JP2010226771A - Coated-cable drawing structure of liquid-immersed apparatus - Google Patents

Coated-cable drawing structure of liquid-immersed apparatus Download PDF

Info

Publication number
JP2010226771A
JP2010226771A JP2009067766A JP2009067766A JP2010226771A JP 2010226771 A JP2010226771 A JP 2010226771A JP 2009067766 A JP2009067766 A JP 2009067766A JP 2009067766 A JP2009067766 A JP 2009067766A JP 2010226771 A JP2010226771 A JP 2010226771A
Authority
JP
Japan
Prior art keywords
cable
pressure vessel
pressure
covered cable
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067766A
Other languages
Japanese (ja)
Inventor
Hikari Miyazaki
光 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishishiba Electric Co Ltd
Original Assignee
Nishishiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishishiba Electric Co Ltd filed Critical Nishishiba Electric Co Ltd
Priority to JP2009067766A priority Critical patent/JP2010226771A/en
Publication of JP2010226771A publication Critical patent/JP2010226771A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a fluid from leaking out of a pressure container through the inside of the coat of a cable, in a structure of drawing out the coated cable of an electrical apparatus through the pressure container which is charged with a pressurized fluid. <P>SOLUTION: The pressure container 1 is charged with the pressurized fluid, such as, LNG. The coated cable 2 of the electrical apparatus is so drawn out to the outside which is low in pressure from the inside of the pressure container 1 so as to pierce this pressure container 1. The through part between this coated cable 2 and the pressure container 1 is blocked in a fluid-tight fashion by a blocking means, consisting of a ground packing 4 and a fastening ground 5. At least one location of the coated cable 2 is provided with a tubular compressing element 6, which is arranged around the coated cable 2 and is compressed to fasten the entire periphery of the coated cable 2 with a roughly equal pressure; so that even if the liquid infiltrates in the coat of the coated cable 2, it is unable to move out of the pressure container through the inside of the coat. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばサブマージドポンプ用モータのように、加圧された液体が充填された圧力容器内から圧力容器を貫通するようにして電気機器の被覆ケーブルを引き出す構造を有する液浸機器の被覆ケーブル引き出し構造に関するものである。   The present invention covers a liquid immersion device having a structure in which a covered cable of an electric device is drawn out from a pressure vessel filled with pressurized liquid, such as a motor for a submerged pump. The present invention relates to a cable drawer structure.

従来、液化天然ガス(LNG)や液化石油ガス(LPG)等の加圧された液化ガスは、圧力容器内に充填されており、この圧力容器内から液化ガスを取り出す場合には、液化ガス用ポンプが使用されている。液化ガス用ポンプは、一般にポンプ本体が圧力容器内の液化ガス中に浸漬された状態で使用されるため、駆動用モータが一体化されたサブマージドポンプとして構成されている。   Conventionally, pressurized liquefied gas such as liquefied natural gas (LNG) or liquefied petroleum gas (LPG) has been filled in a pressure vessel. When taking out liquefied gas from the pressure vessel, A pump is in use. The liquefied gas pump is generally used as a submerged pump in which a driving motor is integrated because the pump body is used in a state where the pump body is immersed in the liquefied gas in the pressure vessel.

このサブマージドポンプは、例えば特許文献1の図3に記載されているように、駆動用モータ部分が完全に液化ガス中に浸漬された構造になっている。このため、駆動用モータに電力を供給するための電力線(被覆ケーブル)は、圧力容器内の液化ガス中から容器外部に引き出して外部電源装置に接続する必要がある。   The submerged pump has a structure in which the drive motor portion is completely immersed in the liquefied gas, for example, as described in FIG. For this reason, a power line (covered cable) for supplying power to the drive motor needs to be drawn out of the liquefied gas in the pressure vessel to the outside of the vessel and connected to an external power supply device.

