JP2010192164A - Water cut-off treatment device - Google Patents
Water cut-off treatment device Download PDFInfo
- Publication number
- JP2010192164A JP2010192164A JP2009033126A JP2009033126A JP2010192164A JP 2010192164 A JP2010192164 A JP 2010192164A JP 2009033126 A JP2009033126 A JP 2009033126A JP 2009033126 A JP2009033126 A JP 2009033126A JP 2010192164 A JP2010192164 A JP 2010192164A
- Authority
- JP
- Japan
- Prior art keywords
- electric wire
- pressure
- resistant container
- resin liquid
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacturing Of Electric Cables (AREA)
- Processing Of Terminals (AREA)
Abstract
Description
本発明は、水や有機溶剤などの液体がかかったり、触れたりする可能性のある場所・部分に設置配線される電線において、ショートや腐食を防止するための、電線端末の止水処理に使用する止水処理装置に関する。 The present invention is used for water-stop treatment of wire terminals to prevent short-circuiting and corrosion in electric wires installed and wired in places and parts where liquids such as water and organic solvents may be splashed or touched. The present invention relates to a water stop treatment device.
従来の電線の止水方法としては、例えば、片端を減圧して端末から樹脂を注入することにより、隙間を埋める方法(例えば、特許文献1参照)が提案されている。この技術は、近年汎用されている細径電線で特に有用なものである。しかし、電線長が長くなると減圧圧力の圧損が生じ、樹脂を吸引できなくなるという問題点があった。また、電線端末を吸引装置に取り付ける作業が煩雑になるという問題点があった。さらに、減圧では大気圧分しか圧力差を出すことができないので、選択できる樹脂の範囲も狭くなるという問題点があった。 As a conventional water stopping method for an electric wire, for example, a method of filling a gap by depressurizing one end and injecting resin from a terminal (see, for example, Patent Document 1) has been proposed. This technique is particularly useful for small-diameter wires that have been widely used in recent years. However, when the length of the electric wire is increased, the pressure loss of the reduced pressure occurs, and there is a problem that the resin cannot be sucked. In addition, there is a problem that the work of attaching the electric wire terminal to the suction device becomes complicated. Furthermore, since the pressure difference can be produced only by the atmospheric pressure under reduced pressure, there is a problem that the range of resins that can be selected is narrowed.
これに対し、特許文献1に記載の方法の問題点を解決できる技術として、電線の片端を加圧して、その加圧端末から樹脂を圧入することにより、隙間を埋める方法(例えば、特許文献2参照)が提案されている。この技術によれば、電線長によらず、電線端末に一定長さの止水構造を簡単に且つ確実に形成でき、圧力差も大きくできるので、高粘度な硬化性樹脂液も充填できると考えられる。
On the other hand, as a technique capable of solving the problems of the method described in
しかし、特許文献2に記載の方法では、加圧時に供給した圧縮ガスが、電線の素線と被覆との間に侵入して、被覆が膨張し、素線から剥離することがあり、電線端末の止水処理が不十分になる可能性があるという問題点があった。 However, in the method described in Patent Document 2, the compressed gas supplied at the time of pressurization may enter between the wire of the electric wire and the coating, and the coating may expand and peel off from the wire. There was a problem that the water stop treatment of the water may become insufficient.
本発明は、上記事情に鑑みてなされたものであり、電線の片端を加圧し、その加圧端末から樹脂を圧入して隙間を埋める方法において、電線の被覆の剥離を防止して、電線端末を確実に止水処理できる装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and in a method of pressurizing one end of an electric wire and press-fitting resin from the pressurizing terminal to fill a gap, the electric wire terminal is prevented from peeling off. It is an object of the present invention to provide a device that can reliably stop water.
上記課題を解決するため、
本発明は、硬化性樹脂液が接触している電線端末を加圧して、前記硬化性樹脂液を前記電線内部に圧入及び硬化させ、前記電線端末を止水処理するための装置であって、前記電線端末を加圧するための耐圧性容器を備え、該耐圧性容器には、前記電線のうち、前記硬化性樹脂液の圧入部を、外周から圧着保持する電線保持手段が設けられたことを特徴とする止水処理装置を提供する。
本発明の止水処理装置は、前記電線保持手段が、前記耐圧性容器に対して独立して設けられていることが好ましい。
また、本発明の止水処理装置は、前記耐圧性容器の肉厚の壁部が前記電線保持手段とされていることが好ましい。
また、本発明の止水処理装置は、前記電線保持手段が二つの部材に分割可能とされ、これら部材の分割面が、その接合時において前記電線の圧着保持面となることが好ましい。
また、本発明の止水処理装置は、少なくとも一方の前記分割面が緩衝材で被覆されていることが好ましい。
To solve the above problem,
The present invention is an apparatus for pressurizing an electric wire terminal in contact with a curable resin liquid, press-fitting and curing the curable resin liquid inside the electric wire, and water-stopping the electric wire terminal, A pressure-resistant container for pressurizing the electric wire terminal is provided, and the pressure-resistant container is provided with electric wire holding means for pressing and holding the press-fitted portion of the curable resin liquid from the outer periphery of the electric wire. Provided is a water stop treatment device.
In the water stop treatment apparatus of the present invention, it is preferable that the electric wire holding means is provided independently with respect to the pressure resistant container.
Moreover, it is preferable that the thick wall part of the said pressure | voltage resistant container is made into the said electric wire holding means in the water stop processing apparatus of this invention.
Moreover, in the water stop treatment apparatus of the present invention, it is preferable that the electric wire holding means can be divided into two members, and the divided surfaces of these members become the crimp holding surfaces of the electric wires at the time of joining.
Moreover, it is preferable that at least one said division surface is coat | covered with the buffer material in the water stop processing apparatus of this invention.
本発明によれば、電線保持手段を設けたことにより、電線の片端を加圧し、その加圧端末から樹脂を圧入して隙間を埋める方法でも、電線端末を確実に止水処理できる。
そして、加圧により樹脂を圧入するので、電線長によらず、電線端末に一定長さの止水構造を簡単に且つ確実に形成でき、圧力差を大きくできるので、硬化性樹脂液を短時間で充填でき、高粘度な硬化性樹脂液も充填できる。
According to the present invention, by providing the electric wire holding means, the electric wire terminal can be reliably water-stopped even by a method of pressurizing one end of the electric wire and press-fitting resin from the pressurizing terminal to fill the gap.
