles 44, there are a method of attaching the silicon fine particles 44 to the semiconductor particles 41 while forming the silicon fine particles 44 and a method of attaching the formed silicon fine particles 44 to the semiconductor particles 41. In order to deposit the silicon fine particles 44 on the semiconductor particles 41 while forming the silicon fine particles 44, for example, a CVD method, a sputtering method, a vacuum vapor deposition method, an arc plasma vapor deposition method or the like can be used. In particular, an arc plasma vapor deposition method that can be easily controlled to have a desired particle size to form particles is preferable. This arc plasma deposition method will be described below.

アークプラズマ蒸着法では、同軸型真空アーク蒸着装置を用いてシリコン微粒子44を形成する。この同軸型真空アーク蒸着装置は、円筒状のトリガ電極とシリコン微粒子44の材料(以下、シリコン材料という)で先端部が構成された円筒状のカソード電極とが、円板状の絶縁碍子を挟んで隣接して配置されてなると共に、前記カソード電極とトリガ電極との周りに同軸状に円筒状のアノード電極が配置されている同軸型真空アーク蒸着源を備えている。シリコン材料としては、ホウ素ドープシリコンや、リンドープシリコン等を用いることが可能であり、シリコン微粒子44を結晶型シリコン微粒子として作製する場合には、ホウ素ドープシリコンを用いることが好ましい。   In the arc plasma deposition method, silicon fine particles 44 are formed using a coaxial vacuum arc deposition apparatus. In this coaxial vacuum arc deposition apparatus, a cylindrical trigger electrode and a cylindrical cathode electrode whose tip is formed of a material of silicon fine particles 44 (hereinafter referred to as silicon material) sandwich a disc-shaped insulator. And a coaxial vacuum arc deposition source in which a cylindrical anode electrode is coaxially disposed around the cathode electrode and the trigger electrode. As the silicon material, boron-doped silicon, phosphorus-doped silicon, or the like can be used. When the silicon fine particles 44 are produced as crystalline silicon fine particles, it is preferable to use boron-doped silicon.

そして、トリガ電極とアノード電極との間に電圧を印加してトリガ放電をパルス的に発生させ、また、カソード電極とアノード電極との間のアーク電源から電圧を印加してアーク放電を断続的に誘起させることにより、シリコン材料表面を融解させて生成された電子を電子流として放出させる。この電子流に前記シリコン材料から生成されたイオンがクーロン引力によって引き寄せられて放出され、半導体粒子41に到達して付着する。これがシリコン微粒子44となる。このアークプラズマ蒸着法によれば、シリコン微粒子44はアーク放電の発生回数によりその粒子数を制御できると共に、アーク電源に接続されたコンデンサユニットの容量を変化させることで粒子径を制御することも可能である。   Then, a voltage is applied between the trigger electrode and the anode electrode to generate a trigger discharge in a pulse manner, and a voltage is applied from the arc power source between the cathode electrode and the anode electrode to intermittently discharge the arc. By inducing the electrons, electrons generated by melting the surface of the silicon material are emitted as an electron stream. Ions generated from the silicon material are attracted to and emitted from the silicon material by the Coulomb attractive force, and reach and adhere to the semiconductor particles 41. This becomes the silicon fine particles 44. According to this arc plasma deposition method, the number of particles of silicon fine particles 44 can be controlled by the number of occurrences of arc discharge, and the particle size can also be controlled by changing the capacity of the capacitor unit connected to the arc power source. It is.

この場合、アークプラズマ蒸着法の実施条件としては、例えば、トリガ電極−カソード電極間の印加電圧:3.4kV以下、カソード電極−アノード電極間のアーク電源の印加電圧:60〜400V、アーク電源に接続されたコンデンサユニットの容量:360〜8800μFが挙げられる。この範囲であれば、所望量のシリコン微粒子44を所望の大きさで形成することが可能である。   In this case, for example, the arc plasma deposition method may be performed by applying a voltage between the trigger electrode and the cathode electrode of 3.4 kV or less, a voltage applied to the arc power source between the cathode electrode and the anode electrode: 60 to 400 V, and an arc power source. The capacity | capacitance of the connected capacitor | condenser unit: 360-8800 micro F is mentioned. Within this range, a desired amount of silicon fine particles 44 can be formed in a desired size.