この場合、圧力容器内の液化ガスは可燃性であり、しかも高圧で充填されているので、容器外部への漏洩を避ける必要がある。このため被覆ケーブルは、圧力容器から端子箱を介して引き出して外部電源装置に接続する構成が一般的である。また被覆ケーブルは、圧力容器を貫通して配設されるため、その貫通部にはグランドパッキンおよび締付グランドなどの閉塞手段を設けて液密を保つように構成されている。   In this case, since the liquefied gas in the pressure vessel is flammable and is filled at a high pressure, it is necessary to avoid leakage to the outside of the vessel. For this reason, it is general that the covered cable is pulled out from the pressure vessel through the terminal box and connected to the external power supply device. Further, since the covered cable is disposed through the pressure vessel, the penetrating portion is provided with a closing means such as a gland packing and a fastening gland so as to keep liquid tight.

ところで、被覆ケーブルは、圧力容器内の液化ガス中に浸漬されているモータの固定子巻線と電気的な接続を行なっており、その接続部は被覆ケーブルの被覆を剥がして芯線を電気的に接続し、その周囲をシール材等によって液密となるように被覆することにより被覆ケーブル内に流体が浸透しないように処置されている。   By the way, the sheathed cable is electrically connected to the stator winding of the motor immersed in the liquefied gas in the pressure vessel, and the connecting portion strips the sheath of the sheathed cable to electrically connect the core wire. By connecting and covering the periphery so as to be liquid-tight with a sealant or the like, a measure is taken to prevent the fluid from penetrating into the covered cable.

しかしながら、被覆ケーブルが貫通する圧力容器の内外には圧力差があり、圧力容器内の圧力が高くなると、被覆ケーブルの被覆内外の圧力差も大きくなり、圧力容器内の液体が被覆ケーブルの被服内に浸透して移動し、圧力容器を通過して容器外へ漏洩するおそれがある。   However, there is a pressure difference between the inside and outside of the pressure vessel through which the sheathed cable penetrates. When the pressure in the pressure vessel increases, the pressure difference between the inside and outside of the sheathed cable also increases, and the liquid in the pressure vessel moves inside the clothing of the sheathed cable. There is a risk of leaking out of the container through the pressure vessel.

一方、電気機器の樹脂モールド技術の分野においては、金型を貫通するリード線と金型との間からモールドする樹脂が漏れないようにするために、リード線を保護チューブで覆い、この保護チューブの樹脂で覆われる部分の一部もしくは全部をリング状の金具で圧着し、リード線と保護チューブとの隙間を閉塞するように構成する技術が提案されている(特許文献2参照)。   On the other hand, in the field of resin molding technology for electrical equipment, the lead wire is covered with a protective tube in order to prevent the resin molded from between the lead wire penetrating the die and the die, and this protective tube A technique has been proposed in which a part or all of the portion covered with the resin is pressure-bonded with a ring-shaped metal fitting to close the gap between the lead wire and the protective tube (see Patent Document 2).

特開2006−129661号公報JP 2006-129661 A 実開昭55−48371号公報Japanese Utility Model Publication No. 55-48371

しかしながら、このようなリング状金具により保護チューブを介して被覆ケーブル(リード線)を圧着する構造では、被覆ケーブルを全周にわたってほぼ均一な圧力で締め付けることができず、部分的に締め付けの弱い箇所が発生するおそれがある。また毎回同じ圧力で締め付けることができず、締め付けの弱い箇所が発生し、流体が被覆ケーブルの被覆の内側を浸透して容器外へ漏洩するおそれがある。   However, in a structure in which a covered cable (lead wire) is crimped via a protective tube with such a ring-shaped fitting, the covered cable cannot be tightened with almost uniform pressure over the entire circumference, and the part that is weakly tightened partially May occur. Further, it cannot be tightened with the same pressure every time, and a weakly tightened portion is generated, and there is a risk that fluid may permeate the inside of the sheath of the sheathed cable and leak out of the container.