Since the resin is press-fitted by pressurization, a fixed length water-stopping structure can be easily and reliably formed on the wire end regardless of the wire length, and the pressure difference can be increased. It can be filled with curable resin liquid with high viscosity.
以下、図面を参照しながら、本発明について詳細に説明する。
図1は、本発明に係る止水処理装置を例示する概略図であり、(a)は止水処理装置に備えられた耐圧性容器の深さ方向に垂直な断面図、(b)は耐圧性容器の深さ方向に沿った断面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
1A and 1B are schematic views illustrating a water stop treatment apparatus according to the present invention, in which FIG. 1A is a cross-sectional view perpendicular to the depth direction of a pressure resistant container provided in the water stop treatment apparatus, and FIG. It is sectional drawing along the depth direction of the property container.
図1中、符号10は止水処理装置、符号11は耐圧性容器、符号12は耐圧性容器の本体(以下、本体と略記する)、符号13は耐圧性容器の蓋体(以下、蓋体と略記する)、符号14は密封パッキン、符号15は加圧ガス流路、符号20は電線、符号21は端子部を示す。
電線20は、複数の導体素線が絶縁被覆されたもの、あるいはそれらの複合線などが外被で覆われたものであれば、特に限定されない。複数の導体素線が絶縁被覆された電線は、導体素線間又は導体素線と被覆との間の空隙部の体積が大きく、加圧時に被覆あるいは外被が素線から剥離し易いが、このような電線に対しても、本発明は優れた止水処理効果を発揮する。
In FIG. 1,
The
止水処理装置10は、本体12及び蓋体13からなる耐圧性容器11と、本体12及び蓋体13間に介在する密封パッキン14と、耐圧性容器11の内部に連通するように接続された加圧ガス流路15と、を備えて概略構成されている。また、耐圧性容器11の内部(加圧室)には、電線20をその長手方向に沿って圧着保持するための電線保持部材30が設けられている。
本体12は、平面視にて長方形状であり、かつその深さ方向の断面形状が略U字状をなす浅い容器状の形状を有している。
The water-
The
蓋体13は、本体12の開口部を覆い、本体12と一体となって、それらの内部に電線の端末部分を収容する空間(加圧室)を形成する部材である。
本体12を構成する材料および蓋体13を構成する材料は、耐圧性容器11内に導入される圧縮ガスの圧力に耐えられるものであれば、特に限定されない。また、本体12および蓋体13は、耐圧性容器11内に導入される圧縮ガスの圧力に耐えられれば、その全部又は一部が光透過性の材料(例えば、ガラス、プラスチック等)で構成されていても良い。
The
The material constituting the
密封パッキン14は、本体12の開口部と同様の形状をなす枠状の部材(Oリング)であり、本体12に蓋体13を被せて耐圧性容器11を構成した場合に、耐圧性容器11の内部の密閉性を高める。この密封パッキン14を、本体12と蓋体13の間に介在させることにより、加圧ガス流路15を介して耐圧性容器11の内部に導入した圧縮ガスが、容器外に漏れ出ることがない。
The sealing
密封パッキン14には、電線20を挿通するために、耐圧性容器11の内部と外部を連通する孔14aが複数個設けられている。この孔14aの径(内径)は、電線20を挿通した場合に密封パッキン14と電線20とが密着し、両者の間に隙間ができない大きさとなっている。
密封パッキン14としては、天然ゴム、ニトリルゴム、シリコーンゴム、アクリルゴム、スチレンブタジエンゴム、フッ素ゴム、エチレンプロピレンゴムなどの合成ゴムからなるゴムパッキンが用いられる。
The sealing
As the sealing packing 14, a rubber packing made of synthetic rubber such as natural rubber, nitrile rubber, silicone rubber, acrylic rubber, styrene butadiene rubber, fluorine rubber, ethylene propylene rubber or the like is used.
加圧ガス流路15は、電磁バルブなどのバルブ(図示略)を介して、本体12に接続されている。
また、加圧ガス流路15は、各種ガスボンベ、工場圧縮エア配管などのガス供給源(図示略)から供給される高圧ガスを所定の圧力に調整するためのレギュレータ(図示略)を介して、そのガス供給源に接続されている。
また、耐圧性容器11には、本体12に蓋体13を固定し、耐圧性容器11内に圧縮ガスを導入した際にも密閉状態を維持するためのクランプなどの固定機構(図示略)が設けられている。
The pressurized
The pressurized
The pressure-
耐圧性容器11の内部には、密封パッキン14の孔14aと連通する電線収納溝30aが形成された電線保持部材30が配置されている。
電線保持部材30は、外形が角柱、円柱などの柱状をなし、その長手方向の中心軸を通る平面で2つの保持部材30A、30Bに縦割り分割可能に構成されている。
電線保持部材30は、挿通された電線20をその長手方向に沿って圧着保持するものであり、圧着状態を維持するために、クランプやクリップなどの固定機構(図示略)で固定できるものである。
Inside the pressure
The electric
The electric
また、電線保持部材30の電線収納溝30aは、2つの保持部材30A、30Bのそれぞれの接合面(分割面)30bに、この接合面30bの長手方向の中心線に沿って形成されている。そして、2つの保持部材30A、30Bを、それぞれの接合面30bで接合させた場合、それぞれの電線収納溝30a同士が合わせられて、電線保持部材30の長手方向の中心軸を通る1つの貫通孔を形成するようになっている。電線収納溝30aは、電線20を収納して、電線20のうち少なくとも硬化性樹脂液の圧入部を、その外周から圧着保持する。
このように、保持部材30A及び30Bの電線収納溝30aが形成されている接合面(分割面)30bは、これらの接合時において、電線20の圧着保持面として機能する。
Moreover, the electric wire accommodation groove |
Thus, the joint surface (divided surface) 30b in which the
また、電線収納溝30aの長手方向と垂直な断面の形状は、電線収納溝30aに電線20を収納し、圧着保持できれば特に限定されないが、電線20と電線収納溝30aとの間に最も隙間が生じ難いことから、半円形が好ましい。
Moreover, the shape of the cross section perpendicular to the longitudinal direction of the electric
また、電線収納溝30aの開口部の幅は、そこに収納される電線20の外径に応じて適宜決定されるが、電線20を収納した際に、電線20と電線収納溝30aとの間に隙間が生じない大きさが好ましい。具体的には、電線収納溝30a同士が合わせられて形成される貫通孔の内径が、電線20の外径と同等か又は僅かに小さいことが好ましい。そして、電線収納溝30aの開口部の幅は、長手方向の全域に沿って電線20と電線収納溝30aとの間に隙間が生じない大きさであることが好ましい。
Moreover, although the width | variety of the opening part of the electric wire accommodation groove |