CVD法としては、例えば、シランガスやボランガスを原料ガスとして用いて成膜時間を制御しながら粒子状に形成する方法が挙げられる。スパッタリング法としては、例えば、ホウ素ドープシリコンターゲットに対してスパッタリングガスとしてアルゴンガスを導入してスパッタリングし成膜時間を制御しながら粒子状に形成する方法が挙げられる。真空蒸着法としては、例えば、ホウ素ドープシリコンを原料として成膜時間をコントロールして粒子状に形成する方法が挙げられる。   Examples of the CVD method include a method in which a silane gas or a borane gas is used as a source gas to form particles while controlling the film formation time. Examples of the sputtering method include a method in which argon gas is introduced as a sputtering gas into a boron-doped silicon target and sputtering is performed to form particles while controlling the film formation time. Examples of the vacuum deposition method include a method of forming particles in a particulate form by controlling the film formation time using boron-doped silicon as a raw material.

形成されたシリコン微粒子44を半導体粒子41上に付着させる方法としては、微粒子堆積法及び湿式塗布法が挙げられる。微粒子堆積法としては、例えば、シリコン微粒子44をレーザアブレーションや蒸発凝縮法等で生成し、生成されたシリコン微粒子44を、例えば放射線照射により荷電させる。そして、荷電されたシリコン微粒子44を、キャリアガス(ヘリウム等)によって堆積チャンバに導入して、基板上に堆積させる。このようにしてシリコン微粒子44を基板上に散在した状態で堆積させることができる。   Examples of a method for attaching the formed silicon fine particles 44 onto the semiconductor particles 41 include a fine particle deposition method and a wet coating method. As the fine particle deposition method, for example, silicon fine particles 44 are generated by laser ablation, evaporation condensation method, or the like, and the generated silicon fine particles 44 are charged by, for example, radiation irradiation. Then, charged silicon fine particles 44 are introduced into the deposition chamber by a carrier gas (such as helium) and deposited on the substrate. In this way, the silicon fine particles 44 can be deposited in a scattered state on the substrate.

また、湿式塗布法としては、シリコン微粒子44を含有する塗布液を半導体粒子層42に塗布してシリコン微粒子44を半導体粒子41に付着させることが挙げられる。例えば、シリコン微粒子44の材料を含んだ溶液を基板上に例えばスピンコーティングにより塗布して膜を形成する。この場合、溶液中にはシリコン微粒子44の凝集を防ぐために、溶媒(例えば水)中に界面活性剤を添加する。   As a wet coating method, a coating liquid containing silicon fine particles 44 is applied to the semiconductor particle layer 42 to adhere the silicon fine particles 44 to the semiconductor particles 41. For example, a solution containing the silicon fine particle material 44 is applied onto the substrate by, for example, spin coating to form a film. In this case, in order to prevent aggregation of the silicon fine particles 44 in the solution, a surfactant is added to a solvent (for example, water).

シリコン微粒子44を付着させた後に、増感色素43を付着させる。増感色素43の付着方法としては、公知の方法を用いることができ、例えば浸漬法によりシリコン微粒子44が付着した状態で基板を所望の増感色素43を含有する溶液中に浸漬させ、洗浄し乾燥することで色素を付着させることが可能である。   After the silicon fine particles 44 are attached, the sensitizing dye 43 is attached. As a method for attaching the sensitizing dye 43, a known method can be used. For example, the substrate is immersed in a solution containing the desired sensitizing dye 43 in a state in which the silicon fine particles 44 are attached by an immersion method and washed. It is possible to attach a pigment by drying.