本発明は上述の問題を解決するためになされたものであり、その目的とするところは、加圧された液体が充填された圧力容器を貫通させて電気機器の被覆ケーブルを引き出す構造において、流体が被覆ケーブルの被覆の内側を通して圧力容器外に漏洩するのを防止することのできる液浸機器の被覆ケーブル引き出し構造を提供することにある。   The present invention has been made in order to solve the above-described problems. The object of the present invention is to provide a structure in which a sheathed cable of an electric device is drawn out through a pressure vessel filled with pressurized liquid. It is an object of the present invention to provide a covered cable lead-out structure for a liquid immersion device that can prevent leakage of the cover from the pressure vessel through the inside of the cover of the covered cable.

上記目的を達成するために本発明による液浸機器の被覆ケーブル引き出し構造は、加圧された液体が充填された圧力容器と、この圧力容器を貫通するようにして圧力容器の内部から圧力の低い外部に引き出される電気機器の被覆ケーブルと、この被覆ケーブルと圧力容器との間の貫通部を液密に閉塞する閉塞手段と、被覆ケーブルの少なくとも一箇所に設けられ、被覆ケーブルの外周に配設されかつ圧縮成形されて被覆ケーブルの全周をほぼ均一な圧力で締め付ける筒状の圧縮子と、を備えてなることを特徴とする。   In order to achieve the above object, the covered cable lead-out structure of the immersion apparatus according to the present invention includes a pressure vessel filled with pressurized liquid and a low pressure from the inside of the pressure vessel so as to penetrate the pressure vessel. Covered cable of electrical equipment drawn out to outside, closing means for liquid-tightly closing the penetration between the covered cable and the pressure vessel, and provided on at least one location of the covered cable and disposed on the outer periphery of the covered cable And a cylindrical compressor that is compression-molded and clamps the entire circumference of the coated cable with substantially uniform pressure.

本発明によれば、被覆ケーブルの少なくとも一箇所に筒状の圧縮子を、被覆ケーブルの外周に配設しかつ圧縮成形して設けることにより、被覆ケーブルの全周をほぼ均一な圧力で締め付けることができる。これにより加圧された液体が充填された圧力容器内で被覆ケーブル内に液体が浸透しても、圧縮子により締め付けられている箇所で液体の移動が阻止されることになり、圧力容器外の空間部に液体が漏洩することがなくなる。   According to the present invention, a cylindrical compressor is disposed on the outer periphery of the covered cable and provided by compression molding at least at one location of the covered cable, thereby tightening the entire circumference of the covered cable with a substantially uniform pressure. Can do. As a result, even if the liquid penetrates into the covered cable in the pressure vessel filled with the pressurized liquid, the movement of the liquid is prevented at the location tightened by the compressor, and the outside of the pressure vessel Liquid does not leak into the space.

本発明による液浸機器の被覆ケーブル引き出し構造の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the covering cable drawer | drawing-out structure of the immersion apparatus by this invention. 図1のII−II線に沿って切断し矢印の方向にみた断面図である。It is sectional drawing cut | disconnected along the II-II line | wire of FIG. 1, and seeing in the direction of the arrow. 本発明で使用する筒状の圧縮子の一例を示す拡大断面図である。It is an expanded sectional view which shows an example of the cylindrical compressor used by this invention.

以下、本発明による液浸機器の被覆ケーブル引き出し構造について図面を参照して説明する。図1は本発明による液浸機器の被覆ケーブル引き出し構造の一実施の形態を示す断面図、図2は、図1のII−II線に沿って切断し矢印の方向にみた断面図である。   Hereinafter, the covered cable lead-out structure of the immersion apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of a covered cable lead-out structure for an immersion apparatus according to the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

図1および図2において、圧力容器1は、例えばサブマージドポンプ用モータのフレームで、その内部(図示左側)には、固定子巻線を含むモータ要素(図示せず)が収納されている。また圧力容器1内には、加圧された液体(LNG,LPGまたはDMEなど)が充満しており、モータ要素を冷却している。この圧力容器1内の固定子巻線に接続された被覆ケーブル2は、口出しリード線として圧力容器1の貫通孔3を貫通して圧力容器1外の端子箱10(図示右側)内に引き出されている。この端子箱内の空間部は、圧力容器1内よりも圧力の低い大気圧中におかれている。   1 and 2, a pressure vessel 1 is, for example, a frame of a motor for a submerged pump, and a motor element (not shown) including a stator winding is accommodated inside (on the left side in the drawing). The pressure vessel 1 is filled with a pressurized liquid (such as LNG, LPG, or DME), and cools the motor element. The covered cable 2 connected to the stator winding in the pressure vessel 1 passes through the through hole 3 of the pressure vessel 1 as a lead wire and is drawn into the terminal box 10 (right side in the drawing) outside the pressure vessel 1. ing. The space in the terminal box is placed in an atmospheric pressure having a lower pressure than that in the pressure vessel 1.