電線収納溝30aの長手方向の長さLは、十分な止水効果が得られる硬化性樹脂液の充填(圧入)長が得られるように、適宜調整すれば良い。硬化性樹脂液の充填長は、硬化性樹脂液の種類や加圧条件にもよるが、通常30〜100mmであることが好ましく、50〜80mmであることがより好ましい。
What is necessary is just to adjust suitably the length L of the longitudinal direction of the electric wire accommodation groove |
電線保持部材30を構成する材料としては、耐圧性容器11内に所定の圧力の圧縮ガスを導入した際に、その圧力によって変形したり破損したりしないものであれば特に限定されないが、具体的には、各種金属、セラミックス、ゴム、プラスチック、紙、綿等が例示できる。なかでも気密性を高くでき、かつ電線に追従して変形しても電線を圧着保持可能であることから、ゴムやエラストマーが好ましい。
The material constituting the electric
電線保持部材30で圧着保持された電線20は、加圧時にその圧力で外側の被覆(外被)が素線から剥離することが防止され、圧入された樹脂との間に隙間が生じることが無く、被覆や樹脂の材質によらず、安定して止水処理できる。例えば、素線から剥離しやすい材質であるポリ塩化ビニルやハロゲンフリーエラストマー、あるいはこれらを含有する各種プラスチックからなる被覆でも、確実に止水処理できる。
The
保持部材30A及び30Bの少なくとも一方の電線収納溝30a及び接合面30bは、図2に示すように、緩衝材30dで被覆されていることが好ましく、両方の電線収納溝30a及び接合面30bが、緩衝材30dで被覆されていることがより好ましい。このように、緩衝材30dを介して保持部材30A及び30Bを接合させることで、一層高い気密性で電線20を圧着保持できる。
この場合、電線収納溝30aの大きさは、緩衝材30dの厚さを考慮して大きめに設定すれば良い。
緩衝材30dは、密封パッキン14と同様の材質のものが好ましい。また、緩衝材30dの厚さは、電線20の圧着度を低下させない範囲で適宜調整すれば良い。
As shown in FIG. 2, it is preferable that at least one of the holding
In this case, the size of the electric
The
なお、緩衝材30dを使用する場合には、その接合面に電線収納溝30aに相当する溝を形成して、保持部材30A又は30Bには、電線収納溝30aを設けないようにしても良い(図示略)。いずれの形態を採用するかは、電線の外径や緩衝材30の厚さ等に応じて、適宜選択すれば良い。
When the
電線保持部材30は、例えば、その長手方向の端面30cが、耐圧性容器11の内壁面、すなわち本体12の内壁面12a、及び蓋体13の内壁面13aに接した状態でも良いし、これら内壁面から離間して配置されても良い。内壁面に接した状態とする時は、接着剤等で内壁面に固定化しても良い。
The electric
図1では、電線保持部材30が耐圧性容器11の内部(加圧室)に設けられた例を示したが、電線保持部材は、電線20の封止端末側が少なくとも耐圧性容器の内部に突出するように、耐圧性容器の壁部に貫設されていても良い。図3は、このような耐圧性容器の電線保持部材が設けられた部位を例示する概略図であり、(a)は耐圧性容器の深さ方向に垂直な断面図、(b)は正面図である。なお、図3おいて、図1に示した実施形態の構成要素と同じ構成要素には同一の符号を付し、その詳細な説明を省略する。これは、さらに以降の図においても同様である。
FIG. 1 shows an example in which the electric
図3に示す耐圧性容器11’は、本体12’及び蓋体13’からなる。そして、本体12’及び蓋体13’は、二つの密封パッキン14’を介して接合されるようになっている。また、本体12’には凹部12e’が、蓋体13’ には凹部13e’がそれぞれ形成されており、密封パッキン14’には湾曲部14e’が形成されている。そして、本体12’及び蓋体13’を接合させた時に、凹部12e’及び13e’に沿って湾曲部14e’が配置されるように位置合わせされている。さらに、二つの湾曲部14e’の間に、電線保持部材30が密着して配置されている。
また、電線保持部材30は、図2に示したように、電線収納溝及び接合面が緩衝材30dで被覆されており、電線20が高い気密性で圧着保持されると同時に、耐圧性容器11’の内部の密閉性が確保されている。
The pressure-
Further, as shown in FIG. 2, the electric
電線保持部材30を耐圧性容器の壁部に貫設する場合には、凹部12e’及び凹部13e’を形成せず、密封パッキンの厚さを厚めにして、これに湾曲部14e’を形成するだけでも良い(図示略)。いずれの形態を採用するかは、電線の外径や密封パッキンの厚さ等に応じて、適宜選択すれば良い。
When penetrating the
耐圧性容器11’は、上記の点以外は、図1に示す耐圧性容器11と同様である。
The pressure
図1〜3では、電線保持部材として、2つの保持部材30A、30Bに分割可能に構成された電線保持部材30を使用した例について説明したが、電線保持部材は、分割可能でなくても良い。
図4は、このような電線保持部材30’を例示する概略図であり、長手方向の中心軸を通る平面における断面図である。
1-3 demonstrated the example which used the electric
FIG. 4 is a schematic view illustrating such an electric
ここに示す電線保持部材30’は、前記電線保持部材30と同様に、外形が柱状をなすが、一体に形成されており、その長手方向の中心線に沿って、電線20を挿通するための電線収納溝30a’が形成されている。電線保持部材30’は分割できないので、電線20を圧着保持するためには、電線20を、端子部21装着前に電線収納溝30a’に挿通する必要がある。そこで、電線保持部材30’は、電線20の挿通を容易とするために、長手方向の一方の端部近傍においては、電線収納溝30a’の内径Xが、端部に向けて拡大されていることが好ましく、テーパ状とされていることがより好ましい。このようにすることで、電線20の端末20aが電線収納溝30a’の壁面にガイドされて、電線20の挿通が容易となる。内径Xを拡大するのは、電線保持部材30’の両端部のうち、電線20の挿通方向に応じていずれの近傍でも良い。
The electric
電線収納溝30a’は、内径Xが拡大している部位以外の長手方向の長さYを、十分な止水効果が得られる硬化性樹脂液の充填長が得られるように設定する必要がある。具体的には、電線収納溝30aの長手方向の長さLと同様に調整すれば良い。
In the electric
電線収納溝30a’は、その表面が緩衝材で被覆されていても良い(図示略)。この場合、前記内径Xは、緩衝材の厚さを考慮して大きめに設定すれば良い。緩衝材の材質は、図2における緩衝材30dの材質と同様で良い。
The surface of the electric
電線保持部材30’は、例えば、図1に示す電線保持部材30と同様に使用でき、耐圧性容器の内部(加圧室)に設けても良いし、耐圧性容器の壁部に貫設しても良い。
電線保持部材30’を耐圧性容器の壁部に貫設する場合には、耐圧性容器内の気密性を維持するために、上記のように電線収納溝30a’の表面を緩衝材で被覆する必要がある。
The electric
When the electric
図1〜4では、電線保持部材を耐圧性容器とは別途に、独立して設けることが可能な例を示したが、本発明においては、耐圧性容器を、その一部が電線保持部を兼ねるものとしても良い。
図5は、このような耐圧性容器の電線保持部を例示する概略図であり、(a)は耐圧性容器の深さ方向に垂直な断面図、(b)は正面図である。
1-4, although the example which can provide an electric wire holding member separately from a pressure | voltage resistant container independently was shown, in this invention, a part of electric pressure holding | maintenance part is an electric wire holding | maintenance part. It may be combined.