従来では、半導体粒子への増感色素の吸着量を定量的に制御することが難しいことから、異なる吸収波長領域を有する増感色素を2以上含有させる場合には、それぞれの増感色素を含有する層を別々に設けていた。このように従来では二層以上光電変換層を形成するために工程数が多く量産に向いていないという問題があった。この点、本実施形態においては、シリコン微粒子44を上記のように簡易に形成でき、またこのシリコン微粒子44と増感色素43とを同一の層に形成できるので、工程数が少なく、さらに増感色素43の比表面積を増加させることができる。また、従来は光電変換層を電解反応を用いて形成していたが、このような形成方法は、小型基板の形成には向いているが大型基板の形成には向いていないという問題があった。この点、本実施形態においては、シリコン微粒子44を例えばアークプラズマ蒸着法のように大型基板にも対応した形成方法により形成することができるので、より実用化に適している。   Conventionally, since it is difficult to quantitatively control the amount of sensitizing dye adsorbed to semiconductor particles, when two or more sensitizing dyes having different absorption wavelength regions are contained, each sensitizing dye is contained. Separate layers were provided. Thus, conventionally, there has been a problem that the number of processes is large and it is not suitable for mass production in order to form two or more photoelectric conversion layers. In this respect, in the present embodiment, the silicon fine particles 44 can be easily formed as described above, and the silicon fine particles 44 and the sensitizing dye 43 can be formed in the same layer. The specific surface area of the dye 43 can be increased. Conventionally, the photoelectric conversion layer has been formed using an electrolytic reaction. However, such a formation method has a problem that it is suitable for forming a small substrate but not for forming a large substrate. . In this respect, in the present embodiment, the silicon fine particles 44 can be formed by a forming method corresponding to a large-sized substrate such as an arc plasma deposition method, which is more suitable for practical use.

その後、図示しない防水性のスペーサーを介して対向電極3を設置し、光電変換層4と対向電極3との間に電解液を注入して電解質層5を形成する。このようにして本実施形態の光電変換素子1を得ることができる。   Thereafter, the counter electrode 3 is installed through a waterproof spacer (not shown), and an electrolyte solution is injected between the photoelectric conversion layer 4 and the counter electrode 3 to form the electrolyte layer 5. Thus, the photoelectric conversion element 1 of this embodiment can be obtained.

このようにして得られた光電変換素子1は、この光電変換素子1を各セルとして縦横に並設して色素増感型太陽電池モジュールとすることができる。この色素増感型太陽電池モジュールは、従来よりも高い変換効率を有する光電変換素子1を用いているので、より発電効率の高い色素増感型太陽電池とすることができる。   The photoelectric conversion element 1 thus obtained can be a dye-sensitized solar cell module by arranging the photoelectric conversion elements 1 in the vertical and horizontal directions as each cell. Since this dye-sensitized solar cell module uses the photoelectric conversion element 1 having higher conversion efficiency than the conventional one, it can be a dye-sensitized solar cell with higher power generation efficiency.

本実施例では、光電変換素子1を作製してその電流電圧特性を調べた。   In this example, the photoelectric conversion element 1 was produced and the current-voltage characteristics were examined.

初めに、透明導電膜として、フッ素ドープ酸化錫膜が形成されたガラス基板上に、スキージ法により酸化チタンペースト(商品名:PECC−K01、ペクセルテクノロジー社製)を塗布し、その後ドライオーブン内で120℃で乾燥させ酸化チタン粒子(半導体粒子41)からなる半導体粒子層42を形成した。形成された半導体粒子層42の膜厚は10μm、酸化チタン粒子の平均粒径は20nmであった。   First, a titanium oxide paste (trade name: PECC-K01, manufactured by Pexel Technology Co., Ltd.) is applied to a glass substrate on which a fluorine-doped tin oxide film is formed as a transparent conductive film by a squeegee method. And dried at 120 ° C. to form a semiconductor particle layer 42 made of titanium oxide particles (semiconductor particles 41). The film thickness of the formed semiconductor particle layer 42 was 10 μm, and the average particle diameter of the titanium oxide particles was 20 nm.