圧力容器1を貫通する被覆ケーブル2の貫通部には、貫通部の液密構造を構成する閉塞手段が設けられている。閉塞手段は、貫通孔3を閉塞するように装填されたグランドパッキン4と、このグランドパッキン4を圧縮するために強固にねじ込まれた締付グランド5とから構成されている。   The through portion of the covered cable 2 that penetrates the pressure vessel 1 is provided with closing means that constitutes a liquid tight structure of the through portion. The closing means is composed of a gland packing 4 loaded so as to close the through-hole 3 and a fastening gland 5 screwed firmly to compress the gland packing 4.

さらに圧力容器1内に位置する被覆ケーブル2の一箇所には、筒状の圧縮子6が設けられている。この圧縮子6は、その軸方向全体、または軸方向両端部、あるいは軸方向の一部が圧縮成形されて被覆ケーブル2を全周にわたってほぼ均一な圧力で締め付けられており、被覆ケーブル2の被覆7の内側を通して液体が圧力容器1外に漏洩するのを阻止するように構成されている。なお、この圧縮子6については、圧力容器1の外側に位置する被覆ケーブル2に設けることもできる。   Further, a cylindrical compressor 6 is provided at one location of the covered cable 2 located in the pressure vessel 1. The entire axial direction, or both axial ends or a part of the axial direction of the compressor 6 is compression-molded, and the coated cable 2 is tightened with almost uniform pressure over the entire circumference. 7 is configured to prevent liquid from leaking out of the pressure vessel 1 through the inside of the pressure vessel 1. The compressor 6 can also be provided on the covered cable 2 located outside the pressure vessel 1.

圧縮子6の圧縮方法は、全周を一括して圧縮することもできるが、図2に示すように周方向にずらせて行なうことが望ましい。すなわち、まず圧縮子6の外周の180度対向した位置a−a’部分を、ダイスを有する専用の圧縮治具(図示せず)により挟んで2度あるいはそれ以上の加圧を行なって圧縮する。次いで周方向に角度をずらせてb−b’部分を2度あるいはそれ以上の加圧を行なって圧縮する。以後同様にして順次周方向にずらせてf−f’部分まで加圧圧縮成形を繰り返し行なう。   The compression method of the compressor 6 can be performed by compressing the entire circumference at once, but it is preferable to shift the circumference in the circumferential direction as shown in FIG. That is, first, the position aa ′ of the outer periphery of the compressor 6 facing 180 degrees is sandwiched by a dedicated compression jig having a die (not shown) and compressed by applying pressure twice or more. . Next, the angle is shifted in the circumferential direction, and the b-b 'portion is compressed by applying pressure of 2 degrees or more. Thereafter, in the same manner, the compression compression molding is repeatedly performed up to the f-f 'portion by sequentially shifting in the circumferential direction.

このような圧縮方法を採用すると、筒状の圧縮子6を円滑に変形させることができるとともに被覆ケーブル2をその全周にわたってほぼ均一に締め付けることができ、しかも多数の被覆ケーブルの圧縮子に対して繰り返し圧縮作業を行なっても、その都度、期待する圧縮結果が得られるように成形することができる。   By adopting such a compression method, the cylindrical compressor 6 can be smoothly deformed, and the coated cable 2 can be tightened almost uniformly over the entire circumference thereof. Even if the compression operation is repeatedly performed, the molding can be performed so that an expected compression result is obtained each time.