FIG. 5 is a schematic view illustrating an electric wire holding part of such a pressure resistant container, where (a) is a cross-sectional view perpendicular to the depth direction of the pressure resistant container, and (b) is a front view.
ここに示す耐圧性容器11”は、本体12”及び蓋体13”からなる。そして、本体12”及び蓋体13”は、二つの緩衝材30d”を介して接合されるようになっている。
耐圧性容器11”は、電線20を挿通させる壁部が肉厚になっており、本体12”及び蓋体13”の接合部が電線保持部30”となっている。
The pressure-
In the pressure
本体12”の接合面12f”、及び蓋体13”の接合面13f”には、それぞれその幅方向(電線20の挿通方向)に、凹部12e”及び凹部13e”が形成されており、二つの緩衝材30d”には、それぞれその幅方向(電線20の挿通方向)に、電線収納溝30a”が形成されている。そして、本体12”及び蓋体13”を接合させた時に、凹部12e”及び13e”に沿って電線収納溝30a”が配置されるように位置合わせされている。さらに、それぞれの電線収納溝30a”同士が合わせられて、緩衝材30d”の幅方向(電線20の挿通方向)に1つの貫通孔を形成するようになっている。そして、電線収納溝30a”に電線20を収納して、電線20のうち少なくとも硬化性樹脂液の圧入部を、その外周から高い気密性で圧着保持できる。
このように、緩衝材30d”の電線収納溝30a”が形成されている接合面12f”及び接合面13f”は、これらの接合時において、電線20の圧着保持面として機能する。そして、凹部12e”及び13e”、並びに二つの電線収納溝30a”が、電線保持部30”を構成している。そして、電線保持部30”により、電線20が高い気密性で圧着保持されると同時に、耐圧性容器11”の内部の密閉性が確保されている。
The
As described above, the joining
電線収納溝30a”の長さZは、十分な止水効果が得られる硬化性樹脂液の充填長が得られるように設定すれば良く、電線収納溝30aの長手方向の長さLと同様に調整すれば良い。
The length Z of the
上記のように、耐圧性容器の壁部に電線保持部を設ける場合には、凹部12e”及び13e”を形成せず、緩衝材30d”の厚さを厚めにして、これに電線収納溝30a” を形成するだけでも良い(図示略)。いずれの形態を採用するかは、電線の外径や緩衝材の厚さ等に応じて、適宜選択すれば良い。
As described above, when the electric wire holding portion is provided on the wall portion of the pressure-resistant container, the
耐圧性容器11”は、上記の点以外は、図1に示す耐圧性容器11と同様である。
The pressure-
次に、本発明の止水処理装置を使用した電線端末の止水処理方法を説明する。ここでは、図1に示す止水処理装置10を使用した例について説明するが、その他の形態の止水処理装置の場合も、同様に止水処理できる。
まず、被覆を除去した端末部分に端子部21が圧着された電線20を用意する。
次いで、耐圧性容器11内に端子部21が入るように、本体12内に複数の電線20を並べて配置するとともに、本体12の開口部に配置した密封パッキン14の孔14aに、端子部21が設けられている端末部分とは反対側の端末から電線20を挿通する。
Next, the water stop processing method of the electric wire terminal which uses the water stop processing apparatus of this invention is demonstrated. Here, although the example using the water
First, the
Next, a plurality of
また、これに伴って、耐圧性容器11内に配置した電線20の端子部21を除く部分(電線20の端子部21の近傍)を、保持部材30Aの電線収納溝30aに収納する。その後、保持部材30Bの電線収納溝30aに電線20を収納するとともに、2つの保持部材30A、30Bを、それぞれの接合面30bで接合させて、耐圧性容器11内に配置した電線20の端子部21を除く部分(電線20の端子部21の近傍、すなわち硬化性樹脂液の圧入部)を、その外周から電線保持部材30で圧着保持する。
Accordingly, the portion excluding the
なお、電線20の端子部21を除く部分を、その外周から電線保持部材30で圧着保持するとは、電線20の素線と被覆の密着状態が、常に保たれる程度の強度で保持することを言う。
Note that holding the portion of the
次いで、端子部21における電線20に圧着されている部分(端末)に対して、電線端末部分に適した流動性(粘度)を有した硬化性樹脂液を適量滴下する。
次いで、固定機構により、密封パッキン14を介して本体12に蓋体13を固定し、耐圧性容器11を密閉した後、加圧ガス流路15に設けられたバルブを開け、ガス供給源から耐圧性容器11内に圧縮ガスを導入して、電線20の端末を等方加圧する。なお、加圧は必ずしも等方加圧でなくても良い。
Next, an appropriate amount of a curable resin liquid having fluidity (viscosity) suitable for the wire end portion is dropped onto the portion (terminal) of the
Next, the
この時、レギュレータによりガス供給源からの圧縮ガスの圧力を、所定の圧力に調整して、耐圧性容器11内に所定の圧力の圧縮ガスを供給する。
次いで、この等方加圧によって硬化性樹脂液が電線端部に所定長さ充填(圧入)された後、硬化性樹脂液を硬化させ、端部が充填樹脂により止水処理された電線を得る。
なお、硬化性樹脂液の硬化方法は、使用する硬化性樹脂液の種類に応じて適宜選択される。
At this time, the pressure of the compressed gas from the gas supply source is adjusted to a predetermined pressure by the regulator, and the compressed gas having the predetermined pressure is supplied into the pressure
Next, after the curable resin liquid is filled (press-fit) into the end of the electric wire by a predetermined length by this isotropic pressurization, the curable resin liquid is cured to obtain an electric wire whose end is water-stopped with the filled resin. .