次いで、アークプラズマ法により、結晶性のシリコン微粒子44を半導体粒子41上に付着させた。アークプラズマ法の実施条件は、ターゲット:ホウ素ドープシリコンターゲット、トリガ電極−カソード電極間の印加電圧:3.4kV、カソード電極−アノード電極間のアーク電源の印加電圧:80V、アーク電源に接続されたコンデンサユニットの容量:1800μFであった。   Next, crystalline silicon fine particles 44 were deposited on the semiconductor particles 41 by an arc plasma method. The execution conditions of the arc plasma method were as follows: target: boron-doped silicon target, applied voltage between trigger electrode and cathode electrode: 3.4 kV, applied voltage of arc power source between cathode electrode and anode electrode: 80 V, connected to arc power source The capacity of the capacitor unit was 1800 μF.

シリコン微粒子44を付着させた後、アセトニトリルとブタノールとを1:1の割合で混合した溶剤中にRu錯体色素を0.1wt%添加した溶液中に24時間浸漬させた。その後、アセトニトリルで洗浄し、乾燥させて増感剤としてのRu色素を付着させた。   After the silicon fine particles 44 were attached, the silicon fine particles 44 were immersed in a solution in which 0.1 wt% of a Ru complex dye was added in a solvent in which acetonitrile and butanol were mixed at a ratio of 1: 1. Thereafter, it was washed with acetonitrile and dried to attach a Ru dye as a sensitizer.

次いで、得られた基板を防水性のスペーサーとしてのビニルシートを介して対向電極である白金膜が形成されたガラス基板と狭持した。最後に、ヨウ素系の酸化還元対を含む電解液(商品名:PECE−K01、ペクセルテクノロジー社製)を注入し、本実施形態の光電変換素子1を得た。   Next, the obtained substrate was sandwiched between a glass substrate on which a platinum film as a counter electrode was formed via a vinyl sheet as a waterproof spacer. Finally, an electrolytic solution (trade name: PACE-K01, manufactured by Pexel Technology) containing an iodine-based redox pair was injected to obtain a photoelectric conversion element 1 of the present embodiment.

(比較例1)
実施例1とは、シリコン微粒子44を付着させない点以外は全て同一の手順で光電変換素子を作製した。即ち、比較例1で作製した光電変換素子は、光電変換層に酸化チタン粒子と色素とを備え、シリコン微粒子44を有していない。
(Comparative Example 1)
A photoelectric conversion element was produced in the same manner as in Example 1 except that the silicon fine particles 44 were not attached. That is, the photoelectric conversion element manufactured in Comparative Example 1 includes titanium oxide particles and a dye in the photoelectric conversion layer, and does not have silicon fine particles 44.

実施例1及び比較例1で作製した光電変換素子の電流−電圧特性を測定した。測定には、100mW/cmの模擬太陽光をソーラーシミュレーター(商品名:WXS―50S−1、5、ワコム電創社製)を透明導電性基板2側から入射した。結果を図2に示す。 The current-voltage characteristics of the photoelectric conversion elements produced in Example 1 and Comparative Example 1 were measured. For the measurement, solar simulator (trade name: WXS-50S-1, 5, manufactured by Wacom Denso Co., Ltd.) was incident from the transparent conductive substrate 2 side with 100 mW / cm 2 simulated sunlight. The results are shown in FIG.