なお、分割可能な六角状のダイスを有する専用の圧縮治具を用いて、まずa−a’、c−c’、 e−e’部分を同時に圧縮し、その後、周方向の角度を30度ずらせてb−b’、d−d’、f−f’部分を同時に圧縮する方法も採用することができる。   In addition, using a dedicated compression jig having hexagonal dice that can be divided, first, the aa ′, cc ′, and ee ′ portions are simultaneously compressed, and then the circumferential angle is set to 30 degrees. A method of simultaneously compressing the bb ′, dd ′, and ff ′ portions by shifting can also be employed.

本実施の形態について以下の実験を行なった。被覆ケーブル2は、サイズ13〜15mmで、外径が8.5〜9.4mm、被覆7の厚さが1.9〜2.1mm、その被覆7の材質が弗化エチレン樹脂または塩化ビニール等の絶縁材、芯線8が銅等の導電材のより線である。また圧縮子6は、芯線8と同一材または異材の銅、アルミニウム等の導電材からなる筒状をなし、外径14.0〜15.5mm、内径10.5〜11.7mm、長さ38〜42mmである。 The following experiment was conducted on this embodiment. The coated cable 2 has a size of 13 to 15 mm 2 , an outer diameter of 8.5 to 9.4 mm, a thickness of the coating 7 of 1.9 to 2.1 mm, and the material of the coating 7 is a fluoroethylene resin or vinyl chloride Insulating material such as, and the core wire 8 is a stranded wire of a conductive material such as copper. The compressor 6 has a cylindrical shape made of a conductive material such as copper or aluminum which is the same or different from the core wire 8, and has an outer diameter of 14.0 to 15.5 mm, an inner diameter of 10.5 to 11.7 mm, and a length of 38. ~ 42 mm.

この圧縮子6を被覆ケーブル2に挿通し、六角形状の押圧面を有する、分割可能なダイスを備えた専用の治具を用いて9.0〜10.0トンの圧力で角度をずらせて2度ずつ圧縮して図1および図2に示すように圧縮成形した。圧縮率は96%である。   This compressor 6 is inserted into the covered cable 2 and the angle is shifted by a pressure of 9.0 to 10.0 tons using a dedicated jig having a hexagonal pressing surface and having a separable die 2 After compression, it was compression molded as shown in FIGS. The compression rate is 96%.

この圧縮子6の圧縮成形部に被覆ケーブル2の一方の端部から水圧をかけて流体の漏れを実験した。水圧は各々2,4,6,8,10kg/cmの圧力で、10分間加圧し、その漏れ量を測定したところ、被覆ケーブル2の他方の端部からの漏れは全く確認されなかった。 Experiments were conducted on fluid leakage by applying water pressure from one end of the coated cable 2 to the compression molded portion of the compressor 6. The water pressures were 2, 4, 6, 8, and 10 kg / cm 2 , respectively, for 10 minutes, and when the amount of leakage was measured, no leakage from the other end of the covered cable 2 was confirmed.

図3は、本発明で使用する筒状の圧縮子の一例を示す拡大断面図である。図3に示すように、筒状の圧縮子6は、軸方向の両端部に先細りのテーパ部6a,6aが形成されており、このような形状の圧縮子6を用い、さらに各種被覆ケーブルサイズに応じて表1のように各部の寸法を変えて製作し、表2に示すように各種被覆ケーブルに外挿し圧縮成形して流体の漏れを実験した。   FIG. 3 is an enlarged cross-sectional view showing an example of a cylindrical compressor used in the present invention. As shown in FIG. 3, the cylindrical compressor 6 is formed with tapered portions 6a, 6a at both ends in the axial direction. Accordingly, the dimensions of the respective parts were changed as shown in Table 1, and it was inserted into various coated cables as shown in Table 2 and compression molded to test fluid leakage.