In addition, the hardening method of curable resin liquid is suitably selected according to the kind of curable resin liquid to be used.
また、硬化性樹脂液の種類に応じて、耐圧性容器11から電線端部に硬化性樹脂液が充填された電線20の端子部21を取り出してから、硬化性樹脂液を硬化するか、あるいは、その端子部21を耐圧性容器11内に配置したまま、硬化性樹脂液を硬化する。
Depending on the type of the curable resin liquid, the
硬化性樹脂液の粘度は、0.6Pa・s〜60Pa・s(=600mPa・s〜60000mPa・s)の範囲であることが好ましく、600mPa・s〜1000mPa・sであることがより好ましい。
硬化性樹脂液の粘度が0.6Pa・s未満では、上記の等方加圧によって、この硬化性樹脂液が電線端部に充填され易くなるものの、流動性が高すぎて、電線端部に留まらずに外部に流出し、電線端末に所望の止水構造を形成できないことがある。一方、硬化性樹脂液の粘度が60Pa・sを超えると、上記の等方加圧によって、この硬化性樹脂液を電線端部に十分に充填することができずに、電線端末に所望の止水構造を形成できないことがある。
The viscosity of the curable resin liquid is preferably in the range of 0.6 Pa · s to 60 Pa · s (= 600 mPa · s to 60000 mPa · s), and more preferably 600 mPa · s to 1000 mPa · s.
If the viscosity of the curable resin liquid is less than 0.6 Pa · s, the above-mentioned isotropic pressurization facilitates filling of the end of the electric wire with the curable resin liquid, but the fluidity is too high and the end of the electric wire is It may flow out to the outside without staying, and a desired water stop structure may not be formed at the wire end. On the other hand, when the viscosity of the curable resin liquid exceeds 60 Pa · s, the isotropic pressurization does not sufficiently fill the end of the wire with the curable resin liquid, so that the desired end of the wire terminal is stopped. A water structure may not be formed.
硬化性樹脂液としては、例えば、一液縮合反応型のシリコーンゴム、二液縮合反応型のシリコーンゴム、熱硬化型のシリコーンゴム、紫外線硬化型のシリコーンゴム等が例示できる。
電線端末を等方加圧する際の圧力は、0.1〜0.5MPaであることが好ましく、0.3〜0.5MPaであることがより好ましい。
電線端末を等方加圧する際の圧力が0.1MPa未満では、硬化性樹脂液を電線端部に十分に充填することができずに、電線端末に所望の止水構造を形成できないことがある。一方、電線端末を等方加圧する際の圧力が0.5MPaを超えても、それ以下の圧力の場合と比較して、電線端部への硬化性樹脂液の充填性(充填長)が向上しない。
Examples of the curable resin liquid include one-component condensation reaction type silicone rubber, two-component condensation reaction type silicone rubber, thermosetting type silicone rubber, and ultraviolet curable type silicone rubber.
The pressure when the wire terminal is isotropically pressurized is preferably 0.1 to 0.5 MPa, and more preferably 0.3 to 0.5 MPa.
If the pressure when the wire terminal is isotropically pressurized is less than 0.1 MPa, the end of the wire cannot be sufficiently filled with the curable resin liquid, and a desired water stop structure may not be formed on the wire terminal. . On the other hand, even when the pressure at the end of the wire isotropically exceeds 0.5 MPa, the filling property (filling length) of the curable resin liquid to the end of the wire is improved compared to the case of a pressure lower than that. do not do.
なお、ガス供給源から耐圧性容器11内に圧縮ガスを導入して、電線20の端末を等方加圧するとは、ガス供給源から耐圧性容器11内に導入した圧縮ガスによって、耐圧性容器11内の圧力が均一になるように加圧することを言う。耐圧性容器11内の圧力を均一にすることにより、電線20の端末が全ての方向から均一に加圧(等方加圧)され、電線20の端子部21に滴下した硬化性樹脂液が、電線端部に充填される。
In addition, when compressed gas is introduced into the pressure
電線端末を等方加圧する時間(加圧時間)は、硬化性樹脂液の粘度、電線端末を等方加圧する際の圧力などに応じて適宜調整される。
さらに、耐圧性容器11内に導入される圧縮ガスは、硬化性樹脂液の種類、すなわち、硬化条件に応じて適宜調整することが好ましい。
The time during which the wire terminal is isotropically pressurized (pressurization time) is appropriately adjusted according to the viscosity of the curable resin liquid, the pressure when the wire terminal is isotropically pressurized, and the like.
Furthermore, the compressed gas introduced into the pressure-
例えば、硬化性樹脂液として一液縮合反応型のシリコーンゴムを用いる場合、圧縮ガスとしては、窒素(N2)、アルゴン(Ar)などの不活性ガス、空気、好ましくは加湿されたガスなどを用いて、耐圧性容器11内を一液縮合反応型のシリコーンゴムの硬化に適した雰囲気とすることが好ましい。
また、硬化性樹脂液として二液縮合反応型のシリコーンゴムを用いる場合、圧縮ガスとしては、窒素(N2)、アルゴン(Ar)などの不活性ガス、空気などを用いて、耐圧性容器11内を二液縮合反応型のシリコーンゴムの硬化に適した雰囲気とすることが好ましい。
For example, when a one-component condensation reaction type silicone rubber is used as the curable resin liquid, the compressed gas may be an inert gas such as nitrogen (N 2 ) or argon (Ar), air, preferably a humidified gas. It is preferable that the pressure-
Further, when a two-component condensation reaction type silicone rubber is used as the curable resin liquid, an inert gas such as nitrogen (N 2 ) or argon (Ar), air, or the like is used as the compressed gas. The inside is preferably an atmosphere suitable for curing the two-component condensation type silicone rubber.