図2に示すように、比較例1で作製した光電変換素子(色素/TiO)は、短絡電流密度が11.1mA/cmとなり、変換効率は5.3%であった。他方で、実施例1で作製した光電変換素子(色素/Si/TiO)は、短絡電流密度が13.0mA/cmとなり、変換効率は6.5%であった。従って、実施例1で作製した光電変換素子は、変換効率が約18%向上した。なお、本実施例1及び比較例1においては透明導電性基板と対向電極とを完全に封止していないが、完全に封止することにより、変換効率はより向上(例えば8%以上)することが見込まれる。 As shown in FIG. 2, the photoelectric conversion element (dye / TiO 2 ) produced in Comparative Example 1 had a short-circuit current density of 11.1 mA / cm 2 and a conversion efficiency of 5.3%. On the other hand, the photoelectric conversion element (dye / Si / TiO 2 ) produced in Example 1 had a short-circuit current density of 13.0 mA / cm 2 and a conversion efficiency of 6.5%. Therefore, the conversion efficiency of the photoelectric conversion element manufactured in Example 1 was improved by about 18%. In Example 1 and Comparative Example 1, the transparent conductive substrate and the counter electrode are not completely sealed, but the conversion efficiency is further improved (for example, 8% or more) by completely sealing. It is expected.

このように、本実施形態における光電変換素子1によれば、簡易な構成で変換効率が従来のものよりも高いので、色素増感型太陽電池とする場合により高い発電効率とすることが可能である。   Thus, according to the photoelectric conversion element 1 in the present embodiment, since the conversion efficiency is higher than that of the conventional one with a simple configuration, it is possible to achieve higher power generation efficiency when a dye-sensitized solar cell is used. is there.

本発明の光電変換素子は、太陽電池素子として用いることができる。従って、太陽電池製造分野において利用可能である。   The photoelectric conversion element of the present invention can be used as a solar cell element. Therefore, it can be used in the solar cell manufacturing field.

1 光電変換素子
2 透明導電性基板
3 対向電極
4 光電変換層
5 電解質層
41 半導体粒子
42 半導体粒子層
43 増感色素
44 シリコン微粒子
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion element 2 Transparent conductive substrate 3 Counter electrode 4 Photoelectric conversion layer 5 Electrolyte layer 41 Semiconductor particle 42 Semiconductor particle layer 43 Sensitizing dye 44 Silicon fine particle

Claims (4)

導電性支持体と、光電変換層と、電解質層と、対向電極とをこの順で積層してなる光電変換素子において、
前記光電変換層が、半導体粒子と、少なくとも一種以上の増感色素及びこの増感色素とは異なる光の吸収波長領域を有するシリコン含有微粒子とを備えたことを特徴とする光電変換素子。
In a photoelectric conversion element formed by laminating a conductive support, a photoelectric conversion layer, an electrolyte layer, and a counter electrode in this order,
A photoelectric conversion element, wherein the photoelectric conversion layer includes semiconductor particles, at least one sensitizing dye, and silicon-containing fine particles having a light absorption wavelength region different from the sensitizing dye.
前記光電変換層は、半導体粒子にシリコン含有微粒子が付着し、さらにこれらのまわりに前記増感色素が付着していることを特徴とする請求項1又は2記載の光電変換素子。 3. The photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer has silicon-containing fine particles attached to semiconductor particles, and further the sensitizing dye is attached around these. 前記シリコン含有微粒子が、結晶性シリコンからなり、かつ、前記増感色素がルテニウム錯体からなることを特徴とする請求項1記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the silicon-containing fine particles are made of crystalline silicon, and the sensitizing dye is made of a ruthenium complex. 導電性支持体上に、光電変換層を形成する光電変換層形成工程と、対向電極を設置した後に前記光電変換層と対向電極との間に電解液を注入して電解質層を形成する電解質層形成工程とを備えた光電変換素子の製造方法において、
前記光電変換層形成工程は、
前記導電性支持体上に半導体粒子からなる半導体粒子層を設け、
次いで、この半導体粒子層の表面にシリコン含有微粒子を付着させ、その後増感色素を半導体粒子層全体に付着させることを特徴とする光電変換素子の製造方法。
A photoelectric conversion layer forming step for forming a photoelectric conversion layer on a conductive support, and an electrolyte layer for forming an electrolyte layer by injecting an electrolytic solution between the photoelectric conversion layer and the counter electrode after installing the counter electrode In a method for producing a photoelectric conversion element comprising a forming step,
The photoelectric conversion layer forming step includes
Provide a semiconductor particle layer made of semiconductor particles on the conductive support,
Next, a method for producing a photoelectric conversion element, wherein silicon-containing fine particles are attached to the surface of the semiconductor particle layer, and then a sensitizing dye is attached to the entire semiconductor particle layer.
JP2009034396A 2009-02-17 2009-02-17 Photoelectric conversion element and manufacturing method thereof Active JP5371476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034396A JP5371476B2 (en) 2009-02-17 2009-02-17 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034396A JP5371476B2 (en) 2009-02-17 2009-02-17 Photoelectric conversion element and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2010192214A true JP2010192214A (en) 2010-09-02
JP2010192214A5 JP2010192214A5 (en) 2011-10-06
JP5371476B2 JP5371476B2 (en) 2013-12-18