図3に示す筒状の圧縮子6は、軸方向の長さが40mm、テーパ部の軸方向の長さが7mmで、外径φA、テーパ部の内径φB、内径φC、テーパ部の外径φDの各部の寸法は、表1におけるA,B,C,Dの寸法である。

Figure 2010226771
The cylindrical compressor 6 shown in FIG. 3 has an axial length of 40 mm, a tapered portion having an axial length of 7 mm, an outer diameter φA, an inner diameter φB, an inner diameter φC, and an outer diameter of the tapered portion. The dimensions of each part of φD are the dimensions of A, B, C, and D in Table 1.
Figure 2010226771

このように各部A〜Dの寸法の異なる圧縮子を使用し、表2に示すように、対応するサイズの被覆ケーブルに装着し、圧縮率を異ならせて圧縮成形して液体の漏れ量を測定した。その結果、いずれの実験例においても、被覆ケーブルの他方の端部からの漏れは全く確認されなかった。

Figure 2010226771
In this way, using the compressors with different dimensions of each part A to D, as shown in Table 2, it is attached to the corresponding size of the covered cable, and compression molding is performed with different compression ratios, and the amount of liquid leakage is measured. did. As a result, in any experimental example, no leakage from the other end of the coated cable was confirmed.
Figure 2010226771

また、これまでの実験例から圧縮子の圧縮率は、84%以下の場合には液漏れの可能性があり、96%以上の場合には断線する可能性があって、85〜95%の範囲内にあることが望ましいことがわかった。   Further, from the experimental examples so far, the compression ratio of the compressor may be liquid leakage when it is 84% or less, and may be disconnected when it is 96% or more, and it is 85 to 95%. It was found desirable to be within range.

1…圧力容器
2…被覆ケーブル
3…貫通孔
4…グランドパッキン
5…締付グランド
6…圧縮子
6a…テーパ部
7…被覆
8…芯線
DESCRIPTION OF SYMBOLS 1 ... Pressure vessel 2 ... Covered cable 3 ... Through-hole 4 ... Gland packing 5 ... Fastening gland 6 ... Compressor 6a ... Tapered part 7 ... Cover 8 ... Core wire

Claims (4)

加圧された液体が充填された圧力容器と、
この圧力容器を貫通するようにして前記圧力容器の内部から圧力の低い外部に引き出される電気機器の被覆ケーブルと、
この被覆ケーブルと前記圧力容器との間の貫通部を液密に閉塞する閉塞手段と、
前記被覆ケーブルの少なくとも一箇所に設けられ、前記被覆ケーブルの外周に配設されかつ圧縮成形されて前記被覆ケーブルの全周をほぼ均一な圧力で締め付ける筒状の圧縮子と、
を備えてなる液浸機器の被覆ケーブル引き出し構造。
A pressure vessel filled with pressurized liquid;
A sheathed cable for an electrical device that is drawn out from the inside of the pressure vessel to the outside at a low pressure so as to penetrate the pressure vessel;
Closure means for liquid-tightly closing the penetrating portion between the sheathed cable and the pressure vessel;
A cylindrical compressor provided in at least one location of the covered cable, disposed on the outer periphery of the covered cable, and compression-molded to clamp the entire circumference of the covered cable with a substantially uniform pressure;
Covered cable lead-out structure for immersion equipment.
前記圧縮子は、軸方向の少なくとも一部が全周にわたってほぼ均一な圧力で締め付けられていることを特徴とする請求項1に記載の液浸機器の被覆ケーブル引き出し構造。   2. The covered cable drawing structure for an immersion apparatus according to claim 1, wherein at least a part of the compressor in the axial direction is tightened with substantially uniform pressure over the entire circumference. 前記圧縮子は、径方向両側から挟んで加圧する治具により、周方向の位置をずらせながら圧縮され、全周にわたってほぼ均一な圧力で締め付けられていることを特徴とする請求項1または2に記載の液浸機器の被覆ケーブル引き出し構造。   3. The compressor according to claim 1, wherein the compressor is compressed while shifting the position in the circumferential direction by a jig that presses between both sides in the radial direction and is clamped with substantially uniform pressure over the entire circumference. Covered cable lead-out structure for the described immersion equipment. 前記圧縮子は、圧縮率が85%〜96%となるように締め付けられていることを特徴とする請求項1ないし3のいずれかに記載の液浸機器の被覆ケーブル引き出し構造。   The covered cable drawing structure for an immersion apparatus according to any one of claims 1 to 3, wherein the compressor is tightened so that a compression ratio is 85% to 96%.
JP2009067766A 2009-03-19 2009-03-19 Coated-cable drawing structure of liquid-immersed apparatus Pending JP2010226771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067766A JP2010226771A (en) 2009-03-19 2009-03-19 Coated-cable drawing structure of liquid-immersed apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067766A JP2010226771A (en) 2009-03-19 2009-03-19 Coated-cable drawing structure of liquid-immersed apparatus