また、硬化性樹脂液として熱硬化型のシリコーンゴムを用いる場合、圧縮ガスとしては、窒素(N2)、アルゴン(Ar)などの不活性ガス、空気などを用いて、耐圧性容器11内を熱硬化型のシリコーンゴムの硬化に適した雰囲気とすることが好ましい。
このようにすれば、硬化性樹脂液を短時間で硬化させることができる。
また、硬化性樹脂液の粘度、電線端末を等方加圧する際の圧力、および、電線端末を等方加圧する時間を調整することにより、硬化性樹脂液を電線端部に充填する長さ(充填長)、すなわち、止水構造の長さを調整できる。
Further, when thermosetting silicone rubber is used as the curable resin liquid, the inside of the pressure-
In this way, the curable resin liquid can be cured in a short time.
Also, by adjusting the viscosity of the curable resin liquid, the pressure when isotropically pressurizing the wire end, and the time during which the wire end is isotropically pressurized, the length of filling the end portion of the curable resin liquid ( Filling length), that is, the length of the water stop structure can be adjusted.
より詳細には、止水構造の長さを長くする場合、(A)電線端末を等方加圧する際の圧力を高くする、(B)加圧時間を長くする、(C)粘度の低い硬化性樹脂液を用いる、という3つの方法から1つまたは2つ以上の方法を選択することが好ましい。
一方、止水構造の長さを短くする場合、(a)電線端末を等方加圧する際の圧力を低くする、(b)加圧時間を短くする、(c)粘度の高い硬化性樹脂液を用いる、という3つの方法から1つまたは2つ以上の方法を選択することが好ましい。
More specifically, when the length of the water stop structure is increased, (A) the pressure when the wire terminal is isotropically pressurized is increased, (B) the pressurization time is increased, and (C) curing with low viscosity. It is preferable to select one or two or more methods from the three methods of using a conductive resin solution.
On the other hand, when shortening the length of the water stop structure, (a) reducing the pressure when the wire terminal is isotropically pressurized, (b) shortening the pressing time, and (c) a curable resin liquid having a high viscosity. Preferably, one or more methods are selected from the three methods of using
図3に示すような、電線保持部材が耐圧性容器の壁部に貫設された止水処理装置を使用する場合には、密封パッキン14’を介して、電線を圧着保持した電線保持部材を挟むように、本体に蓋体を固定して耐圧性容器を密封すること以外は、図1に示す止水処理装置を使用する場合と同様に、止水処理すれば良い。 As shown in FIG. 3, when using a water stop treatment device in which the electric wire holding member is provided through the wall portion of the pressure-resistant container, the electric wire holding member that holds the electric wire by crimping via the sealing packing 14 ′ is used. Except for fixing the lid to the main body and sealing the pressure-resistant container so as to sandwich, the water stop treatment may be performed in the same manner as in the case of using the water stop treatment apparatus shown in FIG.
図4に示すような、分割可能でない電線保持部材30’を使用する場合の止水処理方法は、例えば、以下に示す通りである。
電線保持部材30’を図1に示す形態で使用する場合には、まず、電線保持部材30’の電線収納溝30a’のうち、内径Xが拡大されている側から電線20を挿通し、電線20が電線保持部材30’で圧着された状態とする。次いで、電線保持部材30’から突出させた電線20の端末で被覆を除去し、端子部21を圧着する。
次いで、耐圧性容器11内に端子部21が入るように、本体12内に複数の電線20を並べて配置するとともに、密封パッキン14の孔14aに、端子部21が設けられている端末部分とは反対側の端末から電線20を挿通する。
次いで、端子部21における電線20に圧着されている部分(端末)に対して、電線端末部分に硬化性樹脂液を適量滴下する。
以下、図1に示す止水処理装置を使用する場合と同様に、止水処理すれば良い。
The water stop processing method in the case of using the electric
When the
Next, a plurality of
Next, an appropriate amount of a curable resin liquid is dropped onto the wire terminal portion of the
Hereinafter, the water stop treatment may be performed similarly to the case of using the water stop treatment apparatus shown in FIG.
電線保持部材30’を図3に示す形態で使用する場合には、上記と同様の手順で電線20の端末に端子部21を圧着した後、密封パッキン14’を介して、電線を圧着保持した電線保持部材を挟むように、本体に蓋体を固定して耐圧性容器を密封すれば良い。
When using the
図5に示すような、壁部に電線保持部30”が設けられた耐圧性容器11”を使用する場合の止水処理方法は、例えば、以下に示す通りである。
まず、被覆を除去した端末部分に端子部21が圧着された電線20を用意し、耐圧性容器11内に端子部21が入るように、本体12内に複数の電線20を並べて配置する。
次いで、端子部21における電線20に圧着されている部分(端末)に対して、電線端末部分に適した流動性(粘度)を有した硬化性樹脂液を適量滴下する。そして、電線20の端子部21を除く部分(電線20の端子部21の近傍)を、一方の緩衝材30d” の電線収納溝30a”に収納し、他方の電線収納溝30a”にも収納するようにして、二つの緩衝材30d”を接合させ、電線20を二つの緩衝材30d”で挟持する。そして、凹部12e”及び13e”に沿って電線収納溝30a”が配置されるように位置合わせをして、本体12”及び蓋体13”を、それぞれの接合面12f”及び13f”で接合させて、耐圧性容器11”内に配置した電線20の端子部21を除く部分(電線20の端子部21の近傍)を、その外周から二つの緩衝材30d”で圧着保持する。次いで、電線20の端末を等方加圧する。
以下、図1に示す止水処理装置を使用する場合と同様に、止水処理すれば良い。
As shown in FIG. 5, for example, a water stop treatment method in the case of using a pressure
First, the
Next, an appropriate amount of a curable resin liquid having fluidity (viscosity) suitable for the wire end portion is dropped onto the portion (terminal) of the
Hereinafter, the water stop treatment may be performed similarly to the case of using the water stop treatment apparatus shown in FIG.
前記止水処理方法では、電線端末に硬化性樹脂液を接触させた状態で、この電線端末を等方加圧して前記硬化性樹脂液を電線内部に圧入し、硬化させて、電線端末に止水構造を形成する。
硬化性樹脂液を電線の導体素線間や、被覆と素線との隙間へ浸透させることは、時間をかければ、毛細管現象を利用することでも可能である。例えば、図6に示すようなディメンションの導体素線間に、毛細管現象により樹脂液を浸透させた場合の浸透長は、表面張力と重力との釣り合いから以下の式(1)で表される。
h=(l・T・cosθ)/(s・ρ・g) ・・・(1)
式(1)中、hは毛細管現象による樹脂液の浸透高さ、lは素線に接している樹脂液の周囲長、Tは素線に接している樹脂液の表面張力、θは素線と樹脂との接触角、sは素線間面積、ρは樹脂の密度、gは重力をそれぞれ表す。
In the water stop treatment method, in the state where the curable resin liquid is in contact with the wire end, the wire end is isotropically pressurized to press-fit the curable resin liquid into the inside of the wire, and is cured to be stopped at the wire end. Form a water structure.