Family

ID=42818032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034396A Active JP5371476B2 (en) 2009-02-17 2009-02-17 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5371476B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002246A1 (en) * 2011-06-30 2013-01-03 株式会社フジクラ Dye-sensitized solar cell and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486018B1 (en) * 2004-10-12 2005-04-29 명성전자 주식회사 Movable type coin golf practice ranger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280087A (en) * 2001-03-22 2002-09-27 Toyota Central Res & Dev Lab Inc Optical electrode and dye sensitized solar battery provided with the same
JP2004087148A (en) * 2002-08-23 2004-03-18 Sony Corp Dye-sensitized photoelectric converter and its fabricating process
JP2005050979A (en) * 2003-07-31 2005-02-24 Kyocera Corp Photoelectric conversion device
JP2005129259A (en) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd Photoelectric transfer element and solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280087A (en) * 2001-03-22 2002-09-27 Toyota Central Res & Dev Lab Inc Optical electrode and dye sensitized solar battery provided with the same
JP2004087148A (en) * 2002-08-23 2004-03-18 Sony Corp Dye-sensitized photoelectric converter and its fabricating process
JP2005050979A (en) * 2003-07-31 2005-02-24 Kyocera Corp Photoelectric conversion device
JP2005129259A (en) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd Photoelectric transfer element and solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002246A1 (en) * 2011-06-30 2013-01-03 株式会社フジクラ Dye-sensitized solar cell and method for manufacturing same
JP5627785B2 (en) * 2011-06-30 2014-11-19 株式会社フジクラ Dye-sensitized solar cell and method for producing the same

Also Published As

Publication number Publication date
JP5371476B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5377327B2 (en) Photosensitized solar cell module and manufacturing method thereof
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
US9607772B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP3717506B2 (en) Dye-sensitized solar cell module
US9406446B2 (en) Dye-sensitized solar cell, method of producing the same, and dye-sensitized solar cell module
JP2001283941A (en) Photoelectric transfer element
JP5171810B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4448478B2 (en) Dye-sensitized solar cell module
EP1659639A1 (en) Photoelectric conversion element
JP2010225478A (en) Photoelectric conversion element and its manufacturing method
US10629386B2 (en) Substrate and electrode for solar cells and the corresponding manufacturing process
JP2002100418A (en) Coloring matter sensitizing solar battery and its manufacturing method
JP2011138625A (en) Electrode substrate and photoelectric conversion element
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP5371476B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2003187883A (en) Photoelectric conversion element
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
JP2010238395A (en) Photoelectric conversion device, and manufacturing method of the same
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4455868B2 (en) Dye-sensitized solar cell
JP6270990B2 (en) Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2011187183A (en) Dye-sensitized solar cell
CN108231422B (en) Photoelectric conversion element and electronic component having the same
JP2008153105A (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250