Publications (1)

Publication Number Publication Date
JP2010226771A true JP2010226771A (en) 2010-10-07

Family

ID=43043374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067766A Pending JP2010226771A (en) 2009-03-19 2009-03-19 Coated-cable drawing structure of liquid-immersed apparatus

Country Status (1)

Country Link
JP (1) JP2010226771A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679152A (en) * 2012-04-20 2012-09-19 西安交通大学 United long-range transmission system for liquefied natural gas and high-temperature superconducting electric energy
KR101716837B1 (en) 2016-01-25 2017-03-15 한국전력기술 주식회사 Sealing Mechanism of RV Penetration for Cables
JP2020045936A (en) * 2018-09-18 2020-03-26 川崎重工業株式会社 Cable seal structure
US10674637B2 (en) 2017-06-30 2020-06-02 Fujitsu Limited Cooling device, cooling system, and cooling method for electronic circuitry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679152A (en) * 2012-04-20 2012-09-19 西安交通大学 United long-range transmission system for liquefied natural gas and high-temperature superconducting electric energy
KR101716837B1 (en) 2016-01-25 2017-03-15 한국전력기술 주식회사 Sealing Mechanism of RV Penetration for Cables
US10224121B2 (en) 2016-01-25 2019-03-05 Kepco Engineering & Construction Company, Inc. Sealing mechanism for a nuclear reactor vessel cable penetration tube
US10674637B2 (en) 2017-06-30 2020-06-02 Fujitsu Limited Cooling device, cooling system, and cooling method for electronic circuitry
JP2020045936A (en) * 2018-09-18 2020-03-26 川崎重工業株式会社 Cable seal structure
JP7356215B2 (en) 2018-09-18 2023-10-04 川崎重工業株式会社 cable seal structure

Similar Documents

Publication Publication Date Title
TWI321882B (en) Cable and cable connection assembly
US8134071B2 (en) Apparatus for a connection point between two electrical high-voltage cables
JP2010226771A (en) Coated-cable drawing structure of liquid-immersed apparatus
CN103840307B (en) Shipboard cable hermetically sealed connector under deepwater environment
TW201108521A (en) Cold-shrink separable connector
EP3125387A1 (en) Terminal structure for superconducting cable
EP0033035B1 (en) Fluid-tight electrical connector device
CN203839913U (en) Cable sealing device for underwater platform
US3084210A (en) Connection for submersible motors
CN103944136A (en) Underwater platform cable sealing device
CN204205533U (en) A kind of cable joint of electrical appliance under water
JP2012015260A (en) Cryostat formed of frp
CN103618280A (en) Oil filled type insulating sealing cable bunching structure
KR20130117321A (en) Barrier cable gland
US20180351285A1 (en) Electrical connection assembly for subsea applications
JP2016178779A (en) Terminal connection part for cryogenic cable
CN203589677U (en) Oil-filled type insulating sealing bunch structure
US2426845A (en) Cable end sealing device
KR101184823B1 (en) Cable connection structure for motor using in water and the connection method of the cable
CN207603186U (en) Well oil-charging submersible electric pump cable seal structure
CN210668831U (en) Waterproof quick-connecting connector
RU131536U1 (en) CABLE EXTENSION OF CABLE LINE OF SUBMERSIBLE ELECTRIC MOTOR
KR0149896B1 (en) Seal structure for member-passing-through hole bored in metal partition member
JP2017070126A (en) Liquid-tight structure, and terminal structure for superconducting cable
CN107134676A (en) A kind of plug-in type high-pressure cable socket

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110511