Infiltration of the curable resin liquid between the conductor wires of the electric wire or the gap between the coating and the wire can be achieved by utilizing the capillary phenomenon as long as time is required. For example, the penetration length when a resin liquid is infiltrated between the conductor wires having dimensions as shown in FIG. 6 by capillary action is expressed by the following formula (1) from the balance between surface tension and gravity.
h = (l · T · cos θ) / (s · ρ · g) (1)
In formula (1), h is the penetration height of the resin liquid by capillary action, l is the peripheral length of the resin liquid in contact with the strand, T is the surface tension of the resin fluid in contact with the strand, and θ is the strand And s are the area between the strands, ρ is the density of the resin, and g is the gravity.
前記式(1)において、素線外径rを用いてsとlを除くと、以下の式(2)になる。
h=4πTcosθ/{(2√3−π)ρgr} ・・・(2)
例えば、硬化性樹脂液としてジメチルシリコーンのT(=0.021N/m)、θ(=0.262rad)およびρ(=980kg/m3)と、素線の外径r(=0.798mm)を前記式(2)に代入すると、h=26cm程度になる。電線端末から26cmあれば、電線端部の止水構造としては十分である。
In the above equation (1), when s and l are removed using the wire outer diameter r, the following equation (2) is obtained.
h = 4πT cos θ / {(2√3-π) ρgr} (2)
For example, T (= 0.021 N / m), θ (= 0.262 rad) and ρ (= 980 kg / m 3 ) of dimethyl silicone as the curable resin liquid, and the outer diameter r (= 0.798 mm) of the strand Is substituted into the equation (2), h = about 26 cm. If it is 26 cm from the end of the electric wire, it is sufficient as a water stop structure at the end of the electric wire.
減圧や加圧が必要である理由は、電線端末に止水構造を形成する場合の工程時間を短くするため、つまり、硬化性樹脂液の浸透速度を高くするためである。前記のh=26cmの場合には、浸透させる時間が考慮されていない。
硬化性樹脂液のような粘性液体は、管路を進行する速度が電線端末に硬化性樹脂液を圧入する空間(耐圧性容器)の内部と外部との圧力差に依存する。つまり、この圧力差が大きければ大きいほど、管路内に粘性液体を短時間で浸透させることができる。
The reason why pressure reduction or pressurization is necessary is to shorten the process time when forming the water stop structure at the end of the electric wire, that is, to increase the penetration rate of the curable resin liquid. In the case of h = 26 cm, the time for infiltration is not considered.
In a viscous liquid such as a curable resin liquid, the speed of traveling through the pipe depends on the pressure difference between the inside and the outside of the space (pressure-resistant container) in which the curable resin liquid is pressed into the wire terminal. That is, the larger the pressure difference is, the more the viscous liquid can penetrate into the pipeline.
この考え方は、ニュートン流体を仮定した場合、毛細管型の粘度計から容易に導くことができる。毛細管型粘度計での粘度測定は、下記の式(3)により求められる。
η=π・R4・ΔP/(8L・Q) ・・・(3)
式(3)中、ηは見かけの(測定値として出てくる)粘度、Rは毛細管の半径、ΔPは電線端末に硬化性樹脂液を圧入する空間(耐圧性容器)の内部と外部との圧力差、Lは毛細管長(ある時間内に樹脂が進んだ管路長)、Qは流束(単位時間で通過する樹脂の体積=樹脂の進む速度)をそれぞれ表す。
This idea can be easily derived from a capillary viscometer assuming a Newtonian fluid. Viscosity measurement with a capillary viscometer is determined by the following equation (3).
η = π · R 4 · ΔP / (8L · Q) (3)
In equation (3), η is the apparent viscosity (appears as a measured value), R is the radius of the capillary, ΔP is the space between the inside (pressure-resistant container) in which the curable resin liquid is pressed into the wire terminal (pressure-resistant container) and the outside. The pressure difference, L is the capillary length (the length of the pipe through which the resin has progressed within a certain period of time), and Q is the flux (volume of the resin passing through the unit time = the speed at which the resin advances).
前記式(3)を変形すると、下記式(4)のようになり、ニュートン流体では速度が圧力差ΔPに比例する。
Q=(π・R4)/(8L・η)・ΔP ・・・(4)
実際には、硬化性樹脂液は非ニュートン流体であり、かつ、電線の導体素線間の形状は円筒形キャピラリーでないので、前記式(4)から外れる。しかしながら、その場合にも、樹脂が進む速度と、電線端末に硬化性樹脂液を圧入する空間(耐圧性容器)の内部及び外部間の圧力差との間には、正の相関関係があると容易に推定できる。
When the equation (3) is transformed, the following equation (4) is obtained, and the speed is proportional to the pressure difference ΔP in the Newtonian fluid.
Q = (π · R 4 ) / (8L · η) · ΔP (4)
Actually, since the curable resin liquid is a non-Newtonian fluid, and the shape between the conductor strands of the electric wire is not a cylindrical capillary, it deviates from the above equation (4). However, even in that case, there is a positive correlation between the speed at which the resin travels and the pressure difference between the inside and outside of the space (pressure-resistant container) in which the curable resin liquid is pressed into the wire terminal. Easy to estimate.
減圧の場合、圧力差は大気圧(およそ0.1MPa)分しかないのに対し、加圧の場合には、圧力差をそれ以上(0.1MPa以上)に設定することが可能である。よって、硬化性樹脂液を電線端部内に浸透させるとき、減圧よりも加圧の方が有利であることがわかる。 In the case of depressurization, the pressure difference is only atmospheric pressure (approximately 0.1 MPa), whereas in the case of pressurization, the pressure difference can be set higher (0.1 MPa or more). Therefore, it is understood that pressurization is more advantageous than decompression when the curable resin liquid is permeated into the end portion of the electric wire.
また、前記式(3)、(4)から、樹脂の進む速度は、樹脂の粘度に反比例している。つまり、樹脂液が低粘度であるほど同じ圧力差で流速が高くなることがわかる。つまり、低粘度の樹脂液を使用できれば、減圧方式でも十分となる。しかし、換言すれば、低粘度で止水剤としての用途に適した硬化性樹脂液が無ければ、減圧方式では止水処理ができないことになる。このように、止水剤の選択の自由度が広がるという観点からも、加圧方式の方が有利と言える。 Moreover, from the said Formula (3) and (4), the speed which resin advances is in inverse proportion to the viscosity of resin. That is, it can be seen that the lower the viscosity of the resin liquid, the higher the flow rate with the same pressure difference. In other words, if a low-viscosity resin liquid can be used, the reduced pressure method is sufficient. However, in other words, if there is no curable resin liquid having a low viscosity and suitable for use as a water-stopping agent, the water-stopping treatment cannot be performed by the reduced pressure method. Thus, it can be said that the pressurization method is more advantageous from the viewpoint of increasing the degree of freedom in selecting the water-stopping agent.
本発明によれば、耐圧性容器内に配置した電線端末を、前記電線保持部材や電線保持部等の電線保持手段で、外周から圧着保持することで、耐圧性容器内に供給した圧縮ガスが、電線の素線と被覆との間に侵入して、被覆が膨張し、素線から剥離することを効果的に防止できる。その結果、電線端末を確実に止水処理できる。
また、電線長によらず、電線端末に一定長さの止水構造を簡単に形成できる。
また、電線端末を加圧することで、硬化性樹脂液を短時間で充填でき、高粘度な硬化性樹脂液も充填できる。
また、電線端末を加圧する場合には、雰囲気を硬化性樹脂液の硬化し易い条件に調整できるため、硬化性樹脂液を短時間で硬化させることができる。
According to the present invention, the compressed gas supplied into the pressure-resistant container can be obtained by holding the wire terminal disposed in the pressure-resistant container by crimping from the outer periphery with the wire holding means such as the wire holding member or the wire holding portion. It is possible to effectively prevent the coating from expanding between the wires of the electric wire and the coating and separating from the wires. As a result, it is possible to reliably stop the electric wire terminal.
Moreover, the water stop structure of fixed length can be easily formed in an electric wire terminal irrespective of electric wire length.
Moreover, by pressurizing the electric wire terminal, the curable resin liquid can be filled in a short time, and a highly viscous curable resin liquid can also be filled.
Moreover, when pressurizing an electric wire terminal, since atmosphere can be adjusted to the conditions on which curable resin liquid is easy to harden | cure, curable resin liquid can be hardened in a short time.
10・・・止水処理装置、11,11’,11”・・・耐圧性容器、12f”・・・耐圧性容器本体の接合面,13f”・・・耐圧性容器蓋体の接合面、20・・・電線、30,30’・・・電線保持部材,30”・・・電線保持部、30A,30B・・・保持部材、30b・・・接合面(分割面)、30d,30d”・・・緩衝材
DESCRIPTION OF
Claims (5)
前記電線端末を加圧するための耐圧性容器を備え、
該耐圧性容器には、前記電線のうち、前記硬化性樹脂液の圧入部を、外周から圧着保持する電線保持手段が設けられたことを特徴とする止水処理装置。 A device for pressurizing an electric wire terminal in contact with a curable resin liquid, press-fitting and curing the curable resin liquid inside the electric wire, and water-stopping the electric wire terminal,
A pressure-resistant container for pressurizing the wire end;
The pressure-resistant container is provided with an electric wire holding means for pressing and holding the press-fitted portion of the curable resin liquid from the outer periphery of the electric wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009033126A JP2010192164A (en) | 2009-02-16 | 2009-02-16 | Water cut-off treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009033126A JP2010192164A (en) | 2009-02-16 | 2009-02-16 | Water cut-off treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010192164A true JP2010192164A (en) | 2010-09-02 |
Family
ID=42817993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009033126A Pending JP2010192164A (en) | 2009-02-16 | 2009-02-16 | Water cut-off treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010192164A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012053069A1 (en) * | 2010-10-20 | 2012-04-26 | 株式会社フジクラ | Waterproofing device for wire terminus and waterproofing method |
-
2009
- 2009-02-16 JP JP2009033126A patent/JP2010192164A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012053069A1 (en) * | 2010-10-20 | 2012-04-26 | 株式会社フジクラ | Waterproofing device for wire terminus and waterproofing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2502009C1 (en) | Connector for pipeline for fluid medium and pipeline for fluid medium | |
CN102576991B (en) | Gasket for electric cables | |
CN106487171A (en) | A kind of fixing meanss of magnet steel, rotor assembly and motor | |
JP2010192164A (en) | Water cut-off treatment device | |
WO2012020472A1 (en) | Device for waterproofing and method of waterproofing | |
KR101770971B1 (en) | Shell processing method for an electronic device plug connector | |
JPH05501017A (en) | ceiling gland | |
JPWO2009038130A1 (en) | Method for water stop treatment of electric wire terminal and electric wire | |
EP3020683A1 (en) | Apparatus for manufacturing micro-channel and method for manufacturing micro-channel using same | |
CN103944136B (en) | Underwater platform cable sealing device | |
JP2002130541A (en) | Sealing method and equipment | |
KR101485440B1 (en) | Sealing structure of water proof ear-connector and sealing method thereof | |
WO2017110422A1 (en) | Pressure sensor | |
CA3025157C (en) | Terminal block and stud for transitionning an electrical connection between two distinct areas | |
JP2008159575A (en) | Waterproofness inspection method of electric wire, waterproofness inspection apparatus of electric wire, and method of manufacturing electric wire | |
DE502006002972D1 (en) | pressure seal | |
JP2010226771A (en) | Coated-cable drawing structure of liquid-immersed apparatus | |
US11226038B2 (en) | Flange sealing system and method of assembling same | |
JP2014219004A (en) | Device having at least one passage for conducting gaseous or liquid operating medium | |
ATE557226T1 (en) | COMPONENT WITH FLANGE AND METHOD FOR PRODUCING THE SAME | |
JP2006228709A (en) | Water cut-off processing method of on-vehicle electric wire | |
WO2012053069A1 (en) | Waterproofing device for wire terminus and waterproofing method | |
JPH09117642A (en) | Hollow fiber membrane module | |
CN209945864U (en) | Test piece clamp for overall expansion experiment | |
JP2007141620A (en) | Method and device for preventing water intrusion between wires, and wire harness |